

FCC PART 15C TEST REPORT

No. I19Z70275-IOT05

for

Samsung Electronics. Co., Ltd.

Mobile phone

Model Name: SM-A015M/DS, SM-A015M

FCC ID: ZCASMA015M

with

Hardware Version: REV1.0

Software Version: A015M.001(A015MUBE0ASJ4)

Issued Date: 2019-11-12

Note:

The test results in this test report relate only to the devices specified in this report. This report shall not be reproduced except in full without the written approval of CTTL.

The report must not be used by the client to claim product certification, approval, or endorsement by NVLAP, NIST, or any agency of the U.S.Government.

Test Laboratory:

CTTL, Telecommunication Technology Labs, CAICT

No.52, HuayuanNorth Road, Haidian District, Beijing, P. R. China 100191.

Tel:+86(0)10-62304633-2512,Fax:+86(0)10-62304633-2504

Email:cttl terminals@caict.ac.cn, website: www.chinattl.com

REPORT HISTORY

Report Number	Revision	Description	Issue Date
I19Z70275-IOT05	Rev.0	1st edition	2019-11-12

CONTENTS

1. TEST LABORATORY	5
1.1. Introduction &Accreditation	5
1.2. TESTING LOCATION.	5
1.3. TESTING ENVIRONMENT	6
1.4. Project data	
1.5. Signature	6
2. CLIENT INFORMATION	7
2.1. APPLICANT INFORMATION	7
2.2. MANUFACTURER INFORMATION	7
3. EQUIPMENT UNDER TEST (EUT) AND ANCILLARY EQUIPMENT (AE)	8
3.1. ABOUT EUT	8
3.2. Internal Identification of EUT.	8
3.3. Internal Identification of AE	
3.4. NORMAL ACCESSORY SETTING	
3.5. GENERAL DESCRIPTION	9
4. REFERENCE DOCUMENTS	10
4.1. DOCUMENTS SUPPLIED BY APPLICANT	10
4.2. REFERENCE DOCUMENTS FOR TESTING	10
5. TEST RESULTS	11
5.1. SUMMARY OF TEST RESULTS	11
5.2. Statements	11
5.3. EXPLANATION OF RE-USE OF TEST DATA	11
6. TEST FACILITIES UTILIZED	12
7. MEASUREMENT UNCERTAINTY	13
7.1. PEAK OUTPUT POWER - CONDUCTED	13
7.2. Frequency Band Edges	13
7.3. Transmitter Spurious Emission - Conducted	13
7.4. Transmitter Spurious Emission - Radiated	
7.5. TIME OF OCCUPANCY (DWELL TIME)	
7.6. 20dB Bandwidth	
7.7. CARRIER FREQUENCY SEPARATION	
7.8. AC POWERLINE CONDUCTED EMISSION	
ANNEX A: DETAILED TEST RESULTS	15
A.1. MEASUREMENT METHOD.	
A.2. PEAK OUTPUT POWER – CONDUCTED.	
A.3. Frequency Band Edges – Conducted	18

A	ANNEX B: ACCREDITATION CERTIFICATE	88
	A.10. AC POWERLINE CONDUCTED EMISSION	83
	A.9. NUMBER OF HOPPING CHANNELS	
	A.8. CARRIER FREQUENCY SEPARATION.	76
	A.7. 20dB Bandwidth	70
	A.6. TIME OF OCCUPANCY (DWELL TIME)	60
	A.5. Transmitter Spurious Emission - Radiated.	50
	A.4. Transmitter Spurious Emission - Conducted	25

1. Test Laboratory

1.1. Introduction & Accreditation

Telecommunication Technology Labs, CAICT is an ISO/IEC 17025:2005 accredited test laboratory under NATIONAL VOLUNTARY LABORATORY ACCREDITATION PROGRAM (NVLAP)with lab code600118-0, and is also an FCC accredited test laboratory (CN5017), and ISED accredited test laboratory (CN0066). The detail accreditation scope can be found on NVLAP website.

1.2. Testing Location

Conducted testing Location: CTTL(huayuan North Road)

Address: No. 52, Huayuan North Road, Haidian District, Beijing,

P. R. China100191

Radiated testing Location: CTTL(Shouxiang)

Address: No. 51 Shouxiang Science Building, Xueyuan Road,

Haidian District, Beijing, P. R. China100191

1.3. Testing Environment

Normal Temperature: $15-35^{\circ}$ C Relative Humidity: 20-75%

1.4. Project data

Testing Start Date: 2019-9-16
Testing End Date: 2019-11-11

1.5. Signature

Wu Le

(Prepared this test report)

Sun Zhenyu

(Reviewed this test report)

Li Zhuofang

(Approved this test report)

2. Client Information

2.1. Applicant Information

Company Name: Samsung Electronics. Co., Ltd.

R5,A Tower 22 Floor A-1,(Maetan dong)

Address /Post: 129,Samsung-ro,Yeongtong-gu, Suwon-Si, Gyeonggi-do 16677,

Korea

City: /
Postal Code: /

Country: Korea

Telephone: +82-10-4376-0326

Fax: /

2.2. Manufacturer Information

Company Name: HUAQIN TELECOM HONG KONG LIMITED

Address /Post: FLAT/RM 510 5/F LINCOLN CENTER,20 YIP FUNG STREET

FANLING NT, HONG KONG

City: HONG KONG

Postal Code: /

Country: China

Telephone: +86 13632958367

Fax: /

3. Equipment Under Test (EUT) and Ancillary Equipment (AE)

3.1. About EUT

Description Mobile phone

Model Name SM-A015M/DS, SM-A015M

FCC ID ZCASMA015M

Frequency Band ISM 2400MHz~2483.5MHz Type of Modulation GFSK/π/4 DQPSK/8DPSK

Number of Channels 79

Power Supply 3.85V DC by Battery

3.2. Internal Identification of EUT

EUT ID*	SN or IMEI	HW Version	SW Version
EUT1	1	REV1.0	A015M.001(A015MUBE0ASJ4)
EUT2	359771100011827/	REV1.0	A015M.001(A015MUBE0ASJ4)
	359772100011825		

^{*}EUT ID: is used to identify the test sample in the lab internally.

3.3. Internal Identification of AE

AE ID*	Description		
AE1	Battery	1	1
AE2	Battery	1	1
AE3	Charger	1	1
AE4	Charger	1	1
AE5	USB Cable	1	1
AE6	Headset	1	1
AE1			
Model		QL1695	
Manufacturer		Ningde Amper	ex Technology Limited
Capacitance		2920mAh/300	0mAh
Nominal	voltage	3.85 V	
AE2			
Model		QL1695	
Manufac	turer	SCUD(Fujian)	Electronics Co., Ltd.
Capacita	ince	2920mAh/300	0mAh
Nominal	voltage	3.85 V	

AE3

Model ETA0U83JWS

Manufacturer Samsung Electronics Co., Ltd

Length of cable

AE4

Model ETA0U83EWE

Manufacturer Samsung Electronics Co., Ltd

Length of cable

AE5

Model ECB-DU68WE Manufacturer SHENGHUA

Length of cable /

3.4. Normal Accessory setting

Fully charged battery should be used during the test.

3.5. General Description

The Equipment Under Test (EUT) is a model of Mobile phone with integrated antenna. It consists of normal options: lithium battery, charger. Manual and specifications of the EUT were provided to fulfill the test. Samples undergoing test were selected by the Client.

^{*}AE ID: is used to identify the test sample in the lab internally.

4. Reference Documents

4.1. Documents supplied by applicant

EUT feature information is supplied by the client or manufacturer, which is the basis of testing.

4.2. Reference Documents for testing

The following documents listed in this section are referred for testing.

