

WPT TEST REPORT

No.I23Z70243-EMC02

for

Samsung Electronics. Co., Ltd.

Wireless Battery Pack

MODEL NAME: EB-U2510

FCC ID: ZCAEBU2510

with

Hardware Version: V3

Software Version: V02

Issued Date: 2023-11-14

Note:

The test results in this test report relate only to the devices specified in this report. This report shall not be reproduced except in full without the written approval of CTTL.

Test Laboratory:

CTTL-Telecommunication Technology Labs, CAICT

No. 52, Huayuan North Road, Haidian District, Beijing, P. R. China 100191. Tel:+86(0)10-62304633-2512, Fax:+86(0)10-62304633-2504 Email: <u>cttl_terminals@caict.ac.cn</u>, website: <u>www.caict.ac.cn</u>

REPORT HISTORY

Report Number	Revision	Description	Issue Date
I23Z70243-EMC02	Rev.0	1st edition	2023-10-25
I23Z70243-EMC02	Rev.1	Changer the product name from" Battery Pack" to "Wireless Battery Pack"	2023-11-14

Note: the latest revision of the test report supersedes all previous version.

CONTENTS

1.	TEST LABORATORY
1.1.	INTRODUCTION & ACCREDITATION
1.2.	TESTING LOCATION
1.3.	TESTING ENVIRONMENT 4
1.4.	PROJECT DATA
1.5.	SIGNATURE
2.	CLIENT INFORMATION
2.1.	APPLICANT INFORMATION
2.2.	MANUFACTURER INFORMATION5
3.	EQUIPMENT UNDER TEST (EUT) AND ANCILLARY EQUIPMENT (AE)
3.1.	ABOUT EUT
3.2.	INTERNAL IDENTIFICATION OF EUT
3.3.	INTERNAL IDENTIFICATION OF AE
3.4.	EUT SET-UPS 6
4.	REFERENCE DOCUMENTS
4.1.	DOCUMENTS SUPPLIED BY APPLICANT
4.2.	REFERENCE DOCUMENTS FOR TESTING
5.	TEST RESULTS
5.1.	ABBREVIATIONS
5.2.	SUMMARY OF MEASUREMENT RESULTS OF EMISSIONS9
6.	TEST FACILITIES UTILIZED 10
7.	MEASUREMENT UNCERTAINTY11
ANI	NEX A: EUT PARAMETERS 12
ANI	NEX B: DETAILED TEST RESULTS13
В	.1 MEASUREMENT METHODS
	.2 Test Result
ANI	NEX C: PERSONS INVOLVED IN THIS TESTING

1. Test Laboratory

1.1. Introduction & Accreditation

Telecommunication Technology Labs, CAICT is an ISO/IEC 17025:2017 accredited test laboratory under American Association for Laboratory Accreditation (A2LA) with lab code 7049.01, and is also an FCC accredited test laboratory (CN1349), and ISED accredited test laboratory (CAB identifier:CN0066). The detail accreditation scope can be found on A2LA website.

1.2. <u>Testing Location</u>

Location 1: CTTL(huayuan North Road)

Address: No. 52, Huayuan North Road, Haidian District, Beijing, P. R. China 100191

1.3. Testing Environment

Normal Temperature:	15-35°C
Extreme Temperature:	-10/+55°C
Relative Humidity:	20-75%

1.4. Project data

Testing Start Date:	2023-08-28
Testing End Date:	2023-09-01

1.5. Signature

Zhang Ying (Prepared this test report)

An Hui (Reviewed this test report)

Zhang Xia Deputy Director of the laboratory (Approved this test report)

2. <u>Client Information</u>

2.1. Applicant Information

Company Name:	SAMSUNG Electronics Co., Ltd.
Address:	19 Chapin Rd., Building D Pine Brook, NJ 07058
Contact:	Jenni Chun
E-mail:	j1.chun@samsung.com
Telephone:	+1-201-937-4203

2.2. Manufacturer Information

Company Name:	Samsung Electronics Co., Ltd.
Address:	Samsung R5, Maetan dong 129, Samsung ro
Address.	Youngtong gu, Suwon city 443 742, Korea
Contact:	Sunghoon Cho
E-mail:	ggobi.cho@samsung.com
Telephone:	+82-10-2722-4159

3. Equipment Under Test (EUT) and Ancillary Equipment (AE)

3.1. About EUT

Description	Wireless Battery Pack
Model name	EB-P4520
FCC ID	ZCAEBU2510
WPT traffic frequency	112kHz-145kHz
Note: Photographs of EUT are sho	own in ANNEX A of this test report.

3.2. Internal Identification of EUT

EUT ID*	SN or IMEI	HW Version	SW Version	Date of receipt
UT01a	SSW912000030	V3	V02	2023-09-26

*EUT ID: is used to identify the test sample in the lab internally.

