



#### Calibration Laboratory of Schmid & Partner **Engineering AG** Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst S

Service suisse d'étalonnage С

Servizio svizzero di taratura s

Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

#### Glossary:

| TSL   | tissue simulating liquid        |
|-------|---------------------------------|
| ConvF | sensitivity in TSL / NORM x,y,z |
| N/A   | not applicable or not measured  |

#### Calibration is Performed According to the Following Standards:

- a) IEC/IEEE 62209-1528, "Measurement Procedure For The Assessment Of Specific Absorption Rate Of Human Exposure To Radio Frequency Fields From Hand-Held And Body-Worn Wireless Communication Devices - Part 1528: Human Models, Instrumentation And Procedures (Frequency Range of 4 MHz to 10 GHz)", October 2020.
- b) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

#### Additional Documentation:

c) DASY System Handbook

#### Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The source is mounted in a touch configuration below the center marking of the flat phantom.
- Return Loss: This parameter is measured with the source positioned under the liquid filled . phantom (as described in the measurement condition clause). The Return Loss ensures low reflected power. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Certificate No: D2450V2-853 Jul22

Page 2 of 6





#### **Measurement Conditions**

| DASY system | configuration, | as fa | r as not | given on | page | 1. |
|-------------|----------------|-------|----------|----------|------|----|
|-------------|----------------|-------|----------|----------|------|----|

| DASY Version                 | DASY52                 | V52.10.4    |
|------------------------------|------------------------|-------------|
| Extrapolation                | Advanced Extrapolation |             |
| Phantom                      | Modular Flat Phantom   |             |
| Distance Dipole Center - TSL | 10 mm                  | with Spacer |
| Zoom Scan Resolution         | dx, dy, dz = 5 mm      |             |
| Frequency                    | 2450 MHz ± 1 MHz       |             |

Head TSL parameters The following parameters and calculations were applied.

|                                         | Temperature     | Permittivity | Conductivity     |
|-----------------------------------------|-----------------|--------------|------------------|
| Nominal Head TSL parameters             | 22.0 °C         | 39.2         | 1.80 mho/m       |
| Measured Head TSL parameters            | (22.0 ± 0.2) °C | 37.9 ± 6 %   | 1.85 mho/m ± 6 % |
| Head TSL temperature change during test | < 0.5 °C        |              |                  |

#### SAR result with Head TSL

| SAR averaged over 1 cm <sup>3</sup> (1 g) of Head TSL                   | Condition                       |                          |
|-------------------------------------------------------------------------|---------------------------------|--------------------------|
| SAR measured                                                            | 250 mW input power              | 13.5 W/kg                |
| SAR for nominal Head TSL parameters                                     | normalized to 1W                | 52.7 W/kg ± 17.0 % (k=2) |
|                                                                         |                                 |                          |
| SAR averaged over 10 cm <sup>3</sup> (10 g) of Head TSL                 | condition                       |                          |
| SAR averaged over 10 cm <sup>3</sup> (10 g) of Head TSL<br>SAR measured | condition<br>250 mW input power | 6.29 W/kg                |

Certificate No: D2450V2-853\_Jul22

Page 3 of 6





## Appendix (Additional assessments outside the scope of SCS 0108)

#### Antenna Parameters with Head TSL

| Impedance, transformed to feed point | 54.3 Ω + 4.7 jΩ |  |
|--------------------------------------|-----------------|--|
| Return Loss                          | - 24.3 dB       |  |

#### **General Antenna Parameters and Design**

| Electrical Delay (one direction) | 1.162 ns |
|----------------------------------|----------|
|                                  |          |

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

#### Additional EUT Data

| Manufactured by SPEAG |
|-----------------------|
|-----------------------|

Certificate No: D2450V2-853\_Jul22

Page 4 of 6



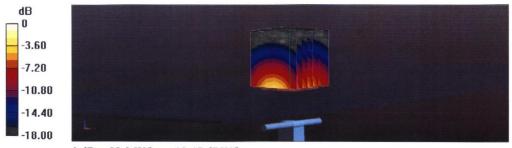


#### **DASY5 Validation Report for Head TSL**

Date: 20.07.2022

Test Laboratory: SPEAG, Zurich, Switzerland

#### DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN:853


Communication System: UID 0 - CW; Frequency: 2450 MHz Medium parameters used: f = 2450 MHz;  $\sigma$  = 1.85 S/m;  $\epsilon_r$  = 37.9;  $\rho$  = 1000 kg/m<sup>3</sup> Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

- Probe: EX3DV4 SN7349; ConvF(7.96, 7.96, 7.96) @ 2450 MHz; Calibrated: 31.12.2021
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 02.05.2022
- Phantom: Flat Phantom 5.0 (front); Type: QD 000 P50 AA; Serial: 1001
- DASY52 52.10.4(1535); SEMCAD X 14.6.14(7501)

#### Dipole Calibration for Head Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 116.2 V/m; Power Drift = 0.03 dB Peak SAR (extrapolated) = 26.6 W/kg SAR(1 g) = 13.5 W/kg; SAR(10 g) = 6.29 W/kg Smallest distance from peaks to all points 3 dB below = 9 mm Ratio of SAR at M2 to SAR at M1 = 50.6% Maximum value of SAR (measured) = 22.2 W/kg



0 dB = 22.2 W/kg = 13.47 dBW/kg

Certificate No: D2450V2-853\_Jul22

Page 5 of 6





#### File View Channel Sweep Calibration Trace Scale Marker System Window Help 2.450000 GHz 54.298 Ω 303.64 pH 4.6742 Ω 2.450000 GHz 60.821 mU 44.836° Ch 1 Avg = 20 Ch1: Start 2.25000 GHz Stop 2.65000 GHz 10.00 dR S11 450000 GHz .319 dB 5.00 0.00 -5.00 -10.00 15.00 -20.00 25.00 30.00 35.00 40.00 Ch 1 Avg = 20 Ch1: Start 2.25000 GHz Stop 2.65000 GHz C\* 1-Port Status CH 1: 511 Avg=20 Delay LCL