Reference	Title	Version
	FCC CFR 47, Part 15, Subpart C:	
	15.205 Restricted bands of operation;	
FCC Part15	15.209 Radiated emission limits, general requirements;	2018
	15.247 Operation within the bands 902–928MHz,	
	2400-2483.5 MHz, and 5725-5850 MHz.	
ANSI C63.10	American National Standard of Procedures for	luna 2012
ANSI 603. 10	Compliance Testing of Unlicensed Wireless Devices	June,2013

5. Test Results

5.1. Summary of Test Results

Abbreviations used in this clause:

- **P** Pass, The EUT complies with the essential requirements in the standard.
- **F** Fail, The EUT does not comply with the essential requirements in the standard
- **NA** Not Applicable, The test was not applicable
- NP Not Performed, The test was not performed by CTTL
- **R** Re-use test data from basic model report.

SUMMARY OF MEASUREMENT RESULTS	Sub-clause	Verdict
Peak Output Power - Conducted	15.247 (b)(1)	Р
Frequency Band Edges	15.247 (d)	R
Transmitter Spurious Emission - Conducted	15.247 (d)	R
Transmitter Spurious Emission - Radiated	15.247, 15.205, 15.209	R
Time of Occupancy (Dwell Time)	15.247 (a) (1)(iii)	R
20dB Bandwidth	15.247 (a)(1)	R
Carrier Frequency Separation	15.247 (a)(1)	R
Number of hopping channels	15.247 (a)(b)(iii)	R
AC Powerline Conducted Emission	15.107, 15.207	R

Please refer to **ANNEX A** for detail.

The measurement is made according to ANSI C63.10.

5.2. Statements

CTTL has evaluated the test cases requested by the applicant /manufacturer as listed in section 5.1 of this report for the EUT specified in section 3 according to the standards or reference documents listed in section 4.2

5.3. Explanation of re-use of test data

The Equipment Under Test (EUT) model SM-A015M/DS and SM-A015M(FCC ID: ZCASMA015M) are variants product of SM-A015F/DS(FCC ID: ZCASMA015F), according to the declaration of changes provided by the applicant and FCC KDB publication 484596 D01, spot check measurements(Peak Output Power-Conducted) were performed on the SM-A015M/DS, other test results are derived from test report No. I19Z70269-IOT04.The SM-A015M/DS with Dual SIM mode is a new product for this testing. The SM-A015M with single SIM mode is a variant product of SM-A015M/DS and shares the SM-A015M/DS results. Please refer Annex A for detail spot check verification data and reference data. the spot check test results are consistent with basic model. For detail differences between two models please refer the Declaration of Changes document.

6. Test Facilities Utilized

Conducted test system

No.	Equipment	Model	Serial Number	Manufacturer	Calibratio n Period	Calibration Due date
1	Vector Signal Analyzer	FSQ26	200136	Rohde & Schwarz	1 year	2019-11-21
2	Bluetooth Tester	CBT32	100315	Rohde & Schwarz	1 year	2019-12-02
3	LISN	ENV216	101200	R&S	1 year	2020-03-04
4	Test Receiver	ESCI3	100344	R&S	1 year	2020-02-14
5	Base Station Simulator	СВТ	101042	R&S	1 year	2020-03-08
6	Shielding Room	S81	1	ETS-Lindgren	1	/

Radiated emission test system

	Radiated chilosion test system					
No.	Equipment	Model	Serial	Manufacturer	Calibration	Calibration
	1. 1		Number		Period	Due date
1	Test Receiver	ESU26	100235	Rohde & Schwarz	1 year	2020-03-01
2	BiLog Antenna	VULB9163	9163-1222	Schwarzbeck	1 year	2020-03-04
	Dual-Ridge					
3	Waveguide Horn	3115	6914	ETS-Lindgren	1 year	2020-01-03
	Antenna					
	Dual-Ridge					
4	Waveguide Horn	3116	2663	ETS-Lindgren	1 year	2020-05-31
	Antenna					
5	Base Station	CBT	101042	R&S	1 year	2020-03-08
	Simulator	CBI	101042	Nασ	i yeai	2020-03-06

7. Measurement Uncertainty

7.1. Peak Output Power - Conducted

Measurement Uncertainty:

Measurement Uncertainty (k=2)	0.66dB
-------------------------------	--------

7.2. Frequency Band Edges

Measurement Uncertainty:

Measurement Uncertainty (k=2) 0.66dB

7.3. Transmitter Spurious Emission - Conducted

Measurement Uncertainty:

Frequency Range	Uncertainty (k=2)
30 MHz ~ 8 GHz	1.22dB
8 GHz ~ 12.75 GHz	1.51dB
12.7GHz ~ 26 GHz	1.51dB

7.4. Transmitter Spurious Emission - Radiated

Measurement Uncertainty:

	1
Frequency Range	Uncertainty (k=2)
< 1 GHz	5.16dB
> 1 GHz	5.44dB

7.5. Time of Occupancy (Dwell Time)

Measurement Uncertainty:

Measurement Uncertainty (k=2)	0.88ms

7.6. 20dB Bandwidth

Measurement Uncertainty:

Measurement Uncertainty (k=2)	61.936Hz

7.7. Carrier Frequency Separation

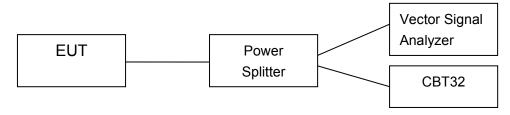
Measurement Uncertainty:

Measurement Uncertainty (k=2)	61.936Hz
, , , , , , , , , , , , , , , , , , , ,	

7.8. AC Powerline Conducted Emission

Measurement Uncertainty:

Measurement Uncertainty (k=2)	3.08dB
-------------------------------	--------


ANNEX A: Detailed Test Results

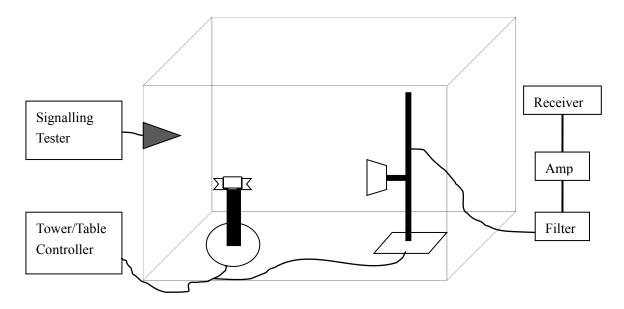
A.1. Measurement Method

A.1.1. Conducted Measurements

The measurement is made according to ANSI C63.10.

- 1). Connect the EUT to the test system correctly.
- 2). Set the EUT to the required work mode (Transmitter, receiver or transmitter & receiver).
- 3). Set the EUT to the required channel.
- 4). Set the EUT hopping mode (hopping or hopping off).
- 5). Set the spectrum analyzer to start measurement.
- 6). Record the values. Vector Signal Analyzer

A.1.2. Radiated Emission Measurements


The measurement is made according to ANSI C63.10

The radiated emission test is performed in semi-anechoic chamber. The distance from the EUT to the reference point of measurement antenna is 3m. The test is carried out on both vertical and horizontal polarization and only maximization result of both polarizations is kept. During the test, the turntable is rotated 360° and the measurement antenna is moved from 1m to 4m to get the maximization result.

In the case of radiated emission, the used settings are as follows,

Sweep frequency from 30 MHz to 1GHz, RBW = 100 kHz, VBW = 300 kHz;

Sweep frequency from 1 GHz to 26GHz, RBW = 1MHz, VBW = 1MHz;

A.2. Peak Output Power – Conducted

Method of Measurement: See ANSI C63.10-clause 7.8.5

a) Use the following spectrum analyzer settings:

Span: 6MHzRBW: 3MHzVBW: 3MHz

Sweep time: 2.5msDetector function: peak

• Trace: max hold

b) Allow trace to stabilize.

c) Use the marker-to-peak function to set the marker to the peak of the emission.

d) The indicated level is the peak output power.