3.3. Internal Identification of AE

AE ID*	Description	Model	Manufacturer	Note
AE1-1	adapter	EP-TA200(EWE)		25W
AE1-2	adapter	EP-TA200(EWE)		25W
AE2-1	Mobile phone			
AE2-2	Mobile phone			
AE2-3	Mobile phone			
AE3	Bluetooth			
	headset case			
AE4	Bluetooth			
	watch			
AE5	USB Cable	SHQ-A175A	Saibao(Jiangxi)	
			Communication	
			Industrial Co.,Ltd	

*AE ID: is used to identify the test sample in the lab internally.

3.4. EUT set-ups

	Combination of AE			
Model No.	Type C port 1(near the	Type C port 2	Wireless	
	power button)			
Model 1	charger	charger	/	
Model 2	charger	Mobile phone	Mobile phone	
Model 3	charger	Mobile phone	Bluetooth headset case	
Model 4	charger	Mobile phone	Bluetooth watch	
Model 5	Mobile phone	charger	Mobile phone	
Model 6	Mobile phone	charger	Bluetooth headset case	
Model 7	Mobile phone	charger	Bluetooth watch	
Model 8	Mobile phone	Mobile phone	Mobile phone	
Model 9	Mobile phone	Mobile phone	Bluetooth headset case	

©Copyright. All rights reserved by CTTL.

Page 6 of 31

Madal 10		Mahila aha		Divete eth wetch
Model 10	Mobile phone	Mobile pho	one	Bluetooth watch
EUT set-up No.	Combination of EUT and	ΑE	Remarks	
Set.1	UT01a + AE1-1 + AE1-2 + A	AE5	Model 1, EU	T+ adapters, charging
Set.2	UT01a + AE1-1 + AE2-1 + A AE5	\E2-2 +	phones, cha	UT+ adapter + mobile rging + discharging UT+ adapter + mobile
Set.3	UT01a + AE1-1 + AE2-1 + A	AE3+ AE5	charging + d	etooth headset case, lischarging :UT+ adapter + mobile
Set.4	UT01a + AE1-1 + AE2-1 + A	AE4+ AE5	phone+ Blue discharging	tooth watch, charging +
Set.5	UT01a + AE2-1 + AE2-2 + A AE5	\E2-3+	discharging	T+ mobile phones,
Set.6	UT01a + AE2-1 + AE2-2 + A	AE3+ AE5		T+ mobile phones+ adset case, discharging
Set.7	UT01a + AE2-1 + AE2-2 + A	AE4+ AE5		UT+ mobile phones+ atch, discharging

4. <u>Reference Documents</u>

4.1. Documents supplied by applicant

EUT parameters, referring to Annex A for detailed information, is supplied by the client or manufacturer, which is the basis of testing.

EUT parameters are supplied by the customer, which are the bases of testing. CAICT is not responsible for the accuracy of customer supplied technical information that may affect the test results (for example, antenna gain and loss of customer supplied cable).

4.2. Reference Documents for testing

The following documents listed in this section are referred for testing.

Reference	Title	Version
ANSI C63.10	American National Standard of Procedures for Compliance	2013
	Testing of Unlicensed Wireless Devices	2013
47 CFR Part15	Wireless Power Transfer Devices	2023

For devices authorized under Part 18 such load modulation may not be used to communicate any other information, such as prioritization of devices for charging and the transfer of any other data, for example extended system data, images or music. For such designs, both Part 15 and Part 18 requirements must be satisfied for equipment approval. Similarly, devices that use a secondary frequency for load management, control and data functions must be authorized according to both Part 15 and Part 18 requirements, as appropriate.

5. Test Results

5.1. <u>Abbreviations</u>

Abbreviations us	sed in this clause:	
	Р	Pass
	F	Fail
Verdict Column	BR	Re-use test data from basic model report.
	NA	Not applicable
	NM	Not measured

5.2. Summary of Measurement Results of Emissions

See **ANNEX C** for detail.

TEST ITEMS	Sub-clause	VERDICT	Test Location
Occupied Bandwidth	2.1049	N/A	CTTL(huayuan North Road)
Radiated emission	15.205	Р	CTTL(huayuan North Road)
Conducted emission	15.207	Р	CTTL(huayuan North Road)

Test Conditions:

For this report, all the test cases listed above were tested under normal Temperature, Voltage, humidity and Air Pressure except the Frequency Tolerance test case.

6. Test Facilities Utilized

NO.	NAME	ТҮРЕ	SERIES NUMBER			CAL.
1.	Loop Antenna	HFH2-Z2	829324/007	R&S	2024-12-23	1 Year
2.	Test Receiver	ESW 44	103144	R&S	2023-10-25	1 Year
3.	EMI Antenna	VULB9163	482	Schwarzbeck	2024-01-03	1 Year
4.	Test Receiver	ESCI 3	100344	R&S	2024-02-20	1 year
5.	LISN	ENV216	101200	R&S	2024-06-04	1 year

Test Item	Test Software	Software Vendor	
Radiated Emission	EMC32 V11.50.00	R&S	
Conducted Emission	EMC32 V8.53.0	R&S	

7. Measurement Uncertainty

Location 1: CTTL(huayuan North Road)

Test item	Frequency ranges	Measurement uncertainty(k=2)	
Radiated Emission	9kHz-30MHz	4.92dB(<i>k</i> =2)	
Raulaleu Emission	30MHz-1GHz	4.72dB(<i>k</i> =2)	
Conducted Emission	150kHz-30MHz	3.08dB(<i>k</i> =2)	

ANNEX A: EUT parameters

Disclaimer: The antenna gain (for example, antenna gain and loss of customer supplied cable) provided by the client may affect the validity of the measurement results in this report, and the client shall bear the impact and consequences arising therefrom. CAICT is not responsible for the accuracy of customer supplied technical information that may affect the test results.