#### Impedance Measurement Plot for Head TSL

Certificate No: D2450V2-853\_Jul22

Page 6 of 6





## **5 GHz Dipole Calibration Certificate**

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland



Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura

Swiss Calibration Service

S

С

S

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Accreditation No.: SCS 0108

| Dbject                                                                                                                                                                      | D5GHzV2 - SN:1                                                                                                   | 060                                                                                                                                                                                                                        |                                                                                                                                             |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                                             | DUCHEVE CHAI                                                                                                     |                                                                                                                                                                                                                            |                                                                                                                                             |
| alibration procedure(s)                                                                                                                                                     | QA CAL-22.v6<br>Calibration Proce                                                                                | dure for SAR Validation Sources                                                                                                                                                                                            | between 3-10 GHz                                                                                                                            |
| Calibration date:                                                                                                                                                           | July 05, 2022                                                                                                    |                                                                                                                                                                                                                            |                                                                                                                                             |
|                                                                                                                                                                             |                                                                                                                  |                                                                                                                                                                                                                            |                                                                                                                                             |
|                                                                                                                                                                             |                                                                                                                  | onal standards, which realize the physical unit<br>robability are given on the following pages and                                                                                                                         |                                                                                                                                             |
|                                                                                                                                                                             | annes with confidence p                                                                                          | obability are given on the following pages and                                                                                                                                                                             | are part of the certificate.                                                                                                                |
| Il calibrations have been conducte                                                                                                                                          | ed in the closed laborator                                                                                       | y facility: environment temperature (22 ± 3)°C                                                                                                                                                                             | and humidity < 70%.                                                                                                                         |
|                                                                                                                                                                             |                                                                                                                  |                                                                                                                                                                                                                            |                                                                                                                                             |
| alibration Equipment used (M&TE                                                                                                                                             | critical for calibration)                                                                                        |                                                                                                                                                                                                                            |                                                                                                                                             |
|                                                                                                                                                                             |                                                                                                                  |                                                                                                                                                                                                                            |                                                                                                                                             |
| Primary Standards                                                                                                                                                           | ID #                                                                                                             | Cal Date (Certificate No.)                                                                                                                                                                                                 | Scheduled Calibration                                                                                                                       |
| Power meter NRP                                                                                                                                                             | SN: 104778                                                                                                       | 04-Apr-22 (No. 217-03525/03524)                                                                                                                                                                                            | Apr-23                                                                                                                                      |
| ower sensor NRP-Z91                                                                                                                                                         | SN: 103244                                                                                                       | 04-Apr-22 (No. 217-03524)                                                                                                                                                                                                  | Apr-23                                                                                                                                      |
| ower sensor NRP-Z91                                                                                                                                                         | SN: 103245                                                                                                       | 04-Apr-22 (No. 217-03525)                                                                                                                                                                                                  | Apr-23                                                                                                                                      |
| eference 20 dB Attenuator                                                                                                                                                   | SN: BH9394 (20k)                                                                                                 | 04-Apr-22 (No. 217-03527)                                                                                                                                                                                                  | Apr-23                                                                                                                                      |