Measurement Limit:

Standard	Limit (dBm)
FCC Part 15.247(b)(1)	< 30

Spot check Measurement Results:

For GFSK

Channel	Ch 0 2402 MHz	Ch 39 2441 MHz	Ch 78 2480 MHz	Conclusion
Peak Conducted Output Power (dBm)	3.15	3.07	2.40	Р

For $\pi/4$ DQPSK

Channel	Ch 0 2402 MHz	Ch 39 2441 MHz	Ch 78 2480 MHz	Conclusion
Peak Conducted Output Power (dBm)	2.48	2.29	1.77	Р

For 8DPSK

Channel	Ch 0 2402 MHz	Ch 39 2441 MHz	Ch 78 2480 MHz	Conclusion
Peak Conducted Output Power (dBm)	2.75	2.68	2.03	Р

Conclusion: PASS

Reference Measurement Results from basic model:

For GFSK

Channel	Ch 0 2402 MHz	Ch 39 2441 MHz	Ch 78 2480 MHz	Conclusion
Peak Conducted Output Power (dBm)	1.81	2.77	1.92	Р

For π/4 DQPSK

Channel	Ch 0 2402 MHz	Ch 39 2441 MHz	Ch 78 2480 MHz	Conclusion
Peak Conducted Output Power (dBm)	2.65	3.60	2.74	Р

For 8DPSK

Channel	Ch 0 2402 MHz	Ch 39 2441 MHz	Ch 78 2480 MHz	Conclusion
Peak Conducted Output Power (dBm)	3.08	4.00	2.96	Р

Conclusion: PASS

A.3. Frequency Band Edges - Conducted

Method of Measurement: See ANSI C63.10-clause 7.8.6

Connect the spectrum analyzer to the EUT using an appropriate RF cable connected to the EUT output. Configure the spectrum analyzer settings as described below (be sure to enter all losses between the unlicensed wireless device output and the spectrum analyzer).

- Span: 10 MHz

Resolution Bandwidth: 100 kHzVideo Bandwidth: 300 kHz

Sweep Time:AutoDetector: PeakTrace: max hold

Place a marker at the end of the restricted band closest to the transmit frequency to show compliance. Also measure any emissions in the restricted bands. Save the spectrum analyzer plot. Repeat for each power and modulation for lowest and highest channel.

Observe the stored trace and measure the amplitude delta between the peak of the fundamental and the peak of the band-edge emission. This is not an absolute field strength measurement; it is only a relative measurement to determine the amount by which the emission drops at the band edge relative to the highest fundamental emission level.

Measurement Limit:

Standard	Limit (dBc)
FCC 47 CFR Part 15.247 (d)	< -20

Measurement Result:

For GFSK

Channel	Hopping	Band Edge Power (dBc)		Conclusion
0	Hopping OFF	Fig.1	-57.18	Р
0	Hopping ON	Fig.2	-61.60	Р
78	Hopping OFF	Fig.3	-59.52	Р
	Hopping ON	Fig.4	-61.35	Р

For π/4 DQPSK

Channel	Hopping	Band Edge Power (dBc)		Conclusion
0	Hopping OFF	Fig.5	-58.11	Р
0	Hopping ON	Fig.6	-60.74	Р
78	Hopping OFF	Fig.7	-60.77	Р
	Hopping ON	Fig.8	-59.27	Р

For 8DPSK

Channel	Hopping	Band Edge Power (dBc)		Conclusion
Hopping OFF		Fig.9	-57.52	Р
0	Hopping ON	Fig.10	-61.72	Р
78	Hopping OFF	Fig.11	-57.74	Р
	Hopping ON	Fig.12	-59.38	Р

