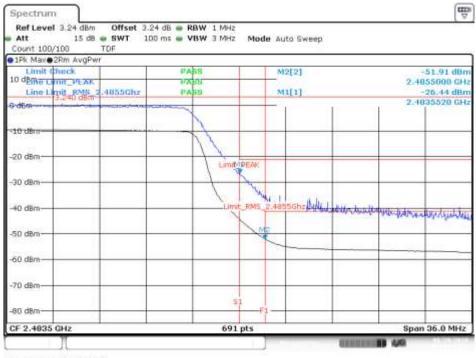
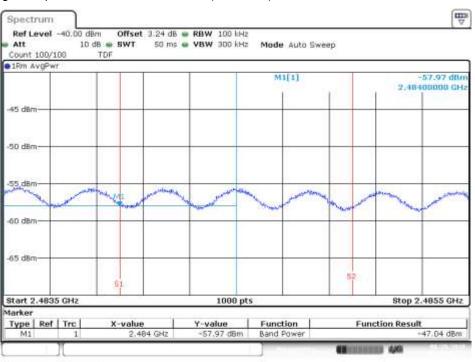


MIMO-B, 802.11n40, HT8

Channel 9F - BE High Freq Section (restricted)

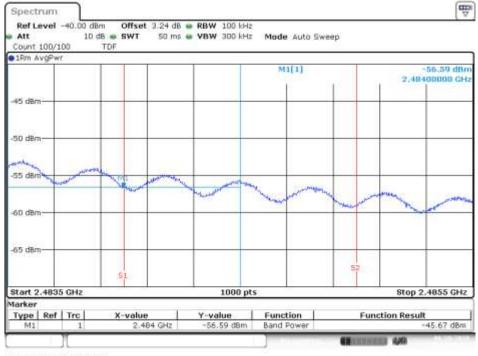

Channel 10F - BE High Freq Section (restricted)

Date: 29.ALG:2018 17.17.03

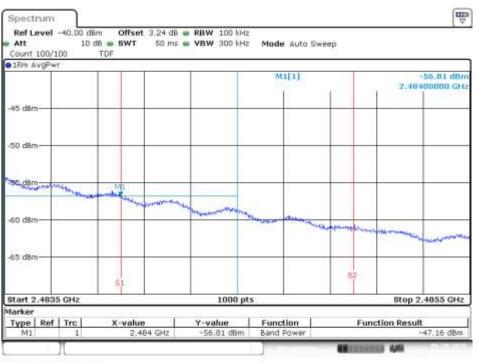


Channel 11F - BE High Freq Section (restricted)

Date 29ALG2018 17:25:13


Channel 9F - BE High Freq Section RMS within 2MHz (restricted)

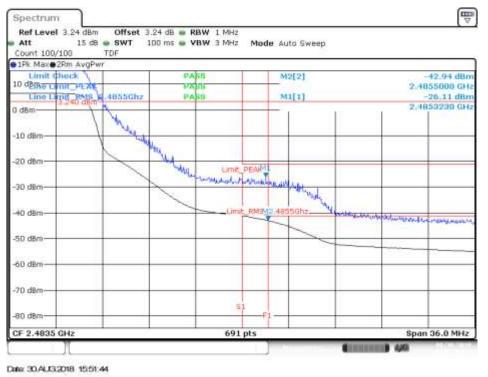
Date 29.AUG 2018 17.05.46



Channel 10F - BE High Freq Section RMS within 2MHz (restricted)

Date: 29.AUG:2018 17.16.31

Channel 11F - BE High Freq Section RMS within 2MHz (restricted)

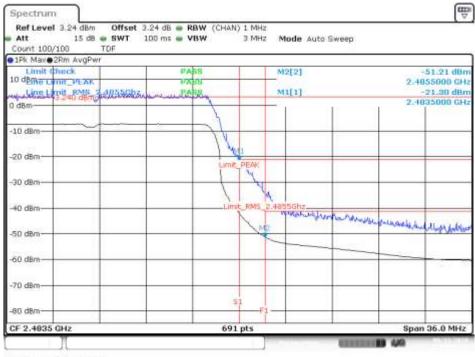


Date 29AUG 2018 17:25:38

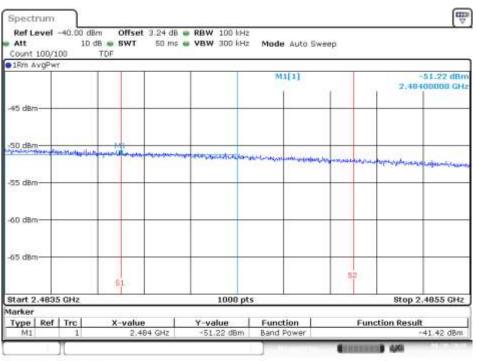


SISO-A, 802.11ax20, HE0

Channel 11 - BE High Freq Section (restricted)

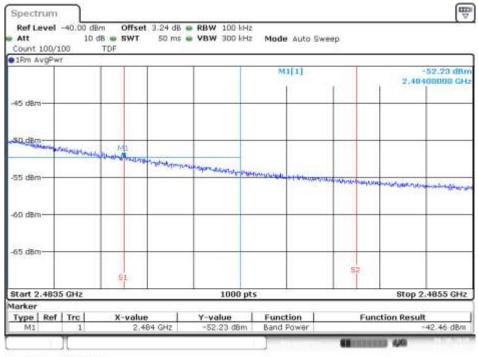

Channel 12 - BE High Freq Section (restricted)

Date: 30.ALG 2018 16:05:35

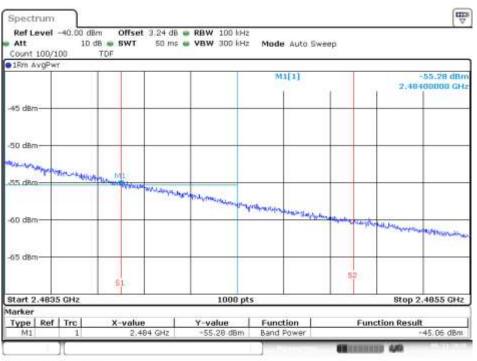


Channel 13 - BE High Freq Section (restricted)

Date: 13.SEP.2018 11:00.08


Channel 11 - BE High Freq Section RMS within 2MHz (restricted)

Date: 30.AUG:2018 15:51:04



Channel 12 - BE High Freq Section RMS within 2MHz (restricted)

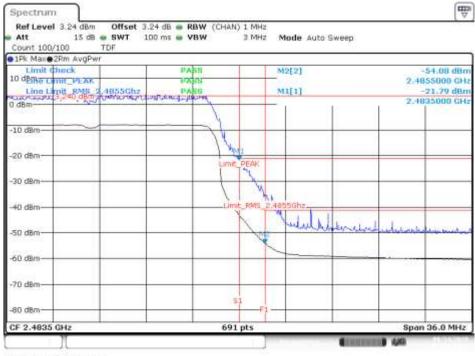
Date: 30.ALG:2018 18:04:44

Channel 13 - BE High Freq Section RMS within 2MHz (restricted)

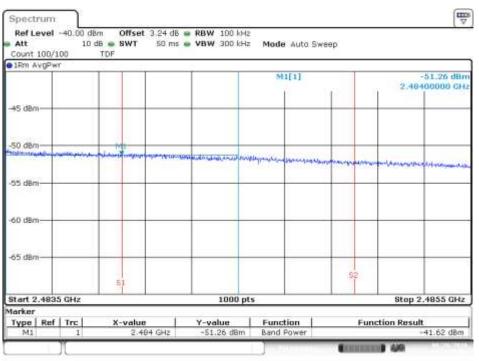
Date: 13.SEP.2018 11.48.50

SISO-B, 802.11ax20, HE0

Channel 11 - BE High Freq Section (restricted)

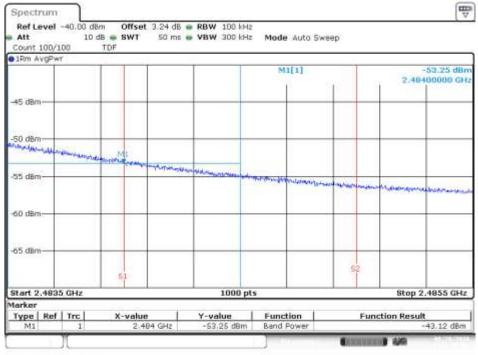

Channel 12 - BE High Freq Section (restricted)

Date 28/AUG 2018 17:32/23

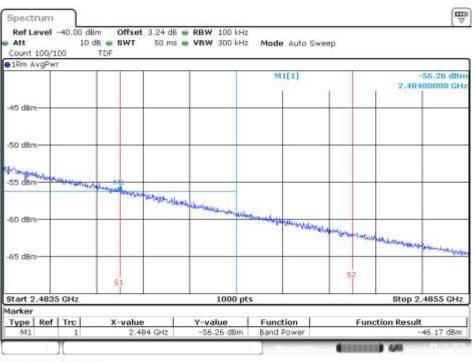


Channel 13 - BE High Freq Section (restricted)

Date: 14.SEP.2018 17:53:52


Channel 11 - BE High Freq Section RMS within 2MHz (restricted)

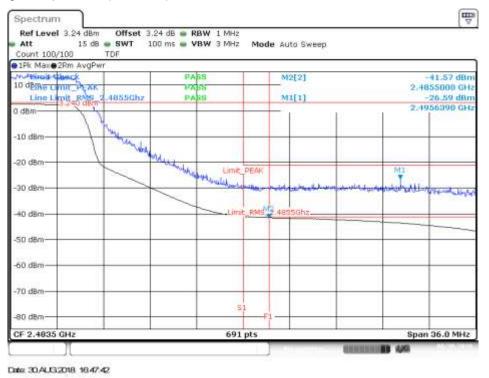
Date 28AUG 2018 17:22:50



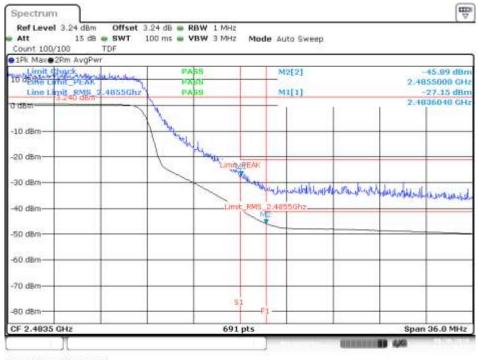
Channel 12 - BE High Freq Section RMS within 2MHz (restricted)

Date 28.ALG 2018 17:32:44

Channel 13 - BE High Freq Section RMS within 2MHz (restricted)



Date: 14.SEP.2018 17:54:08

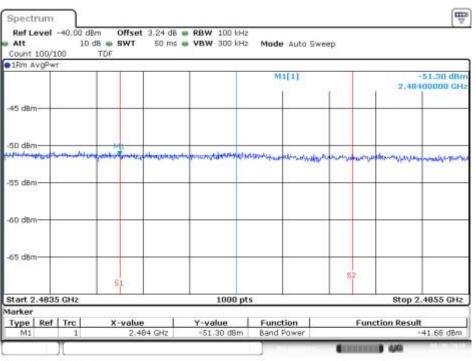


SISO-A, 802.11ax40, HE0

Channel 9F - BE High Freq Section (restricted)

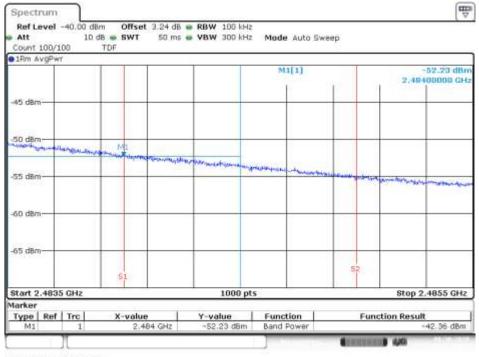
Channel 10F - BE High Freq Section (restricted)

Date: 30.AUG:2018 16:54:48

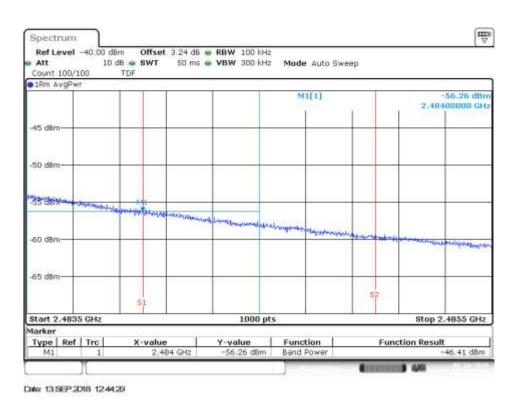


Channel 11F - BE High Freq Section (restricted)

Date: 13 SEP.2018 124333

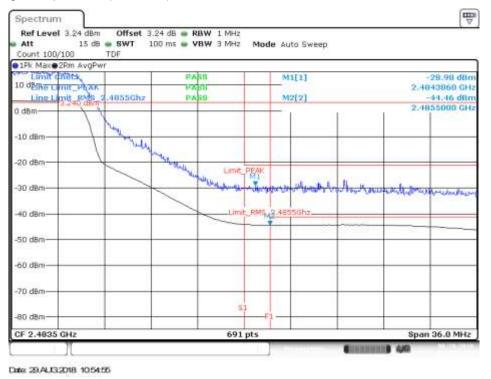

Channel 9F - BE High Freq Section RMS within 2MHz (restricted)

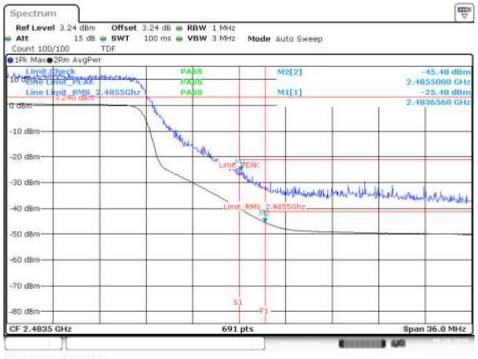
Date: 30.AUG:2018 16.46.37



Channel 10F - BE High Freq Section RMS within 2MHz (restricted)

Date: 30.ALG:2018 18:54:14


Channel 11F - BE High Freq Section RMS within 2MHz (restricted)

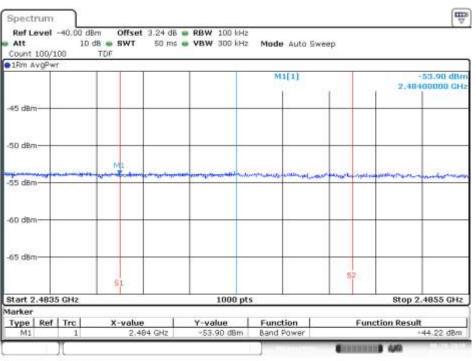


SISO-B, 802.11ax40, HE0

Channel 9F - BE High Freq Section (restricted)

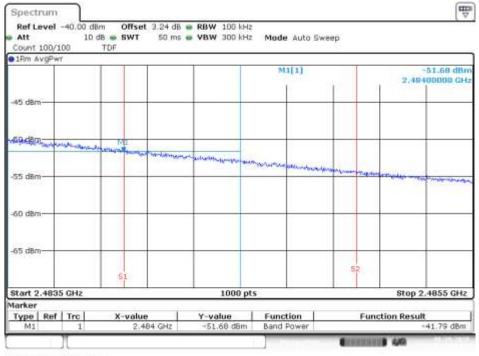
Channel 10F - BE High Freq Section (restricted)

Date: 29.ALG:2018 11:03:44

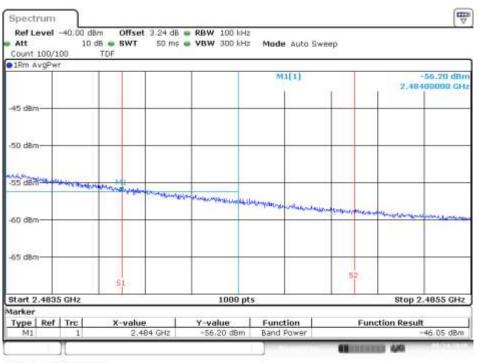


Channel 11F - BE High Freq Section (restricted)

Date: 14.SEP.2018 16:53:33


Channel 9F - BE High Freq Section RMS within 2MHz (restricted)

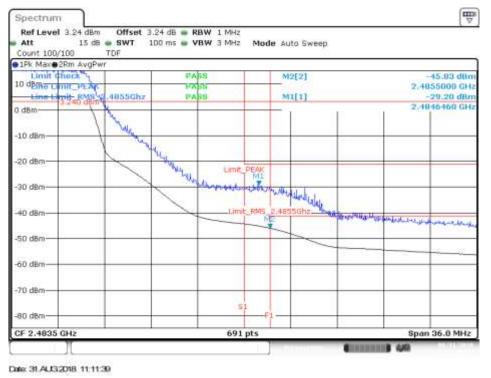
Date 29AUG 2018 105351



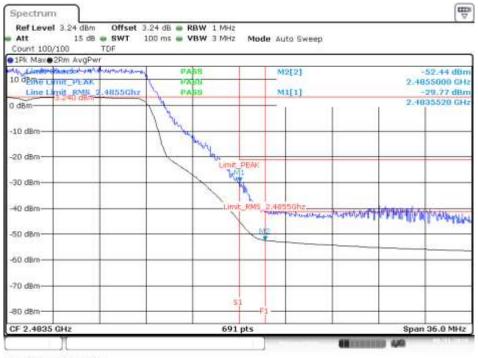
Channel 10F - BE High Freq Section RMS within 2MHz (restricted)

Date: 29.AUG:2018 11:03:08

Channel 11F - BE High Freq Section RMS within 2MHz (restricted)

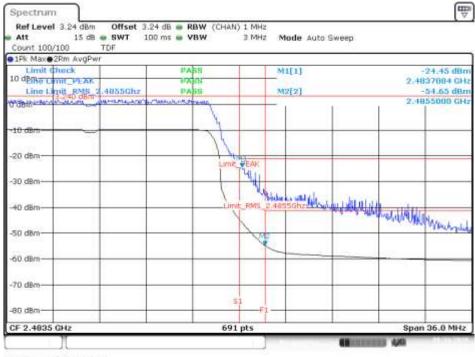


Date: 14.SEP.2018 16:54:37

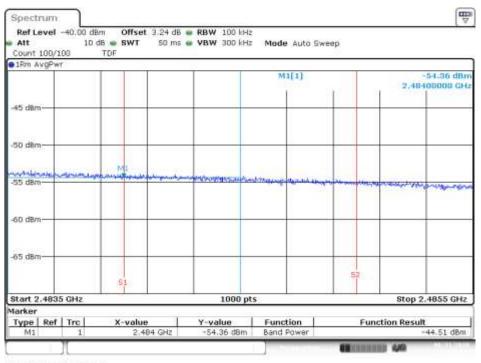


MIMO-A, 802.11ax20, HE0

Channel 11 - BE High Freq Section (restricted)

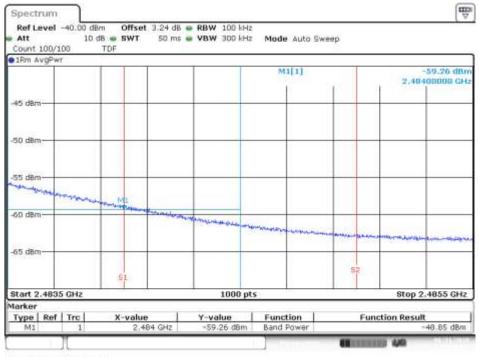

Channel 12 - BE High Freq Section (restricted)

Date: 31.ALG 2018 11:18:44

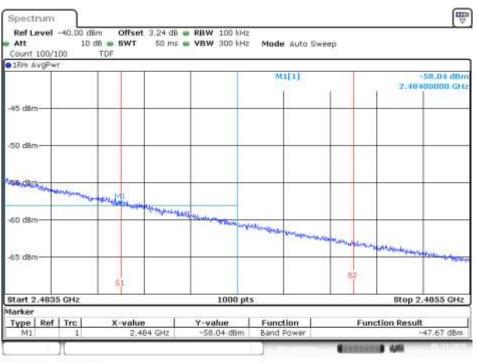


Channel 13 - BE High Freq Section (restricted)

Date: 13 SEP.2018 16:54:14


Channel 11 - BE High Freq Section RMS within 2MHz (restricted)

Date: 31.AUG 2018 11:11:04

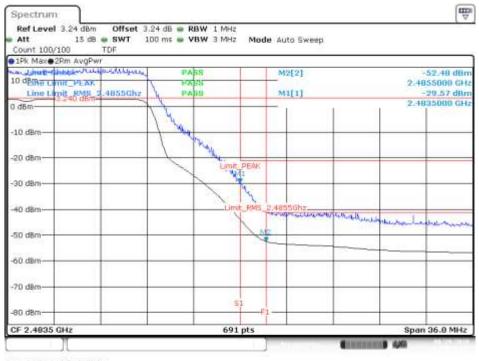


Channel 12 - BE High Freq Section RMS within 2MHz (restricted)

Date: 31.AUG.2018 11:18:07

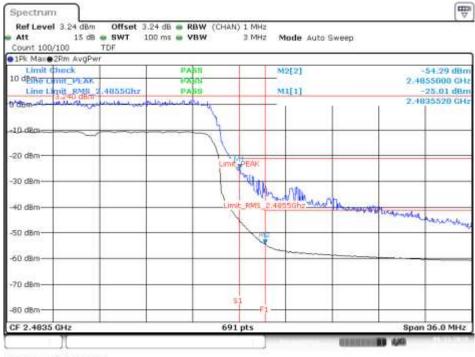
Channel 13 - BE High Freq Section RMS within 2MHz (restricted)

Date: 13 SEP.2018 16:55:32

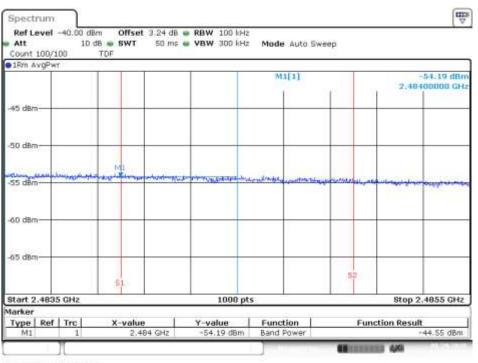


MIMO-B, 802.11ax20, HE0

Channel 11 - BE High Freq Section (restricted)

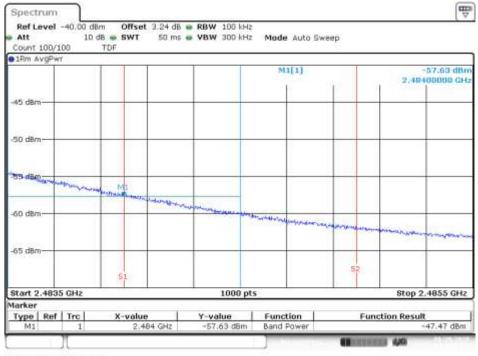

Channel 12 - BE High Freq Section (restricted)