ANNEX B: Detailed Test Results

B.1 Measurement Methods

- B.1.1. Radiated Measurement Methods
- B.1.1.1. Reference ANSI C63.10-2013

Test Condition

Set the unlicensed wireless device to operate in continuous transmit mode. For unlicensed wireless devices unable to be configured for 100% duty cycle even in test mode, configure the system for the maximum duty cycle supported.

When required for unlicensed wireless devices, measurements of the variation of the input power or the radiated signal level of the fundamental frequency component of the emission, as appropriate, shall be performed with the supply voltage varied between 85% and 115% of the nominal rated supply voltage.

Test Setup

Tabletop devices shall be placed on a non-conducting platform with nominal top surface dimensions 1 m by 1.5 m. For emissions testing at or below 1 GHz, the table height shall be 80 cm above the reference ground plane.

At frequencies below 30 MHz, the measurement antenna shall be positioned with its plane perpendicular to the ground at the specified distance. When perpendicular to the ground plane, the lowest height of the magnetic antenna shall be 1 m above the ground and shall be positioned at the specified distance from the EUT. When the EUT contains a loop antenna that can only be placed in a vertical axis, normal measurements shall be made aligning the measurement antenna along the site axis, and then orthogonal to the axis. For each measurement antenna alignment, the EUT shall be rotated through 0° to 360° on a turntable. When the EUT contains a loop antenna that can be placed in a horizontal or vertical axis, normal measurements shall be made aligning the measurement antenna along the site axis, orthogonal to the axis, and then with the measurement antenna horizontal. For each measurement antenna alignment, the EUT shall be rotated through 0° to 360° on a turntable.

The EUT was manipulated through three orthogonal planes of X-orientation (flatbed), Y-orientation (landscape), and Z-orientation (portrait) during the testing. Only the worst case emissions were reported in this test report.

At frequencies at or above 30 MHz, the measurements shall be made with the antenna positioned in both horizontal and vertical of polarizations. The measurement antenna shall be varied in height above the reference ground plane to obtain the maximum signal strength. The measurement antenna height shall be varied from 1 m to 4 m. These height scans apply for both horizontal and vertical polarizations, except that for vertical polarization, the minimum height of the center of the antenna shall be increased so that the lowest point of the bottom of the lowest antenna element clears the site reference ground plane by at least 25 cm.

Exploratory radiated emissions measurements

Exploratory radiated measurements shall be performed at the measurement distance or at a closer distance than that specified for compliance to determine the emission characteristics of the

EUT and, if applicable, the EUT configuration that produces the maximum level of emissions. The frequencies of maximum emission may be determined by manually positioning the antenna close to the EUT, and then moving the antenna over all sides of the EUT while observing a spectral display. It is advantageous to have prior knowledge of the frequencies of emissions, although this may be determined from such a near-field scan. The near-field scan shall only be used to determine the frequency but not the amplitude of the emissions. Where exploratory measurements are not adequate to determine the worst-case operating modes and are used only to identify the frequencies of the highest emissions, additional preliminary tests can be required. For emissions from the EUT, the maximum level shall be determined by rotating the EUT and its

For emissions from the EUT, the maximum level shall be determined by rotating the EUT and its antenna through 0° to 360°. For each mode of operation required to be tested, the frequency spectrum (based on findings from exploratory measurements) shall be monitored.

Broadband antennas and a spectrum analyzer or a radio-noise meter with a panoramic display are often useful in this type of test. If either antenna height or EUT azimuth are not fully measured during exploratory testing, then complete testing can be required at the OATS or semi-anechoic chamber when the final full spectrum testing is performed.

Final radiated emissions measurements

The final measurements are using the orientation and equipment arrangement of the EUT based on the measurement results found during the preliminary (exploratory) measurements, the EUT arrangement, appropriate modulation, and modes of operation that produce the emissions that have the highest amplitude relative to the limit shall be selected for the final measurement. For each mode of operation required to be tested, the frequency spectrum (based on findings from exploratory measurements) shall be monitored. The highest signal levels relative to the limit shall be determined by rotating the EUT from 0° to 360° and with varying the measurement antenna height between 1 m and 4 m in vertical and horizontal polarizations.