| ype-N mismatch combination                                                                                                                                                  | SN: 310982 / 06327                                                                                               | 04-Apr-22 (No. 217-03528)                                                                                                                                                                                                  | Apr-23                                                                                                                                      |
| eference Probe EX3DV4                                                                                                                                                       | SN: 3503                                                                                                         | 08-Mar-22 (No. EX3-3503_Mar22)                                                                                                                                                                                             | Mar-23                                                                                                                                      |
| AE4                                                                                                                                                                         | SN: 601                                                                                                          | 02-May-22 (No. DAE4-601_May22)                                                                                                                                                                                             | May-23                                                                                                                                      |
|                                                                                                                                                                             |                                                                                                                  |                                                                                                                                                                                                                            | Cabadulad Obsali                                                                                                                            |
| econdary Standards                                                                                                                                                          | ID #                                                                                                             | Check Date (in house)                                                                                                                                                                                                      | Scheduled Check                                                                                                                             |
|                                                                                                                                                                             | ID #<br>SN: GB39512475                                                                                           | Check Date (in house)<br>30-Oct-14 (in house check Oct-20)                                                                                                                                                                 | Scheduled Check<br>In house check: Oct-22                                                                                                   |
| Power meter E4419B                                                                                                                                                          |                                                                                                                  |                                                                                                                                                                                                                            | In house check: Oct-22                                                                                                                      |
| Power meter E4419B<br>Power sensor HP 8481A                                                                                                                                 | SN: GB39512475                                                                                                   | 30-Oct-14 (in house check Oct-20)                                                                                                                                                                                          | In house check: Oct-22<br>In house check: Oct-22                                                                                            |
| ower meter E4419B<br>ower sensor HP 8481A<br>ower sensor HP 8481A                                                                                                           | SN: GB39512475<br>SN: US37292783                                                                                 | 30-Oct-14 (in house check Oct-20)<br>07-Oct-15 (in house check Oct-20)                                                                                                                                                     | In house check: Oct-22<br>In house check: Oct-22<br>In house check: Oct-22                                                                  |
| ower meter E4419B<br>ower sensor HP 8481A<br>ower sensor HP 8481A<br>F generator R&S SMT-06                                                                                 | SN: GB39512475<br>SN: US37292783<br>SN: MY41093315                                                               | 30-Oct-14 (in house check Oct-20)<br>07-Oct-15 (in house check Oct-20)<br>07-Oct-15 (in house check Oct-20)                                                                                                                | In house check: Oct-22<br>In house check: Oct-22<br>In house check: Oct-22<br>In house check: Oct-22                                        |
| Power meter E4419B<br>Power sensor HP 8481A<br>Power sensor HP 8481A<br>RF generator R&S SMT-06                                                                             | SN: GB39512475<br>SN: US37292783<br>SN: MY41093315<br>SN: 100972<br>SN: US41080477                               | 30-Oct-14 (in house check Oct-20)<br>07-Oct-15 (in house check Oct-20)<br>07-Oct-15 (in house check Oct-20)<br>15-Jun-15 (in house check Oct-20)<br>31-Mar-14 (in house check Oct-20)                                      | In house check: Oct-22<br>In house check: Oct-22<br>In house check: Oct-22<br>In house check: Oct-22<br>In house check: Oct-22              |
| ower meter E4419B<br>ower sensor HP 8481A<br>ower sensor HP 8481A<br>F generator R&S SMT-06<br>etwork Analyzer Agilent E8358A                                               | SN: GB39512475<br>SN: US37292783<br>SN: MY41093315<br>SN: 100972<br>SN: US41080477<br>Name                       | 30-Oct-14 (in house check Oct-20)<br>07-Oct-15 (in house check Oct-20)<br>07-Oct-15 (in house check Oct-20)<br>15-Jun-15 (in house check Oct-20)<br>31-Mar-14 (in house check Oct-20)<br>Function                          | In house check: Oct-22<br>In house check: Oct-22<br>In house check: Oct-22<br>In house check: Oct-22<br>In house check: Oct-22<br>Signature |
| ower meter E4419B<br>ower sensor HP 8481A<br>ower sensor HP 8481A<br>F generator R&S SMT-06<br>etwork Analyzer Agilent E8358A                                               | SN: GB39512475<br>SN: US37292783<br>SN: MY41093315<br>SN: 100972<br>SN: US41080477                               | 30-Oct-14 (in house check Oct-20)<br>07-Oct-15 (in house check Oct-20)<br>07-Oct-15 (in house check Oct-20)<br>15-Jun-15 (in house check Oct-20)<br>31-Mar-14 (in house check Oct-20)                                      | In house check: Oct-22<br>In house check: Oct-22<br>In house check: Oct-22<br>In house check: Oct-22<br>In house check: Oct-22              |
| ower meter E4419B<br>ower sensor HP 8481A<br>ower sensor HP 8481A<br>tower sensor R&S SMT-06<br>letwork Analyzer Agilent E8358A<br>alibrated by:                            | SN: GB39512475<br>SN: US37292783<br>SN: MY41093315<br>SN: 100972<br>SN: US41080477<br>Name<br>Aidonia Georgiadou | 30-Oct-14 (in house check Oct-20)<br>07-Oct-15 (in house check Oct-20)<br>07-Oct-15 (in house check Oct-20)<br>15-Jun-15 (in house check Oct-20)<br>31-Mar-14 (in house check Oct-20)<br>Function<br>Laboratory Technician | In house check: Oct-22<br>In house check: Oct-22<br>In house check: Oct-22<br>In house check: Oct-22<br>In house check: Oct-22              |
| Secondary Standards<br>Power meter E4419B<br>Power sensor HP 8481A<br>Power sensor HP 8481A<br>RF generator R&S SMT-06<br>Network Analyzer Agilent E8358A<br>Calibrated by: | SN: GB39512475<br>SN: US37292783<br>SN: MY41093315<br>SN: 100972<br>SN: US41080477<br>Name                       | 30-Oct-14 (in house check Oct-20)<br>07-Oct-15 (in house check Oct-20)<br>07-Oct-15 (in house check Oct-20)<br>15-Jun-15 (in house check Oct-20)<br>31-Mar-14 (in house check Oct-20)<br>Function                          | In house check: Oct-22<br>In house check: Oct-22<br>In house check: Oct-22<br>In house check: Oct-22<br>In house check: Oct-22              |
| Power meter E4419B<br>Power sensor HP 8481A<br>Power sensor HP 8481A<br>RF generator R&S SMT-06<br>Network Analyzer Agilent E8358A<br>Calibrated by:                        | SN: GB39512475<br>SN: US37292783<br>SN: MY41093315<br>SN: 100972<br>SN: US41080477<br>Name<br>Aidonia Georgiadou | 30-Oct-14 (in house check Oct-20)<br>07-Oct-15 (in house check Oct-20)<br>07-Oct-15 (in house check Oct-20)<br>15-Jun-15 (in house check Oct-20)<br>31-Mar-14 (in house check Oct-20)<br>Function<br>Laboratory Technician | In house check: Oct-22<br>In house check: Oct-22<br>In house check: Oct-22<br>In house check: Oct-22<br>In house check: Oct-22              |





