Probe Calibration Certificate

			つい" 校 准
Tel: +86-10-623046 E-mail: Info@emci		*86-10-62304633-2504	CNAS L044
Client CAT	R(Chongqing)	Certificate No: Z14	4-97030
CALIBRATION C	ERTIFICAT	E	
Object	EX3DV	/4 - SN:3844	
Calibration Procedure(s)	TMC-C)S-E-02-195	
	Calibra	tion Procedures for Dosimetric E-field Probe	s
Calibration date:	May 19	9, 2014	
	ertificate.		
All calibrations have been humidity<70%.	conducted in	the closed laboratory facility: environment or calibration)	t temperature(22±3)℃ and
All calibrations have been humidity<70%. Calibration Equipment used Primary Standards	Conducted in (M&TE critical for ID #	or calibration) Cal Date(Calibrated by, Certificate No.)	Scheduled Calibration
All calibrations have been humidity<70%. Calibration Equipment used Primary Standards Power Meter NRP2	(M&TE critical for ID # 101919	or calibration) Cal Date(Calibrated by, Certificate No.) 01-Jul-13 (TMC, No.JW13-044)	Scheduled Calibration Jun-14
All calibrations have been humidity<70%. Calibration Equipment used Primary Standards Power Meter NRP2 Power sensor NRP-Z91	(M&TE critical fr ID # 101919 101547	or calibration) Cal Date(Calibrated by, Certificate No.) 01-Jul-13 (TMC, No.JW13-044) 01-Jul-13 (TMC, No.JW13-044)	Scheduled Calibration Jun-14 Jun-14
All calibrations have been humidity<70%. Calibration Equipment used Primary Standards Power Meter NRP2 Power sensor NRP-Z91 Power sensor NRP-Z91	(M&TE critical fo ID # 101919 101547 101548	or calibration) Cal Date(Calibrated by, Certificate No.) 01-Jul-13 (TMC, No.JW13-044) 01-Jul-13 (TMC, No.JW13-044) 01-Jul-13 (TMC, No.JW13-044)	Scheduled Calibration Jun-14 Jun-14 Jun-14
All calibrations have been humidity<70%. Calibration Equipment used Primary Standards Power Meter NRP2 Power sensor NRP-Z91 Power sensor NRP-Z91 Reference10dBAttenuator	(M&TE critical for ID # 101919 101547 101548 BT0520	or calibration) Cal Date(Calibrated by, Certificate No.) 01-Jul-13 (TMC, No.JW13-044) 01-Jul-13 (TMC, No.JW13-044) 01-Jul-13 (TMC, No.JW13-044) 12-Dec-12(TMC,No.JZ12-867)	Scheduled Calibration Jun-14 Jun-14 Jun-14 Dec-14
All calibrations have been humidity<70%. Calibration Equipment used Primary Standards Power Meter NRP2 Power sensor NRP-Z91 Power sensor NRP-Z91	(M&TE critical fo ID # 101919 101547 101548 BT0520 BT0267	or calibration) Cal Date(Calibrated by, Certificate No.) 01-Jul-13 (TMC, No.JW13-044) 01-Jul-13 (TMC, No.JW13-044) 01-Jul-13 (TMC, No.JW13-044) 12-Dec-12(TMC,No.JZ12-867) 12-Dec-12(TMC,No.JZ12-866)	Scheduled Calibration Jun-14 Jun-14 Jun-14 Dec-14 Dec-14 Dec-14
All calibrations have been humidity<70%. Calibration Equipment used Primary Standards Power Meter NRP2 Power sensor NRP-Z91 Power sensor NRP-Z91 Reference10dBAttenuator Reference20dBAttenuator	(M&TE critical fo ID # 101919 101547 101548 BT0520 BT0267	or calibration) Cal Date(Calibrated by, Certificate No.) 01-Jul-13 (TMC, No.JW13-044) 01-Jul-13 (TMC, No.JW13-044) 01-Jul-13 (TMC, No.JW13-044) 12-Dec-12(TMC,No.JZ12-867)	Scheduled Calibration Jun-14 Jun-14 Jun-14 Dec-14