Date: 29.ALG:2018 1459:39

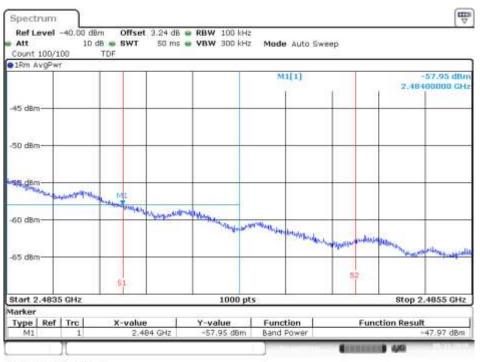


Channel 13 - BE High Freq Section (restricted)

Date: 13 SEP.2018 1808.09


Channel 11 - BE High Freq Section RMS within 2MHz (restricted)

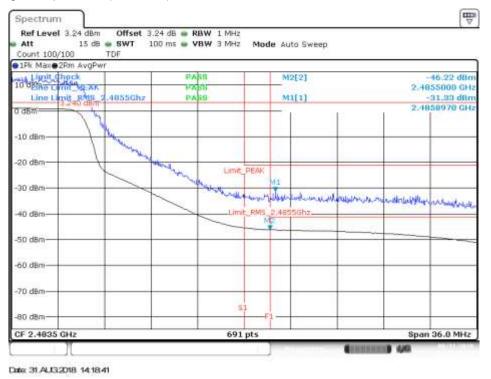
Date 29.AUG 2018 1452 14



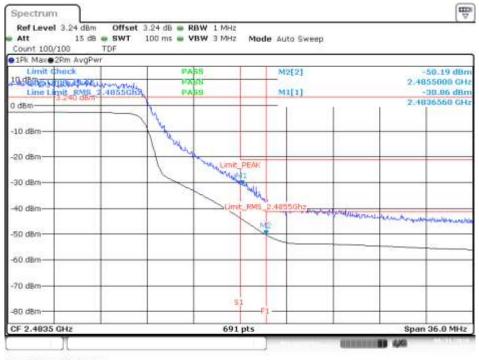
Channel 12 - BE High Freq Section RMS within 2MHz (restricted)

Date: 29.AUG:2018 15:00.16

Channel 13 - BE High Freq Section RMS within 2MHz (restricted)

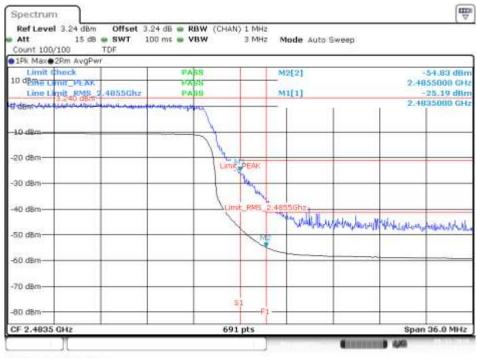


Date 13 SEP.2018 180903

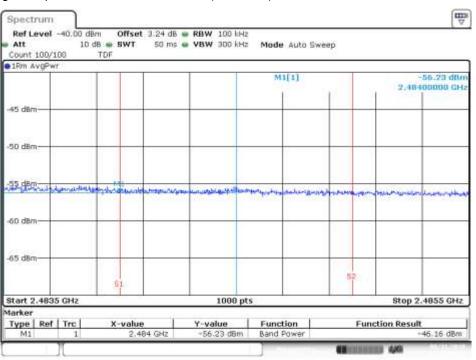


MIMO-A, 802.11ax40, HE0

Channel 9F - BE High Freq Section (restricted)

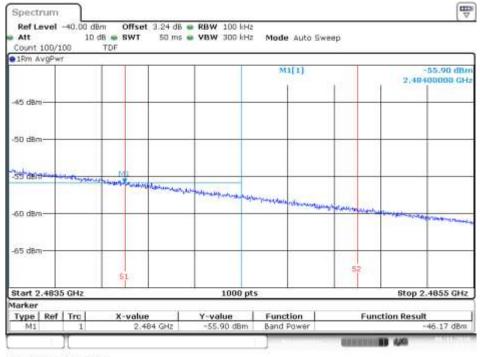

Channel 10F - BE High Freq Section (restricted)

Date: 31.ALG 2018 14:26:46

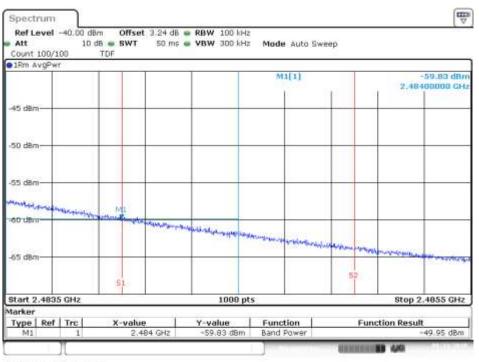


Channel 11F - BE High Freq Section (restricted)

Date: 13 SEP.2018 16:41:39


Channel 9F - BE High Freq Section RMS within 2MHz (restricted)

Date: 31.AUG:2018 14 18:04



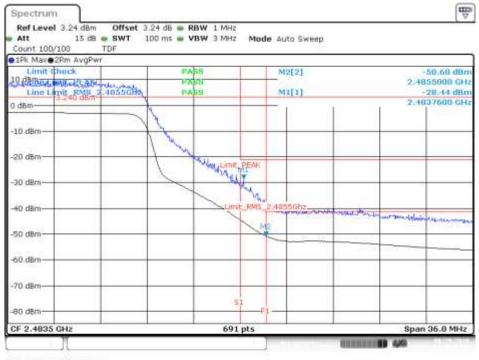
Channel 10F - BE High Freq Section RMS within 2MHz (restricted)

Date: 31 ALG 2018 14 27 22

Channel 11F - BE High Freq Section RMS within 2MHz (restricted)



Date: 13 SEP.2018 1642.03

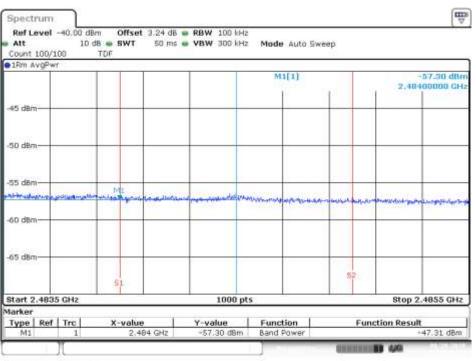


MIMO-B, 802.11ax40, HE0

Channel 9F - BE High Freq Section (restricted)

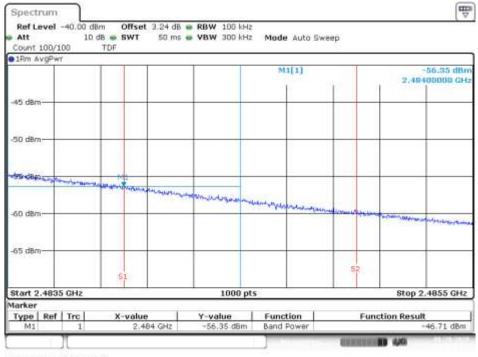

Channel 10F - BE High Freq Section (restricted)

Date: 29.ALG:2018 18:05:47

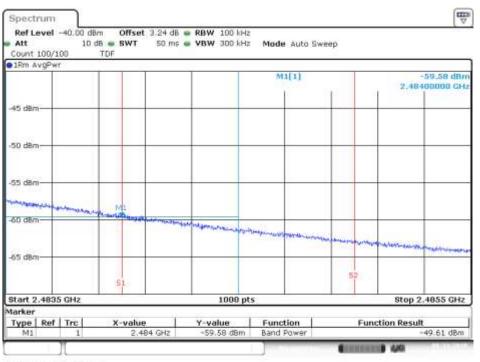


Channel 11F - BE High Freq Section (restricted)

Date: 13 SEP.2018 18 16 16


Channel 9F - BE High Freq Section RMS within 2MHz (restricted)

Date 29.AUG 2018 15/58.49



Channel 10F - BE High Freq Section RMS within 2MHz (restricted)

Date: 29.AUG:2018 18:05 13

Channel 11F - BE High Freq Section RMS within 2MHz (restricted)

Date: 13 SEP.2018 18 17:02

B.3.7 Out of band emissions - spurious

SISO-A, 802.11b, 1Mbps

Channel 7 - Range 30MHz to 9GHz - Delta Marker Measurement

₩ Spectrum Ref Level 5.00 dBm Mode Auto Sweep STOP 1 Vie M1[1] 67.31 dBn 30.0000 MH 10 dBrr 5.000 dBm 02[1] 33.74 di 0 dBm 2.4419870 GHz 10 dBm -20 dBm -30 d8m 40 dBm -S0 dBrr 60 dBn Stop 9.0 GHz 90002 pts Start 30.0 MHz Spurious Emissions Frequency 2.44248 GHz 4.88399 GHz 6.98862 GHz Power Abs 10.85 dBm -41.03 dBm Range Low Range Up RBW ALimit 100.000 kHz 100.000 kHz -200.00 dB -200.00 dB 3.000 GHz 6.000 GHz 30.000 MHz 3.000 GHz 6.000 GHz 9.000 GHz 100.000 kHz 54.51 dBm 200.00 dB Marker Y-value -7.29 dBm -67.31 dBm -33.74 dB Type | Ref | Trc Function **Function Result** X-value 2.442 GHz 30.0 MHz 2.441987 GHz M1 FD) 20

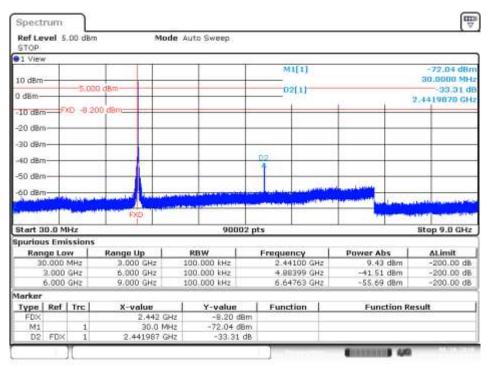
Date: 30,AUG 2018 10:58.43

Channel 7 - Range 9GHz to 18GHz - Delta Marker Measurement

STOP	vel 5.	00 dBm		1ode 4	uto Sweep					
1 View	6		20 - 14		145	UK.	CNR022117			100000000
10 dBm							-M1[1] -02[1]		9	-70,41 dBr 0.0000000 GH -51,19 d
0 dBm-	-	-5.000	dBm			-	-02[1]	A 495 - 107	13	.6449140 GH
-10 dBm	EX.	D -7,290	dam		_	-	_			Neg La recarrie
-20 dBm	-					-				
-30 dBn	98 J. J.									
-40 dBm	1					t —				
-SO dBr					-	-	-			
-60 dBm	-				-	-		02	A BRIDE OF	A LINE AND
diam'r	and the state	line and	Line and allowed	a dista ha	a substitution a substitution of	Charles and a state		and the second sec	-	-
FFXD		and the second second	ALL DESCRIPTION OF THE			and the second			16	tools interested
	.0 GH:	z	500 SA		9000	12 pts	10		5	top 18.0 GHz
Start 9	In which the local division in the local division of the local div								us au	
Spuriou			- Al Group Andrews		التريب والمتراجراتين			Power Ab	e	ALimit
Spuriou Ran	ge Los	N	Range Up	1	RBW		quency		in the second	
Spuriou Ran	ge Los 9.000	GHz	12.000 GHz		100.000 kHz	1	0.93755 GHz	-63.43	dBrn	
Spuriou Ran 1	ge Los 9.000 (2.000 (GH2 GH2	12.000 GHz 15.000 GHz	1	100.000 kHz 100.000 kHz	1	0.93755 GHz 4.93565 GHz	-63.43 -60.58	dBm dBm	-200.00 dB -200.00 dB -200.00 dB
Spuriou Ran 1 1	ge Los 9.000	GH2 GH2	12.000 GHz	1	100.000 kHz	1	0.93755 GHz	-63.43	dBm dBm	
Spuriou Ran 1 1 Marker	ge Los 9.000 (2.000 (5.000 (GHZ GHZ GHZ	12.000 GHz 15.000 GHz 18.000 GHz	1	00.000 kHz 100.000 kHz 100.000 kHz	1 1 1	0.93755 GHz 4.93565 GHz 7.71576 GHz	-63.43 -60.58 -57.92	dBrn dBrn dBrn	-200.00 dB -200.00 dB
Spuriou Ran 1 1	ge Los 9.000 (2.000 (5.000 (GHZ GHZ GHZ	12.000 GHz 15.000 GHz	1	100.000 kHz 100.000 kHz	1 1 1	0.93755 GHz 4.93565 GHz	-63.43 -60.58 -57.92	dBm dBm	-200.00 dB -200.00 dB
Spuriou Ran 1 1 Marker Type	ge Los 9.000 (2.000 (5.000 (GHZ GHZ GHZ	12.000 GHz 15.000 GHz 18.000 GHz X-value 2.442	1	00.000 kHz 100.000 kHz 100.000 kHz 100.000 kHz	1 1 1 1 8m	0.93755 GHz 4.93565 GHz 7.71576 GHz	-63.43 -60.58 -57.92	dBrn dBrn dBrn	-200.00 dB -200.00 dB

Date: 30.AUG 2018 10.59 10

Channel 7 - Range 18GHz to 26.5GHz - Delta Marker Measurement


STOP	vel 5	.00 dBm		Mode	Auto Sweep					111
91 View	¥5		045 - AK		245		access.			un de la company
10 dBm							41[1]		18	-65.24 dBn 3.0000000 GH
0 dBm-		-5.000	dBm			0	2[1]		10	-43.42 dt 5.6905500 GH
0.02019		XD -7.290	-				1	1	1	1.6905a00 Gri
-10 dBm	n-	10 14/2290		-		-		-		_
-20 dBn	n		-		-	-	-	-		
-30 dBn	n		-		_	-	-	-	-	
-40 dBm	-				-			1		
no do-	<u>R</u> 10	D2			-		1 1		-	
-S0 dBn	n-	D2			- 10		1			Line and
-50 d8n		D2		on the Chi					-	
rio, dise		D2							~	
en de Exp Br					9000	12 pts		-	-	Stop 26.5 GHz
60 d9 FXD Br Start 1	n				9000	12 pts			-	
60 (9) FEXD Br Start 1 Spuriou	n	Hz	Range Up		9000 RBW	12 pts Freque	ency	Power Al	-	
CO d9r FXD Br Start 1 Spuriou Ran 1	18.0 G Is Emi ge Lo 8.000	Hz Issions W GHz	21.000 GH	z	RBW	Freque 19.1	4095 GHz	-50,42	tin s ti dBrn	itop 26.5 GHz <u>ALimit</u> -200.00 dB
FXD Bo Start 1 Spuriou Ran 1 2	8.0 G IS Emi 9e Lo 8.000 1.000	Hz Issions W GHz GHz	21.000 GH 24.000 GH	z	RBW 100.000 kHz 100.000 kHz	Freque 19.1 22.9	4095 GHz 3459 GHz	-50,42 -53,98	bs dBm	Stop 26.5 GHz ALimit -200.00 dB -200.00 dB
FXD Br Start 1 Spuriou Ran 1 2 2	18.0 G Is Emi Is Emi 1.000 4.000	Hz Issions W GHz GHz	21.000 GH	z	RBW	Freque 19.1 22.9	4095 GHz	-50,42	bs dBm	itop 26.5 GHz <u>ALimit</u> -200.00 dB
60 d9r Fx0 Br Start 1 Spuriou Ran 1 2	8.0 G IS Emi 99 Lo 8.000 1.000 4.000	Hz Issions W GHz GHz GHz GHz	21.000 GH 24.000 GH 26.500 GH	z 2 2	RBW 100.000 kHz 100.000 kHz 100.000 kHz	Freque 19.1 22.9 25.4	4095 GHz 3459 GHz 8841 GHz	-50,42 -53,98 -51,76	s bs dBm i dBm i dBm	Stop 26.5 GHz <u>ALimit</u> -200.00 dB -200.00 dB -200.00 dB
FXD Bo FXD Bo Start 1 Spuriou Ran 1 2 2 Marker Type	8.0 G IS Emi 99 Lo 8.000 1.000 4.000	Hz Issions W GHz GHz	21.000 GH 24.000 GH 26.500 GH X-value	2 2 2	RBW 100.000 kHz 100.000 kHz 100.000 kHz 100.000 kHz Y-value	Freque 19.1 22.9 25.4	4095 GHz 3459 GHz	-50,42 -53,98 -51,76	bs dBm	Stop 26.5 GHz <u>ALimit</u> -200.00 dB -200.00 dB -200.00 dB
60 d9r FXD Br Start 1 Spuriou Ran 1 2 2 Marker	8.0 G IS Emi 99 Lo 8.000 1.000 4.000	Hz Issions W GHz GHz GHz GHz	21.000 GH 24.000 GH 26.500 GH X-value 2.4-	z 2 2	RBW 100.000 kHz 100.000 kHz 100.000 kHz	Freque 19.1 22.9 25.4 Fund	4095 GHz 3459 GHz 8841 GHz	-50,42 -53,98 -51,76	s bs dBm i dBm i dBm	Stop 26.5 GHz <u>ALimit</u> -200.00 dB -200.00 dB -200.00 dB

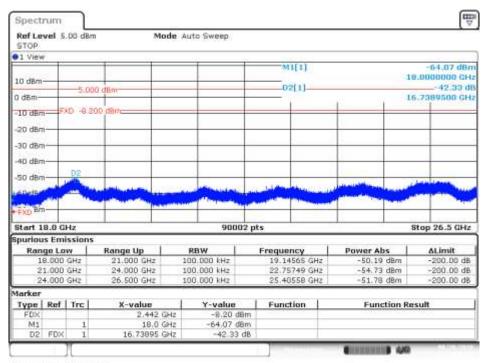
Date: 30.AUG:2018 10.59.37

SISO-B, 802.11b, 1Mbps

Channel 7 - Range 30MHz to 9GHz - Delta Marker Measurement

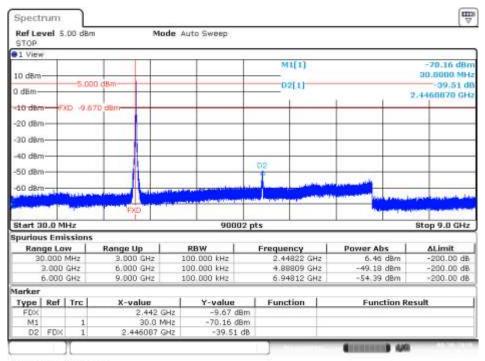
Date: 28AUG 2018 11:11:14

Channel 7 - Range 9GHz to 18GHz - Delta Marker Measurement


STOP	ver 5	.00 dBm		mode A	uto Sweep						
1 View	W		49 - 44			γ. <u>ε</u>					
10 dBm						M	1[1]		9	-68.33 dBr	
10.08m	5,000 dBm		dBm		_	0	2[1]	-50.27 (
0 dBm-	-				-		1000	4.5 10	13	3.6912120 GH	
-10 dBm	n- 5	XD -8.200	dem		_						
	1										
-20 dBn	n										
-30 dBn	n		+ +				-	-			
-40 dBm	n				-						
	12										
eter de la	A 10										
-SO dBr	n -							DS	_		
-50 dBn				. dura	-		Antonia	DS		- chanter and the	
100				مو الألى في . مراجع				DS	-	distanting the	
-60 dBn	n	iz State		an a taban Ayar	9000	2 pts		DS	5	stop 18.0 GHz	
-60 dBn FXD Start 9	n				9000	2 pts		Da	5	itop 18.0 GHz	
-60 dBn FFXD A Start 9 Spuriou	n	issions	Range Up	<mark></mark>	9000 RBW	2 pts Freque	ncy	Da Power Ab		itop 18.0 GHz	
-60 dBn FFXD I Start 9 Spuriou Ran	n J.O GH Js Emi 19e Lo 9.000	issions w GHz	12.000 GHz	+	RBW 000.000 kHz	Freque 11.18	735 GHz	Power Ab -62.77	dBrn	ΔLimit -200.00 dB	
-60 dBn FRD I Start 9 Spuriou Ran	n	GHz GHz	12.000 GHz 15.000 GHz		RBW 00.000 kHz	Freque 11.16 14.93	1735 GHz 1255 GHz	Power Ab -62.77 -59.02	dBrn dBrn	ALimit -200.00 dB -200.00 dB	
-60 dBn FFXD I Start 9 Spuriou Ran 1	n 2.0 GH 25 Emi 9.000 2.000 5.000	GHz GHz	12.000 GHz		RBW 000.000 kHz	Freque 11.16 14.93	735 GHz	Power Ab -62.77	dBrn dBrn	ΔLimit -200.00 dB	
-60 dBn FXD I Start 9 Spuriou Ran 1	9.000 2.000 5.000	GH2 GH2 GH2 GH2 GH2	12.000 GHz 15.000 GHz 18.000 GHz		RBW 00.000 kHz 000.000 kHz 000.0000 kHz 000.000 kHz 000.000 kHz 000.0000 kHz 000.000 kHz 000.000 kHz 000.0000 kHz 000.000 kHz 000.0000 kHz 000.0000 kHz 000.0000 kHz 000.000 kHz 000.0000 kHz 000.00000 kHz 000.0000 kHz 000.0000 kHz 000.00000 kHz 000.0000 kHz 000000000 kHz 000000 kHz 0000000000	Freque 11.16 14.93 17.03	1735 GHz 1255 GHz 1598 GHz	Power Ab -62.77 -59.02 -58.12	dBrn dBrn dBrn dBrn	ALimit -200.00 dB -200.00 dB -200.00 dB	
-60 dBn FFXD I Start 9 Spuriou Ran 1 Marker Type	9.000 2.000 5.000	GHz GHz	12.000 GHz 15.000 GHz 18.000 GHz X-value		RBW 00.000 kHz 00.000 kHz 00.000 kHz 00.000 kHz Y-value	Freque 11.16 14.93 17.03	1735 GHz 1255 GHz 1598 GHz	Power Ab -62.77 -59.02 -58.12	dBrn dBrn	∆Limit -200.00 dB -200.00 dB -200.00 dB	
-60 d9n FXD - Start 9 Spuriou Ran 1 Marker	9.000 2.000 5.000	GH2 GH2 GH2 GH2 GH2	12.000 GHz 15.000 GHz 18.000 GHz X-value 2.44		RBW 00.000 kHz 000.000 kHz 000.0000 kHz 000.000 kHz 000.000 kHz 000.0000 kHz 000.000 kHz 000.000 kHz 000.0000 kHz 000.000 kHz 000.0000 kHz 000.0000 kHz 000.0000 kHz 000.000 kHz 000.0000 kHz 000.00000 kHz 000.0000 kHz 000.0000 kHz 000.00000 kHz 000.0000 kHz 000000000 kHz 000000 kHz 0000000000	Freque 11.16 14.93 17.03 Func	1735 GHz 1255 GHz 1598 GHz	Power Ab -62.77 -59.02 -58.12	dBrn dBrn dBrn dBrn	∆Limit -200.00 dB -200.00 dB -200.00 dB	