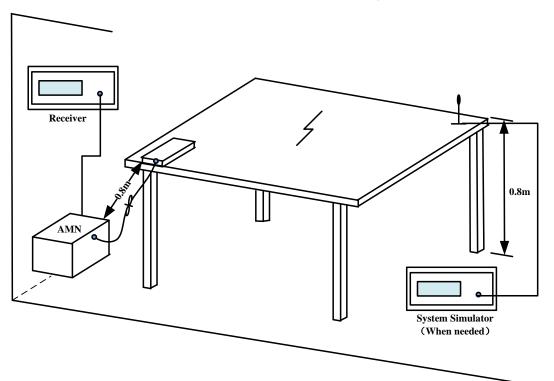
For each mode selected, record the frequency and amplitude of the highest fundamental emission (if applicable), as well as the frequency and amplitude of the six highest spurious emissions relative to the limit. Emissions more than 20 dB below the limit do not need to be reported. This maximization process was repeated with the EUT positioned in each of its three orthogonal orientations.

The any unwanted emissions level shall not exceed the fundamental emission level.

Frequency of emission (MHz)	RBW/VBW	Sweep Time(s)
30-1000	100KHz/300KHz	5
1000-4000	1MHz/3MHz	15
4000-18000	1MHz/3MHz	40
18000-26500	1MHz/3MHz	20

The receiver references:

B.1.2 Conducted Measurement Methods


Test Condition:

Voltage (V)	Frequency (Hz)
120	60

Setup

A stand-alone EUT shall be placed in the center along the back edge of the tabletop. For multiunit tabletop systems, the EUT shall be centered laterally (left to right facing the tabletop) on the tabletop and its rear shall be flush with the rear of the table.

Accessories that are part of an EUT system tested on a tabletop shall be placed in a test arrangement on one or both sides of the host with a 10 cm separation between the nearest points of the cabinets. The rear of the host and accessories shall be flush with the back of the supporting tabletop unless that would not be typical of normal use. If more than two accessories are present, then an equipment test arrangement shall be chosen that maintains 10 cm spacing between cabinets unless the equipment is normally located closer together.

Exploratory ac power-line conducted emission measurements

Exploratory measurements shall be used to identify the frequency of the emission that has the highest amplitude relative to the limit by operating the EUT in a range of typical modes of operation, cable positions, and with a typical system equipment configuration and arrangement. For each mode of operation and for each ac power current-carrying conductor, cable manipulation shall be performed within the range of likely configurations. For this measurement or series of measurements, the frequency spectrum of interest shall be monitored looking for the emission that has the highest amplitude relative to the limit. Once that emission is found for each

©Copyright. All rights reserved by CTTL.

current-carrying conductor of each power cord associated with the EUT (but not the cords associated with non-EUT equipment in the overall system), the one configuration and arrangement and mode of operation that produces the emission closest to the limit over all of the measured conductors shall be recorded.

Final ac power-line conducted emission measurements

Based on the exploratory tests of the EUT, the one EUT cable configuration and arrangement and mode of operation that produced the emission with the highest amplitude relative to the limit is selected for the final measurement, while applying the appropriate modulating signal to the EUT. If the EUT is relocated from an exploratory test site to a final test site, the highest emissions shall be remaximized at the final test location before final ac power-line conducted emission measurements are performed. The final test on all current-carrying conductors of all of the power cords to the equipment that comprises the EUT (but not the cords associated with other non-EUT equipment in the system) is then performed for the full frequency range for which the EUT is being tested for compliance without further variation of the EUT arrangement, cable positions, or EUT mode of operation. If the EUT is composed of equipment units that have their own separate ac power connections (e.g., floor-standing equipment with independent power cords for each shelf that are able to connect directly to the ac power network), then each current-carrying conductor of one unit is measured while the other units are connected to a second (or more) LISN(s). All units shall be measured separately. If a power strip is provided by the manufacturer, to supply all of the units making up the EUT, only the conductors in the power cord of the power strip shall be measured.

B.2. Test Result

B.2.1 Occupied Bandwidth

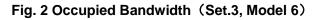
Reference

See Clause 6.4, 6.5 of ANSI C63.10-2013 generally. See 47 CFR Part 2: 2.1049

Measurement Result:

Set up	Mode	Graph Result
Set.2	Model 5, EUT+ adapter + mobile phones, charging +	See Fig. 1
	discharging	
Set.3	Model 6, EUT+ adapter + mobile phone+ Bluetooth headset	See Fig. 2
	case, charging + discharging	
Set.4	Model 7, EUT+ adapter + mobile phone+ Bluetooth watch,	See Fig. 3
	charging + discharging	
Set.5	Model 8, EUT+ mobile phones, discharging	See Fig. 4
Set.6	Model 9, EUT+ mobile phones+ Bluetooth headset case,	See Fig. 5
	discharging	
Set.7	Model 10, EUT+ mobile phones+ Bluetooth watch, discharging	See Fig. 6

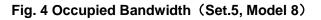
02:51:04 PM 09/25/2023


Fig. 1 Occupied Bandwidth (Set.2, Model 5)