All calibrations have been humidity<70%. Calibration Equipment used Primary Standards Power Meter NRP2 Power sensor NRP-Z91 Power sensor NRP-Z91 Reference10dBAttenuator Reference20dBAttenuator Reference Probe EX3DV4 DAE4 Secondary Standards SignalGeneratorMG3700A	(M&TE critical fe ID # 101919 101547 101548 BT0520 BT0267 SN 3846 SN 1331 ID # 6201052605	Or calibration) Cal Date(Calibrated by, Certificate No.) 01-Jul-13 (TMC, No.JW13-044) 01-Jul-13 (TMC, No.JW13-044) 01-Jul-13 (TMC, No.JW13-044) 12-Dec-12(TMC, No.JZ12-867) 12-Dec-12(TMC, No.JZ12-866) 03-Sep-13(SPEAG, No.EX3-3846_Sep13) 23-Jan-14 (SPEAG, DAE4-1331_Jan14) Cal Date(Calibrated by, Certificate No.) 01-Jul-13 (TMC, No.JW13-045)	Scheduled Calibration Jun-14 Jun-14 Jun-14 Dec-14 Dec-14 Sep-14 Jan -15 Scheduled Calibration Jun-14
All calibrations have been humidity<70%. Calibration Equipment used Primary Standards Power Meter NRP2 Power sensor NRP-Z91 Power sensor NRP-Z91 Reference10dBAttenuator Reference20dBAttenuator Reference Probe EX3DV4 DAE4 Secondary Standards	Conducted in (M&TE critical for ID # 101919 101547 101548 BT0520 BT0267 SN 3846 SN 1331 ID # 6201052605 MY46110673	Cal Date(Calibrated by, Certificate No.) 01-Jul-13 (TMC, No.JW13-044) 01-Jul-13 (TMC, No.JW13-044) 01-Jul-13 (TMC, No.JW13-044) 12-Dec-12(TMC, No.JZ12-867) 12-Dec-12(TMC, No.JZ12-866) 03-Sep-13(SPEAG, No.EX3-3846_Sep13) 23-Jan-14 (SPEAG, DAE4-1331_Jan14) Cal Date(Calibrated by, Certificate No.)	Scheduled Calibration Jun-14 Jun-14 Jun-14 Dec-14 Dec-14 Sep-14 Jan -15 Scheduled Calibration Jun-14 Feb-15
All calibrations have been humidity<70%. Calibration Equipment used Primary Standards Power Meter NRP2 Power sensor NRP-Z91 Power sensor NRP-Z91 Reference10dBAttenuator Reference20dBAttenuator Reference Probe EX3DV4 DAE4 Secondary Standards SignalGeneratorMG3700A	(M&TE critical fe ID # 101919 101547 101548 BT0520 BT0267 SN 3846 SN 1331 ID # 6201052605	Or calibration) Cal Date(Calibrated by, Certificate No.) 01-Jul-13 (TMC, No.JW13-044) 01-Jul-13 (TMC, No.JW13-044) 01-Jul-13 (TMC, No.JW13-044) 12-Dec-12(TMC, No.JZ12-867) 12-Dec-12(TMC, No.JZ12-866) 03-Sep-13(SPEAG, No.EX3-3846_Sep13) 23-Jan-14 (SPEAG, DAE4-1331_Jan14) Cal Date(Calibrated by, Certificate No.) 01-Jul-13 (TMC, No.JW13-045) 15-Feb-14 (TMC, No.JZ14-781)	Scheduled Calibration Jun-14 Jun-14 Jun-14 Dec-14 Dec-14 Sep-14 Jan -15 Scheduled Calibration Jun-14
All calibrations have been humidity<70%. Calibration Equipment used Primary Standards Power Meter NRP2 Power sensor NRP-Z91 Power sensor NRP-Z91 Reference10dBAttenuator Reference20dBAttenuator Reference Probe EX3DV4 DAE4 Secondary Standards SignalGeneratorMG3700A Network Analyzer E5071C	Conducted in (M&TE critical fo ID # 101919 101547 101548 BT0520 BT0267 SN 3846 SN 1331 ID # 6201052605 MY46110673 Name	Cal Date(Calibrated by, Certificate No.) 01-Jul-13 (TMC, No.JW13-044) 01-Jul-13 (TMC, No.JW13-044) 01-Jul-13 (TMC, No.JW13-044) 01-Jul-13 (TMC, No.JW13-044) 12-Dec-12(TMC, No.JZ12-867) 12-Dec-12(TMC, No.JZ12-866) 03-Sep-13(SPEAG, No.EX3-3846_Sep13) 23-Jan-14 (SPEAG, DAE4-1331_Jan14) Cal Date(Calibrated by, Certificate No.) 01-Jul-13 (TMC, No.JZ14-781) Function	Scheduled Calibration Jun-14 Jun-14 Jun-14 Dec-14 Dec-14 Sep-14 Jan -15 Scheduled Calibration Jun-14 Feb-15