Date: 28.AUG 2018 11:11:39

Channel 7 - Range 18GHz to 26.5GHz - Delta Marker Measurement



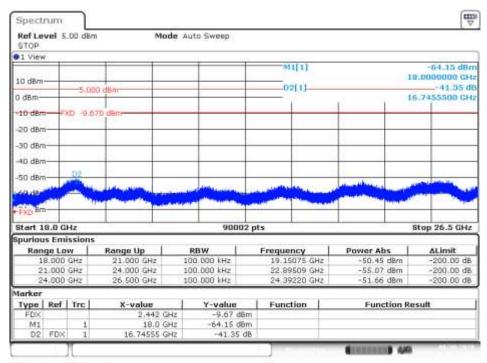
Date 28AUG 2018 11:1204

SISO-A, 802.11g, 6Mbps

Channel 7 - Range 30MHz to 9GHz - Delta Marker Measurement

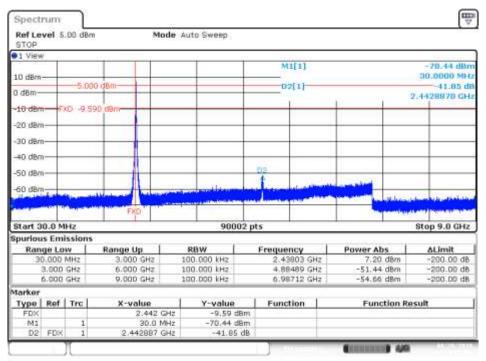
Date 30.AUG 2018 13:25:58

Channel 7 - Range 9GHz to 18GHz - Delta Marker Measurement


STOP	vel 5	.00 dBm	1	Mode A	uto Sweep					
1 View	Й. (н.		045 - 14		145		<u>ava</u>		and the same	
10 dBm	-					-	11[1]		-69.32 dB/ 9.0000000 GF	
0 dBm 5.000 dBm						0		- 49.02 d 13.7042120 GH		
							10	1 1	5.7042120 Gr	
-10 dBr	n-F	XD -9.67	0 dBm		_				_	
-20 dBr	n				-		-		-	
-30 dBr	_					_				
23.0.317										
-40 dBr	n					1				
-SO dBr	n 				-				-	
-60 dBr							-		the second se	
							COMP. CO. LONG.	And the state of the second second	College and statistics into	
iniana a	-	al- is size	and and	No.	2	Lannada	and an influence	And the second se		
FXD						Land				
iniana a		z			9000	12 pts			Stop 18.0 GHz	
FXD Start 9	.0 GH	iz Issions			9000				Stop 18.0 GHz	
FFXD Start 9 Spuriou Ran	.0 GH Is Emi ge Lo	issions w	Range Up		RBW	 12 pts Freque		Power Abs	ALimit	
FFXD Start 5 Spuriou Ran	.0 GH IS Emi ge Lo 9.000	issions w GHz	12.000 GHz	10	RBW 0.000 kHz	12 pts Freque	7065 GHz	Power Abs -63.05 dBm	∆Limit -200.00 dB	
FFXD Start 9 Spuriou Ran	.0 GH IS Emi 9.000 2.000	GHz GHz	12.000 GHz 15.000 GHz	10	RBW 00.000 kHz	12 pts Freque 11.1 14.90	7065 GHz 9985 GHz	Power Abs -63.05 dBm -60.46 dBm	ΔLimit -200.00 dB -200.00 dB	
FRO Start 9 Spuriou Ran 1	.0 GH IS Emi ge Lo 9.000	GHz GHz	12.000 GHz	10	RBW 0.000 kHz	12 pts Freque 11.1 14.90	7065 GHz	Power Abs -63.05 dBm	∆Limit -200.00 dB	
FFXD Start 9 Spuriou Ran 1 1 Marker	.0 GH is Emi ge Lo 9.000 2.000 5.000	GH2 GH2 GH2 GH2	12.000 GHz 15.000 GHz 18.000 GHz	10	RBW 00.000 kHz 00.000 kHz 00.000 kHz 00.000 kHz	Freque 12 pts 11.11 14.91 15.74	7065 GHz 8985 GH2 4873 GHz	Power Abs -63.05 dBm -60.46 dBm -58.50 dBm	ALimit -200.00 dB -200.00 dB -200.00 dB	
FXD Start 5 Spuriou Ran 1 1 Marker Type	.0 GH is Emi ge Lo 9.000 2.000 5.000	GH2 GH2 GH2 GH2	12.000 GHz 15.000 GHz 18.000 GHz X-value	10	RBW 00.000 kHz 00.000 kHz 00.000 kHz 00.000 kHz Y-value	12 pts Freque 11.17 14.90 15.7 ² Func	7065 GHz 8985 GH2 4873 GHz	Power Abs -63.05 dBm -60.46 dBm	ALimit -200.00 dB -200.00 dB -200.00 dB	
FFXD Start 9 Spuriou Ran 1 1 Marker	.0 GH is Emi ge Lo 9.000 2.000 5.000	GH2 GH2 GH2 GH2	12.000 GHz 15.000 GHz 18.000 GHz X-value 2.44	10	RBW 00.000 kHz 00.000 kHz 00.000 kHz 00.000 kHz	12 pts Freque 11.17 14.99 15.7 Eunc	7065 GHz 8985 GH2 4873 GHz	Power Abs -63.05 dBm -60.46 dBm -58.50 dBm	ALimit -200.00 dg -200.00 dg -200.00 dg	

Date: 30AUG 2018 132825

Channel 7 - Range 18GHz to 26.5GHz - Delta Marker Measurement



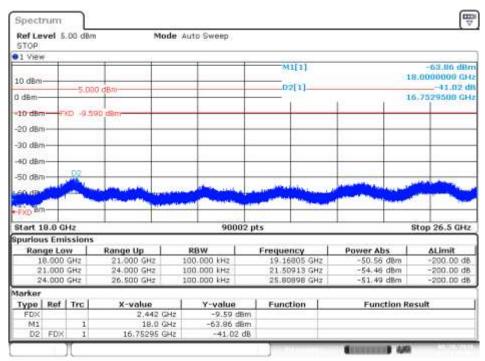
Date: 30.AUG 2018 13:26:52

SISO-B, 802.11g, 6Mbps

Channel 7 - Range 30MHz to 9GHz - Delta Marker Measurement

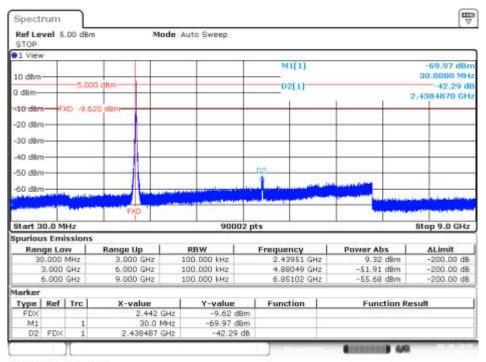
Date 28AUG 2018 1220:53

Channel 7 - Range 9GHz to 18GHz - Delta Marker Measurement


STOP	evel 5	.00 dBm		fode Au	to Sweep						
1 View	W		020 00		-1	si - 50	105072		1000 C 1000		
10 dBm		N-5774					1[1]		-69.58 dB 9.0000000 GF		
0 dBm-	5.000 dBm					0	2[1]	-49.23 c 13.5614170 G			
-10 dBr	2. 4	te le ax	and and and						-month of the second		
	1.5	ALL OF L	AD DENY								
-20 dBr	m		-		+						
-30 dBr	n		-			-		-			
-40 dBr	n										
	25					-					
-50 dBr	n							02			
-60 dBr	m			- market	e lenter and	And address in	A Charles	And the second days in the party	and the second		
-EXD					A CONTRACTOR OF THE OWNER			- the second line bit in success	Barrow design and address of		
	1.0 GH	2			9000	2 pts	-		Stop 18.0 GHz		
Start 9			(L pts			atop 1010 and		
	is Em			RAW		Frequency		Power Abs	ALimit		
spuriou	us Em		Range Up	1 8	aw I	Freque	ncy				
Spuriou Ran		w		-	0.000 kHz		1255 GHz	-62.95 dBm	+200.00 dB		
Ran	9.000	GHz GHz	Range Up 12.000 GHz 15.000 GHz	10	0.000 kHz 0.000 kHz	11.20 14.98	1255 GHz 3505 GHz	-62.95 dBm -60.27 dBm	-200.00 de		
Spuriou Ran 1	9.000 2.000 5.000	GHz GHz	Range Up 12.000 GHz	10	0.000 kHz	11.20 14.98	1255 GHz	-62.95 dBm	-200.00 dB -200.00 dB -200.00 dB		
Spuriou Ran 1 1 Narker	9.000 2.000 5.000	GHZ GHZ GHZ	Range Up 12,000 GHz 15.000 GHz 18.000 GHz	10	0.000 kHz 0.000 kHz 0.000 kHz	11.20 14.90 17.91	255 GHz 505 GHz 1175 GHz	-62.95 dBm -60.27 dBm -58.77 dBm	-200.00 de -200.00 de		
Spuriou Ran 1 1 Marker Type	9.000 2.000 5.000	GHZ GHZ GHZ	Range Up 12.000 GHz 15.000 GHz 18.000 GHz X-value	10 10 10	0.000 kHz 0.000 kHz 0.000 kHz Y-value	11.20 14.98 17.91	255 GHz 505 GHz 1175 GHz	-62.95 dBm -60.27 dBm	-200.00 de -200.00 de		
Spuriou Ran 1 1 Marker	9.000 2.000 5.000	GHZ GHZ GHZ	Range Up 12,000 GHz 15,000 GHz 18,000 GHz X-value 2,442	10 10 10	0.000 kHz 0.000 kHz 0.000 kHz	11.20 14.98 17.91 Func	255 GHz 505 GHz 1175 GHz	-62.95 dBm -60.27 dBm -58.77 dBm	-200.00 df -200.00 df		

Date: 28.AUG 2018 12:21:19

Channel 7 - Range 18GHz to 26.5GHz - Delta Marker Measurement

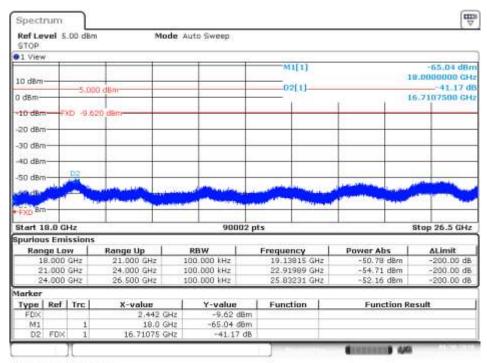


Date 28/AUG 2018 12/21:45

SISO-A, 802.11n20, HT0

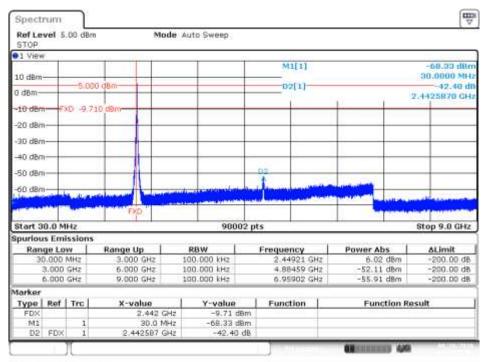
Channel 7 - Range 30MHz to 9GHz - Delta Marker Measurement

Date 30.AUG 2018 1439.24


Channel 7 - Range 9GHz to 18GHz - Delta Marker Measurement

STOP	vel 5	.00 dBm	,	lode Au	ito Sweep				
1 View	W		0.045 - 44		25 2	17 CN	00-1.V		1777 S.D.M. (MA)
10 dBm							1[1]		-69.70 dB/ 9.0000000 GF
0 dBm-		-5.000	dBm			0;	2[1]		-49.39 d 15.3144580 GH
							1.	1 1	
10 dBr	n	(D -9.62	O dBm						
20 dBr	n				-				
									-
-30 dBr	n								
-40 dBr	n		-		-				
-SO dBr	n				-				
-60 dBr			-						D2
-00 QBI	in the	we bedde	a second s	a la catal	distant.	di jimihan	Angland		A CARACTER STORE
FFXD	-		The second second		-	Charles and	Internet Albert		
Start S	.0 GH	z	nin di		9000	2 pts		de de	Stop 18.0 GHz
puriou	is Emi	ssions							
	ge La	w	Range Up	1 1	RBW	Freque	ncy	Power Abs	ALimit
	9.000		12.000 GHz		10.000 kHz		775 GHz	-62.93 dBm	-200.00 dB
711004	12.000 GHz		15.000 GHz		0.000 kHz		697 GHz	-60.51 dBm	-200.00 dB
1		15.000 GH2 18.000 G		100.000 kHz		16.13321 GHz		-58.29 dBm	-200.00 dB
1	5.000	GHZ	10,000 0112						
1 1 1arker	5.000	and the first state							
1 1 1arker Type	5.000	and the first state	X-value	-	Y-value	Func	tion	Function	Result
1 1 Marker	5.000	and the first state	X-value 2.442	GHZ	Y-value -9.62 dB -69.70 dB	IF)	tion	Function	Result

Date: 30,AUG 2018 14 39,51

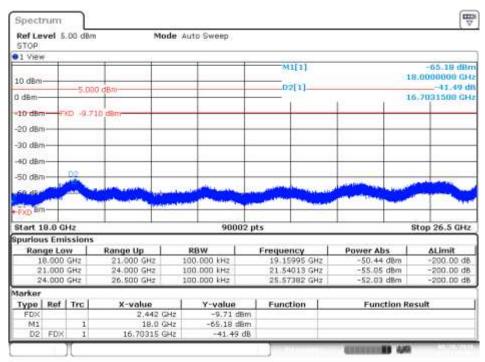


Date: 30.AUG 2018 14 40 18

SISO-B, 802.11n20, HT0

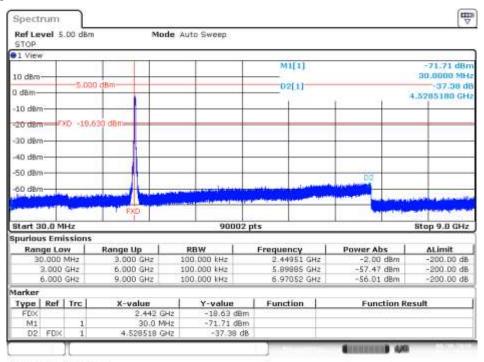
Channel 7 - Range 30MHz to 9GHz - Delta Marker Measurement

Date 28.AUG 2018 16:23:55


Channel 7 - Range 9GHz to 18GHz - Delta Marker Measurement

STOP	vel 5	.00 dBm		lode A	uto Sweep				
1 Viev	Vi en		14040 - 445		-	167 207	105151		Second Second
10 dBm	2	DESCR					1[1]		-71.13 dBr 9.0000000 GH
0 dBm-	-	-5.00	0 dBm-			0	2[1]	1	-49.08 d
	2	-					1	1 1	and a state of the state
=10 dBn		@ -9.73	10 dem						
-20 dBn	n		+ +		-	-			-
-30 dBm	-				_	-			-
-40 d8n					-				
-90 dBn	n								
-50 dBn	n		++						02
-60 dBn									
-00 GBI	n				-		and the state	I was not state and the south of	and the second s
annah!	-	-			e date and		Sine the		
-RO							-		
annah!		z			900	02 pts	in state		
-RØ Start 9	.0 GH	z			900	02 pts	May 200		
Start 9 Spuriou Ran	.0 GH Is Emi ge Lo	issions w	Range Up	1	RBW	Freque	mcy	Power Abs	Stop 18.0 GHz
FR® Start 9 Spuriou Ran	.0 GH IS Emi ge Lo 9.000	issions w GHz	12,000 GHz		RBW 00.000 kHz	Freque 11.24	HICY 4415 GHz	Power Abs -62.80 dBm	Stop 18.0 GHz <u>ALimit</u> -200.00 dB
Start 9 Spuriou Ran	.0 GH IS Emi 9.000 2.000	issions w GHz GHz	12,000 GHz 15,000 GHz	1	RBW 00.000 kHz 00.000 kHz	Freque 11.24 14.96	mcy 4415 GHz 5035 GHz	Power Abs -62.80 d8m -60.51 d8m	Stop 18.0 GHz ALimit -200.00 dB -200.00 dB
Start 9 Spuriou Ran	.0 GH IS Emi ge Lo 9.000	issions w GHz GHz	12,000 GHz	1	RBW 00.000 kHz	Freque 11.24 14.96	HICY 4415 GHz	Power Abs -62.80 dBm	Stop 18.0 GHz <u>ALimit</u> -200.00 dB
Start 9 Spuriou Ran 1 1 Marker	9.000 2.000 2.000 5.000	GH2 GH2 GH2 GH2 GH2	12,000 GHz 15.000 GHz 18.000 GHz	1	RBW 00-000 kHz 00-000 kHz 00-000 kHz 00-000 kHz	Freque 11.24 14.96 17.61	mcy 4415 GHz 5035 GHz 7376 GHz	Power Abs -62.80 dBm -60.51 dBm -58.15 dBm	Stop 18.0 GHz <u>ALimit</u> -200.00 de -200.00 de -200.00 de
FRD Start 9 Spuriou Ran 1 1 Narker Type	9.000 2.000 2.000 5.000	issions w GHz GHz	12.000 GHz 15.000 GHz 18.000 GHz X-value	1	RBW 00-000 kHz 00-000 kHz 00-000 kHz 00-000 kHz V-value	Freque 11.24 14.96 17.67	mcy 4415 GHz 5035 GHz 7376 GHz	Power Abs -62.80 d8m -60.51 d8m	Stop 18.0 GHz <u>ALimit</u> -200.00 dB -200.00 dB -200.00 dB
Start 9 Spuriou Ran 1 1 Marker	9.000 2.000 2.000 5.000	GH2 GH2 GH2 GH2 GH2	12.000 GHz 15.000 GHz 18.000 GHz X-value 2.442	1	RBW 00-000 kHz 00-000 kHz 00-000 kHz 00-000 kHz	Freque 11.24 14.96 17.61 Func	mcy 4415 GHz 5035 GHz 7376 GHz	Power Abs -62.80 dBm -60.51 dBm -58.15 dBm	Stop 18.0 GHz <u>ALimit</u> -200.00 de -200.00 de -200.00 de

Date 28.AUG 2018 16:24:22

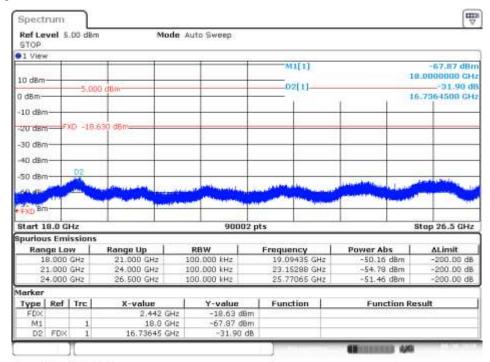


Date 28.AUG 2018 16:24:48

SISO-A, 802.11n40, HT0

Channel 7F - Range 30MHz to 9GHz - Delta Marker Measurement

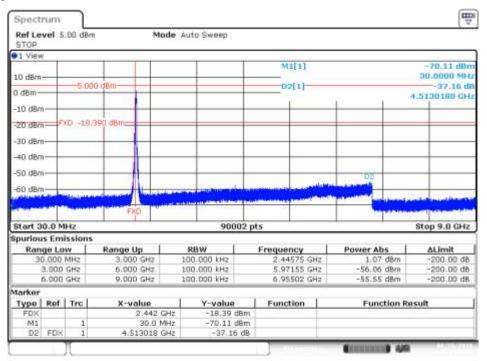
Date: 30.AUG 2018 17:33:07


Channel 7F - Range 9GHz to 18GHz - Delta Marker Measurement

STOP	vel 5	.00 dBm	,	Node A	uto Sweep					
1 View	Й. ₁ .		20 M		145	97. <u>68</u>	and a state of the			Nr.
10 dBm							1[1]		-70.28	GH
0 dBm-		-5.000	dBm		-	0	2[1]		-39.9	
	· · · ·						1	1 1	10.01 0.000	
-10 dBr	n-				-	-		1 1		
-20 den	T-F	XD -18.63	0 d6m				-			_
			1							
-30 dBr	1									
-4D dBr	n		-		-	-				
-SO dBr	n					-				
20 40-					-			1.	02	20
-60 dBr	1						and of a second			
and the second se	1.2	LL . Ba Jacon	antipular and make		C. C. Martine	A LAND MARKED	THE REPORT	A CONTRACTOR OF THE OWNER OF THE	and the second	
FEXD		i de les se				A a late of the state of the st				
EEXD Start 9	.0 GH	lz ta ktore			9000	2 pts			Stop 18.0 (GHD
Start 9	the state of the s	lz issions			9000	2 pts			Stop 18.0 (GH2
Start S Spuriou Ran	is Emi ge Lo	issions w	Range Up		RBW	Freque	ncy	Power Abs	ΔLimit	
Start S Spuriou Ran	ge La 9.000	issions w GHz	12.000 GHz	10	RBW 00.000 kHz	Freque	ncy M75 GHz	-62.99 dBr	ΔLimit m -200.00) de
Start S Spuriou Ran 1	ge La 9.000 2.000	GHz GHz	12.000 GHz 15.000 GHz	10	RBW 00.000 kHz	Freque 11.16 14.56	ncy 1475 GHz 1806 GHz	-62.99 dB/ -60.00 dB/	ΔLimit m -200.00 m -200.00) de
Start S Spuriou Ran 1	ge La 9.000	GHz GHz	12.000 GHz	10	RBW 00.000 kHz	Freque 11.16 14.56	ncy M75 GHz	-62.99 dBr	ΔLimit m -200.00 m -200.00) de
Start 9 Spuriou Ran 1 1 Marker	ge Lo 9.000 2.000 5.000	GH2 GH2 GH2 GH2	12.000 GHz 15.000 GHz 18.000 GHz	10	RBW 00.000 kHz 00.000 kHz 00.000 kHz 00.000 kHz	Freque 11.16 14.56 17.76	ncy 9475 GHz 9006 GHz 9286 GHz	-62.99 dB/ -60.00 dB/ -58.07 dB/	ΔLimit m -200.00 m -200.00 m -200.00) de
Start 9 Spuriou Ran 1 1 Marker Type	ge Lo 9.000 2.000 5.000	GHz GHz	12.000 GHz 15.000 GHz 18.000 GHz X-value	10	RBW 00.000 kHz 00.000 kHz 00.000 kHz 00.000 kHz 00.000 kHz 00.000 kHz Y-value	Freque 11.11 14.50 17.70	ncy 9475 GHz 9006 GHz 9286 GHz	-62.99 dB/ -60.00 dB/ -58.07 dB/	ΔLimit m -200.00 m -200.00) de
Start S Spuriou Ran 1 1 Marker	ge Lo 9.000 2.000 5.000	GH2 GH2 GH2 GH2	12.000 GHz 15.000 GHz 18.000 GHz X-value 2.442	10	RBW 00.000 kHz 00.000 kHz 00.000 kHz 00.000 kHz	Freque 11.1f 14.5f 17.7f Func	ncy 9475 GHz 9006 GHz 9286 GHz	-62.99 dB/ -60.00 dB/ -58.07 dB/	ΔLimit m -200.00 m -200.00 m -200.00) de