#### **Calibration Laboratory of**

Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland



Real ACCREDITATION

S

Schweizerischer Kalibrierdienst Service suisse d'étalonnage

- C Service suisse d'etalonnage Servizio svizzero di taratura
- S Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

#### Glossary:

| TSL   | tissue simulating liquid        |
|-------|---------------------------------|
| ConvF | sensitivity in TSL / NORM x,y,z |
| N/A   | not applicable or not measured  |

#### Calibration is Performed According to the Following Standards:

- a) IEC/IEEE 62209-1528, "Measurement Procedure For The Assessment Of Specific Absorption Rate Of Human Exposure To Radio Frequency Fields From Hand-Held And Body-Worn Wireless Communication Devices - Part 1528: Human Models, Instrumentation And Procedures (Frequency Range of 4 MHz to 10 GHz)", October 2020.
- b) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

#### Additional Documentation:

c) DASY System Handbook

### Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The source is mounted in a touch configuration below the center marking of the flat phantom.
- Return Loss: This parameter is measured with the source positioned under the liquid filled phantom (as described in the measurement condition clause). The Return Loss ensures low reflected power. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Certificate No: D5GHzV2-1060\_Jul22

Page 2 of 13

ories to the EA ion certificates





#### **Measurement Conditions**

DASY system configuration, as far as not given on page 1.

| DASY Version                 | DASY52                                                                                                                                   | V52.10.4                         |
|------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|
| Extrapolation                | Advanced Extrapolation                                                                                                                   |                                  |
| Phantom                      | Modular Flat Phantom V5.0                                                                                                                |                                  |
| Distance Dipole Center - TSL | 10 mm                                                                                                                                    | with Spacer                      |
| Zoom Scan Resolution         | dx, dy = 4.0 mm, dz = 1.4 mm                                                                                                             | Graded Ratio = 1.4 (Z direction) |
| Frequency                    | 5200 MHz ± 1 MHz<br>5250 MHz ± 1 MHz<br>5300 MHz ± 1 MHz<br>5500 MHz ± 1 MHz<br>5600 MHz ± 1 MHz<br>5750 MHz ± 1 MHz<br>5800 MHz ± 1 MHz |                                  |

Head TSL parameters at 5200 MHz The following parameters and calculations were applied.

|                                         | Temperature     | Permittivity | Conductivity     |
|-----------------------------------------|-----------------|--------------|------------------|
| Nominal Head TSL parameters             | 22.0 °C         | 36.0         | 4.66 mho/m       |
| Measured Head TSL parameters            | (22.0 ± 0.2) °C | 34.9 ± 6 %   | 4.50 mho/m ± 6 % |
| Head TSL temperature change during test | < 0.5 °C        |              |                  |

#### SAR result with Head TSL at 5200 MHz

| SAR averaged over 1 cm <sup>3</sup> (1 g) of Head TSL | Condition          |                          |
|-------------------------------------------------------|--------------------|--------------------------|
| SAR measured                                          | 100 mW input power | 7.84 W/kg                |
| SAR for nominal Head TSL parameters                   | normalized to 1W   | 77.8 W/kg ± 19.9 % (k=2) |

| SAR averaged over 10 $\text{cm}^3$ (10 g) of Head TSL | condition          |                          |
|-------------------------------------------------------|--------------------|--------------------------|
| SAR measured                                          | 100 mW input power | 2.26 W/kg                |
| SAR for nominal Head TSL parameters                   | normalized to 1W   | 22.3 W/kg ± 19.5 % (k=2) |

Certificate No: D5GHzV2-1060\_Jul22

Page 3 of 13





#### Head TSL parameters at 5250 MHz

The following parameters and calculations were applied.

|                                         | Temperature     | Permittivity | Conductivity     |
|-----------------------------------------|-----------------|--------------|------------------|
| Nominal Head TSL parameters             | 22.0 °C         | 35.9         | 4.71 mho/m       |
| Measured Head TSL parameters            | (22.0 ± 0.2) °C | 34.8 ± 6 %   | 4.55 mho/m ± 6 % |
| Head TSL temperature change during test | < 0.5 °C        |              |                  |

#### SAR result with Head TSL at 5250 MHz

| SAR averaged over 1 cm <sup>3</sup> (1 g) of Head TSL                   | Condition                       |                          |
|-------------------------------------------------------------------------|---------------------------------|--------------------------|
| SAR measured                                                            | 100 mW input power              | 7.87 W/kg                |
| SAR for nominal Head TSL parameters                                     | normalized to 1W                | 78.1 W/kg ± 19.9 % (k=2) |
|                                                                         |                                 |                          |
| SAR averaged over 10 cm <sup>3</sup> (10 g) of Head TSI                 | condition                       |                          |
| SAR averaged over 10 cm <sup>3</sup> (10 g) of Head TSL                 | condition                       |                          |
| SAR averaged over 10 cm <sup>3</sup> (10 g) of Head TSL<br>SAR measured | condition<br>100 mW input power | 2.25 W/kg                |

#### Head TSL parameters at 5300 MHz

The following parameters and calculations were applied.

|                                         | Temperature     | Permittivity | Conductivity     |
|-----------------------------------------|-----------------|--------------|------------------|
| Nominal Head TSL parameters             | 22.0 °C         | 35.9         | 4.76 mho/m       |
| Measured Head TSL parameters            | (22.0 ± 0.2) °C | 34.7 ± 6 %   | 4.60 mho/m ± 6 % |
| Head TSL temperature change during test | < 0.5 °C        |              |                  |

#### SAR result with Head TSL at 5300 MHz

SAR for nominal Head TSL parameters

| SAR averaged over 1 cm <sup>3</sup> (1 g) of Head TSL   | Condition          |                          |
|---------------------------------------------------------|--------------------|--------------------------|
| SAR measured                                            | 100 mW input power | 8.17 W/kg                |
| SAR for nominal Head TSL parameters                     | normalized to 1W   | 81.1 W/kg ± 19.9 % (k=2) |
| SAR averaged over 10 cm <sup>3</sup> (10 g) of Head TSL | condition          |                          |
| SAR measured                                            | 100 mW input power | 2.33 W/kg                |
|                                                         |                    |                          |

normalized to 1W

Certificate No: D5GHzV2-1060\_Jul22

Page 4 of 13

23.1 W/kg ± 19.5 % (k=2)





#### Head TSL parameters at 5500 MHz

The following parameters and calculations were applied.

|                                         | Temperature     | Permittivity | Conductivity     |
|-----------------------------------------|-----------------|--------------|------------------|
| Nominal Head TSL parameters             | 22.0 °C         | 35.6         | 4.96 mho/m       |
| Measured Head TSL parameters            | (22.0 ± 0.2) °C | 34.4 ± 6 %   | 4.80 mho/m ± 6 % |
| Head TSL temperature change during test | < 0.5 °C        |              |                  |