Conclusion: PASS
Test graphs as below

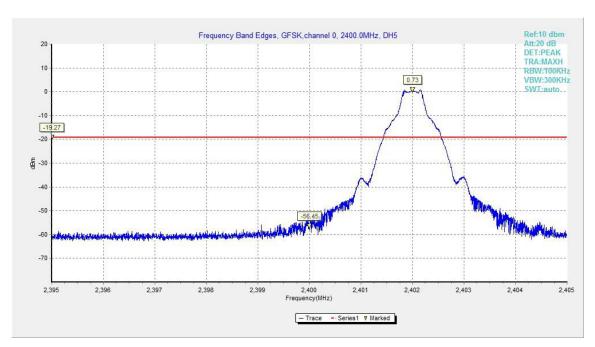


Fig.1. Frequency Band Edges: GFSK, Channel 0, Hopping Off

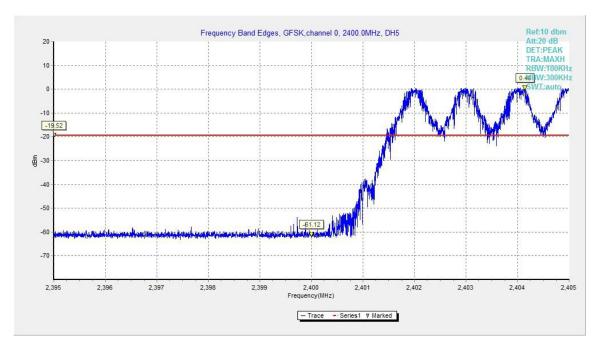


Fig.2. Frequency Band Edges: GFSK, Channel 0, Hopping On

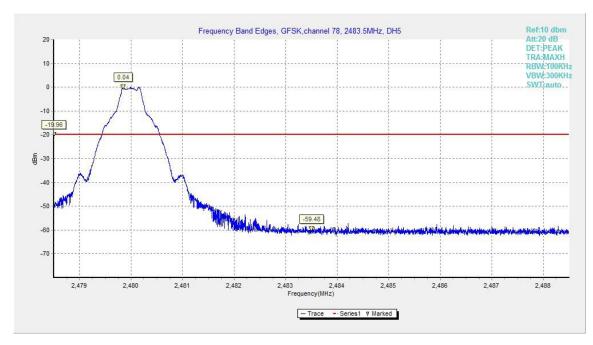


Fig.3. Frequency Band Edges: GFSK, Channel 78, Hopping Off

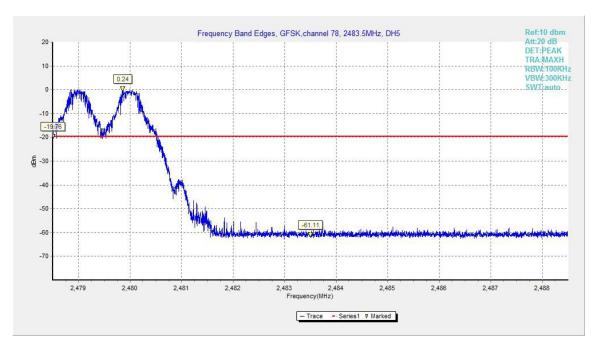


Fig.4. Frequency Band Edges: GFSK, Channel 78, Hopping On

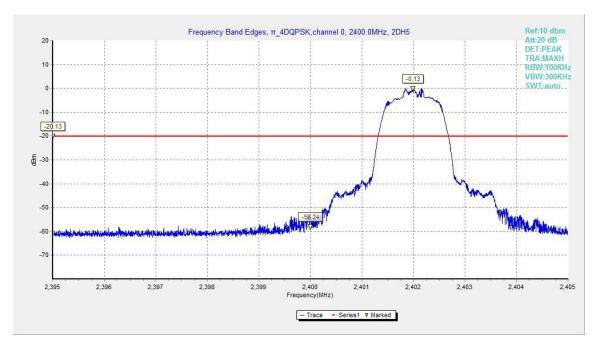


Fig.5. Frequency Band Edges: π/4 DQPSK, Channel 0, Hopping Off

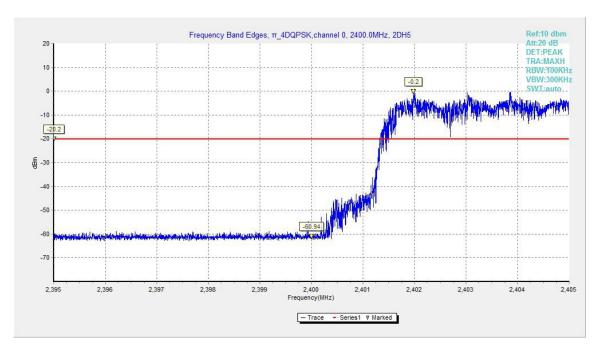


Fig.6. Frequency Band Edges: π/4 DQPSK, Channel 0, Hopping On

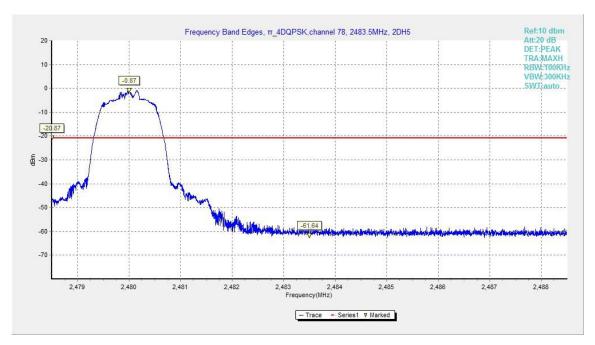


Fig.7. Frequency Band Edges: $\pi/4$ DQPSK, Channel 78, Hopping Off

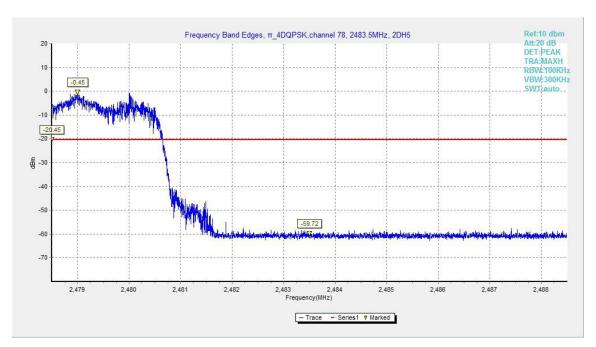


Fig.8. Frequency Band Edges: π/4 DQPSK, Channel 78, Hopping On

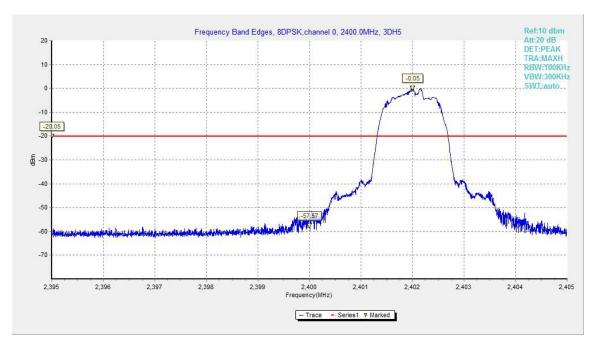


Fig.9. Frequency Band Edges: 8DPSK, Channel 0, Hopping Off

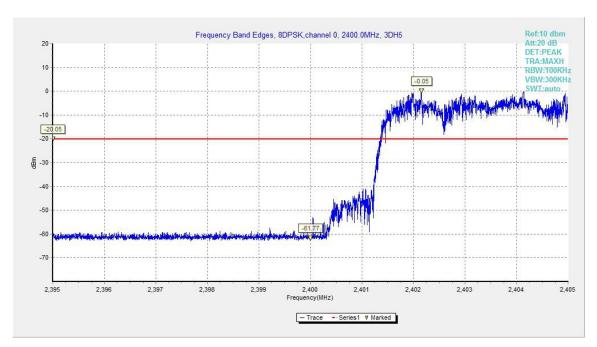


Fig.10. Frequency Band Edges: 8DPSK, Channel 0, Hopping On

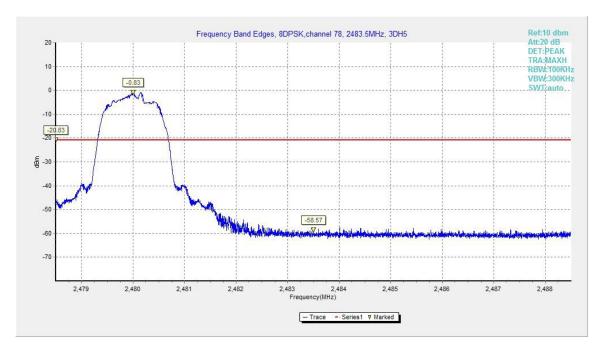


Fig.11. Frequency Band Edges: 8DPSK, Channel 78, Hopping Off

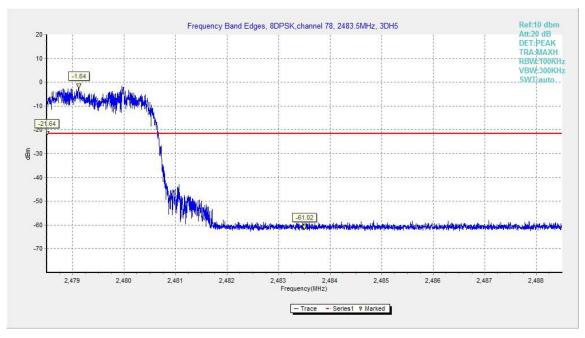


Fig.12. Frequency Band Edges: 8DPSK, Channel 78, Hopping On

A.4. Transmitter Spurious Emission - Conducted

Method of Measurement: See ANSI C63.10-clause 7.8.8

Measurement Procedure - Reference Level

- 1. Set the RBW = 100 kHz.
- 2. Set the VBW = 300 kHz.
- 3. Set the span to 5-30 % greater than the EBW.
- 4. Detector = peak.
- 5. Sweep time = auto couple.
- 6. Trace mode = max hold.
- 7. Allow trace to fully stabilize.
- 8. Use the peak marker function to determine the maximum power level in any 100 kHz band segment within the fundamental EBW. Next, determine the power in 100 kHz band segments outside of the authorized frequency band using the following measurement:

Measurement Procedure - Unwanted Emissions

- 1. Set RBW = 100 kHz.
- 2. Set VBW = 300 kHz.
- 3. Set span to encompass the spectrum to be examined.
- 4. Detector = peak.
- 5. Trace Mode = max hold.
- 6. Sweep = auto couple.
- 7. Allow the trace to stabilize (this may take some time, depending on the extent of the span).

Ensure that the amplitude of all unwanted emissions outside of the authorized frequency band (excluding restricted frequency bands) is attenuated by at least the minimum requirements specified above.