Date: 30.AUG.2018 17:33.34

Channel 7F - Range 18GHz to 26.5GHz - Delta Marker Measurement



Date 30.AUG 2018 17:34:01

SISO-B, 802.11n40, HT0

Channel 7F - Range 30MHz to 9GHz - Delta Marker Measurement

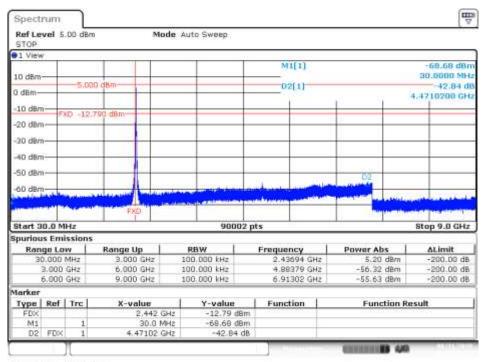
Date 28.AUG 2018 18:34 16

Channel 7F - Range 9GHz to 18GHz - Delta Marker Measurement

STOP	vel 5	.00 dBm		fode AL	ito Sweep				
1 View	V		14242 - 344				and the		14
10 dBm	-	05770				· · · · · · · · · · · · · · · · · · ·	1[1]		-70.62 dBr 9.0000000 GH -39.14 d
0 dBm-	-	-5.00	0 dBm-		-		2[1]		15.3119580 CH
-10 dBn	2						1		- and a state of the state of
1.010	71	and therein	390 d8ma						
-20 dBn	n	ND -18.	390 08/11		-				
-30 dBn	n		-				-		
-40 d8n									
- op oper									
-50 dBn	n				-				02
-50 dBn -60 dBn	12						ine and		D2
-60 dBn	12	an ta ba	a start (Phine or 1)	a shere	-				D2
-60 dBn									
-60 dBn FRD Start 9	.0 GH	_			900	02 pts			D2
-60 dBn FXD Start 9 Spuriou	.0 GH	issions							Stop 18.0 GHz
-60 dBn -FXD Start 9 Spuriou Ran	.0 GH is Emi ge Lo	issions w	Range Up		RBW	Freque	ency	Power Abs	Stop 18.0 GHz
-60 dBn FFXD Start 9 Spuriou Ran	.0 GH	issions w GHz		10		Freque 10.59		Power Abs -63.24 dBm -60.89 dBm	Stop 18.0 GHz
-60 dBn FRD Start 9 Spuriou Ran	.0 GH Is Emi ge Lo 9.000	GH2 GH2	Range Up 12,000 GHz	10	RBW	Freque 10.59 14.99	ency 9875 GHz	-63.24 dBm	Stop 18.0 GHz
-60 dBn FXD - Start 9 Spuriou Ran 1	0.0 GH is Emi ge Lo 2.000	GH2 GH2	Range Up 12.000 GHz 15.000 GHz	10	RBW 0.000 kHz	Freque 10.59 14.99	9875 GHz 5635 GHz	-63.24 dBm -60.89 dBm	Stop 18.0 GHz
-60 dBn FXD - Start 9 Spuriou Ran 1	9.000 2.000 5.000	GH2 GH2 GH2 GH2 GH2	Range Up 12,000 GHz 15,000 GHz 18,000 GHz X-value	10	RBW 0.000 kHz	Freque 10.59 14.99	9875 GHz 5635 GHz 5816 GHz	-63.24 dBm -60.89 dBm	Stop 18.0 GHz <u>ALimit</u> -200.00 de -200.00 de
-60 dBn FRD - Start 9 Spuriou Ran 1 1 Marker	9.000 2.000 5.000	GH2 GH2 GH2 GH2 GH2	Range Up 12,000 GHz 15,000 GHz 18,000 GHz X-value 2,442	10	RBW 10-000 kHz 10-000 kHz 10-000 kHz 10-000 kHz	Freque 10.59 14.99 17.79 Func Bm	9875 GHz 5635 GHz 5816 GHz	-63.24 dBm -60.89 dBm -57.17 dBm	Stop 18.0 GHz <u>ALimit</u> -200.00 de -200.00 de

Date 28/AUG 2018 18/34:43

Channel 7F - Range 18GHz to 26.5GHz - Delta Marker Measurement

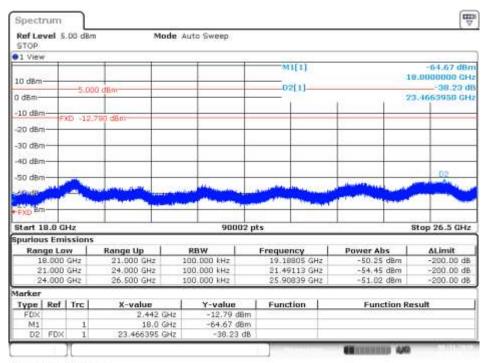


Date 28/AUG 2018 18:35:09

MIMO-A, 802.11n20, HT8

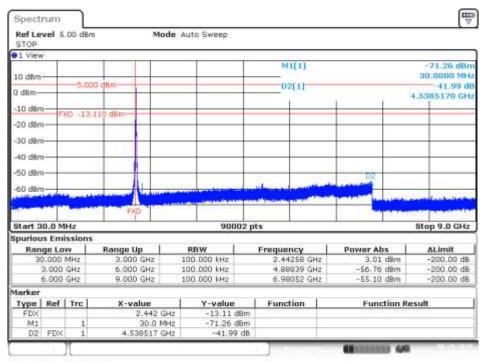
Channel 7 - Range 30MHz to 9GHz - Delta Marker Measurement

Date: 31.AUG:2018 10:09:47


Channel 7 - Range 9GHz to 18GHz - Delta Marker Measurement

STOP	vel 5	.00 dBm		Mode	Auto Sweep				
1 View	¥		645 - A		141	107 C	NAMESON		(Marconice (VC)
10 dBm						-	M1[1]		-71.04 dB
0 dBm-	-	-5.000	dBm		-		02[1]	1	-45.65 d 3.6722130 GH
1.5.2.1.	1		10				1	1 1	and a second
-10 dBm	F	XD 12.7	0 dBm		_		-		
-20 dBm	n i i		-		-	-	-		
-30 dBm						-	-		
23.0.312									
-#D dBm	n								
-SO dBr	n i i		-			-	-	1.2	-
-50 dBr								D2	_
-60 dBm		Lucine,		Mar Mar	all, contractors	Lalia, e alad. At		D2	
1000		<u></u>						D2	
-60 dBm	n	la l				02 pts			Stop 18.0 GHz
-60 dBm FXD Start 9	0.0 GH	iz Issions							Stop 18.0 GHz
-60 dBr FXD Start 9 Spuriou Ran	.0 GH Is Emi	issions w	Range Up	1	900 RBW	02 pts Frequ	iency	Power Abs	ΔLimit
-60 dBr FXD Start 9 Spuriou Ran	0.0 GH	GH2	12.000 GH	z	900 RBW 100.000 kHz	02 pts Frequ	iency	Power Abs -62.41 dBm	ΔLimit -200.00 dB
-60 dBr FXD Start 9 Spuriou Ran	0.0 GH IS Emi 9.000 2.000	GHz GHz	12.000 GH 15.000 GH	2 2	900 RBW 100.000 kHz 100.000 kHz	02 pts Frequ 11. 14.	iency 16745 GHz 54157 GHz	Power Abs -62.41 dBm -60.93 dBm	ΔLimit -200.00 dB -200.00 dB
-60 dBr FXD Start 9 Spuriou Ran	0.0 GH	GHz GHz	12.000 GH	2 2	900 RBW 100.000 kHz	02 pts Frequ 11. 14.	iency	Power Abs -62.41 dBm	ΔLimit -200.00 dB
-60 dBr Fxp Start 9 Spuriou Ran 1 1	n .0 GH is Emi 9.000 2.000 5.000	GH2 GH2 GH2 GH2	12.000 GH 15.000 GH	2 2	900 RBW 100.000 kHz 100.000 kHz	02 pts Frequ 11. 14.	iency 16745 GHz 54157 GHz	Power Abs -62.41 dBm -60.93 dBm	∆Limit -200.00 dB -200.00 dB
-60 dBr Start 9 Spuriou Ran 1. 1 Marker Type	n .0 GH is Emi 9.000 2.000 5.000	GHz GHz	12.000 GH 15.000 GH 18.000 GH X-value	2 2 2	900 RBW 100.000 kHz 100.000 kHz 100.000 kHz 100.000 kHz Y-value	02 pts Frequ 11. 14. 15.	iency 16745 GHz 54157 GHz	Power Abs -62.41 dBm -60.93 dBm	ALimit -200.00 dB -200.00 dB -200.00 dB
-60 dBn FRD - Start 9 Spuriou Ran 1 1 Marker	n .0 GH is Emi 9.000 2.000 5.000	GH2 GH2 GH2 GH2	12.000 GH 15.000 GH 18.000 GH X-value 2.4-	2 2 2	900 RBW 100,000 kHz 100,000 kHz 100,000 kHz	02 pts Frequ 11. 14. 15. Em	ency 16745 GHz 54157 GHz 99892 GHz	Power Abs -62.41 dBm -60.93 dBm -58.31 dBm	ALimit -200.00 dB -200.00 dB -200.00 dB

Date: 31.ALG 2018 10.10.14

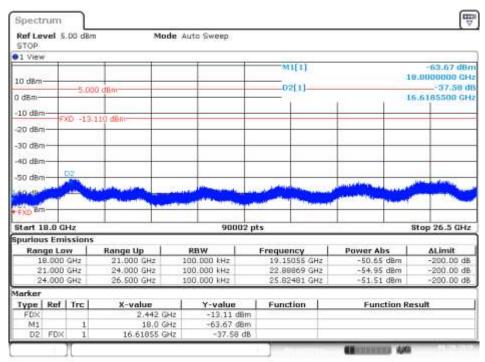


Date: 31.AUG 2018 10 10 42

MIMO-B, 802.11n20, HT8

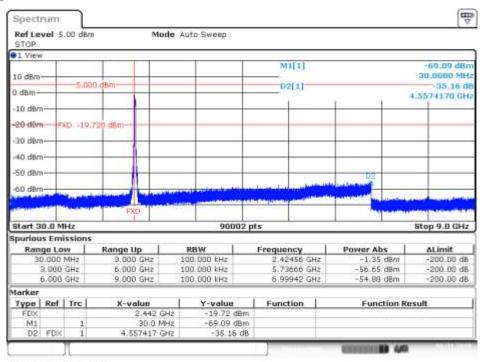
Channel 7 - Range 30MHz to 9GHz - Delta Marker Measurement

Date: 29.AUG:2018 12.19.29


Channel 7 - Range 9GHz to 18GHz - Delta Marker Measurement

STOP	vel 5	.00 dBm		Mode	Auto Sweep				
1 View	9. pr			7	142	90 6 3	2012.00V		1000000000
10 dBm							1[1]		-70.41 dBr
0 dBm-		-5.000	dBm			0	2[1]	1	-45.40 d
-10 dBm	3							1	and a second second
	F)	ND -13.11	tů děm						
-20 dBm	n		-						
-30 dBr	n		-			-			
-40 dBm							-		
	28 U U								
-SO dBr	n								D2
-60 dBn	n	1000000	a hada a sa	52 (C. 16)	and the second second		Anne Manuel	And an other states	And the state of the state of
Manual de	dia di Ma	and the state	Charles and	in the second second				and the second second second second	
FEXD	and the state of the	of the state of th	and the second second second						
-8-7 A	.0 GH	z		<u></u>	9000	2 pts	3		Stop 18.0 GHz
Start 9	Contraction in such		1		9000	2 pts			Stop 18.0 GHz
Start 9 Spuriou Ran	is Emi ge Lo	issions w	Range Up	1	RBW	Freque		Power Abs	ΔLimit
Start 9 Spuriou Ran	ge La 9.000	ssions w GHz	12.000 GH	the second se	RBW	Freque 11.1	9955 GHz	Power Abs -62.72 dBm	ΔLimit -200.00 dB
Start 9 Spuriou Ran 1	ge La 9.000 2.000	GHz GHz	12.000 GH 15.000 GH	12	RBW 100.000 kHz 100.000 kHz	Freque 11.16 14.90	9955 GHz 1035 GHz	Power Abs -62.72 dBm -60.44 dBm	∆Limit -200.00 dB -200.00 dB
Start 9 Spuriou Ran 1 1	ge La 9.000	GHz GHz	12.000 GH	12	RBW	Freque 11.16 14.90	9955 GHz	Power Abs -62.72 dBm	ΔLimit -200.00 dB
Start 9 Spuriou Ran 1 1 Iarker	ge Lo 9.000 2.000 5.000	GH2 GH2 GH2 GH2	12.000 GH 15.000 GH 18.000 GH	2	RBW 100.000 kHz 100.000 kHz 100.000 kHz	Freque 11.16 14.90 17.64	1955 GHz 1035 GHz 1266 GHz	Power Abs -62.72 dBm -60.44 dBm -57.50 dBm	ALimit -200.00 dB -200.00 dB -200.00 dB
Start 9 Spuriou Ran 1 1 Marker Type	ge Lo 9.000 2.000 5.000	GH2 GH2 GH2 GH2	12.000 GH 15.000 GH 18.000 GH X-value	12	RBW 100.000 kHz 100.000 kHz 100.000 kHz 100.000 kHz Y-value	Freque 11.11 14.91 17.84	1955 GHz 1035 GHz 1266 GHz	Power Abs -62.72 dBm -60.44 dBm	ALimit -200.00 dB -200.00 dB -200.00 dB
Start 9 Spuriou Ran 1 1 Marker	ge Lo 9.000 2.000 5.000	GH2 GH2 GH2 GH2	12.000 GF 15.000 GF 18.000 GF X-value 2.4	2	RBW 100.000 kHz 100.000 kHz 100.000 kHz	Freque 11.11 14.91 17.84	1955 GHz 1035 GHz 1266 GHz	Power Abs -62.72 dBm -60.44 dBm -57.50 dBm	ALimit -200.00 dg -200.00 dg -200.00 dg

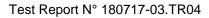
Date: 29.ALG 2018 12.19.55



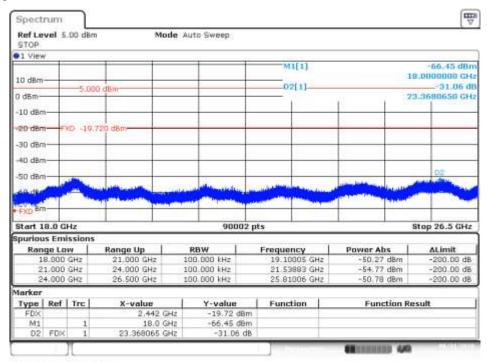
Date 29AUG 2018 12:20:22

MIMO-A, 802.11n40, HT8

Channel 7F - Range 30MHz to 9GHz - Delta Marker Measurement

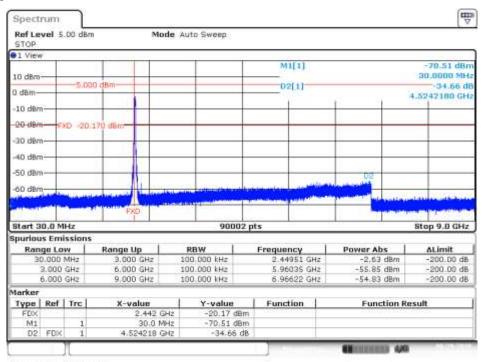


Date: 31.AUG:2018 11:54:03


Channel 7F - Range 9GHz to 18GHz - Delta Marker Measurement

STOP	vel 5	.00 dBm		Mode	Auto Sweep				
1 View	Ý		1955 - 44			φr c s	2011 C		
						M	1[1]		-68.18 dBr 9.0000000 CH
10 dBm	-	E con	0 dBm			0	2[1]		-38.84 d
0 dBm-	-	2,00	D GBM		-		1.41		15.3241580 GH
-10 dBm	2								And search the search of the
	12 - La								
-20 dBm		XD -19.7	720 dBm						
-30 dBn	n		-		_				_
-40 dBm	-						-		
	12 J								
-50 dBn	<u> </u>								
-30 upri	. I.								02
-60 dBn								Course de la cours	D2
-60 dBn		a dia ka		(autor)	the state of the s				D2
-60 dBn		Willia							
-60 dBn FFXD Start 9	.0 GH				9000	12 pts			D2
-60 dBn FFXD	.0 GH	issions			and an				Stop 18.0 GHz
-60 dBn FFXD - Start 9 Spuriou Ran	.0 GH is Emi ge Lo	issions w	Range Up		RBW	Freque	ncy	Power Abs	Stop 18.0 GHz ALimit
-60 dBn FXD H Start 9 Spuriou Ran	.0 GH IS Emi ge Lo 9.000	GH2	12.000 GH		RBW	Freque 11.19	ncy 1845 GHz	-62.93 dBm	Stop 18.0 GHz ALimit -200.00 dB
-60 dBn FXD - Start 9 Spuriou Ran	.0 GH is Emi ge Lo	GHz GHz		2	RBW	Freque 11.19 14.99	ncy	-62.93 dBm -60.14 dBm	Stop 18.0 GHz ALimit
-60 dBn FXD Start 9 Spuriou Ran 1	.0 GH is Emi ge Lo 2.000	GHz GHz	12.000 GH 15.000 GH	2	RBW 100.000 kHz 100.000 kHz	Freque 11.19 14.99	ncy 1845 GHz 1045 GHz	-62.93 dBm	Stop 18.0 GHz <u>ALimit</u> -200.00 dB -200.00 dB
-60 dBn FFXD - Start 9 Spuriou Ran 1 1 Marker	9.000 9.000 2.000 5.000	GH2 GH2 GH2 GH2	12.000 GH 15.000 GH	2	RBW 100.000 kHz 100.000 kHz	Freque 11.19 14.99	ncy 1845 GHz 1045 GHz 106 GHz	-62.93 dBm -60.14 dBm	Stop 18.0 GHz <u>ALimit</u> -200.00 dB -200.00 dB -200.00 dB
-60 dBn FXD	9.000 9.000 2.000 5.000	GHz GHz	12.000 GH 15.000 GH 18.000 GH X-volue	2	RBW 100.000 kHz 100.000 kHz 100.000 kHz 100.000 kHz	Freque 11.10 14.99 17.69	ncy 1845 GHz 1045 GHz 106 GHz	-62.93 dBm -60.14 dBm -58.21 dBm	Stop 18.0 GHz <u>ALimit</u> -200.00 dB -200.00 dB -200.00 dB
-60 dBn FFXD FY Start 9 Spuriou Ran 1 1 Marker Type	9.000 9.000 2.000 5.000	GH2 GH2 GH2 GH2	12.000 GH 15.000 GH 18.000 GH X-value 2.44	2	RBW 100.000 kHz 100.000 kHz 100.000 kHz 100.000 kHz Y-value	Freque 11.10 14.99 17.69 Func	ncy 1845 GHz 1045 GHz 106 GHz	-62.93 dBm -60.14 dBm -58.21 dBm	Stop 18.0 GHz <u>ALimit</u> -200.00 dB -200.00 dB -200.00 dB