Certificate No: Z14-97030

Page 1 of 11

Glos: TSL NORM ConvF DCP CF A,B,C	tissue simulating liquid
TSL NORM ConvF DCP CF	tissue simulating liquid
NORM ConvF DCP CF	
ConvF DCP CF	1x v z sensitivity in free space
DCP CF	
CF	
C.BOMS common	diode compression point
	D modulation dependent linearization parameters
Construction of the	zation Φ Φ rotation around probe axis
	 action φ fortation around an axis that is in the plane normal to probe axis (at measurement cente θ=0 is normal to probe axis
Conne	ector Angle information used in DASY system to align probe sensor X to the robot coordinate system
Calib	ration is Performed According to the Following Standards:
a) IEE	E Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged
Spe	cific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices:
Mea	isurement Techniques", June 2013
b) IEC	62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used
in c	ose proximity to the ear (frequency range of 300MHz to 3GHz)", February 2005
	ods Applied and Interpretation of Parameters:
	ORMx,y,z: Assessed for E-field polarization θ=0 (f≤900MHz in TEM-cell; f≥1800MHz: waveguide).
	ORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not effect the
E	² -field uncertainty inside TSL (see below ConvF).
 N 	ORM(f)x, y, z = NORMx, y, z* frequency_response (see Frequency Response Chart). This
lin	earization is implemented in DASY4 software versions later than 4.2. The uncertainty of the
	equency response is included in the stated uncertainty of ConvF.
 Di (n 	<i>CPx,y,z</i> : DCP are numerical linearization parameters assessed based on the data of power sweep o uncertainty required). DCP does not depend on frequency nor media.
 P/ 	R: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal aracteristics.
	<i>x,y,z; Bx,y,z; Cx,y,z;VRx,y,z</i> :A,B,C are numerical linearization parameters assessed based on the
da	ta of power sweep for specific modulation signal. The parameters do not depend on frequency nor edia. VR is the maximum calibration range expressed in RMS voltage across the diode.
	onvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature
Tr	ansfer Standard for f≤800MHz) and inside waveguide using analytical field distributions based on
pc	wer measurements for f >800MHz. The same setups are used for assessment of the parameters
ap	plied for boundary compensation (alpha, depth) of which typical uncertainty valued are given.
Th	ese parameters are used in DASY4 software to improve probe accuracy close to the boundary.
Th	e sensitivity in TSL corresponds to NORMx, y, z* ConvF whereby the uncertainty corresponds to
	at given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which
	ows extending the validity from±50MHz to±100MHz.
	herical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat
	antom exposed by a patch antenna. ensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the
	bbe tip (on probe axis). No tolerance required.
	onnector Angle: The angle is assessed using the information gained by determining the NORMx
	D uncertainty required).

Certificate No: Z14-97030

Page 2 of 11

Add: No.52 Huayuanbei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 E-mail: Info@emcite.com Http://www.emcite.com

Probe EX3DV4

SN: 3844

Calibrated: May 19, 2014

Calibrated for DASY/EASY Systems (Note: non-compatible with DASY2 system!)

Certificate No: Z14-97030

Page 3 of 11

 Add: No.52 Huayuanbei Road, Haidian District, Beijing, 100191, China

 Tel: +86-10-62304633-2079
 Fax: +86-10-62304633-2504

 E-mail: Info@emeite.com
 Http://www.emeite.com

DASY – Parameters of Probe: EX3DV4 - SN: 3844

Basic Calibration Parameters

	Sensor X	Sensor Y	Sensor Z	Unc (k=2)
Norm(µV/(V/m) ²) ^A	0.34	0.40	0.18	±10.8%
DCP(mV) ⁸	104.3	98.9	98.6	

Modulation Calibration Parameters

UID	Communication System Name		A dB	B dBõV	С	D dB	VR mV	Unc ^E (k=2)
0 CW	CW	X	0.0	0.0	1.0	0.00	161.3	±3.9%
		Y	0.0	0.0	1.0		177.1	
		Z	0.0	0.0	1.0		103.2	

The reported uncertainty of measurement is stated as the standard uncertainty of Measurement multiplied by the coverage factor k=2, which for a normal distribution Corresponds to a coverage probability of approximately 95%.