Ref Level -2 Att		● F VT 4.21 ms (~16 ms) ● V	BW 1 kHz BW 3 kHz Mode Aut	FET			Frequency 1	.28.6450 kl
Input Occupied Ba	1 DC PS		lotch Off	5111			Trequency 1	01Pk Ma
Occupied Ba	nawiatn						M1[1	
								128.68500 k
) dBm								
) dBm				И1				
- do				V				
) dBm								
I dBm			T1		T2			
			<u> </u>		V V			
) dBm					<u> </u>			
I-dBm-						ļ		
0 dBm								
0 dBm								
U dBm-								
0 dBm								
128.645 kH	lz		1001 pts	1	1.0 kHz/		1	Span 10.0 k
1arker Tabl								
ype Ret	f Trc	X-Value 128.685 kHz	Y-Value -57,37 dBm	Occ Bw	Function		Function 2.302381	
M1 T1	1	127.54847 kHz	-73.52 dBm	Occ Bw Occ Bw Ce	ntroid			661177 kHz
T2	1	129.85085 kHz	-73.90 dBm	Occ Bw Fre		2023-09-2	54.66	1177104 Hz

03:23:47 PM 09/25/2023

03:47:24 PM 09/25/2023


Fig. 3 Occupied Bandwidth (Set.4, Model 7)

MultiView Ref Level -29 Att Input	.00 dBm	● RBW SWT 10 ms ● VBW		• Auto Sweep			F	- requency 1	29.0000 kH
1 Occupied Bar		0 011 11000							●1Pk Max
								M1[1]	
-40 dBm									129.28000 kH
-50 dBm					M1				
					-				
-60 dBm				T1		T2			
-70 dBm				7		- V			
-80 dBm		_							
-90 dBm									
100 dBm									
110 dBm									
-120 dBm									
CF 129.0 kHz			1001 p	ots	1	i.0 kHz/			Span 10.0 kH:
2 Marker Table Type Ref M1 T1		X-Value 129.28 127.94385	kHz	Y-Value -53.02 dBm -70.86 dBm	Occ Bw Occ Bw Cer				353 kHz 13845 kHz
M1	1 1 1 1	129.28	kHz	-53.02 dBm	Occ Bw Cer Occ Bw Fre	ntroid	= 2023-09-26 02:55:0	2.564524 129.2261 226.113 Ref Leve	353 kHz 13845 kHz 845084 Hz

02:55:05 AM 09/26/2023

03:57:48 AM 09/26/2023

Fig. 5 Occupied Bandwidth (Set.6, Model 9)

									
MultiView 📑	Spectrum								
Ref Level -29.0 Att			● RBW 1 k ns) ● VBW 3 k Off Notch	Hz Mode Auto	FFT		1	Frequency 14	4.5000 kHz
Input 1 Occupied Band			UT Notch	ΟĦ					o1Pk Max
								M1[1]	-64.97 dBm
-10 dBm-									144.50000 kHz
-20 dBm									
-30 dBm									
-40 dBm									
-40 abm									
-50 dBm									
-60 dBm					1				
					1				
-70 dBm									
-70 uBm									
-80 dBm									
			T1				T2 ▽		
-90 dBm									
100.40									
-100 dBm									
CF 144.5 kHz			1001 pt	s	1	.0 kHz/	1		Span 10.0 kHz
2 Marker Table									•
Type Ref	Trc	X-Value		Y-Value		Function		Function Re	esult
M1	1	144.5 ki		64.97 dBm	Occ Bw		4	3.6806776	96 kHz
T1	1	143.05115 k		-87.23 dBm	Occ Bw Cer			144.89149	
T2	1	146.73183 k	Hz	-87.09 dBm	Occ Bw Fre	q Offset			47708 Hz
~					- Measuring		2023-09-26 04:22:1		RBW

04:22:14 AM 09/26/2023

Fig. 6 Occupied Bandwidth (Set.7, Model 10)

B.2.2 Radiated Emission

Reference

See Clause 6.4, 6.5 of ANSI C63.10-2013 generally. See 47 CFR Part15: 15.205, 15.209

Limit:

Frequency (MHz)	Field strength(µV/m)	Measurement distance (m)	E-field Strength Limit @ 3m (dBµV/m)
0.009 - 0.490	2400/F(kHz)	300	129-94
0.490 - 1.705	24000/F(kHz)	30	74-63
1.705 – 30.0	30	30	70

Frequency of	Field strength	Measurement	E-field Strength Limit @
emission (MHz)	(microvolts/meter)	distance	10m
		(meters)	(dBµV/m)
30–88	100	3	30
88–216	150	3	33.5
216–960	200	3	36
Above 960	500	3	44

Measurement Result:

Set	Frequency range	Mode	Conclusion	Graph Result
up				
Set.2	0.009 - 30.0 MHz	Model 5, EUT+ adapter +	Р	See Fig. 7
		mobile phones, charging +		
		discharging		
Set.3	0.009 - 30.0 MHz	Model 6, EUT+ adapter +	Р	See Fig. 8
		mobile phone+ Bluetooth		
		headset case, charging +		
		discharging		
Set.4	0.009 - 30.0 MHz	Model 7, EUT+ adapter +	Р	See Fig. 9
		mobile phone+ Bluetooth		
		watch, charging +		
		discharging		
Set.5	0.009 - 30.0 MHz	Model 8, EUT+ mobile	Р	See Fig. 10
		phones, discharging		
Set.6	0.009 - 30.0 MHz	Model 9, EUT+ mobile	Р	See Fig. 11
		phones+ Bluetooth		
		headset case, discharging		
Set.7	0.009 - 30.0 MHz	Model 10, EUT+ mobile	Р	See Fig. 12
		phones+ Bluetooth watch,		
		discharging		

Set	Frequency range	Mode	Conclusion	Graph Result
up				
Set.4	30.0 MHz-1GHz	Model 7, EUT+ adapter +	Р	See Fig. 13
		mobile phone+ Bluetooth		
		watch, charging +		
		discharging		

*For the test results, only the worst cases were shown in test report.

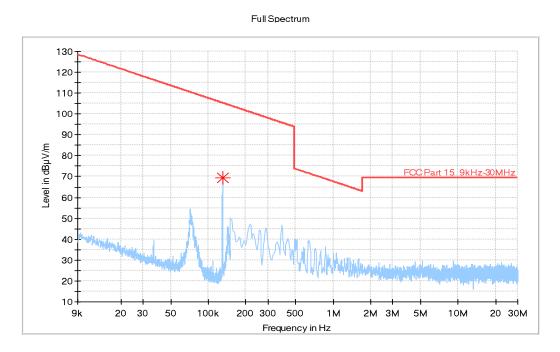


Fig. 7 Radiated Emission (Set.2, Model 5, 9kHz-30MHz)

Critical_Freqs

Frequency	MaxPeak	Limit	Margin	Pol	Azimuth	Corr.
(MHz)	(dBµV/m)	(dBµV/m	(dB)		(deg)	(dB/m)
0.129767	69.33	105.33	36.00	V	90.0	18.0

Full Spectrum

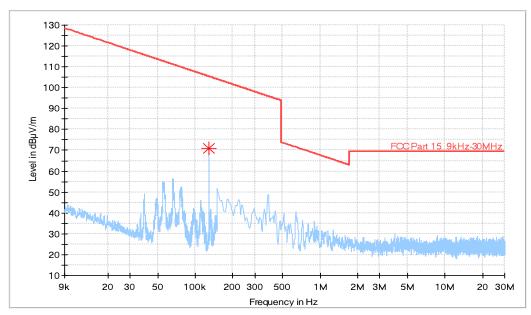


Fig. 8 Radiated Emission (Set.3, Model 6, 9kHz-30MHz)

Frequency	MaxPeak	Limit	Margin	Pol	Azimuth	Corr.
(MHz)	(dBµV/m)	(dBµV/m	(dB)		(deg)	(dB/m)
0.128653	70.82	105.41	34.59	V	180.0	18.0

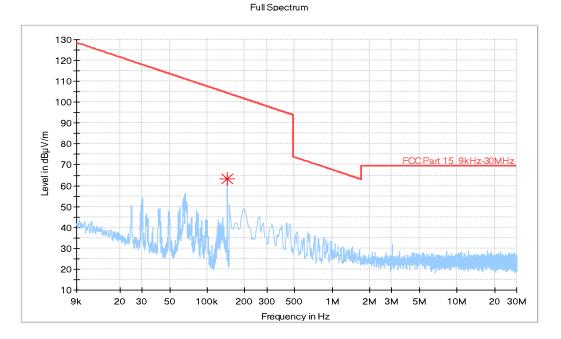


Fig. 9 Radiated Emission (Set.4, Model 7, 9kHz-30MHz)

Critical_Freqs

Frequency (MHz)	MaxPeak (dBµV/m)	Limit (dBµV/m	Margin (dB)	Pol	Azimuth (deg)	Corr. (dB/m)
0.144543	63.42	104.40	40.98	V	270.0	18.0

Full Spectrum

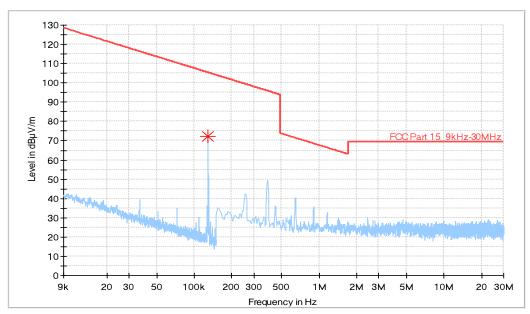
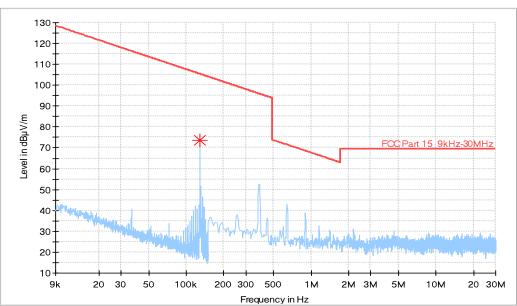
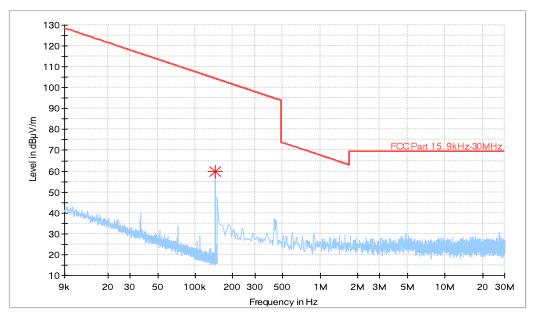