Date: 31.AUG2018 11:54:31

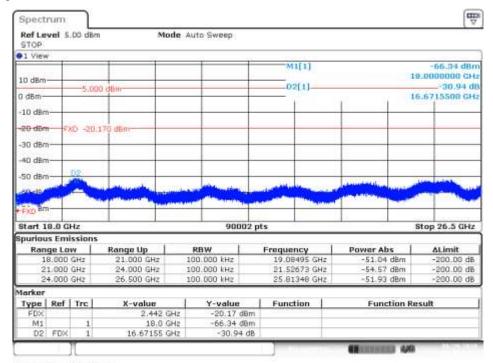


Date: 31.AUG 2018 11:54:59

MIMO-B, 802.11n40, HT8

Channel 7F - Range 30MHz to 9GHz - Delta Marker Measurement

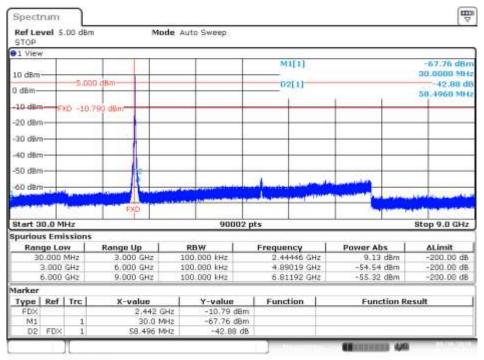
Date 29.AUG 2018 18.44:55


Channel 7F - Range 9GHz to 18GHz - Delta Marker Measurement

STOP	vel 5	.00 dBm	1	Mode	Auto Sweep					
1 View	Ý		1945 - 44		25		2011 C			100000000
10 dBm						-	1[1]		9	-70,91 dBr .0000000 GH
0 dBm-		-5.00	0 dBm			0	2[1]		4.7	-38,15 dl
							10 m 3	1 1		
-10 dBn	n-		-			-		-		
-20 dBm	E FO	XD -20.	170 dBm		_		-			_
-30 dBr		36 - 1899 C	100-000							
23.0.312										
-4D dBm	n				-					
-50 dBr	25 1									
-SU dBu	-					-		1000		
1000								D7	1-24	
-50 dBn		والانتخار	A.C. Destablished in a second	للعدرسه		a logic description	Alia or a life	D2		
100				.			Alia ora alia dan Alia ora alia dan	DZ		
-60 dBn		lz.				12 pts		D2	8	top 18.0 GHz
-60 dBn FFXD Start 9	.0 GH			and the second				D2	8	itop 18.0 GHz
-60 dBn FFXD Start 9 Spuriou Ran	.0 GH is Emi ge Lo	issions w	Range Up	1	9000 RBW	 12 pts Freque		Power Ab	s	ΔLimit
-60 dBn FEXD Start 9 Spuriou Ran	.0 GH IS Emi ge Lo 9.000	GH2	Range Up 12.000 GH	z	9000 RBW 100.000 kHz	12 pts Freque 10.85	205 GHz	Power Ab -63.14	s dBm	ΔLimit -200.00 dB
-60 dBn FEXD Start 9 Spuriou Ran	.0 GH is Emi ge La 2.000	GHz GHz	Range Up 12.000 GH 15.000 GH	2 2	9000 RBW 100.000 kHz 100.000 kHz	12 pts Freque 10.85 14.94	205 GHz 1925 GHz	Power Ab -63.14 -60.35	s dBrn dBrn	ALimit -200.00 dB -200.00 dB
-60 dBn FEXD Start 9 Spuriou Ran	.0 GH IS Emi ge Lo 9.000	GHz GHz	Range Up 12.000 GH	2 2	9000 RBW 100.000 kHz	12 pts Freque 10.85 14.94	205 GHz	Power Ab -63.14	s dBrn dBrn	ΔLimit -200.00 dB
-60 dBn FEXD Start 9 Spuriou Ran 1	9.000 9.000 9.000 9.000 5.000	GH2 GH2 GH2 GH2	Range Up 12.000 GH 15.000 GH	2 2	9000 RBW 100.000 kHz 100.000 kHz	12 pts Freque 10.85 14.94	205 GHz 1925 GHz	Power Ab -63.14 -60.35	s dBrn dBrn	ALimit -200.00 dB -200.00 dB
-60 dBn FXD y Start 9 Spuriou Ran 1 1 Marker Type	9.000 9.000 2.000 5.000	GHz GHz	Range Up 12.000 GH 15.000 GH 18.000 GH X-value	z z z	9000 RBW 100.000 kHz 100.000 kHz 100.000 kHz Y-value	12 pts Freque 10.85 14.94 15.65	205 GHz 1925 GHz 5563 GHz	Power Ab -63.14 -60.35 -58.31	s dBrn dBrn	ALimit -200.00 dB -200.00 dB -200.00 dB
-60 dBn FXD y Start 9 Spuriou Ran 1 Marker	9.000 9.000 2.000 5.000	GH2 GH2 GH2 GH2	Range Up 12.000 GH 15.000 GH 18.000 GH X-value 2.44		9000 RBW 100,000 kHz 100,000 kHz 100,000 kHz	12 pts Freque 10.81 14.94 15.69 Func	205 GHz 1925 GHz 5563 GHz	Power Ab -63.14 -60.35 -58.31	s dBrn dBrn dBrn	ALimit -200.00 dB -200.00 dB -200.00 dB

Date 29.AUG 2018 16.45.22

Channel 7F - Range 18GHz to 26.5GHz - Delta Marker Measurement

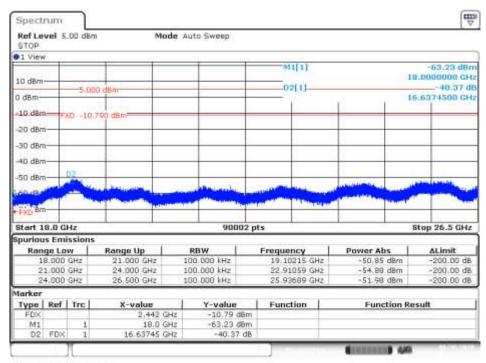


Date 29.AUG 2018 16.45.49

SISO-A, 802.11ax20, HE0

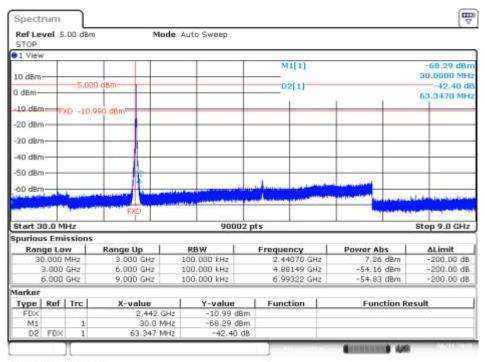
Channel 7 - Range 30MHz to 9GHz - Delta Marker Measurement

Date: 30.AUG:2018 18:09:51


Channel 7 - Range 9GHz to 18GHz - Delta Marker Measurement

STOP	vel 5	.00 dBm		Mode	Auto Sweep				
1 View	6	10	15 D		145	307 J	000000		
10 dBm							M1[1]		-69.63 dBr 9.0000000 GH
		-5.000 a	1Bm		_	-	02[1]		-47.57 d
0 dBm-	-				-		No.	165 17 5	15.1998620 GH
-10 d8n		XD -10.79	d dBm			-	_		
	S. 12	-4417						1 1	
-20 dBn	1								
-30 dBn	i		-			+			
-40 dBm					-	-	-		
-SO dBr							-		
1000								Concernsion of the	02
-60 dBn	0								
		a la constance de la constance	Local Manager		And a state of the second	a lanubaria	And in the second different	-land to be the second	Contraction of the local division of the loc
FFXD				2	ang distances and	the factor of the second	And the second states		
FFXD Start 9	.0 GH	iz iz		-	-	02 pts	000 a 21186 a		Stop 18.0 GHz
Start 9	-	lz issions			-	-			Stop 18.0 GHz
Start 9 Spuriou	-	issions	Range Up		-	-		Power Abs	Stop 18.0 GHz
Start 9 Spuriou Ran	ge La 9.000	issions w GHz	Range Up 12.000 GH		900 RBW 100.000 kHz	02 pts Frequ	Jency 15495 GHz	-62.67 dBm	ΔLimit -200.00 dB
Start 9 Spuriou Ran 1	ge La 9.000 2.000	GHz GHz	Range Up 12.000 GH 15.000 GH	12 12	900 RBW 100.000 kHz 100.000 kHz	02 pts Frequ 11. 14.	iency 15495 GHz 54557 GHz	-62.67 dBm -60.20 dBm	ΔLimit -200.00 dB -200.00 dB
Start 9 Spuriou Ran 1	ge La 9.000	GHz GHz	Range Up 12.000 GH	12 12	900 RBW 100.000 kHz	02 pts Frequ 11. 14.	Jency 15495 GHz	-62.67 dBm	ΔLimit -200.00 dB
Start 9 Spuriou Ran 1 1	ge La 9.000 2.000	GHz GHz	Range Up 12.000 GH 15.000 GH	12 12	900 RBW 100.000 kHz 100.000 kHz	02 pts Frequ 11. 14.	iency 15495 GHz 54557 GHz	-62.67 dBm -60.20 dBm	ΔLimit -200.00 dB -200.00 dB
Start 9 Spuriou Ran 1 1 Marker Type	ge Lo 9.000 2.000 5.000	GHz GHz	Range Up 12.000 GF 15.000 GF 18.000 GF X-value	12 12 12	900 RBW 100.000 kHz 100.000 kHz 100.000 kHz 100.000 kHz	02 pts Frequ 11. 14. 17. Fur	iency 15495 GHz 54557 GHz	-62.67 dBm -60.20 dBm	ΔLimit -200.00 dB -200.00 dB -200.00 dB
Start 9 Spuriou Ran 1 1 Marker	ge Lo 9.000 2.000 5.000	GH2 GH2 GH2 GH2	Range Up 12.000 GH 15.000 GH 18.000 GH X-value 2.4	12 12	900 RBW 100.000 kHz 100.000 kHz 100.000 kHz	02 pts Frequ 11. 14. 17. 18m	iency 15495 GHz 54557 GHz 51067 GHz	-62,67 dBm -60.20 dBm -57,60 dBm	ΔLimit -200.00 dB -200.00 dB -200.00 dB

Date: 30.AUG 2018 18:10:20

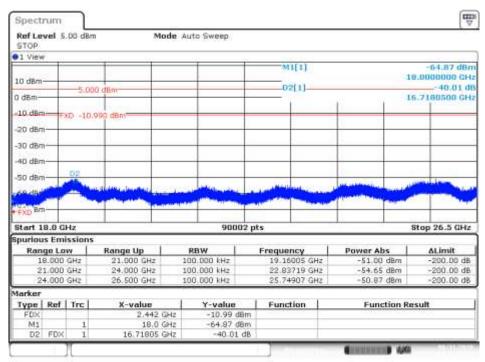


Date: 30.AUG 2018 18:10:47

SISO-B, 802.11ax20, HE0

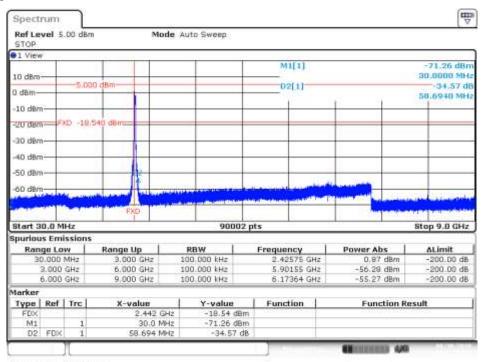
Channel 7 - Range 30MHz to 9GHz - Delta Marker Measurement

Date 31.AUG 2018 15:37:35


Channel 7 - Range 9GHz to 18GHz - Delta Marker Measurement

STOP	/el 5.	.00 dBm	1	Mode A	uto Sweep					
1 View	5 93		1942 - M		14	v. 03	2011 C			111
10 dBm-							1[1]		-69.14 9.0000000	GH
0 dBm-	-	-5.000	dBm		_	0	2[1]		-47.9	
	g _ 11/		1000				16 M	1 1		
-10 dBm	53	C -10.9	90 dBm							
-20 dBm	-		-			-				
-30 dBm	-		-							
23.0.3124										
-40 dBm										
-50 dBm										
-20 000						-		1/2		
-60 dBm								02		
-60 dBm	Jan	e la bit	ميدهسا	بة المعينين		Contrato		02		-
1000	Jan							02		
-60 dBm		C. C. S. C. L.			9000			02	Stop 18.0 (GHZ
-60 dBm FFXD Start 9. Spuriou:	0 GH	z	1		9000	2 pts			- 1	
-60 d8m FFXD op Start 9. Spuriou Rang	.0 GH s Emi ge Lo	z Issions w	Range Up	1	9000 RBW	2 pts Freque	ncy	Power Abs	ΔLimit	
-60 d9m FFXD up Start 9 Spuriou Rang	0 GH s Emi ge Lo	z Issions W GHz	Range Up 12.000 GHz		9000 RBW 00.000 kHz	2 pts Freque 11.16	ncy 825 GHz	Power Abs -62.82 dB	ΔLimit) dB
-60 d9m + FXD up Start 9. Spuriou Rang 0 12	0 GH 5 Emi 19 Lo 2.000	z ssions w GHz GHz	Range Up 12.000 GHz 15.000 GHz		9000 RBW 00.000 kHz 00.000 kHz	2 pts Freque 11.16 14.57	ncy 1825 GHz 7196 GHz	Power Abs -62.82 dB -60.09 dB	ΔLimit) dB
-60 d9m FFXD up Start 9. Spuriou Rang 0 12 15	0 GH s Emi ge Lo	z ssions w GHz GHz	Range Up 12.000 GHz		9000 RBW 00.000 kHz	2 pts Freque 11.16 14.57	ncy 825 GHz	Power Abs -62.82 dB	ΔLimit) dB
-60 d9m FFXD vy Start 9. Spuriou Ranc 6 11 11 Marker	0 GH s Emi ge Lo 2.000 2.000 5.000	z ssions w GHz GHz GHz GHz	Range Up 12.000 GHz 15.000 GHz 18.000 GHz		9000 RBW 00.000 kHz 00.000 kHz 00.000 kHz	2 pts Freque 11.16 14.57 17.66	ncy 825 GHz 7196 GHz 5966 GHz	Power Abs -62.82 db -60.09 db -56.33 db	ΔLimit Im -200.00 Im -200.00 Im -200.00) dB
-60 dBm FFXD 49 Start 9. Spuriou: Rang 0 12 15 Marker Type	0 GH 5 Emi 19 L0 2.000	z ssions w GHz GHz GHz GHz	Range Up 12.000 GHz 15.000 GHz 18.000 GHz X-value		9000 RBW 00.000 kHz 00.000 kHz 00.000 kHz Y-value	2 pts Freque 11.16 14.57 17.66	ncy 825 GHz 7196 GHz 5966 GHz	Power Abs -62.82 db -60.09 db -56.33 db	ΔLimit) dB
-60 d9m FFXD vy Start 9. Spuriou Rang 0 11 11 Marker	0 GH s Emi ge Lo 2.000 2.000	z ssions w GHz GHz GHz GHz	Range Up 12.000 GHz 15.000 GHz 18.000 GHz X-value 2.440		9000 RBW 00.000 kHz 00.000 kHz 00.000 kHz	2 pts Freque 11.15 14.57 17.66 Func	ncy 825 GHz 7196 GHz 5966 GHz	Power Abs -62.82 db -60.09 db -56.33 db	ΔLimit Im -200.00 Im -200.00 Im -200.00) dB

Date: 31.ALG2018 15:38:04

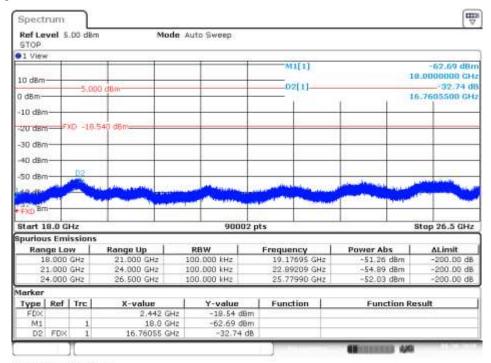


Date 31.AUG 2018 15:38:33

SISO-A, 802.11ax40, HE0

Channel 7F - Range 30MHz to 9GHz - Delta Marker Measurement

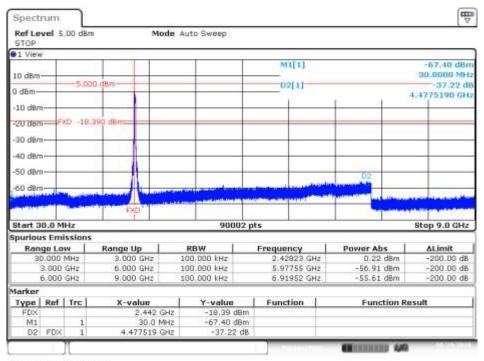
Date 30.AUG 2018 1638.27


Channel 7F - Range 9GHz to 18GHz - Delta Marker Measurement

STOP	vel 5	.00 dBm	,	Mode AL	ito Sweep				
1 View	9 p.		1945 - 144 1945 - 144			16 - S			11000-0000
						M	1[1]		-79.21 dB
10 dBm	-	- E 00/) dBm				2[1]		-40.30
0 dBm-	-	21000	2 OBM		-			25 17	15.5071520 G
-10 dBn					-			19	
	17	in tes	i40 d8m		-				
-20 dBn		ND -10-5							
-30 dBn	n i i		-		-		-	-	
-40 dBn	n		-		-				
-SO dBr									
-30 000									
-60 dBn	n	-				apara antikan bar	alifi Lakarbali	- Sum entress of the	Concerned Street
-60 dBn FFXD					-	ajoo alla suba			
-60 dBn FFXD Start 9		z			9000				Stop 18.0 GH
FFXD Start 9	.0 GH	iz Issions							Stop 18.0 GH
FFXD Start 9 Spuriou Ran	.0 GH IS Emi ge Lo	issions w	Range Up		9000 RBW	2 pts Freque		Power Abs	∆Limit
FFXD Start 9 Spuriou Ran	.0 GH IS Emi ge Lo 9.000	GHz	12.000 GHz		9000 RBW 10.000 kHz	2 pts Freque 11.80	495 GHz	-63.08 dBr	ΔLimit m -200.00 d
Start 9 Start 9 Spuriou Ran	.0 GH is Emi ge Lo 9.000 2.000	GHz GHz	12.000 GHz 15.000 GHz	10	9000 RBW 10.000 kHz 10.000 kHz	2 pts Freque 11.80 14.61	266 GHz	-63.08 dBr -60.84 dBr	ΔLimit m -200.00 d m -200.00 d
FFXD Start 9 Spuriou Ran	.0 GH IS Emi ge Lo 9.000	GHz GHz	12.000 GHz	10	9000 RBW 10.000 kHz	2 pts Freque 11.80 14.61	495 GHz	-63.08 dBr	ΔLimit m -200.00 d m -200.00 d
FFXD Start 9 Spuriou Ran 1	.0 GH is Emi ge Lo 2.000 5.000	GH2 GH2 GH2 GH2	12.000 GHz 15.000 GHz 18.000 GHz	10	9000: RBW 00.000 kHz 00.000 kHz 00.000 kHz	2 pts Freque 11.80 14.61 17.75	0495 GHz 1266 GHz 1866 GHz	-63.08 dBr -60.84 dBr -57.74 dBr	ΔLimit m -200.00 d m -200.00 d m -200.00 d
Start 9 Start 9 Spuriou Ran 1 1 Marker Type	.0 GH is Emi ge Lo 9.000 2.000 5.000	GH2 GH2 GH2 GH2	12.000 GHz 15.000 GHz 18.000 GHz X-value		9000 RBW 10.000 kHz 10.000 kHz 10.000 kHz 10.000 kHz Y-value	2 pts Freque 11.80 14.61 17.79	0495 GHz 1266 GHz 1866 GHz	-63.08 dBr -60.84 dBr -57.74 dBr	ΔLimit m -200.00 d m -200.00 d
FFXD Start 9 Spuriou Ran 1 1 Marker	.0 GH is Emi ge Lo 2.000 5.000	GH2 GH2 GH2 GH2	12.000 GHz 15.000 GHz 18.000 GHz X-value 2.440		9000: RBW 00.000 kHz 00.000 kHz 00.000 kHz	2 pts Freque 11.80 14.61 17.75 Func	0495 GHz 1266 GHz 1866 GHz	-63.08 dBr -60.84 dBr -57.74 dBr	ΔLimit m -200.00 d m -200.00 d m -200.00 d

Date: 30.AUG:2018 16:38:54

Channel 7F - Range 18GHz to 26.5GHz - Delta Marker Measurement

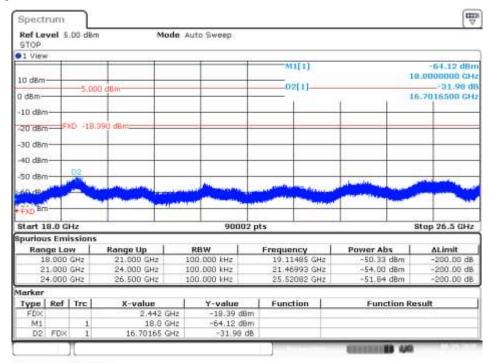


Date 30.AUG 2018 18:39:22

SISO-B, 802.11ax40, HE0

Channel 7F - Range 30MHz to 9GHz - Delta Marker Measurement

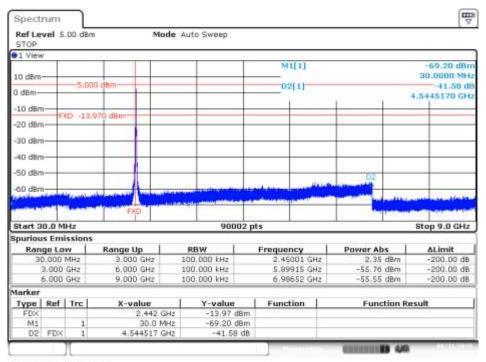
Date 29.AUG 2018 10.49.50


Channel 7F - Range 9GHz to 18GHz - Delta Marker Measurement

STOP	ver 5.	.00 dBm		mode	Auto Sweep					
1 View	6 - 62		40	4	-	φ. <u>6</u>	a			100001000
						M	1[1]			-70.25 dBr 2.0000000 CH
10 dBm		-5.000	attle			0	2[1]			-40.29 d
0 dBm-	-	2,000	dem		-		-1-1	20 0	12	3.5837160 GH
-10 dBn	2			-		-		1		
	1	D -18.3	a/) dbm							
-20 dBn			Ju dona							
-30 dBn	i-		-	-	-		-	-		-
-4D dBn			-	-	-		-	-		-
-50 dBn	2					-	-	1		
-30 000										
1000 100								02	1.000	100000000
-60 dBn							Actual Contraction	20	Change of the	
-60 dBn								02	Contraction of the	
- Badit		ili a church Inn ann an Z			-	12 pts		02		Stop 18.0 GHz
FRD Start 9	.0 GH				-	12 pts		02	5	Stop 18.0 GHz
FXD Start 9 Spuriou Ran	.0 GH is Emi ge Lo	ssions w	Range Up		9000 RBW	Freque	ncy	Power At	os	ALimit
FFXD Start 9 Spuriou Ran	.0 GH IS Emi ge Lo 9.000	ssions w GHz	12.000 G		9000 RBW 100.000 kHz	Freque 10.68	ncy 1285 GHz	Power Ab -63.18	dBrn	ΔLimit -200.00 dB
FXD Start 9 Spuriou Ran	.0 GH is Emi ge Lo 9.000 2.000	GHz GHz	12.000 G	42	9000 RBW 100.000 kHz 100.000 kHz	Freque 10.65 14.65	ncy 1285 GHz 1806 GHz	Power At -63.18 -60.51	dBrn dBrn dBrn	ALimit -200.00 dB -200.00 dB
Start 9 Spuriou Ran 1	.0 GH IS Emi ge Lo 9.000	GHz GHz	12.000 G	42	9000 RBW 100.000 kHz	Freque 10.65 14.65	ncy 1285 GHz	Power Ab -63.18	dBrn dBrn dBrn	ΔLimit -200.00 dB
FPXD Start 9 Spuriou Ran 1	.0 GH is Emi ge Lo 9.000 2.000 5.000	GH2 GH2 GH2 GH2	12.000 G 15.000 G 18.000 G	42	9000 RBW 100,000 kHz 100,000 kHz 100,000 kHz	Freque 10.66 14.65 16.35	ncy 1285 GHz 1806 GHz 5320 GHz	Power Ab -63,18 -60,51 -58,58	dBrn dBrn dBrn dBrn	ΔLimit -200.00 dB -200.00 dB -200.00 dB
FXD Start 9 Spuriou Ran 1 1 Marker Type	.0 GH Is Emi 9.000 2.000 5.000	GH2 GH2 GH2 GH2	12.000 G 15.000 G 18.000 G X-valu	42 42	9000 RBW 100.000 kHz 100.000 kHz 100.000 kHz 100.000 kHz Y-value	Freque 10.65 14.65 16.35	ncy 1285 GHz 1806 GHz 5320 GHz	Power Ab -63,18 -60,51 -58,58	dBrn dBrn dBrn	ΔLimit -200.00 dB -200.00 dB -200.00 dB
FEXD A Start 9 Spuriou Ran 1 1 Marker	.0 GH Is Emi 9.000 2.000 5.000	GH2 GH2 GH2 GH2	12.000 G 15.000 G 18.000 G X-valu 2.4	42	9000 RBW 100,000 kHz 100,000 kHz 100,000 kHz	Freque 10.66 14.65 16.35 Func 8m	ncy 1285 GHz 1806 GHz 5320 GHz	Power Ab -63,18 -60,51 -58,58	dBrn dBrn dBrn dBrn	ΔLimit -200.00 dB -200.00 dB -200.00 dB