Measurement Limit:

Standard	Limit
ECC 47 CED Dort 15 247 (d)	20dB below peak output power in 100 kHz
FCC 47 CFR Part 15.247 (d)	bandwidth

Measurement Results:

For GFSK

Channel	Frequency Range	Test Results	Conclusion
---------	-----------------	--------------	------------

Ch 0 2402 MHz	Center Frequency	Fig.13	Р
	30 MHz ~ 1 GHz	Fig.14	Р
	1 GHz ~ 3 GHz	Fig.15	Р
2402 WII 12	3 GHz ~ 10 GHz	Fig.16	Р
	10 GHz ~ 26 GHz	Fig.17	Р
	Center Frequency	Fig.18	Р
Oh 20	30 MHz ~ 1 GHz	Fig.19	Р
Ch 39 2441 MHz	1 GHz ~ 3 GHz	Fig.20	Р
2441 101112	3 GHz ~ 10 GHz	Fig.21	Р
	10 GHz ~ 26 GHz	Fig.22	Р
	Center Frequency	Fig.23	Р
Ch 78 2480 MHz	30 MHz ~ 1 GHz	Fig.24	Р
	1 GHz ~ 3 GHz	Fig.25	Р
	3 GHz ~ 10 GHz	Fig.26	Р
	10 GHz ~ 26 GHz	Fig.27	Р

For $\pi/4$ DQPSK

Channel	Frequency Range	Test Results	Conclusion
	Center Frequency	Fig.28	Р
Ch O	30 MHz ~ 1 GHz	Fig.29	Р
Ch 0 2402 MHz	1 GHz ~ 3 GHz	Fig.30	Р
2402 11112	3 GHz ~ 10 GHz	Fig.31	Р
	10 GHz ~ 26 GHz	Fig.32	Р
	Center Frequency	Fig.33	Р
Oh 20	30 MHz ~ 1 GHz	Fig.34	Р
Ch 39 2441 MHz	1 GHz ~ 3 GHz	Fig.35	Р
	3 GHz ~ 10 GHz	Fig.36	Р
	10 GHz ~ 26 GHz	Fig.37	Р
	Center Frequency	Fig.38	Р
Oh 70	30 MHz ~ 1 GHz	Fig.39	Р
Ch 78 2480 MHz	1 GHz ~ 3 GHz	Fig.40	Р
	3 GHz ~ 10 GHz	Fig.41	Р
	10 GHz ~ 26 GHz	Fig.42	Р

For 8DPSK

Channel	Frequency Range	Test Results	Conclusion
	Center Frequency	Fig.43	Р
Ch 0	30 MHz ~ 1 GHz	Fig.44	Р
2402 MHz	1 GHz ~ 3 GHz	Fig.45	Р
	3 GHz ~ 10 GHz	Fig.46	Р

	10 GHz ~ 26 GHz	Fig.47	Р
	Center Frequency	Fig.48	Р
Ch 20	30 MHz ~ 1 GHz	Fig.49	Р
Ch 39 2441 MHz	1 GHz ~ 3 GHz	Fig.50	Р
211111112	3 GHz ~ 10 GHz	Fig.51	Р
	10 GHz ~ 26 GHz	Fig.52	Р
	Center Frequency	Fig.53	Р
Ch 78 2480 MHz	30 MHz ~ 1 GHz	Fig.54	Р
	1 GHz ~ 3 GHz	Fig.55	Р
	3 GHz ~ 10 GHz	Fig.56	Р
	10 GHz ~ 26 GHz	Fig.57	Р