Fig. 10 Radiated Emission (Set.5, Model 8, 9kHz-30MHz)

Frequency	MaxPeak	Limit	Margin	Pol	Azimuth	Corr.
(MHz)	(dBµV/m)	(dBµV/m	(dB)		(deg)	(dB/m)
0.129470	72.27	105.35	33.08	V	90.0	18.0

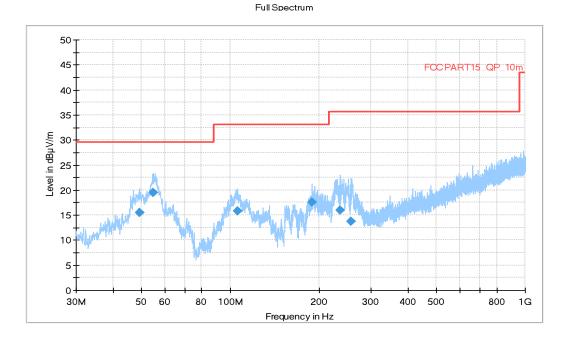
Full Spectrum

Fig. 11 Radiated Emission (Set.6, Model 9, 9kHz-30MHz)


Critical_Freqs

Frequency	MaxPeak	Limit	Margin	Pol	Azimuth	Corr.
(MHz)	(dBµV/m)	(dBµV/m	(dB)		(deg)	(dB/m)
0.128624	73.64	105.41	31.77	V	0.0	18.0

Full Spectrum



Critical_Freqs

Frequency	MaxPeak	Limit	Margin	Pol	Azimuth	Corr.
(MHz)	(dBµV/m)	(dBµV/m	(dB)		(deg)	(dB/m)
0.144473	59.75	104.40	44.65	V	270.0	18.0

Final_Result

Frequency	QuasiPeak	Limit	Margin	Bandwidth	Height	Pol	Azimuth	Corr.
49.206000	15.47	29.54	14.07	120.000	325.0	v	9.0	-10.8
54.929000	19.45	29.54	10.09	120.000	100.0	v	293.0	-11.0
106.048000	15.82	33.06	17.24	120.000	100.0	v	291.0	-12.3
189.371000	17.57	33.06	15.49	120.000	283.0	н	189.0	-12.6
235.931000	15.96	35.56	19.60	120.000	125.0	v	253.0	-10.4
256.689000	13.81	35.56	21.75	120.000	125.0	v	253.0	-9.6

B.2.3 AC Conducted emission

Reference

See Clause 6.4, 6.5 of ANSI C63.10-2013 generally. See 47 CFR Part15: 15.207

Limit:

Frequency range (MHz)	Limits (dBuV/m)			
	Quasi Peak	Average		
0,15 to 0,5	66 to 56	56 to 46		
0,5 to 5	56	46		
5 to 30	60	50		
The limit level in dBµV decreases linearly with the logarithm of frequency.				

Measurement Result:

Set up	Mode	Conclusion	Graph Result
Set.2	Model 5, EUT+ adapter + mobile phones,	Р	See Fig. 14
	charging + discharging		
Set.3	Model 6, EUT+ adapter + mobile phone+	Р	See Fig. 15
	Bluetooth headset case, charging + discharging		
Set.4	Model 7, EUT+ adapter + mobile phone+	Р	See Fig. 16
	Bluetooth watch, charging + discharging		

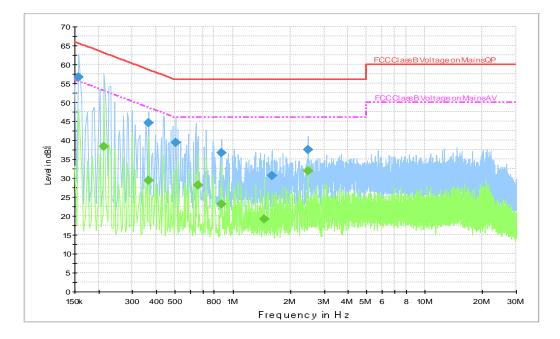
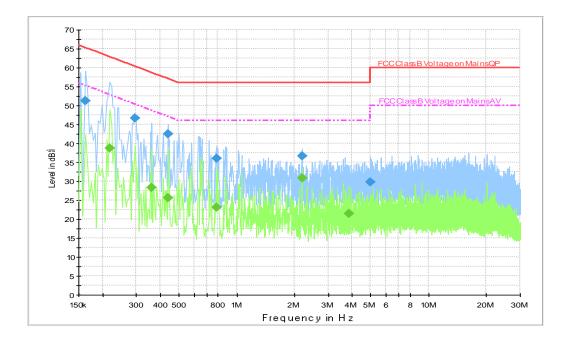