Date: 29.AUG 2018 10:50.16

Channel 7F - Range 18GHz to 26.5GHz - Delta Marker Measurement

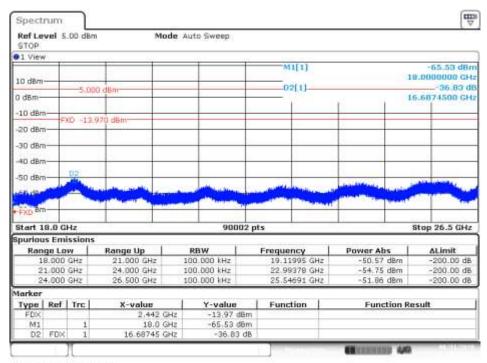


Date 29.AUG 2018 10:50.42

MIMO-A, 802.11ax20, HE0

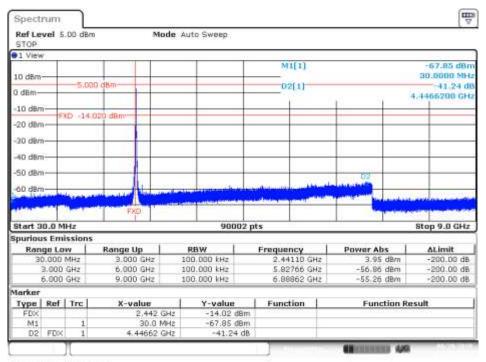
Channel 7 - Range 30MHz to 9GHz - Delta Marker Measurement

Date: 31.AUG:2018 11:04:26


Channel 7 - Range 9GHz to 18GHz - Delta Marker Measurement

STOP	rel 5.	.00 dBm		Mode	Auto Sweep					
1 View	99		1945 - 4	4	142	PC 504000				
10 dBm-						MI[]			9.000	10000 GH
0 dBm-	-	-5.000) dBm			02[1	0			-44.90 d 14600 GH
	-					1		1 I	Lo.e.bu	rendu dri
-10 dBm	(1)	0.110	70 dBm		_					
-20 dBm					-					
-30 dBm						· · · · ·				
23.0.31%										
-#D dBm			-	-	_					
-S0 dBm	-		-			-		-	-	7750
				_	-					D2
-50 dBm -60 dBm		the state of	a long days	نع الارواب		and the second second second	a chairm a		ation and	D2,
-60 dBm		in illus		10.00						02
						2 pts			Stop	02, 18.0 GHz
-60 dBm H II II FRD II Start 9.	8 GH	z							Stop	
-60 dBm H m m FFXD Start 9. Spurious Rang	0 GH s Emi ge Lo	z Issions w	Range Up		9000 RBW	2 pts Frequence	y 1	Power Abs	1 4	18.0 GHz Limit
-60 dBm H w H FXD Start 9. Spurious Rang 9	0 GH s Emi ge Lo	z Issions W	Range Up	+z	9000 RBW 100.000 kHz	2 pts Frequence 11.2032	y S GHz	-62.96 dBr	m -3	18.0 GHz Limit 200.00 dB
-60 dBm FXD Start 9. Spurious Rang G 12	0 GH s Emi pe Lo 2.000	z Issions W GHz GHz	Range Up 12.000 GH 15.000 GH	12 12	9000 RBW 100.000 kHz 100.000 kHz	2 pts Frequenc: 11.2032 14.0662	y S GHz B GHz	-62.96 dBr -60.45 dBr	m -3 m -3	18.0 GHz Limit 200.00 dB 200.00 dB
-60 dBm FXD Start 9. Spurious Rang G 12	0 GH s Emi ge Lo	z Issions W GHz GHz	Range Up	12 12	9000 RBW 100.000 kHz	2 pts Frequence 11.2032	y S GHz B GHz	-62.96 dBr	m -3 m -3	18.0 GHz Limit 200.00 dB
-60 dBm HFXD Start 9. Spuriou Rang 0 12 15 Marker	0 GH s Emi e Lo .000 .000	z Issions W GHz GHz GHz GHz	Range Up 12.000 Gł 15.000 Gł 18.000 Gł	1 1 12 12 12	9000 RBW 100.000 kHz 100.000 kHz 100.000 kHz	2 pts Frequenc: 11.2032 14.0662 17.8073	y S GHZ B GHZ 6 GHZ	-62.96 dBr -60.45 dBr -58.07 dBr	m -3 m -3 m -3	18.0 GHz Limit 200.00 dB 200.00 dB
-60 dBm H ar of FEXD Start 9. Spurious Ranc 6 12 15 Marker Type	0 GH s Emi pe Lo 2.000	z Issions W GHz GHz GHz GHz	Range Up 12.000 GH 15.000 GH 18.000 GH 18.000 GH	+z +z +z	9000 RBW 100.000 kHz 100.000 kHz 100.000 kHz 100.000 kHz	2 pts Frequenc: 11.2032 14.0662 17.8073 Functio	y S GHZ B GHZ 6 GHZ	-62.96 dBr -60.45 dBr -58.07 dBr	m -3 m -3	18.0 GHz Limit 200.00 dB 200.00 dB
-60 dBm FFXD J Start 9. Start	0 GH s Emi e Lo .000 .000	z Issions W GHz GHz GHz GHz	Range Up 12.000 G/ 15.000 G/ 18.000 G/ X-volun 2.4	1 1 12 12 12	9000 RBW 100.000 kHz 100.000 kHz 100.000 kHz	2 pts Frequenc: 11,2032 14,0662 17,8073 Functio	y S GHZ B GHZ 6 GHZ	-62.96 dBr -60.45 dBr -58.07 dBr	m -3 m -3 m -3	18.0 GHz Limit 200.00 dB 200.00 dB

Date: 31.AUG2018 11:04:53

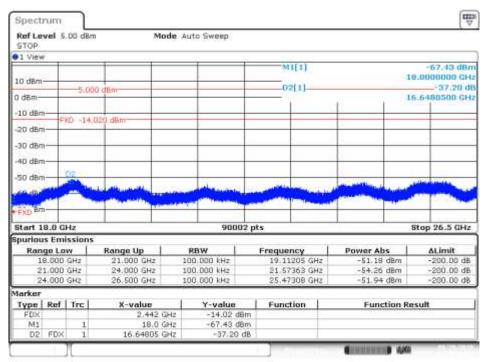


Date 31.AUG 2018 11:05:21

MIMO-B, 802.11ax20, HE0

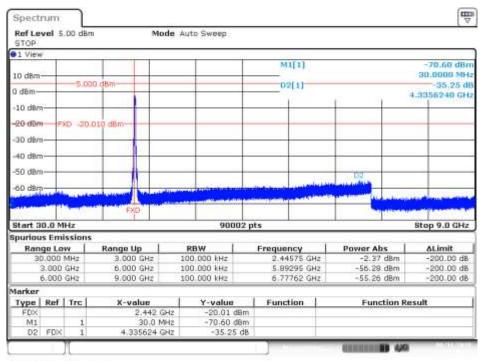
Channel 7 - Range 30MHz to 9GHz - Delta Marker Measurement

Date 29.AUG 2018 14:49.26


Channel 7 - Range 9GHz to 18GHz - Delta Marker Measurement

STOP	vel 5.	00 dBm		Mode A	uto Sweep					
1 View	έ, _{es}		645 - 14		145	97 C N	aver v			0.000000000
10 dBm						-	1[1]		9	-68.77 dBr
0 dBm-		-5.000	dBm			0	2[1]		13	- 44.90 d
-10 d8m	3 1 2							1 1	- A.	and the second second
-10 080	FX	0 -14.03	20 dBm							_
-20 dBn	n i							-		
-30 dBr	n		-					-		
-40 dBm										
	<u>19. – 1</u> . –									
-SO dBr	n							02		
-60 dBm	n					-		100		100 C 100 C
				1.1.1	and the state of the	100 C 100 C 100	States of the local division of the local di		and the second	
FEXD				and sharesh						
	.0 GH			ang darink magazir ma	9000	2 pts			s	top 18.0 GHz
Start 9	the state of the s	z		and the second	9000	12 pts			s	top 18.0 GHz
Start 9 Spuriou Ran	is Emi ge Lo	z ssions w	Range Up		RBW	Freque		Power Abs	- 1	ΔLimit
Start 9 Spuriou Ran	ge Lo 9.000	z ssions w GHz	Range Up 12.000 GH:	z 1	RBW 00.000 kHz	Freque	935 GHz	-62.62 c	s JBrn	ΔLimit -200.00 dB
Start 9 Spuriou Ran 1	ge Lo 9.000 2.000	z ssions w GHz GHz	Range Up 12.000 GH 15.000 GH	2 1 2 1	RBW 00.000 kHz 00.000 kHz	Freque 11.68 14.99	935 GHz 245 GHz	-62,62 c -60,46 c	i JBrn JBrn	ALimit -200.00 dB -200.00 dB
Start 9 Spuriou Ran 1	ge Lo 9.000	z ssions w GHz GHz	Range Up 12.000 GH:	2 1 2 1	RBW 00.000 kHz	Freque 11.68 14.99	935 GHz	-62.62 c	i JBrn JBrn	ΔLimit -200.00 dB
Start 9 Spuriou Ran 1 1 Marker	ge Lo 9.000 2.000 5.000	z ssions w GHz GHz GHz GHz	Range Up 12.000 GH 15.000 GH 18.000 GH	z 1 z 1 z 1	RBW 00.000 kHz 00.000 kHz 00.000 kHz 00.000 kHz	Freque 11.68 14.99 17.84	1935 GHz 1246 GHz 1506 GHz	-62,62 c -60,46 c -58,44 c	i JBrn JBrn JBrn	ALimit -200.00 dB -200.00 dB -200.00 dB
Start 9 Spuriou Ran 1 1 Marker Type	ge Lo 9.000 2.000 5.000	z ssions w GHz GHz GHz GHz	Range Up 12.000 GH 15.000 GH 18.000 GH X-value		RBW 00.000 kHz 00.0000 kHz 00.000 kHz 00.0000 kHz 00.000 kHz 00.00	Freque 11.66 14.99 17.84	1935 GHz 1246 GHz 1506 GHz	-62,62 c -60,46 c -58,44 c	i JBrn JBrn	ALimit -200.00 dB -200.00 dB -200.00 dB
Start 9 Spuriou Ran 1 1 Marker	ge Lo 9.000 2.000 5.000	z ssions w GHz GHz GHz GHz	Range Up 12.000 GH: 15.000 GH: 18.000 GH: X-value 2.44	z 1 z 1 z 1	RBW 00.000 kHz 00.000 kHz 00.000 kHz 00.000 kHz	Freque 11.66 14.99 17.84 Func	1935 GHz 1246 GHz 1506 GHz	-62,62 c -60,46 c -58,44 c	i JBrn JBrn JBrn	ALimit -200.00 dB -200.00 dB -200.00 dB

Date: 29.AUG 2018 14:49:53

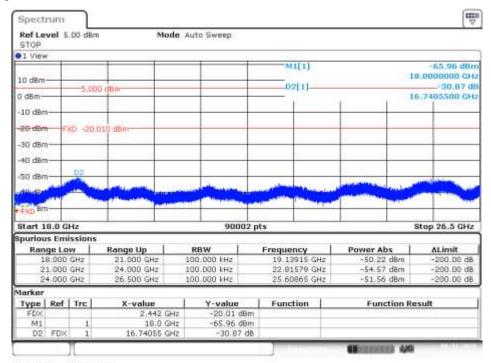


Date 29AUG 2018 1450 19

MIMO-A, 802.11ax40, HE0

Channel 7F - Range 30MHz to 9GHz - Delta Marker Measurement

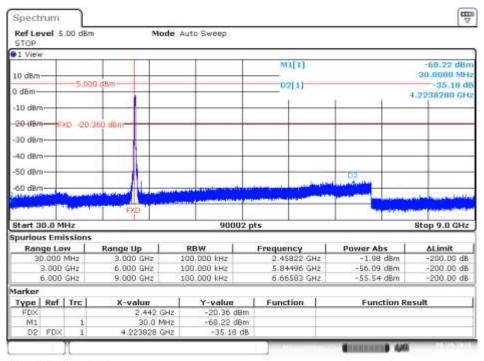
Date: 31.AUG 2018 14 13 10


Channel 7F - Range 9GHz to 18GHz - Delta Marker Measurement

STOP	vel 5	.00 dBm		Mode A	uto Sweep					
1 View	6 10		1925 - 44		145		and the second			11000001000
10 dBm						-	1[1]		5	-70.17 dBr 2.0000000 GH
0 dBm-	-	-5.000) dBm			0	2[1]			-38.01 d
8.12N							10 m 3	1	1	-+30+210 GH
-10 dBn	1		-					-	-	-
-20 dBn	5)	KD -20.0	10 dBm		_					_
-30 dBn	-	in tosse	a de altre en la					-		
-40 dBm										
-SO dBr	1		-		-		-	1000	-	-
-60 dBn										
-00 080		1 2011		1000.045			and the second second	D2	A REAL	- House Street in
the last	-		المقررون المحالية أين	li la martina A	and a designed	a Live Production		DZ		
FEXD					-	[Pressiver		D2		
the last		z		ik (osterni) nappine se	-	12 pts		DZ	5	Stop 18.0 GHz
FFXD Start 9 Spuriou	.0 GH	ssions			900	12 pts				
FFXD Start 9 Spuriou Ran	.0 GH is Emi ge Lo	ssions w	Range Up	1	9000 RBW	12 pts Freque	ncy	Power Al	bs	ΔLimit
FFXD Start 9 Spuriou Ran	.0 GH IS Emi ge Lo 9.000	SSIONS W GHz	Range Up	. 1	9000 RBW 00.000 kHz	12 pts Freque 11.59	ncy 1845 GHz	Power Al -62.79	bs) dBm	ΔLimit -200.00 dB
FFXD Start 9 Spuriou Ran	.0 GH is Emi ge Lo 9.000 2.000	GHz GHz	Range Up 12.000 GHz 15.000 GHz		9000 RBW 00.000 kHz 00.000 kHz	12 pts Freque 11.59 14.55	ncy 1845 GHz 5006 GHz	Power Al -62.79 -60.43	bs) dBrn) dBrn	ALimit -200.00 dB -200.00 dB
FFXD Start 9 Spuriou Ran	.0 GH IS Emi ge Lo 9.000	GHz GHz	Range Up		9000 RBW 00.000 kHz	12 pts Freque 11.59 14.55	ncy 1845 GHz	Power Al -62.79	bs) dBrn) dBrn	ΔLimit -200.00 dB
Start 9 Spuriou Ran 1 1 Marker	.0 GH is Emi ge Lo 9.000 2.000 5.000	GH2 GH2 GH2 GH2	Range Up 12.000 GHz 15.000 GHz 18.000 GHz		9000 RBW 00000 kHz 00.000 kHz 00.000 kHz	Freque 11.59 14.55 17.72	ncy 1845 GHz 5006 GHz 2196 GHz	Power Al -62.79 -60.43 -57.66	bs 9 dBm 3 dBm 9 dBm	ΔLimit -200.00 dB -200.00 dB -200.00 dB
FXD Start 9 Spuriou Ran 1 1 Marker Type	.0 GH is Emi ge Lo 9.000 2.000 5.000	GH2 GH2 GH2 GH2	Range Up 12.000 GHz 15.000 GHz 18.000 GHz X-value		9000 RBW 00.000 kHz 00.000 kHz 00.000 kHz V-value	12 pts Freque 11.59 14.55 17.72	ncy 1845 GHz 5006 GHz 2196 GHz	Power Al -62.79 -60.43 -57.66	bs) dBrn) dBrn	ΔLimit -200.00 dB -200.00 dB -200.00 dB
Start 9 Spuriou Ran 1 Marker	.0 GH is Emi ge Lo 9.000 2.000 5.000	GH2 GH2 GH2 GH2	Range Up 12.000 GHz 15.000 GHz 18.000 GHz X-value 2.44		9000 RBW 00000 kHz 00.000 kHz 00.000 kHz	12 pts Freque 11.59 14.59 17.72	ncy 1845 GHz 5006 GHz 2196 GHz	Power Al -62.79 -60.43 -57.66	bs 9 dBm 3 dBm 9 dBm	ΔLimit -200.00 dB -200.00 dB -200.00 dB

Date: 31.AUG 2018 14 13 38

Channel 7F - Range 18GHz to 26.5GHz - Delta Marker Measurement

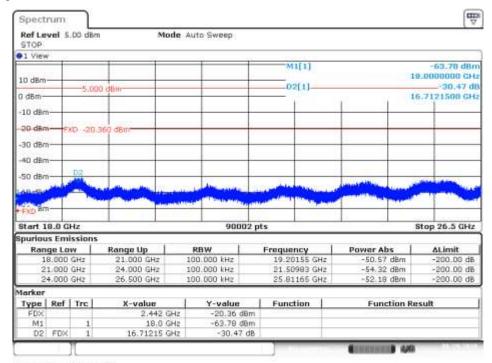


Date: 31.AUG 2018 14 14 05

MIMO-B, 802.11ax40, HE0

Channel 7F - Range 30MHz to 9GHz - Delta Marker Measurement

Date 29.AUG 2018 15:53:39


Channel 7F - Range 9GHz to 18GHz - Delta Marker Measurement

STOP	1 5.00 dB	m i	Mode A	uto Sweep					
1 View	93 93	1947 - 44		10 IV	(<u>S</u>	an a cru			-0.000 1.00
10 dBm						1[1]			-67.57 dBi 000000 GH
0 dBm-	5.00	00 dBm			0;	2[1]		10.00	
£11201						1	1 1	15.0	r+rnou Gr
-10 dBm-	-			-			-		+
-00 dBm-	EXD -20	.360 d8m		-			-		
							10		
-30 dBm-									
-40 dBm-	-	-		-		-	-		
	1.								
-50 dBm-	-			-		-	-		C
						1-1-1-1			02
-50 dBm-		No. No. of Lot.	- Lallande	19 Minter of July Mark	Land Block			a di super	02
								-	02
-60 dBm-	GHz			90002				Sto	02 p 18.0 GHz
-60 dBm FXD Start 9.0								Sto	
-60 dBm FXD Start 9.0	Emission						Power Abs	Sto	
-60 dBm- FXD Start 9.0 Spurious I Range 9.0	Emission Low	s Range Up 12.000 GHz	- 10	90002 88W 00.000 kHz	t pts Freque	ncy 205 GHz	-62.80 dB	m	p 18.0 GHz ALimit -200.00 dB
-60 dBm- FXD First Start 9.0 Range 9.0 12.0	Emission Low	s Range Up 12.000 GHz 15.000 GHz		90002 RBW 00.000 kHz 00.000 kHz	t pts Freque 11.17 14.54	ncy 205 GHz 1597 GHz	-62.80 dB -59.17 dB	rn m	p 18.0 GHz ALimit -200.00 dB -200.00 dB
-60 dBm- FXD First Start 9.0 Range 9.0 12.0	Emission Low	s Range Up 12.000 GHz		90002 88W 00.000 kHz	t pts Freque 11.17 14.54	ncy 205 GHz	-62.80 dB	rn m	p 18.0 GHz ALimit -200.00 dB
-60 dBm- FXD Start 9.0 Spurious I Range 9.0 12.0 15.0	Emission Low	s Range Up 12.000 GHz 15.000 GHz		90002 RBW 00.000 kHz 00.000 kHz	t pts Freque 11.17 14.54	ncy 205 GHz 1597 GHz	-62.80 dB -59.17 dB	rn m	p 18.0 GHz ALimit -200.00 dB -200.00 dB
-60 dBm FXD Start 9.0 Spurious 1 Range 9.0 12.0 15.0 Marker Type R	Emission Low	s Range Up 12:000 GHz 15:000 GHz 18:000 GHz X-value		90002 RBW 00.000 kHz 00.000 kHz 00.000 kHz 7-value	pts Freque 11.17 14.54 16.13	ncy 1205 GHz 1597 GHz 1281 GHz	-62.80 dB -59.17 dB	m m m	P 18.0 GHz ALimit -200.00 dB -200.00 dB -200.00 dB
-60 dBm- FXD Fair Start 9.0 Spurious I Range 9.0 12.0 15.0 Marker	Emission: Low 100 GHz 100 GHz 100 GHz	Range Up 12.000 GHz 15.000 GHz 18.000 GHz 18.000 GHz X-value 2.44		90002 RBW 20,000 kHz 30,000 kHz 30,000 kHz	Preque 11.17 14.54 16.13	ncy 1205 GHz 1597 GHz 1281 GHz	-62.80 dB -59.17 dB -58.68 dB	m m m	P 18.0 GHz ALimit -200.00 dB -200.00 dB -200.00 dB
-60 dBm +FXD Start 9.0 Spurious 1 Range 9.0 12.0 15.0 Marker Type R	Emission: Low 100 GHz 100 GHz 100 GHz	s Range Up 12:000 GHz 15:000 GHz 18:000 GHz X-value		90002 RBW 00.000 kHz 00.000 kHz 00.000 kHz 7-value	pts Freque 11.17 14.54 16.13	ncy 1205 GHz 1597 GHz 1281 GHz	-62.80 dB -59.17 dB -58.68 dB	m m m	ΔLimi -200.0 -200.0

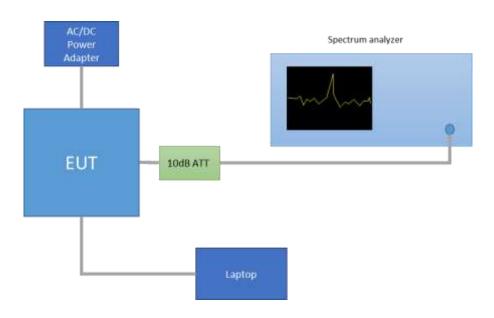
Date: 29.AUG 2018 15:54:05

Channel 7F - Range 18GHz to 26.5GHz - Delta Marker Measurement

Date 29.AUG 2018 15:54:31

Annex C. Test Results BLE

C.1 Test Results BLE


C.1.1 6dB & 99% Bandwidth

Test limits

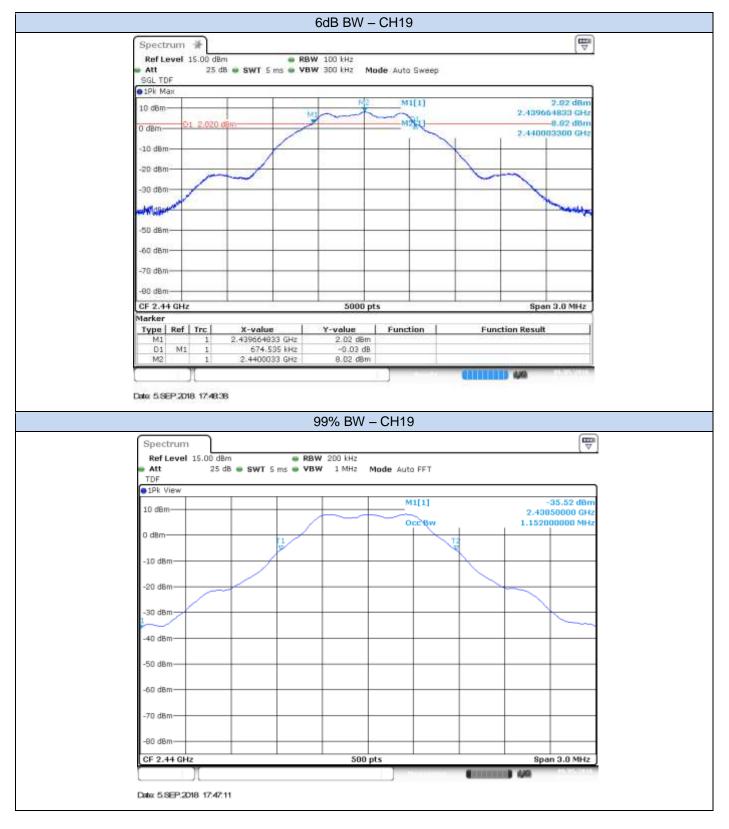
FCC part	RSS part	Limits
15.247 (a) (2)	RSS-247 Clause 5.2 (a)	Systems using digital modulation techniques may operate in the 902-928 MHz, 2400-2483.5 MHz, and 5725-5850 MHz bands. The minimum 6 dB bandwidth shall be at least 500 kHz.