#### SAR result with Head TSL at 5500 MHz

| SAR averaged over 1 cm <sup>3</sup> (1 g) of Head TSL                   | Condition                       |                          |
|-------------------------------------------------------------------------|---------------------------------|--------------------------|
| SAR measured                                                            | 100 mW input power              | 8.60 W/kg                |
| SAR for nominal Head TSL parameters                                     | normalized to 1W                | 85.3 W/kg ± 19.9 % (k=2) |
|                                                                         |                                 |                          |
| 24D                                                                     |                                 |                          |
| SAR averaged over 10 cm³ (10 g) of Head TSL                             | condition                       |                          |
| SAR averaged over 10 cm <sup>3</sup> (10 g) of Head TSL<br>SAR measured | condition<br>100 mW input power | 2.44 W/kg                |

#### Head TSL parameters at 5600 MHz

The following parameters and calculations were applied.

|                                         | Temperature     | Permittivity | Conductivity     |
|-----------------------------------------|-----------------|--------------|------------------|
| Nominal Head TSL parameters             | 22.0 °C         | 35.5         | 5.07 mho/m       |
| Measured Head TSL parameters            | (22.0 ± 0.2) °C | 34.3 ± 6 %   | 4.90 mho/m ± 6 % |
| Head TSL temperature change during test | < 0.5 °C        |              |                  |

#### SAR result with Head TSL at 5600 MHz

| SAR averaged over 1 cm <sup>3</sup> (1 g) of Head TSL                   | Condition                       |                                      |
|-------------------------------------------------------------------------|---------------------------------|--------------------------------------|
| SAR measured                                                            | 100 mW input power              | 8.39 W/kg                            |
| SAR for nominal Head TSL parameters                                     | normalized to 1W                | 83.2 W/kg ± 19.9 % (k=2)             |
|                                                                         |                                 |                                      |
|                                                                         |                                 |                                      |
| SAR averaged over 10 cm <sup>3</sup> (10 g) of Head TSL                 | condition                       |                                      |
| SAR averaged over 10 cm <sup>3</sup> (10 g) of Head TSL<br>SAR measured | condition<br>100 mW input power | 2.40 W/kg                            |
|                                                                         |                                 | 2.40 W/kg<br>23.7 W/kg ± 19.5 % (k=2 |

Certificate No: D5GHzV2-1060\_Jul22

Page 5 of 13





#### Head TSL parameters at 5750 MHz

The following parameters and calculations were applied.

|                                         | Temperature     | Permittivity | Conductivity     |
|-----------------------------------------|-----------------|--------------|------------------|
| Nominal Head TSL parameters             | 22.0 °C         | 35.4         | 5.22 mho/m       |
| Measured Head TSL parameters            | (22.0 ± 0.2) °C | 34.1 ± 6 %   | 5.05 mho/m ± 6 % |
| Head TSL temperature change during test | < 0.5 °C        |              |                  |

#### SAR result with Head TSL at 5750 MHz

| SAR averaged over 1 $cm^3$ (1 g) of Head TSL | Condition          |                          |
|----------------------------------------------|--------------------|--------------------------|
| SAR measured                                 | 100 mW input power | 8.12 W/kg                |
| SAR for nominal Head TSL parameters          | normalized to 1W   | 80.4 W/kg ± 19.9 % (k=2) |

| SAR averaged over 10 cm <sup>3</sup> (10 g) of Head TSL | condition          |                          |
|---------------------------------------------------------|--------------------|--------------------------|
| SAR measured                                            | 100 mW input power | 2.31 W/kg                |
| SAR for nominal Head TSL parameters                     | normalized to 1W   | 22.8 W/kg ± 19.5 % (k=2) |

#### Head TSL parameters at 5800 MHz

The following parameters and calculations were applied.

|                                         | Temperature     | Permittivity | Conductivity     |
|-----------------------------------------|-----------------|--------------|------------------|
| Nominal Head TSL parameters             | 22.0 °C         | 35.3         | 5.27 mho/m       |
| Measured Head TSL parameters            | (22.0 ± 0.2) °C | 34.0 ± 6 %   | 5.10 mho/m ± 6 % |
| Head TSL temperature change during test | < 0.5 °C        |              |                  |

#### SAR result with Head TSL at 5800 MHz

| SAR averaged over 1 cm <sup>3</sup> (1 g) of Head TSL | Condition          |                          |
|-------------------------------------------------------|--------------------|--------------------------|
| SAR measured                                          | 100 mW input power | 8.27 W/kg                |
| SAR for nominal Head TSL parameters                   | normalized to 1W   | 82.0 W/kg ± 19.9 % (k=2) |

| SAR averaged over 10 $\rm cm^3$ (10 g) of Head TSL | condition          |                          |
|----------------------------------------------------|--------------------|--------------------------|
| SAR measured                                       | 100 mW input power | 2.34 W/kg                |
| SAR for nominal Head TSL parameters                | normalized to 1W   | 23.1 W/kg ± 19.5 % (k=2) |

Certificate No: D5GHzV2-1060\_Jul22

Page 6 of 13





#### Appendix (Additional assessments outside the scope of SCS 0108)

#### Antenna Parameters with Head TSL at 5200 MHz

| Impedance, transformed to feed point | 49.4 Ω - 6.5 jΩ |  |
|--------------------------------------|-----------------|--|
| Return Loss                          | - 23.7 dB       |  |

#### Antenna Parameters with Head TSL at 5250 MHz

| Impedance, transformed to feed point | 47.7 Ω - 5.5 jΩ |
|--------------------------------------|-----------------|
| Return Loss                          | - 24.3 dB       |

#### Antenna Parameters with Head TSL at 5300 MHz

| Impedance, transformed to feed point | 46.2 Ω - 3.2 jΩ |
|--------------------------------------|-----------------|
| Return Loss                          | - 25.8 dB       |