Conclusion: PASS
Test graphs as below

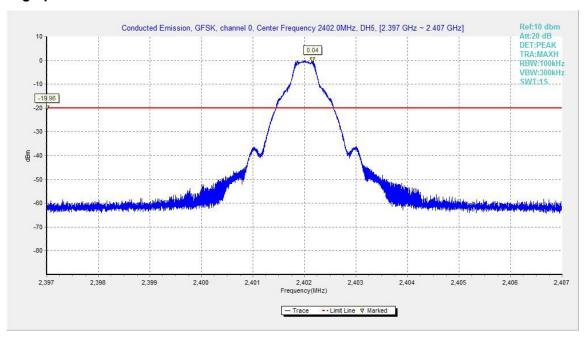


Fig.13. Conducted spurious emission: GFSK, Channel 0,2402MHz

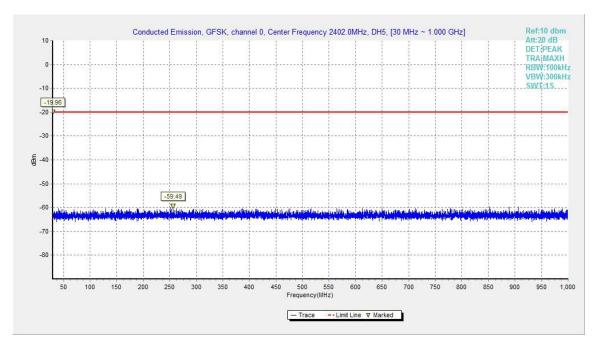


Fig.14. Conducted spurious emission: GFSK, Channel 0, 30MHz - 1GHz

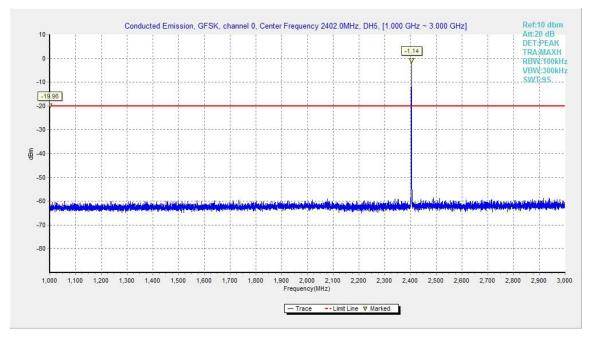


Fig.15. Conducted spurious emission: GFSK, Channel 0, 1GHz - 3GHz

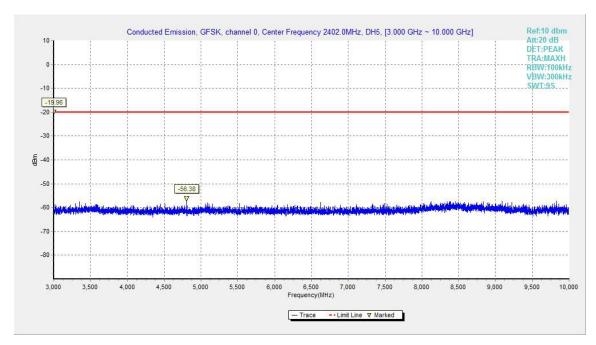


Fig.16. Conducted spurious emission: GFSK, Channel 0, 3GHz - 10GHz

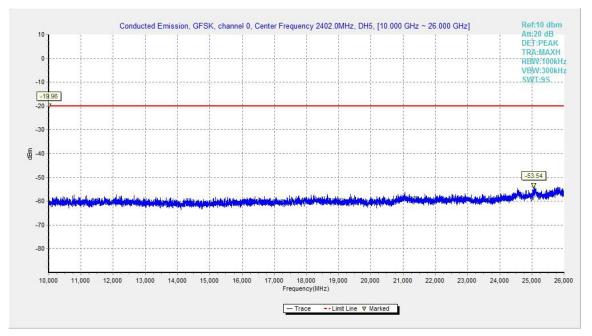


Fig.17. Conducted spurious emission: GFSK, Channel 0,10GHz - 26GHz

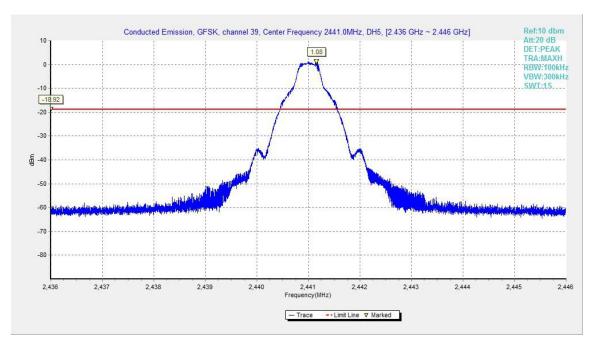


Fig.18. Conducted spurious emission: GFSK, Channel 39, 2441MHz

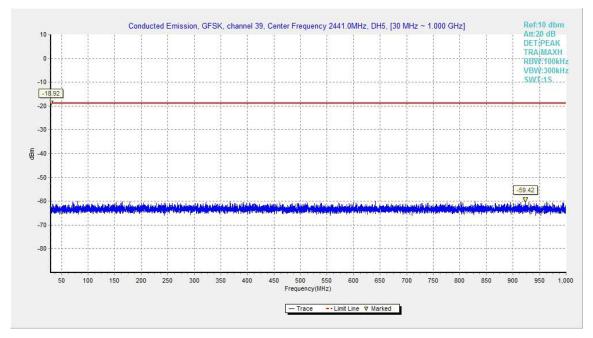


Fig.19. Conducted spurious emission: GFSK, Channel 39, 30MHz - 1GHz

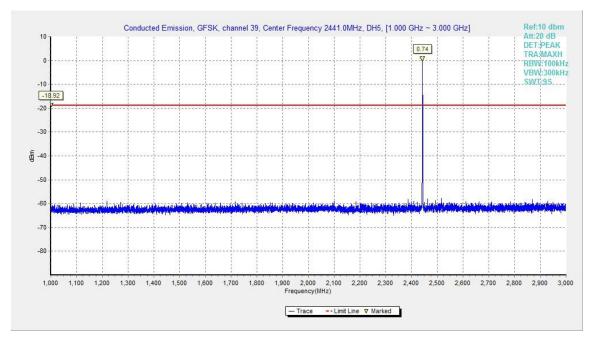


Fig.20. Conducted spurious emission: GFSK, Channel 39, 1GHz – 3GHz

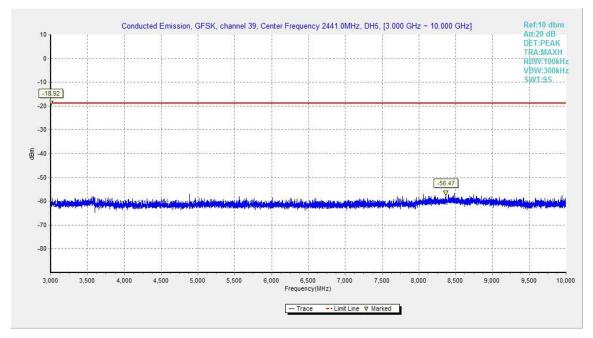


Fig.21. Conducted spurious emission: GFSK, Channel 39, 3GHz – 10GHz

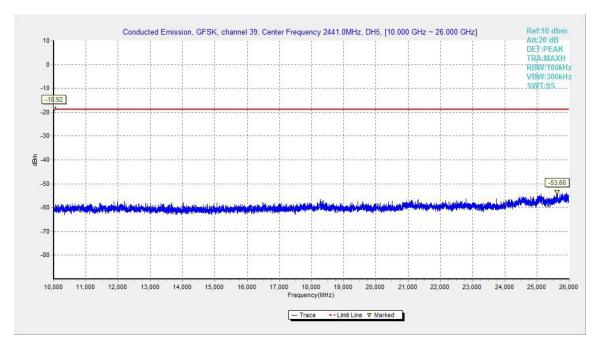


Fig.22. Conducted spurious emission: GFSK, Channel 39, 10GHz – 26GHz

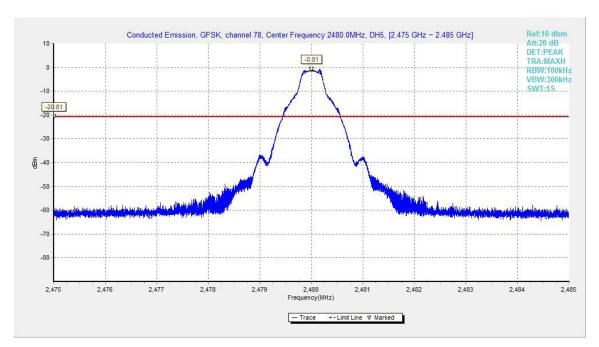


Fig.23. Conducted spurious emission: GFSK, Channel 78, 2480MHz

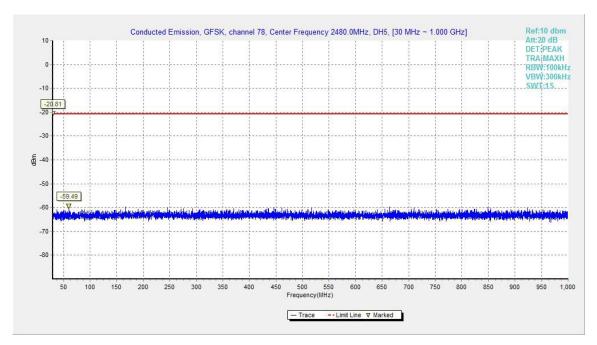


Fig.24. Conducted spurious emission: GFSK, Channel 78, 30MHz - 1GHz