Test procedure

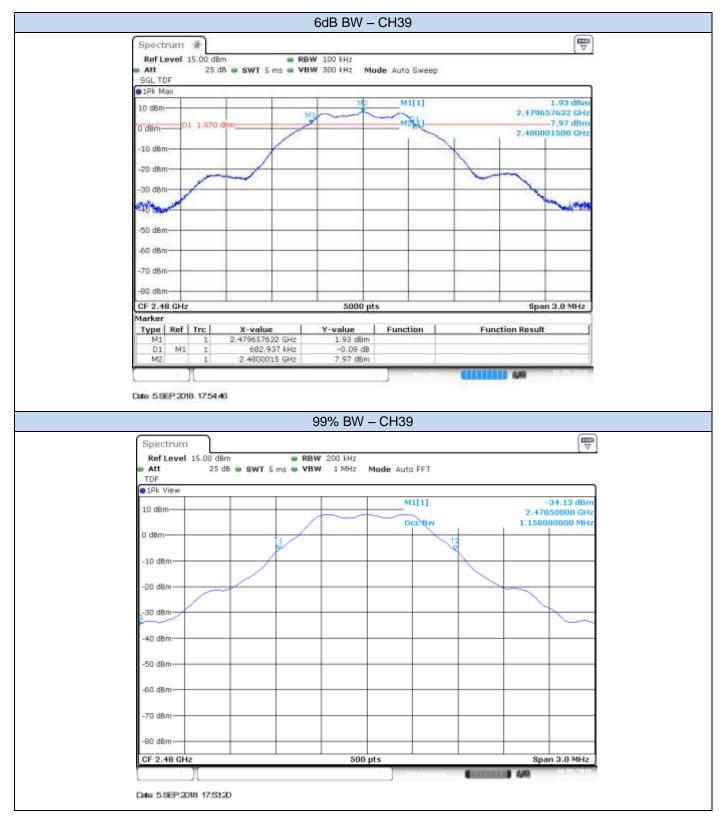
The setup below was used to measure the 6dB & 99% Bandwidth. The antenna terminal of the EUT is connected to the spectrum through an attenuator, and the spectrum analyzer reading is compensated to include the RF path loss.

Results tables

Mode	Channel	Frequency [MHz]	6dB BW [MHz]	99% BW [MHz]
	0	2402	0.67	1.16
BLE	19	2440	0.67	1.15
	39	2480	0.68	1.16


Results screenshot

BLE

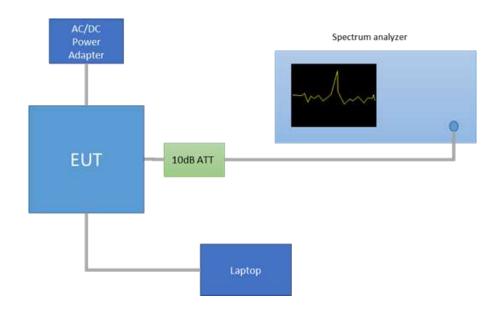

			6dB BW –	0110			
Spectrum	¥						▼
Ref Level 19	5.00 dBm		100 kHz				1.4
Att			7 300 kHz Mod	le Auto Sweep			
SGL TDF 1Pk Max							
10 dBm			Ma	M1[1]			1.08 dBm
	1.020	MB	h	MACHI			3633 GHz 7.27 d8m
0 dBm 01	1,270 dem	/		-	ai a		2100 GHz
-10 dBm							
-20 dBm		1	-				
2005-2000 P	1	S				~	
-30 dBm						V	
10-00 de 10-00-00-00-00-00-00-00-00-00-00-00-00-0					-		The seal of the se
-50 dBm							
the second second							
-60 dBm							
-70 dBm					-		
-80 dBm							
CF 2.402 GHz	_		5000 pts		1. 1	Snap	3.0 MHz
Marker			5000 pts			apan	and milling
Type Ref		alue	Y-value	Function	Functi	ion Result	
M1 D1 M1	1 6	63633 GHz 71.534 kHz	1.09 d9m 0.11 d8		11 Con 1997 199		
M2		20021 GHz	7.27 dBm			_	
					CINICIPAL	4,40	
Date 5.5EP.2018	173829		00% B\M	СНО			
	173829	9	99% BW –	СН0			Ē
Spectrum				СН0			Ţ
Spectrum Ref Level 1 • Att	5.00 dBm	e RBW	99% BW				(⊞ ⊽
Spectrum Ref Level 1 • Att TDF	5.00 dBm	e RBW	✔ 200 kHz				(III)
Spectrum Ref Level 1 • Att TDF • 1Pk View	5.00 dBm	e RBW	✔ 200 kHz	de Auto FFT			
Spectrum Ref Level 1 • Att TDF	5.00 dBm	e RBW	✔ 200 kHz	de Auto FFT M1[1]		2.4020	7.28 dBm 2100 GHz
Spectrum Ref Level 1 Att TDF IPk View 10 dBm	5.00 dBm	e RBW	✔ 200 kHz	de Auto FFT		2.4020	7.28 dBm
Spectrum Ref Level 1 • Att TDF • 1Pk View	5.00 dBm	e RBW	✔ 200 kHz	de Auto FFT M1[1]		2.4020	7.28 dBm 2100 GHz
Spectrum Ref Level 1 Att TDF IPk View 10 dBm	5.00 dBm	e RBW	✔ 200 kHz	de Auto FFT M1[1]		2.4020	7.28 dBm 2100 GHz
Spectrum Ref Level 1 Att TDF 1Pk View 10 dBm -10 dBm	5.00 dBm	e RBW	✔ 200 kHz	de Auto FFT M1[1]		2.4020	7.28 dBm 2100 GHz
Spectrum Ref Level 1 Att TDF 1Pk View 10 dBm 0 dBm	5.00 dBm	e RBW	✔ 200 kHz	de Auto FFT M1[1]		2.4020	7.28 dBm 2100 GHz
Spectrum Ref Level 1 Att TDF 1Pk View 10 dBm -10 dBm -20 dBm	5.00 dBm	e RBW	✔ 200 kHz	de Auto FFT M1[1]		2.4020	7.28 dBm 2100 GHz
Spectrum Ref Level 1 Att TDF 1Pk View 10 dBm -10 dBm	5.00 dBm	e RBW	✔ 200 kHz	de Auto FFT M1[1]		2.4020	7.28 dBm 2100 GHz
Spectrum Ref Level 1 Att TDF 1Pk View 10 dBm -10 dBm -20 dBm	5.00 dBm	e RBW	✔ 200 kHz	de Auto FFT M1[1]		2.4020	7.28 dBm 2100 GHz
Spectrum Ref Level 1 Att TDF 1Pk View 10 dBm -10 dBm -20 dBm -30 dBm -40 dBm	5.00 dBm	e RBW	✔ 200 kHz	de Auto FFT M1[1]		2.4020	7.28 dBm 2100 GHz
Spectrum Ref Level 1 Att TDF 1Pk View 10 dBm -10 dBm -20 dBm -30 dBm	5.00 dBm	e RBW	✔ 200 kHz	de Auto FFT M1[1]		2.4020	7.28 dBm 2100 GHz
Spectrum Ref Level 1 Att TDF 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -30 dBm -50 dBm	5.00 dBm	e RBW	✔ 200 kHz	de Auto FFT M1[1]		2.4020	7.28 dBm 2100 GHz
Spectrum Ref Level 1 Att TDF 1Pk View 10 dBm -10 dBm -20 dBm -30 dBm -40 dBm	5.00 dBm	e RBW	✔ 200 kHz	de Auto FFT M1[1]		2.4020	7.28 dBm 2100 GHz
Spectrum Ref Level 1 Att TDF 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -30 dBm -50 dBm	5.00 dBm	e RBW	✔ 200 kHz	de Auto FFT M1[1]		2.4020	7.28 dBm 2100 GHz
Spectrum Ref Level 1 Att TDF IDF ID dBm 0 dBm -10 dBm -20 dBm -30 dBm -40 dBm -50 dBm -60 dBm	5.00 dBm	e RBW	✔ 200 kHz	de Auto FFT M1[1]		2.4020	7.28 dBm 2100 GHz
Spectrum Ref Level 1 Att TDF IDF ID dBm 0 dBm -10 dBm -20 dBm -30 dBm -40 dBm -50 dBm -60 dBm	5.00 dBm	e RBW	✔ 200 kHz	de Auto FFT M1[1]		2.4020	7.28 dBm 2100 GHz
Spectrum Ref Level 1 Att TDF 9 1Pk View 10 dBm -10 dBm -20 dBm -20 dBm -40 dBm -50 dBm -50 dBm -70 dBm	5.00 dBm 25 dB • \$W	e RBW	✔ 200 kHz	de Auto FFT		2.4020	7.28 dBm 2100 GHz
Spectrum Ref Level 1 Att TDF 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -30 dBm -40 dBm -50 dBm -60 dBm -70 dBm -80 dBm	5.00 dBm 25 dB • \$W	e RBW	V 200 kHz V 1 MHz Mo	de Auto FFT		2.4020 1.15800	7.28 dBm 2100 GHz 0000 MHz

C.1.2 Maximum Output Power and antenna gain

Г

Test limits

	Limits
FCC Part 15.247 (b) (3)	 (b) The maximum peak conducted output power of the intentional radiator shall not exceed the following: (3) For systems using digital modulation in the 902-928 MHz, 2400-2483.5 MHz, and 5725-5850 MHz bands: 1 Watt. As an alternative to a peak power measurement, compliance with the one Watt limit can be based on a measurement of the maximum conducted output power. Maximum Conducted Output Power is defined as the total transmit power delivered to all antennas and antenna elements averaged across all symbols in the signaling alphabet when the transmitter is operating at its maximum power control level. Power must be summed across all antennas and antenna elements. The average must not include any time intervals during which the transmitter is off or is transmitting at a reduced power level. (4) The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi.
RSS-247 Clause 5.4 (d)	For DTSs employing digital modulation techniques operating in the bands 902-928 MHz and 2400-2483.5 MHz, the maximum peak conducted output power shall not exceed 1W. The e.i.r.p. shall not exceed 4 W, except as provided in section 5.4(e). As an alternative to a peak power measurement, compliance can be based on a measurement of the maximum conducted output power. The maximum conducted output power is the total transmit power delivered to all antennas and antenna elements, averaged across all symbols in the signalling alphabet when the transmitter is operating at its maximum power control level. Power must be summed across all antennas and antenna elements. The average must not include any time intervals during which the transmitter is off or transmitting at a reduced power level. If multiple modes of operation are implemented, the maximum conducted output power is the highest total transmit power occurring in any mode


Test procedure:

The Maximum peak conducted output power was measured using the $RBW \ge DTS$ bandwidth method defined in paragraph 8.3.1.1 of FCC KDB 558074 D01 - Guidance for Performing Compliance Measurements on Digital Transmission Systems (DTS) Operating Under §15.247.

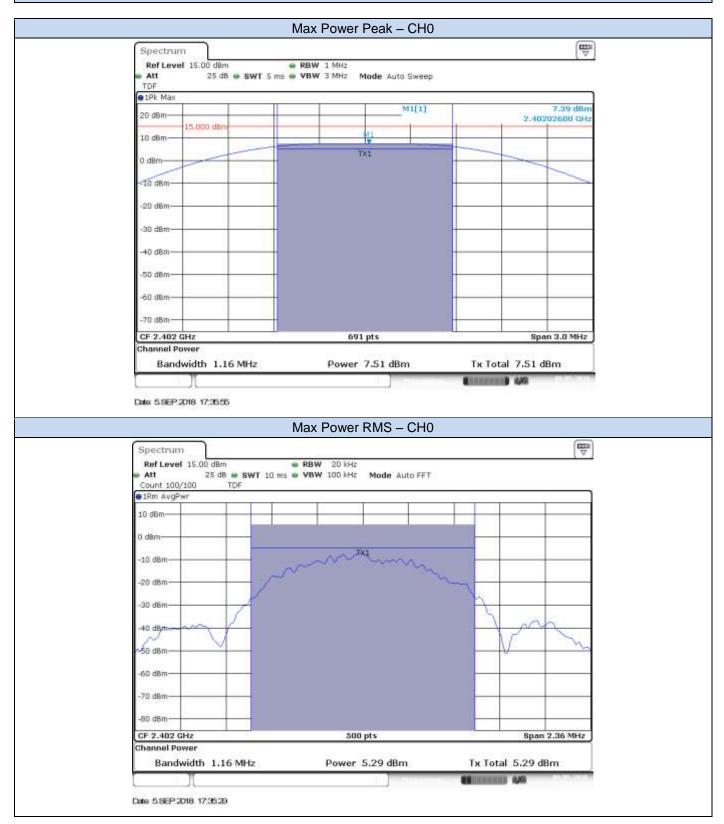
The Maximum conducted average output power was measured using the channel integration method according to Method AVGSA-2, defined in paragraph 11.9.2.2.4 of ANSI C63.10-2013 – American National Standard of Procedures for Compliance Testing of Unlicensed Wireless Devices.

The EIRP power (dBm) is calculated by adding the declared maximum antenna gain to the measured conducted power. The declared maximum antenna gain is 3.24dBi.

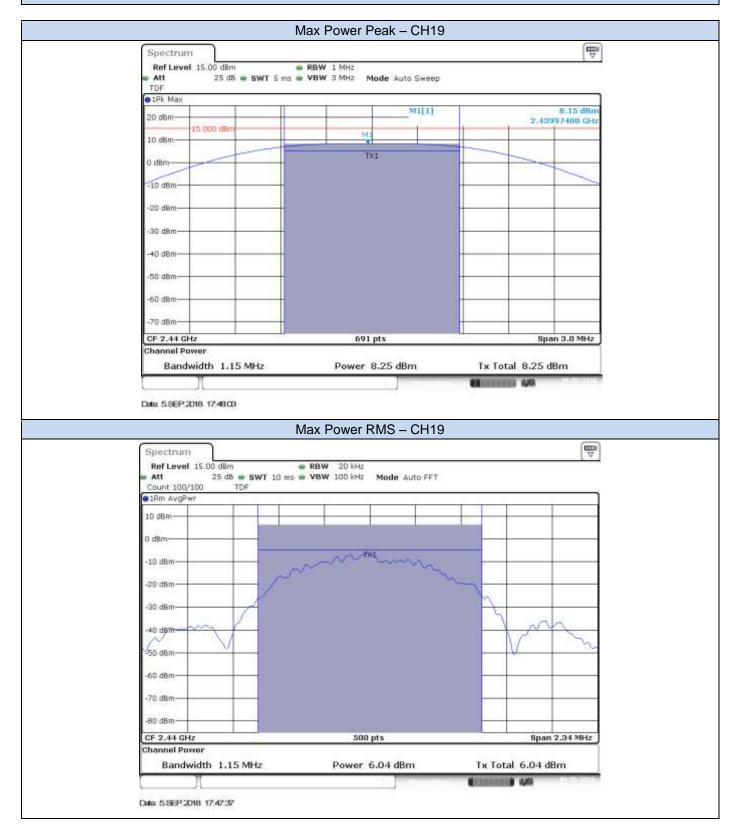
The setup below was used to measure the maximum conducted output power. The antenna terminal of the EUT is connected to the spectrum through an attenuator, and the spectrum analyzer reading is compensated to include the RF path loss.

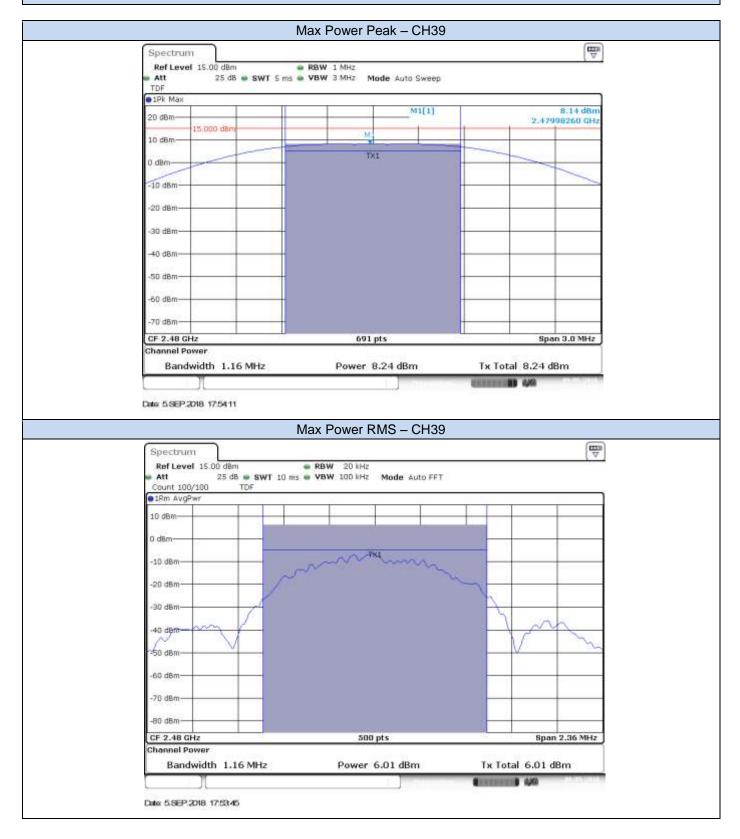
Results tables

				Peak Power	[dBm]	
Mode	Meas. Duty Cycle [%]	СН	Frequency [MHz]	Measured Conducted Output Power	EIRP	Peak Output Power [mW]
		0	2402	7.51	10.75	5.64
BLE	62	19	2440	8.25	11.49	6.68
		39	2480	8.24	11.48	6.67


Max Value Min Value

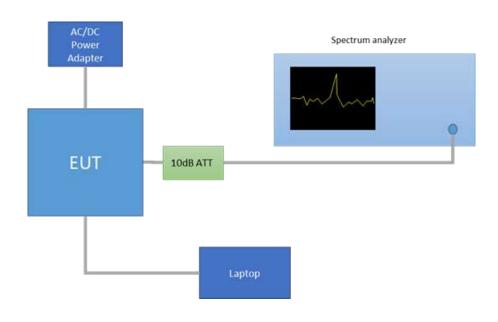
				Average			
Mode	Meas. Duty Cycle [%]	СН	Frequency [MHz]	Maximum Conducted Output Power	Maximum Conducted Output Power Duty cycle Compensated	EIRP	Average Output Power [mW]
		0	2402	5.29	7.37	10.61	5.45
BLE	62	19	2440	6.04	8.12	11.36	6.48
		39	2480	6.01	8.09	11.33	6.44


* Output Power RMS values are shown for indicative purpose only


Results screenshot

C.1.3 Power Spectral Density

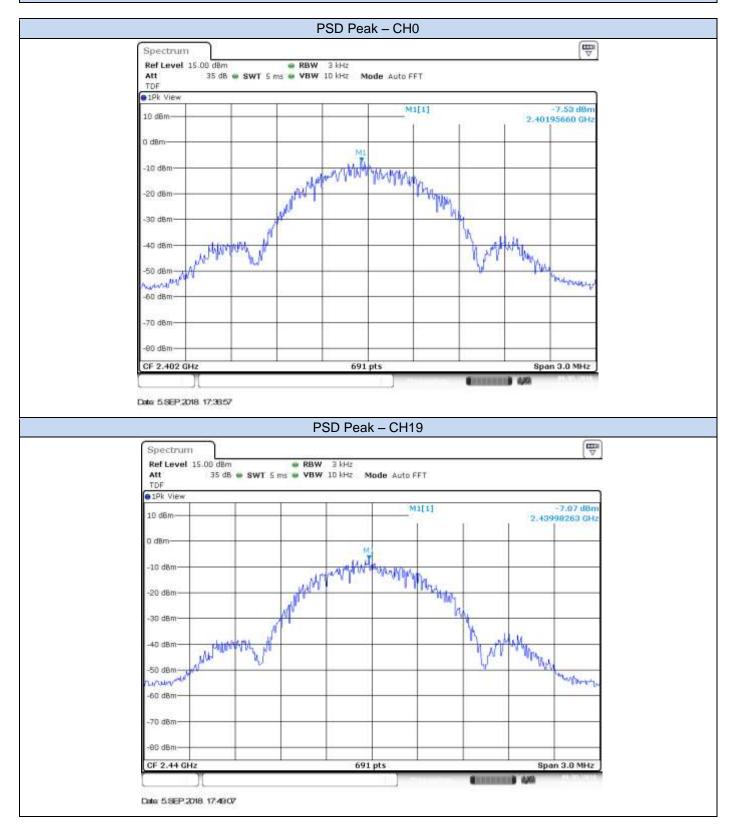
Test limits

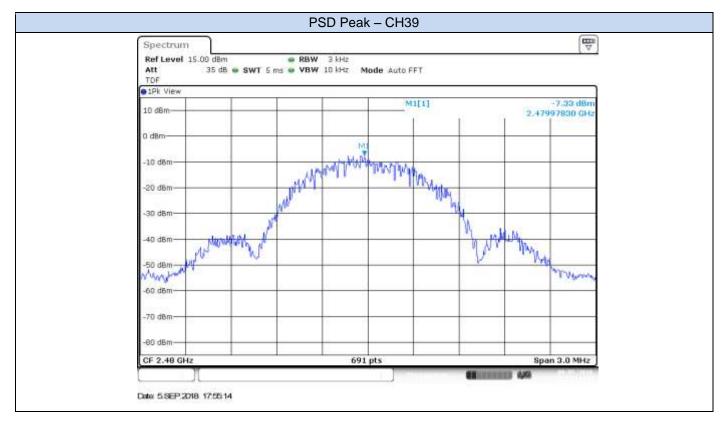

FCC part	RSS part	Limits
15.247 (e)	RSS-247 Clause 5.2 (b)	For digitally modulated systems, the power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission. This power spectral density shall be determined in accordance with the provisions of paragraph (b) of this section. The same method of determining the conducted output power shall be used to determine the power spectral density.