#### Antenna Parameters with Head TSL at 5500 MHz

| Impedance, transformed to feed point | 50.0 Ω - 3.1 jΩ |  |
|--------------------------------------|-----------------|--|
| Return Loss                          | - 30.1 dB       |  |

#### Antenna Parameters with Head TSL at 5600 MHz

| Impedance, transformed to feed point | 53.6 Ω + 0.5 jΩ |  |
|--------------------------------------|-----------------|--|
| Return Loss                          | - 29.2 dB       |  |

Certificate No: D5GHzV2-1060\_Jul22





#### Antenna Parameters with Head TSL at 5750 MHz

| Impedance, transformed to feed point | 51.9 Ω - 1.7 jΩ |
|--------------------------------------|-----------------|
| Return Loss                          | - 32.1 dB       |

#### Antenna Parameters with Head TSL at 5800 MHz

| Impedance, transformed to feed point | 51.2 Ω - 3.2 jΩ |  |
|--------------------------------------|-----------------|--|
| Return Loss                          | - 29.5 dB       |  |

#### **General Antenna Parameters and Design**

| Electrical Delay (one direction) | 1.202 ns |  |
|----------------------------------|----------|--|
|----------------------------------|----------|--|

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

#### Additional EUT Data

| Manufactured by | SPEAG |
|-----------------|-------|
|-----------------|-------|

Certificate No: D5GHzV2-1060\_Jul22

Page 8 of 13





#### **DASY5 Validation Report for Head TSL**

Date: 05.07.2022

Test Laboratory: SPEAG, Zurich, Switzerland

#### DUT: Dipole D5GHzV2; Type: D5GHzV2; Serial: D5GHzV2 - SN:1060

Communication System: UID 0 - CW; Frequency: 5200 MHz, Frequency: 5250 MHz, Frequency: 5300 MHz, Frequency: 5500 MHz, Frequency: 5600 MHz, Frequency: 5750 MHz, Frequency: 5800 MHz Medium parameters used: f = 5200 MHz;  $\sigma = 4.50$  S/m;  $\varepsilon_r = 34.9$ ;  $\rho = 1000$  kg/m<sup>3</sup>, Medium parameters used: f = 5250 MHz;  $\sigma = 4.55$  S/m;  $\varepsilon_r = 34.8$ ;  $\rho = 1000$  kg/m<sup>3</sup>, Medium parameters used: f = 5300 MHz;  $\sigma = 4.60$  S/m;  $\varepsilon_r = 34.7$ ;  $\rho = 1000$  kg/m<sup>3</sup>, Medium parameters used: f = 5500 MHz;  $\sigma = 4.80$  S/m;  $\varepsilon_r = 34.4$ ;  $\rho = 1000$  kg/m<sup>3</sup>, Medium parameters used: f = 5600 MHz;  $\sigma = 4.90$  S/m;  $\varepsilon_r = 34.3$ ;  $\rho = 1000$  kg/m<sup>3</sup>, Medium parameters used: f = 5750 MHz;  $\sigma = 5.05$  S/m;  $\varepsilon_r = 34.1$ ;  $\rho = 1000$  kg/m<sup>3</sup>, Medium parameters used: f = 5750 MHz;  $\sigma = 5.10$  S/m;  $\varepsilon_r = 34.0$ ;  $\rho = 1000$  kg/m<sup>3</sup> Phantom section: Flat Section MHz;  $\sigma = 5.10$  S/m;  $\varepsilon_r = 34.0$ ;  $\rho = 1000$  kg/m<sup>3</sup>

DASY52 Configuration:

- Probe: EX3DV4 SN3503; ConvF(5.8, 5.8, 5.8) @ 5200 MHz, ConvF(5.5, 5.5, 5.5) @ 5250 MHz, ConvF(5.49, 5.49, 5.49) @ 5300 MHz, ConvF(5.25, 5.25, 5.25) @ 5500 MHz, ConvF(5.1, 5.1, 5.1) @ 5600 MHz, ConvF(5.08, 5.08, 5.08) @ 5750 MHz, ConvF(5.01, 5.01, 5.01) @ 5800 MHz; Calibrated: 08.03.2022
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 02.05.2022
- Phantom: Flat Phantom 5.0 (front); Type: QD 000 P50 AA; Serial: 1001
- DASY52 52.10.4(1535); SEMCAD X 14.6.14(7501)

Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5200 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 74.40 V/m; Power Drift = -0.07 dB Peak SAR (extrapolated) = 27.9 W/kg SAR(1 g) = 7.84 W/kg; SAR(10 g) = 2.26 W/kg Smallest distance from peaks to all points 3 dB below = 7.2 mm Ratio of SAR at M2 to SAR at M1 = 69.1% Maximum value of SAR (measured) = 17.6 W/kg

```
Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5250 MHz/Zoom Scan,
dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm
Reference Value = 75.86 V/m; Power Drift = -0.09 dB
Peak SAR (extrapolated) = 27.1 W/kg
SAR(1 g) = 7.87 W/kg; SAR(10 g) = 2.25 W/kg
Smallest distance from peaks to all points 3 dB below = 6.8 mm
Ratio of SAR at M2 to SAR at M1 = 69.8%
Maximum value of SAR (measured) = 17.4 W/kg
```

Certificate No: D5GHzV2-1060\_Jul22

Page 9 of 13





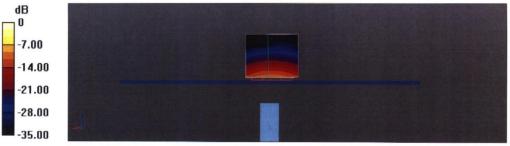
# Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5300 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 77.09 V/m; Power Drift = -0.02 dBPeak SAR (extrapolated) = 28.9 W/kg SAR(1 g) = 8.17 W/kg; SAR(10 g) = 2.33 W/kg Smallest distance from peaks to all points 3 dB below = 7.2 mm Ratio of SAR at M2 to SAR at M1 = 68.9% Maximum value of SAR (measured) = 18.3 W/kg

Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5500 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 76.69 V/m; Power Drift = -0.02 dB Peak SAR (extrapolated) = 32.9 W/kg SAR(1 g) = 8.60 W/kg; SAR(10 g) = 2.44 W/kg Smallest distance from peaks to all points 3 dB below = 7.2 mm Ratio of SAR at M2 to SAR at M1 = 66.4% Maximum value of SAR (measured) = 19.8 W/kg

Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5600 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 76.44 V/m; Power Drift = -0.02 dB Peak SAR (extrapolated) = 31.2 W/kg SAR(1 g) = 8.39 W/kg; SAR(10 g) = 2.40 W/kg Smallest distance from peaks to all points 3 dB below = 7.2 mm Ratio of SAR at M2 to SAR at M1 = 67.3% Maximum value of SAR (measured) = 19.3 W/kg

Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5750 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 73.53 V/m; Power Drift = -0.08 dB Peak SAR (extrapolated) = 31.8 W/kg SAR(1 g) = 8.12 W/kg; SAR(10 g) = 2.31 W/kg Smallest distance from peaks to all points 3 dB below = 7.2 mm Ratio of SAR at M2 to SAR at M1 = 65.4% Maximum value of SAR (measured) = 19.0 W/kg


Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5800 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 74.35 V/m; Power Drift = -0.03 dB Peak SAR (extrapolated) = 32.9 W/kg SAR(1 g) = 8.27 W/kg; SAR(10 g) = 2.34 W/kg Smallest distance from peaks to all points 3 dB below = 7.2 mm Ratio of SAR at M2 to SAR at M1 = 65.2% Maximum value of SAR (measured) = 19.4 W/kg

Certificate No: D5GHzV2-1060\_Jul22

Page 10 of 13







0 dB = 19.8 W/kg = 12.96 dBW/kg

Certificate No: D5GHzV2-1060\_Jul22

Page 11 of 13





#### View Channel Sweep Calibration Irace Scale Marker Window Help File System 5.200000 GHz 4.7212 pF 5.250000 GHz 5.5082 pF 5.300000 GHz 9.2529 p5 49.380 Ω -6.4829 Ω 47.740 Ω -5.5037 Ω 46.215 Ω > 1 2: 3: 46.215 Ω -3.2069 Ω 49.978 Ω -3.1327 Ω 53.576 Ω 9.3639 pF 5.500000 GHz 4 9.2370 pF 5.600000 GHz 13.425 pH 5: 472.39 mΩ Ch 1 Avg = 20 Ch1: Start 5.00000 GHz Stop 6.00000 GHz 10.00 690 dB GHz 5.00 24.326 dB 5.250000 GHz 3 5.300000 GHz 5.500000 GHz -25.759 dB -30.084 dB 0.00 -5.00 5 5 800000 GHz 29 163 dB -10.00 -15.00 -20.00 25.00 30.00 35.00 40.00 Ch 1 Avg = 20 Ch1: Start 5.00000 GHz Stop 6.00000 GHz Status CH 1: 511 C\* 1-Port Avg=20 Delay LCL