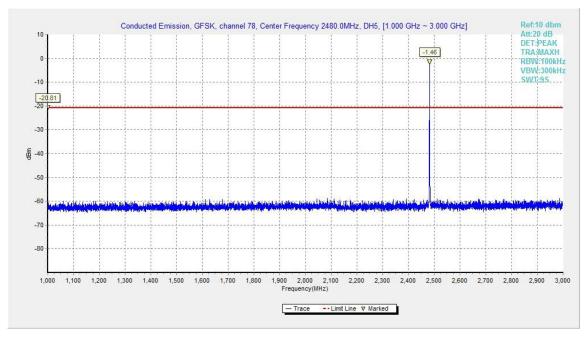


Fig.25. Conducted spurious emission: GFSK, Channel 78, 1GHz - 3GHz

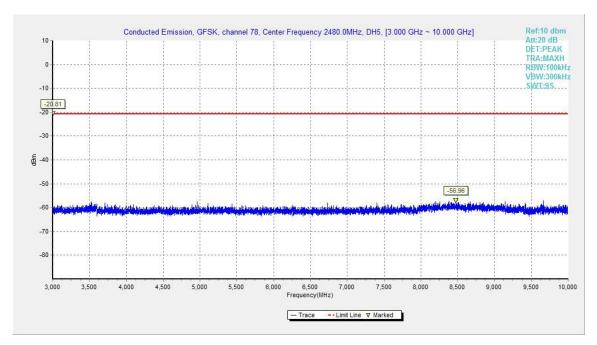


Fig.26. Conducted spurious emission: GFSK, Channel 78, 3GHz - 10GHz

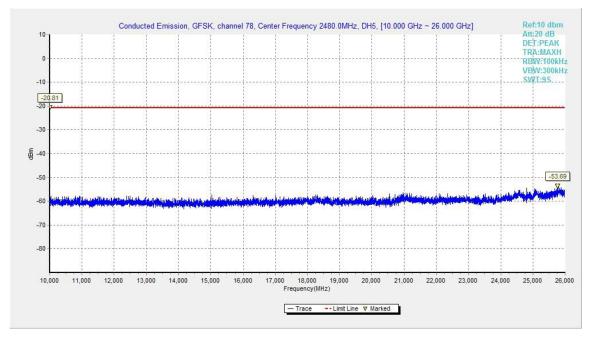


Fig.27. Conducted spurious emission: GFSK, Channel 78, 10GHz - 26GHz

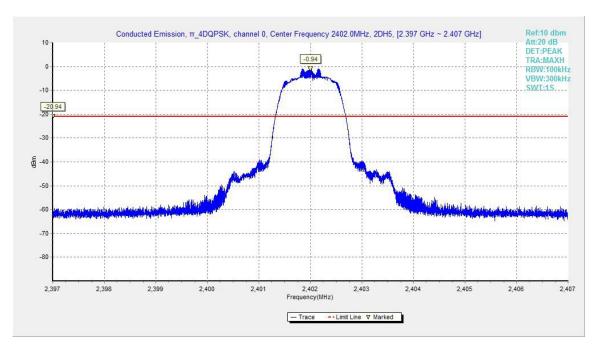


Fig.28. Conducted spurious emission: $\pi/4$ DQPSK, Channel 0,2402MHz

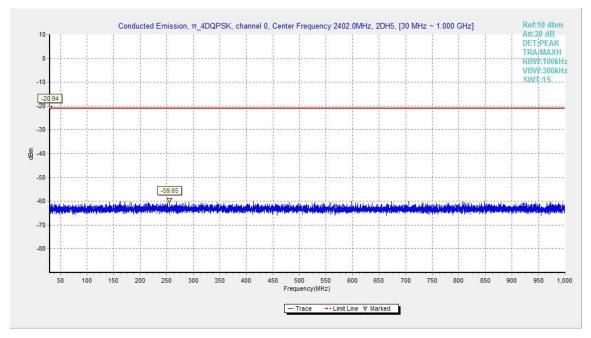


Fig.29. Conducted spurious emission: π/4 DQPSK, Channel 0, 30MHz - 1GHz

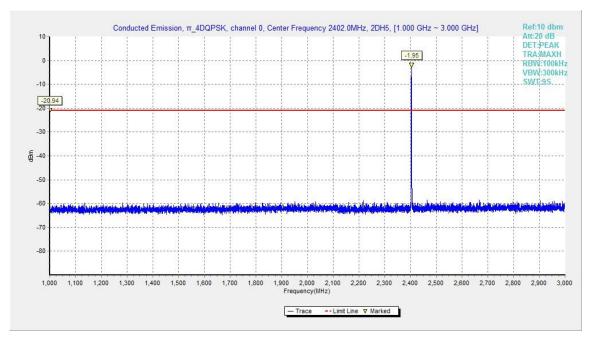


Fig.30. Conducted spurious emission: $\pi/4$ DQPSK, Channel 0, 1GHz - 3GHz

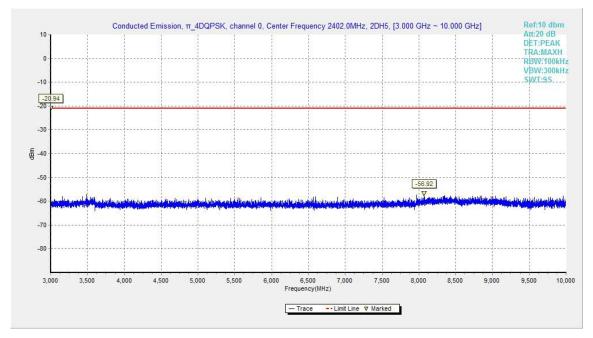


Fig.31. Conducted spurious emission: π/4 DQPSK, Channel 0, 3GHz - 10GHz

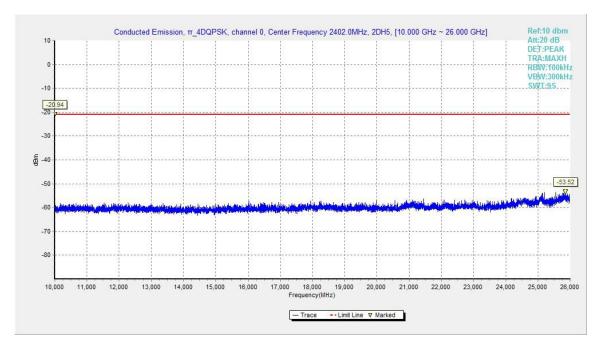


Fig.32. Conducted spurious emission: $\pi/4$ DQPSK, Channel 0,10GHz - 26GHz

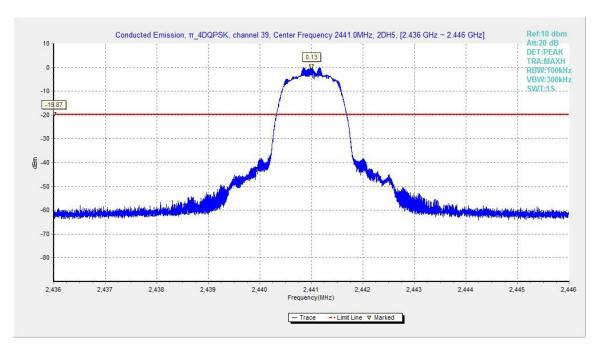


Fig.33. Conducted spurious emission: π/4 DQPSK, Channel 39, 2441MHz

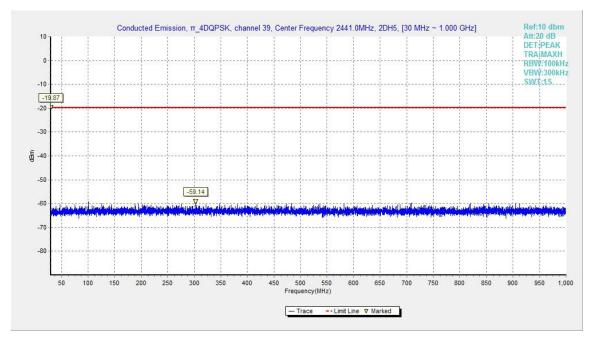


Fig.34. Conducted spurious emission: $\pi/4$ DQPSK, Channel 39, 30MHz - 1GHz

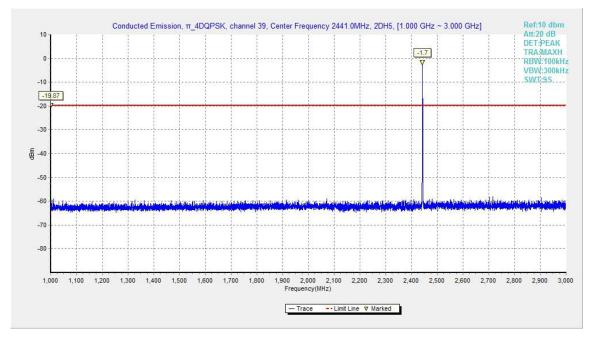


Fig.35. Conducted spurious emission: π/4 DQPSK, Channel 39, 1GHz - 3GHz

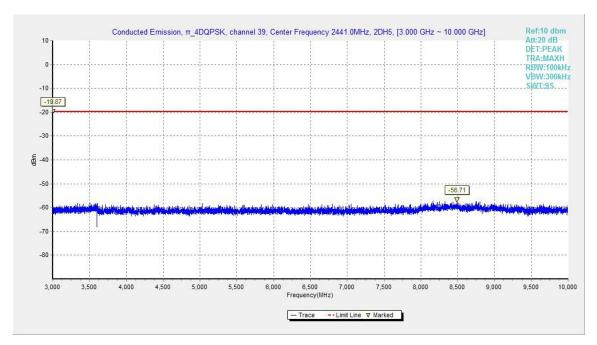