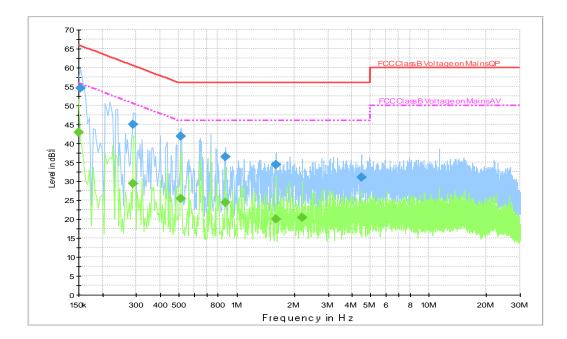
Fig. 14 AC Conducted emission (Set.2, Model 5)


Final Result 1						
Frequency	QuasiPeak	Line	Corr.	Margin	Limit	
(MHz)	(dBµV)		(dB)	(dB)	(dBµV)	
0.158000	56.6	Ν	19.7	9.0	65.6	
0.366000	44.5	L1	19.7	14.1	58.6	
0.502000	39.3	L1	19.7	16.7	56.0	
0.878000	36.7	Ν	19.6	19.3	56.0	
1.594000	30.7	L1	19.6	25.3	56.0	
2.470000	37.4	N	19.6	18.6	56.0	

Final Result 2

Frequency	CAverage	Line	Corr.	Margin	Limit
(MHz)	(dBµV)		(dB)	(dB)	(dBµV)
0.214000	38.4	Ν	19.7	14.7	53.0
0.366000	29.5	L1	19.7	19.1	48.6
0.658000	28.1	Ν	19.6	17.9	46.0
0.878000	23.0	Ν	19.6	23.0	46.0
1.458000	19.2	L1	19.7	26.8	46.0
2.470000	31.9	N	19.6	14.1	46.0

Fig. 15 AC Conducted emission	(Set.3, Model 6)
-------------------------------	------------------


QuasiPeak	Line	Corr.	Margin	Limit
(dBµV)		(dB)	(dB)	(dBµV)
51.2	N	19.7	14.1	65.4
46.7	L1	19.7	13.7	60.4
42.6	Ν	19.7	14.5	57.1
36.1	L1	19.7	19.9	56.0
36.6	L1	19.6	19.4	56.0
29.8	N	19.6	26.2	56.0
	(dBµV) 51.2 46.7 42.6 36.1 36.6	(dBµV) 51.2 N 46.7 L1 42.6 N 36.1 L1 36.6 L1	(dBµV) (dB) 51.2 N 19.7 46.7 L1 19.7 42.6 N 19.7 36.1 L1 19.7 36.6 L1 19.7	(dBµV) (dB) (dB) 51.2 N 19.7 14.1 46.7 L1 19.7 13.7 42.6 N 19.7 14.5 36.1 L1 19.7 19.9 36.6 L1 19.6 19.4

Final Result 2

Frequency	CAverage	Line	Corr.	Margin	Limit
(MHz)	(dBµV)		(dB)	(dB)	(dBµV)
0.218000	38.7	Ν	19.7	14.2	52.9
0.362000	28.4	L1	19.7	20.3	48.7
0.438000	25.7	Ν	19.7	21.4	47.1
0.786000	23.1	L1	19.7	22.9	46.0
2.186000	30.9	Ν	19.6	15.1	46.0
3.858000	21.4	L1	19.6	24.6	46.0

Fig. 16 AC Conducted emission (Set.4, Model 7)

Final	Result 1

Frequency	QuasiPeak	Line	Corr.	Margin	Limit
(MHz)	(dBµV)		(dB)	(dB)	(dBµV)
0.154000	54.7	L1	19.9	11.1	65.8
0.290000	45.0	Ν	19.7	15.5	60.5
0.510000	41.8	Ν	19.7	14.2	56.0
0.874000	36.5	L1	19.7	19.5	56.0
1.606000	34.4	L1	19.6	21.6	56.0
4.454000	31.1	N	19.6	24.9	56.0

Final Result 2

Frequency	CAverage	Line	Corr.	Margin	Limit
(MHz)	(dBµV)		(dB)	(dB)	(dBµV)
0.150000	42.8	Ν	20.0	13.2	56.0
0.290000	29.3	Ν	19.7	21.2	50.5
0.510000	25.5	Ν	19.7	20.5	46.0
0.874000	24.4	L1	19.7	21.6	46.0
1.606000	20.0	L1	19.6	26.0	46.0
2.190000	20.4	Ν	19.6	25.6	46.0

ANNEX C: Persons involved in this testing

Test Item	Tester
Radiated Emission	Li Pengfei
Conducted Emission	Yan Hanchen

END OF REPORT