#### Impedance Measurement Plot for Head TSL (5200, 5250, 5300, 5500, 5600 MHz)

Certificate No: D5GHzV2-1060\_Jul22

Page 12 of 13





# Impedance Measurement Plot for Head TSL (5300, 5500, 5600, 5750, 5800 MHz)

|                                                                             | ⊻iew     | Channel       | Sweep | Calibration | Irace | Scale            | Marker    | System | Window | Help           |                                                                                                 |                                                                   |
|-----------------------------------------------------------------------------|----------|---------------|-------|-------------|-------|------------------|-----------|--------|--------|----------------|-------------------------------------------------------------------------------------------------|-------------------------------------------------------------------|
| Г                                                                           |          |               |       |             |       |                  | -         |        | _      | 3:             | 5.300000 GHz                                                                                    | 46.215 Ω                                                          |
|                                                                             |          |               |       |             |       | X                | -         | 1-     | X      | 4:             | 9.3639 pF<br>5.500000 GHz                                                                       | -3.2069 Ω                                                         |
|                                                                             |          |               |       |             |       | /                | X         | +      | 111    | 4:             | 9.2370 pF                                                                                       | 49.978 Ω<br>-3.1327 Ω                                             |
|                                                                             |          |               |       |             | 6     | /                | $\sim$    | 1      | 1-1    | 5:             | 5.600000 GHz                                                                                    | 53.576 0                                                          |
|                                                                             |          |               |       |             | 1     | -+               | $\square$ |        | XX     |                | 13.425 pH                                                                                       | 472.39 mΩ                                                         |
|                                                                             |          |               |       |             | 1     | 1                | 1-        | C-X    | VH     | 6:             | 5.750000 GHz                                                                                    | 51.897 Ω                                                          |
|                                                                             |          |               |       |             |       |                  | -         |        |        |                | 16.469 pF                                                                                       | -1.6807 Ω                                                         |
|                                                                             |          |               |       |             | 1     |                  | +         | t      | XA     | >7:            | 5.800000 GHz<br>8.6324 pF                                                                       | 51.225 Ω<br>-3.1788 Ω                                             |
|                                                                             |          |               |       |             | F     | $\left[ \right]$ | X         | X      | Ø      |                |                                                                                                 |                                                                   |
|                                                                             |          | Ch 1 Avg =    |       |             |       | X                |           | F      | Y      |                | Stop                                                                                            | 6 00000 CU-                                                       |
| 1                                                                           | .n1: Sta | rt 5.00000 i  | iHz — |             |       |                  |           |        |        |                |                                                                                                 |                                                                   |
|                                                                             | -        | irt 5.00000 i | JHz — | -           |       |                  |           |        |        |                | stop                                                                                            | 6.00000 GHz                                                       |
| 10.0                                                                        | 0        | IB \$11       |       | _           |       |                  |           |        |        | 3:             | 5.\$00000 GHz                                                                                   | -25.759 dB                                                        |
| 10.0                                                                        | 0        | _             |       | _           |       |                  |           |        |        | 4:             | 5.300000 GHz<br>5.500000 GHz                                                                    | -25.759 dB<br>30.084 dB                                           |
| 10.0<br>5.00                                                                | 0        | _             |       | _           |       |                  |           |        |        | 4:<br>5:       | 5.\$00000 GHz<br>5.\$00000 GHz<br>5.\$00000 GHz<br>5.\$00000 GHz                                | -25.759 dB<br>-20.084 dB<br>-29.163 dB                            |
| 10.0<br>5.00                                                                | 0        | _             |       |             |       |                  |           |        |        | 4:             | 5.300000 GHz<br>5.500000 GHz                                                                    | -25.759 dB<br>-29.084 dB<br>-29.163 dB<br>-32.088 dB              |
| 10.0<br>5.00<br>0.00                                                        |          | _             |       |             |       |                  |           |        |        | 4:<br>5:<br>6: | 5.\$00000 GHz<br>5.\$00000 GHz<br>5.\$00000 GHz<br>5.\$00000 GHz<br>5.\$00000 GHz               | -25.759 dB<br>-29.084 dB<br>-29.163 dB<br>-32.088 dB              |
| 10.0<br>5.00<br>0.00<br>-5.00                                               |          | _             |       |             |       |                  |           |        |        | 4:<br>5:<br>6: | 5.\$00000 GHz<br>5.\$00000 GHz<br>5.\$00000 GHz<br>5.\$00000 GHz<br>5.\$00000 GHz               | -25.759 dB<br>-29.084 dB<br>-29.163 dB<br>-32.088 dB              |
| 10.0<br>5.00<br>-5.00<br>-10.0                                              |          | _             |       |             |       |                  |           |        |        | 4:<br>5:<br>6: | 5.\$00000 GHz<br>5.\$00000 GHz<br>5.\$00000 GHz<br>5.\$00000 GHz<br>5.\$00000 GHz               | -25.759 dB<br>-29.084 dB<br>-29.163 dB<br>-32.088 dB              |
| 10.0<br>5.00<br>-5.00<br>-10.0                                              |          | _             | JHZ   |             |       |                  |           |        |        | 4:<br>5:<br>6: | 5.\$00000 GHz<br>5.\$00000 GHz<br>5.\$00000 GHz<br>5.\$00000 GHz<br>5.\$00000 GHz               | -25.759 dB<br>-29.084 dB<br>-29.163 dB<br>-32.088 dB              |
| 10.0<br>5.00<br>-5.00<br>-10.0<br>-15.0                                     |          | _             |       |             |       |                  |           |        |        | 4:<br>5:<br>6: | 5.\$00000 GHz<br>5.\$00000 GHz<br>5.\$00000 GHz<br>5.\$00000 GHz<br>5.\$00000 GHz               | -25.759 dB<br>-29.084 dB<br>-29.163 dB<br>-32.088 dB              |
| 10.0<br>5.00<br>-5.00<br>-10.1<br>-15.1<br>-20.1                            |          | _             |       | 1 2         |       |                  |           |        |        | 4:<br>5:<br>6: | 5.\$00000 GHz<br>5.\$00000 GHz<br>5.\$00000 GHz<br>5.\$00000 GHz<br>5.\$00000 GHz               | -25.759 dB<br>-29.084 dB<br>-29.163 dB<br>-32.088 dB              |
| 10.0<br>5.00<br>-5.00<br>-10.0<br>-15.0<br>-20.0<br>-25.0<br>-25.0          |          | _             |       | 1 2         |       |                  |           |        |        | 4:<br>5:<br>6: | 5.\$00000 GHz<br>5.\$00000 GHz<br>5.\$00000 GHz<br>5.\$00000 GHz<br>5.\$00000 GHz               | -25.759 dB<br>30.084 dB                                           |
| 10.0<br>5.00<br>-5.00<br>-10.1<br>-20.1<br>-25.0<br>-25.0<br>-30.0<br>-35.0 |          |               |       | 1 2         |       |                  |           |        |        | 4:<br>5:<br>6: | 5.\$00000 GHz<br>5.\$00000 GHz<br>5.\$00000 GHz<br>5.\$00000 GHz<br>5.\$00000 GHz               | -25.759 dB<br>-29.084 dB<br>-29.163 dB<br>-32.088 dB              |
| 10.0<br>5.00<br>-5.00<br>-10.1<br>-20.1<br>-25.0<br>-30.0<br>-35.0          |          | IB SII        | 20    |             |       |                  |           |        |        | 4:<br>5:<br>6: | 5.400000 GHz<br>5.400000 GHz<br>5.400000 GHz<br>5.50000 GHz<br>5.50000 GHz<br>5.400000 GHz<br>7 | -25.759 dB<br>30.084 dB<br>-29.163 dB<br>-32.088 dB<br>-29.463 dB |
| 10.0<br>5.00<br>-5.00<br>-10.1<br>-15.1<br>-25.1<br>-25.1<br>-30.1<br>-35.1 |          |               | 20    |             | 3     |                  |           |        |        | 4:<br>5:<br>6: | 5.400000 GHz<br>5.400000 GHz<br>5.400000 GHz<br>5.50000 GHz<br>5.50000 GHz<br>5.400000 GHz<br>7 | -25.759 df<br>30.084 df<br>-29.163 df<br>-32.088 df               |

Certificate No: D5GHzV2-1060\_Jul22

Page 13 of 13





# ANNEX I Accreditation Certificate