Test procedure

The maximum peak power spectral density level of the fundamental emission was measured using the method PKPSD, defined in paragraph 11.10.2 of ANSI C63.10-2013 – American National Standard of Procedures for Compliance Testing of Unlicensed Wireless Devices.

The setup below was used to measure the power spectral density. The antenna terminal of the EUT is connected to the spectrum through an attenuator, and the spectrum analyzer reading is compensated to include the RF path loss.


The declared maximum antenna gain is 3.24dBi.


Results tables

Mode	СН	Frequency [MHz]	PSD Peak [dBm]
	0	2402	-7.53
BLE	19	2440	-7.07
	39	2480	-7.33

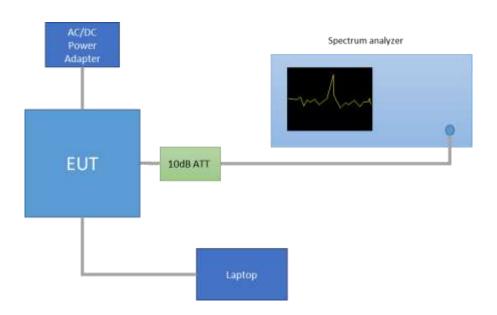
C.1.4 Out-of-band emission (Conducted)

Test Limits

FCC part	RSS part		Limits				
15.247 (d)	RSS-247 Clause 5.5	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits.					
15.209	RSS-Gen Clause 8.9	Radiated emissions must also comply w Freq Range (MHz) 30-88 88-216 216-960 Above 960 The emission limits employing CISPR of kHz, 110-490 kHz three bands are bas For average radiate a limit specified wh to 20 dB above the	Field Stregth (μV/m) 100 150 200 500 shown in the abore and above 1000 M abo	Field Stregth (dBµV/m) 40 43.5 46 54 we table are bas r except for the 1Hz. Radiated en the employing ar rements above 1 peak detector fu	Meas. Distance (m) 3 3 3 3 sed on measurer frequency bands mission limits in average detecto 000 MHz, there is	nents 9-90 these or. s also	

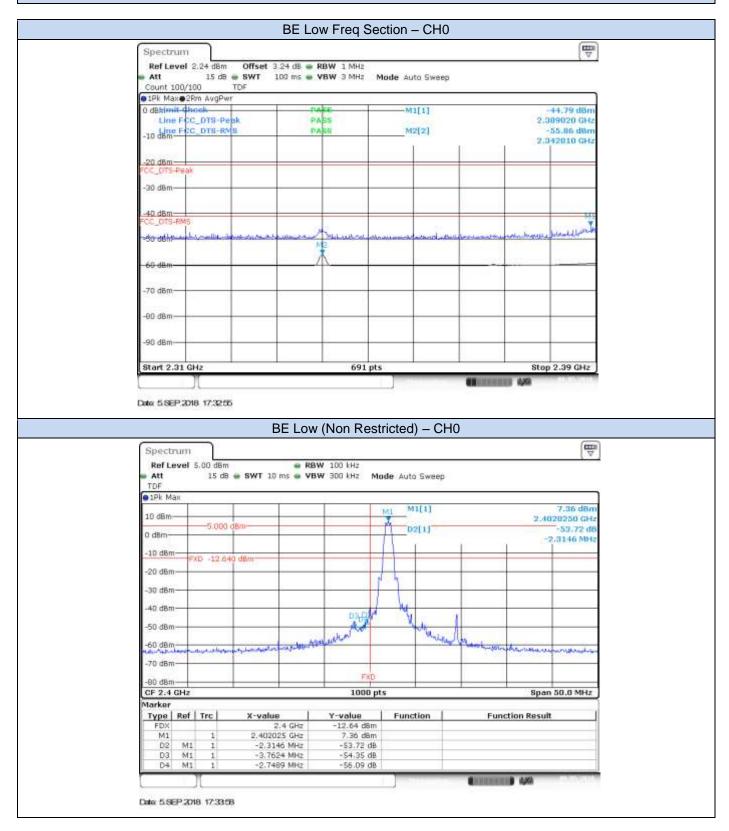
Test procedure

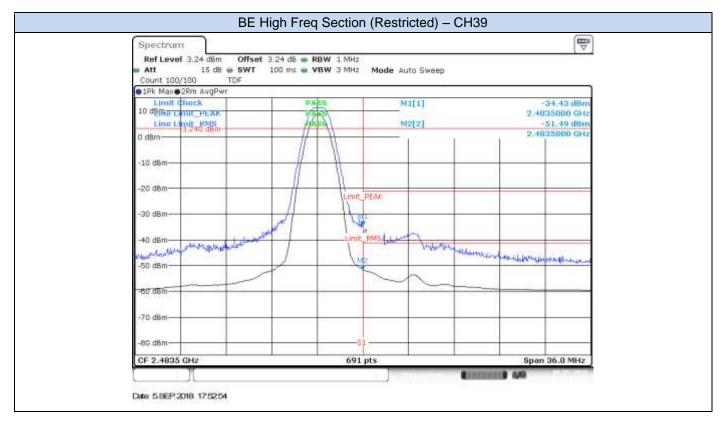
The setup below was used to measure the out-of-band emissions. The antenna terminal of the EUT is connected to the spectrum through an attenuator, and the spectrum analyzer reading is compensated to include the RF path loss.


In case of Band Edge measurements falling in restricted bands, the declared Antenna Gain is also compensated in the graph. The declared maximum antenna gain is 3.24dBi.

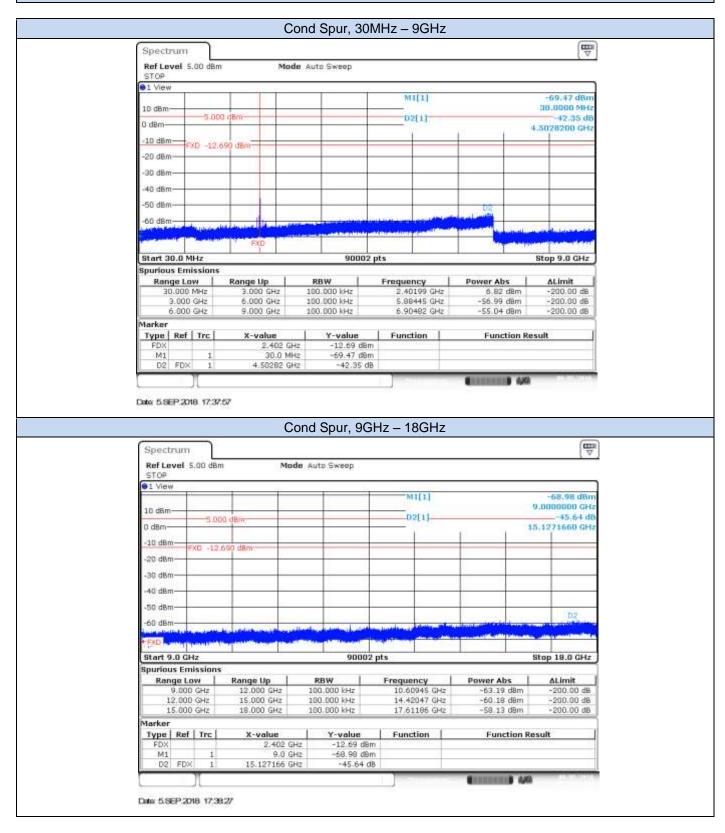
For Band Edge measurements falling in restricted bands, the following limits in dBm were applied for the average detector after the conversion from the limits detailed above in dB μ V/m, according to FCC 47 CFR part 15 - Subpart C – §15.209(a). The limits in dBm for peak detector are 20dB above the indicated values in the table.

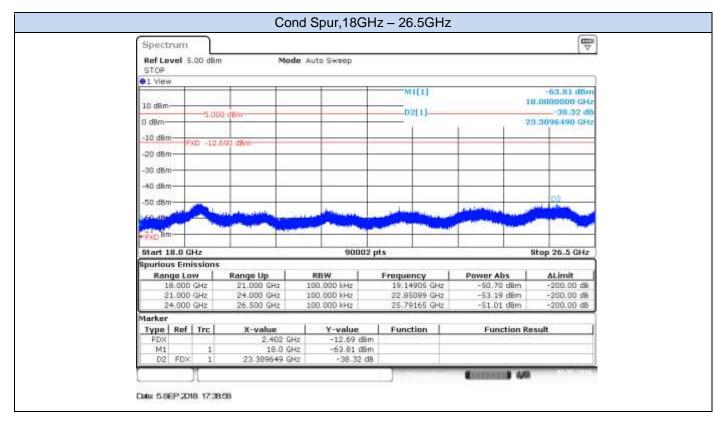
	§15.209(a)		Converted values		
Freq Range (MHz)	Distance (m)	Field strength (microvolts/meter)	Field strength (dB microvolts/meter)	Power (dBm)	
Above 960	3	500	54.0	-41.2	


The setup below was used to measure the out-of-band emissions. The antenna terminal of the EUT is connected to the spectrum through an attenuator, and the spectrum analyzer reading is compensated to include the RF path loss.

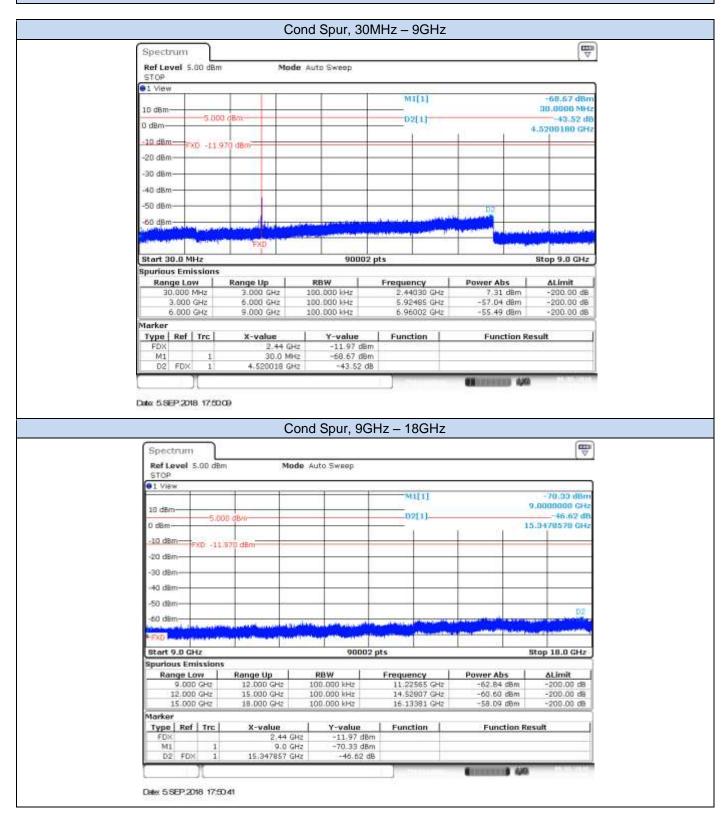

Note: these PSD_{Peak} values are shown just as a reference for the compliance of the Out-of-band Measurements. Thus the RBW used for these measurements was 100kHz.

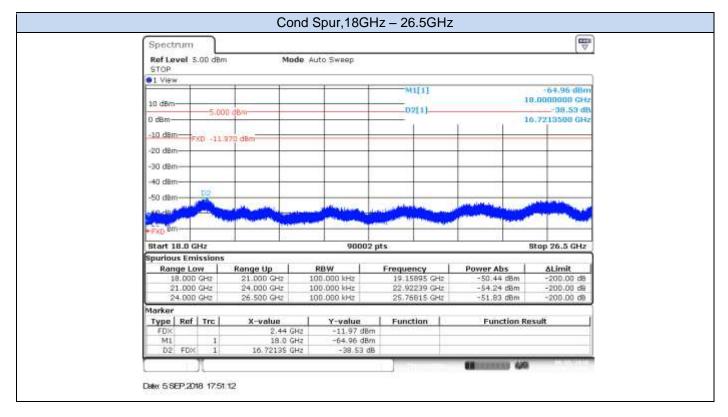
Mode	СН	Frequency [MHz]	PSD Peak [dBm]
	0	2402	7.31
BLE	19	2440	8.03
	39	2480	7.96



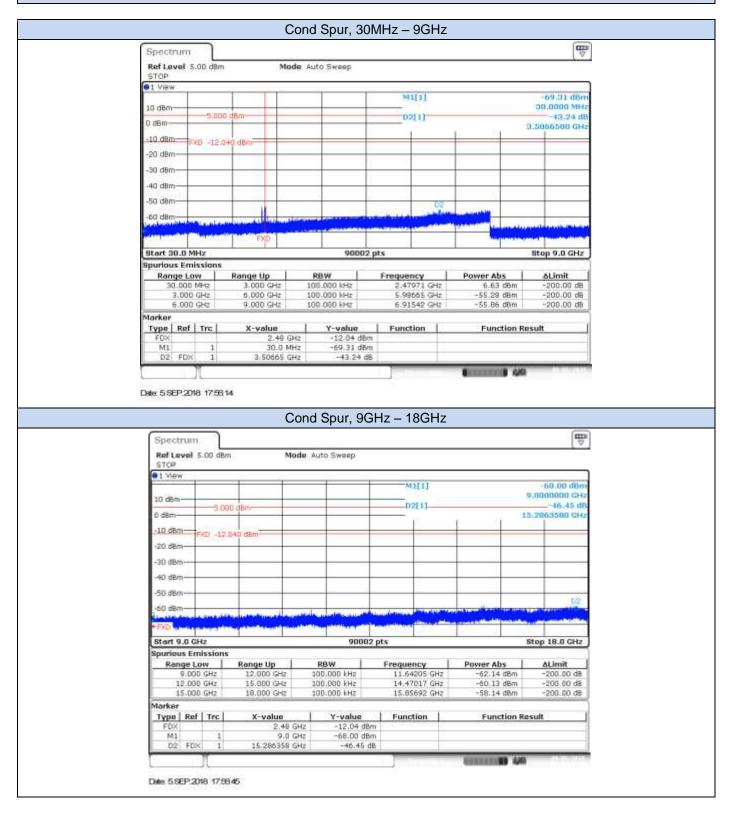


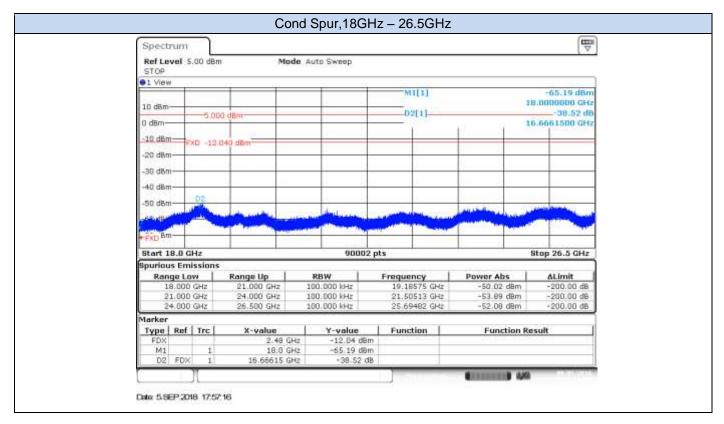
BLE, CH0





BLE, CH19





BLE, CH39

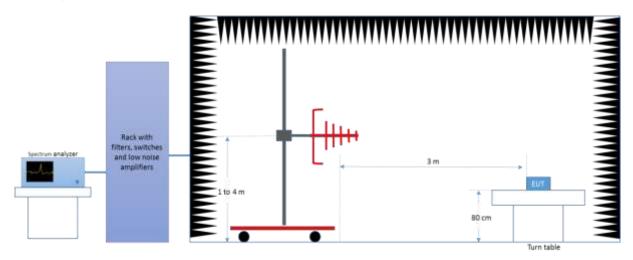
C.1.5 Radiated spurious emission

Standards references

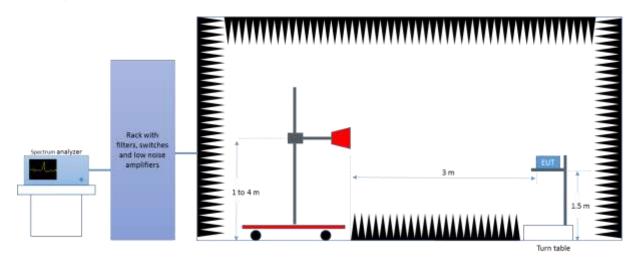
FCC part	RSS part		Limits				
						defined in §15.20 cified in §15.209(a	· · · ·
			Freq Range (MHz)	Field Stregth (μV/m)	Field Stregth (dBµV/m)	Meas. Distance (m)	
			30-88	100	40	3	
			88-216 150 43.5	43.5	3		
	RSS-247	Clause 5.5 Above 960 500 54	46	3			
15.247 (d)			54	3			
15.209	RSS-Gen Clause 8.9	emple kHz, three For a a limi	bying CISPR qua 110-490 kHz an bands are based verage radiated of t specified when	asi-peak detector d above 1000 M d on measureme emission measur	r except for the IHz. Radiated en nts employing ar ements above 1 peak detector fu	sed on measurer frequency bands mission limits in average detecto 000 MHz, there is unction, correspo	s 9-90 these or. s also

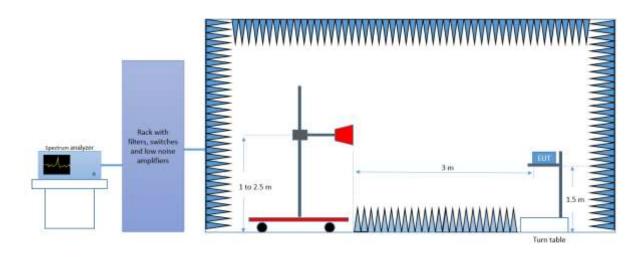
Test procedure

The setups below were used to measure the radiated spurious emissions.

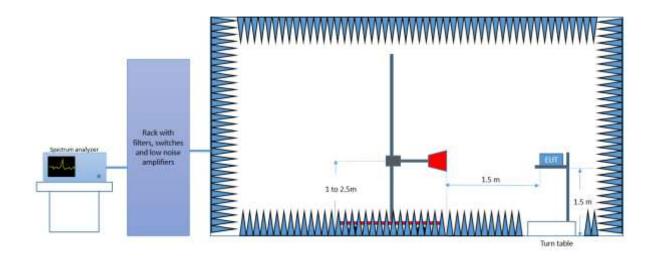

Depending of the frequency range and bands being tested, different antennas and filters were used.

The final measurement is done by varying the antenna height from 1 to 4 meters, the EUT azimuth over 360° and for both Vertical and Horizontal polarizations.


The radiated spurious emissions were measured on the lowest, middle and highest channels.


Radiated Setup 30 MHz - 1GHz

Radiated Setup 1 GHz - 6.4 GHz



Radiated Setup 6.4 GHz – 18 GHz

Radiated Setup 18 GHz - 26.5 GHz

Sample Calculation

The field strength is deduced from the radiated measurement using the following equation:

 $E = 126.8 - 20log(\lambda) + P - G$

where

E is the field strength of the emission at the measurement distance, in $dB\mu V/m$

P is the power measured at the output of the test antenna, in dBm

 λ is the wavelength of the emission under investigation [300/f_{MHz}], in m

G is the gain of the test antenna, in dBi

NOTE - The measured power P includes all applicable instrument correction factors up to the connection to the test

Antenna e.g. cable losses, amplifier gains.

For field strength measurements made at other than the distance at which the applicable limit is specified, the field strength of the emission at the distance specified by the limit is deduced as follows:

E_{SpecLimit} = E_{Meas} + 20log(D_{Meas}/D_{SpecLimit})

where

 $E_{\text{SpecLimit}}$ is the field strength of the emission at the distance specified by the limit, in $dB\mu V/m$

 E_{Meas} is the field strength of the emission at the measurement distance, in $dB\mu V/m$

D_{Meas} is the measurement distance, in m

DspecLimit is the distance specified by the limit, in m

Test Results

30 MHz – 26.5 GHz, BLE

Radiated Spurious – CH0

Frequency	MaxPeak	Avg	Limit	Margin
MHz	dBuV/m	dBuV/m	dBuV/m	dB
527.9	31.7		46.0	14.3
6124.5	53.2		74.0	20.8
6196.5		41.0	54.0	13.0
17836.6	59.9		74.0	14.1
17748.2		48.6	54.0	5.4
20719.6	54.7		74.0	19.3
20720.4		46.6	54.0	7.4

Radiated Spurious – CH19

Frequency	MaxPeak	Avg	Limit	Margin
MHz	dBuV/m	dBuV/m	dBuV/m	dB
528.0	30.8		46.0	15.2
6289.5	54.8		74.0	19.2
6317.0		42.1	54.0	11.9
17992.3	60.5		74.0	13.5
17733.2		48.8	54.0	5.2
20720.0	56.1		74.0	17.9
20720.0		48.8	54.0	5.2

Radiated Spurious – CH39

Frequency	MaxPeak	Avg	Limit	Margin
MHz	dBuV/m	dBuV/m	dBuV/m	dB
528.0	31.1		46.0	14.9
6313.0	55.0		74.0	19.0
6317.5		42.2	54.0	11.8
17741.4	60.1		74.0	13.9
17752.5		48.6	54.0	5.4
20722.1	53.6		74.0	20.4
20719.6		46.5	54.0	7.5