Fig.36. Conducted spurious emission: $\pi/4$ DQPSK, Channel 39, 3GHz - 10GHz

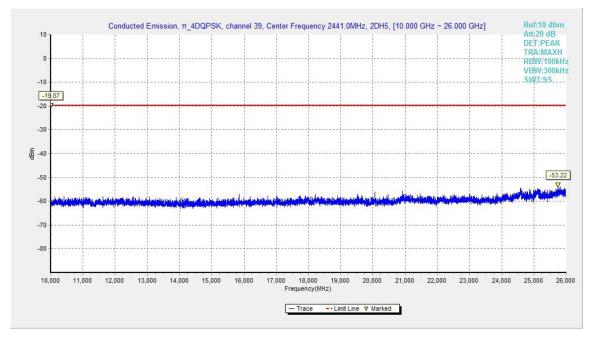


Fig.37. Conducted spurious emission: π/4 DQPSK, Channel 39, 10GHz – 26GHz

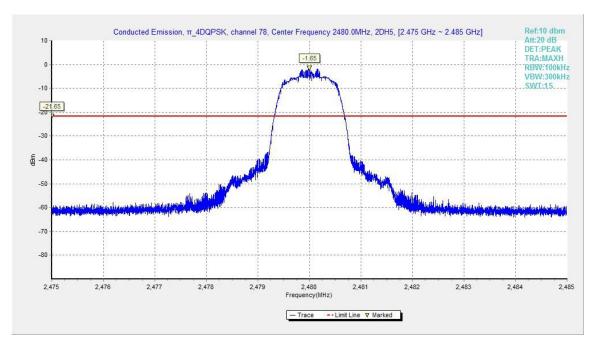


Fig.38. Conducted spurious emission: $\pi/4$ DQPSK, Channel 78, 2480MHz

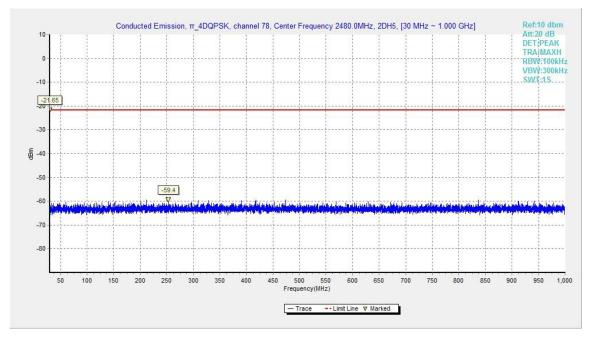


Fig.39. Conducted spurious emission: $\pi/4$ DQPSK, Channel 78, 30MHz - 1GHz

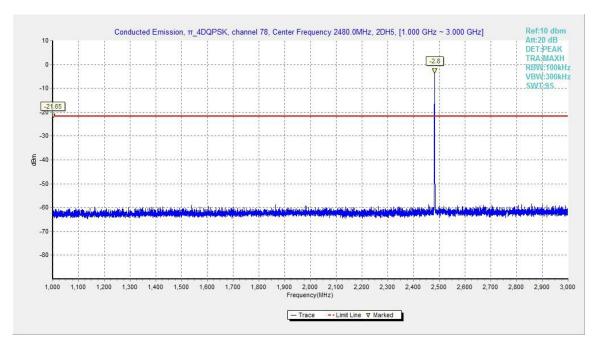


Fig.40. Conducted spurious emission: $\pi/4$ DQPSK, Channel 78, 1GHz - 3GHz

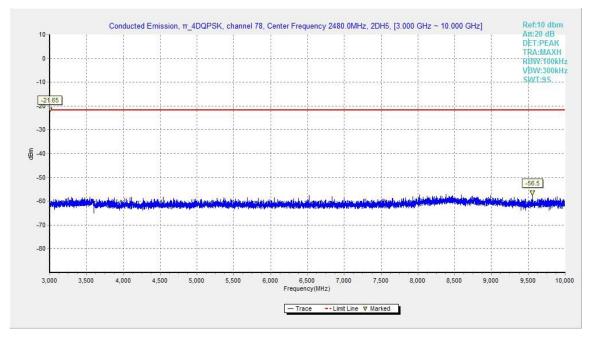


Fig.41. Conducted spurious emission: π/4 DQPSK, Channel 78, 3GHz - 10GHz

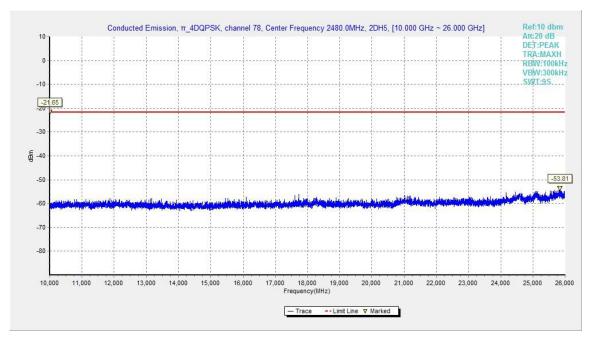


Fig.42. Conducted spurious emission: π/4 DQPSK, Channel 78, 10GHz - 26GHz

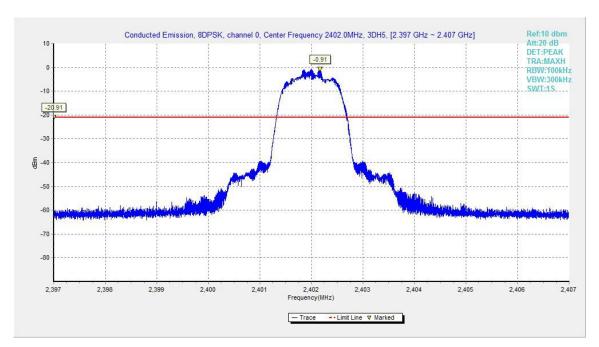


Fig.43. Conducted spurious emission: 8DPSK, Channel 0,2402MHz

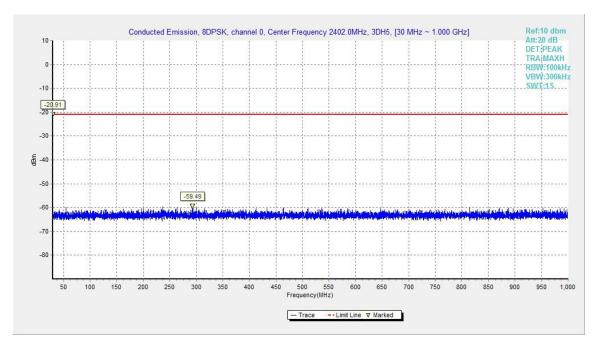


Fig.44. Conducted spurious emission: 8DPSK, Channel 0, 30MHz - 1GHz

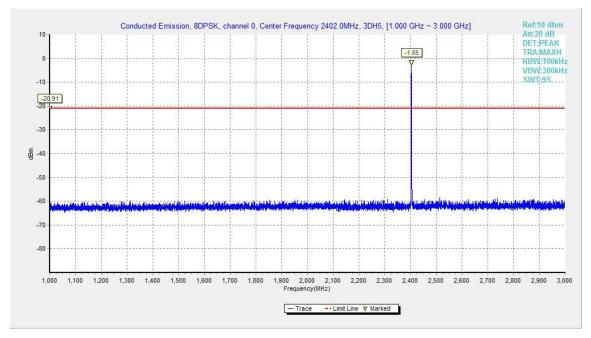


Fig.45. Conducted spurious emission: 8DPSK, Channel 0, 1GHz - 3GHz

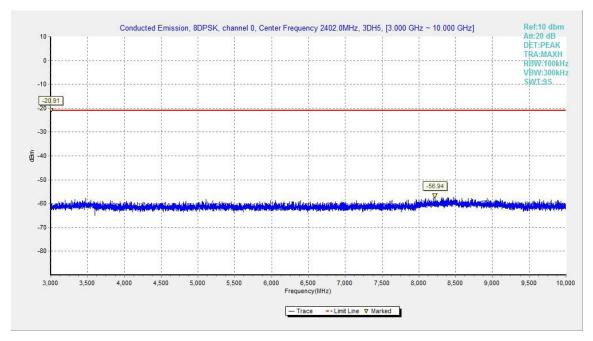


Fig.46. Conducted spurious emission: 8DPSK, Channel 0, 3GHz - 10GHz

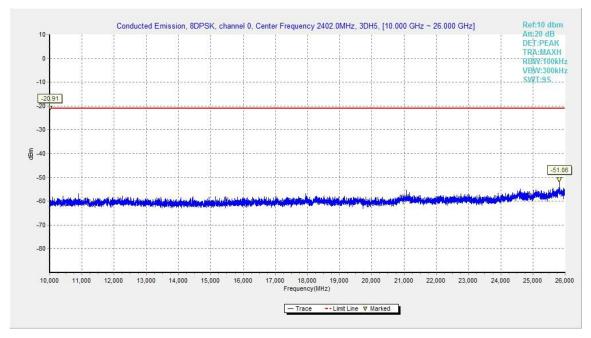


Fig.47. Conducted spurious emission: 8DPSK, Channel 0,10GHz - 26GHz