^A The uncertainties of Norm X, Y, Z do not affect the E²-field uncertainty inside TSL (see Page 5 and Page 6).
 ^B Numerical linearization parameter: uncertainty not required.
 ^E Uncertainly is determined using the max. deviation from linear response applying rectangular distribution

and is expressed for the square of the field value.

Certificate No: Z14-97030

Page 4 of 11

 Add: No.52 Huayuanbei Road, Haidian District, Beijing, 100191, China

 Tel: +86-10-62304633-2079
 Fax: +86-10-62304633-2504

 E-mail: Info@emcite.com
 Http://www.emcite.com

DASY – Parameters of Probe: EX3DV4 - SN: 3844

f [MHz] ^C	Relative Permittivity ^F	Conductivity (S/m) ^F	ConvF X	ConvF Y	ConvF Z	Alpha ^G	Depth ^G (mm)	Unct. (k=2)
850	41.5	0.92	9.92	9.92	9.92	0.14	1.68	±12%
900	41.5	0.97	10.00	10.00	10.00	0.15	1.68	±12%
1750	40.1	1.37	8.76	8.76	8.76	0.13	2.28	±12%
1900	40.0	1.40	8.37	8.37	8.37	0.15	1.91	±12%
2000	40.0	1.40	8.38	8.38	8.38	0.14	2.31	±12%
2100	39.8	1.49	8.24	8.24	8.24	0.18	1.60	±12%
2300	39.5	1.67	8.16	8.16	8.16	0.44	0.84	±12%
2450	39.2	1.80	7.79	7,79	7.79	0.44	0.85	±12%
2600	39.0	1.96	7.50	7.50	7.50	0.45	0.85	±12%
3500	37.9	2.91	7.38	7.38	7.38	0.41	1.02	±13%
5200	36.0	4.66	5.68	5.68	5.68	0.42	1.23	±13%
5500	35.6	4.96	5.38	5.38	5.38	0.45	0.99	±13%
5800	35.3	5.27	5.09	5.09	5.09	0.51	1.30	±13%

Calibration Parameter Determined in Head Tissue Simulating Media

^C Frequency validity of ±100MHz only applies for DASY v4.4 and higher (Page 2), else it is restricted to ±50MHz. The uncertainty is the RSS of ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. ^F At frequency below 3 GHz, the validity of tissue parameters (ϵ and σ) can be relaxed to ±10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters. ^G Alpha/Depth are determined during calibration, SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ± 1% for frequencies below 3 GHz and below ± 2% for the frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary.

Certificate No: Z14-97030

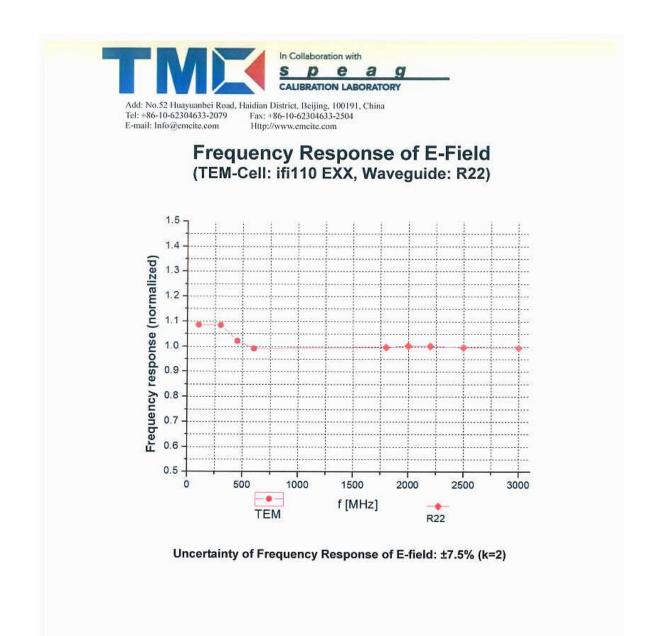
Page 5 of 11

 Add: No.52 Huayuanbei Road, Haidian District, Beijing, 100191, China

 Tcl: +86-10-62304633-2079
 Fax: +86-10-62304633-2504

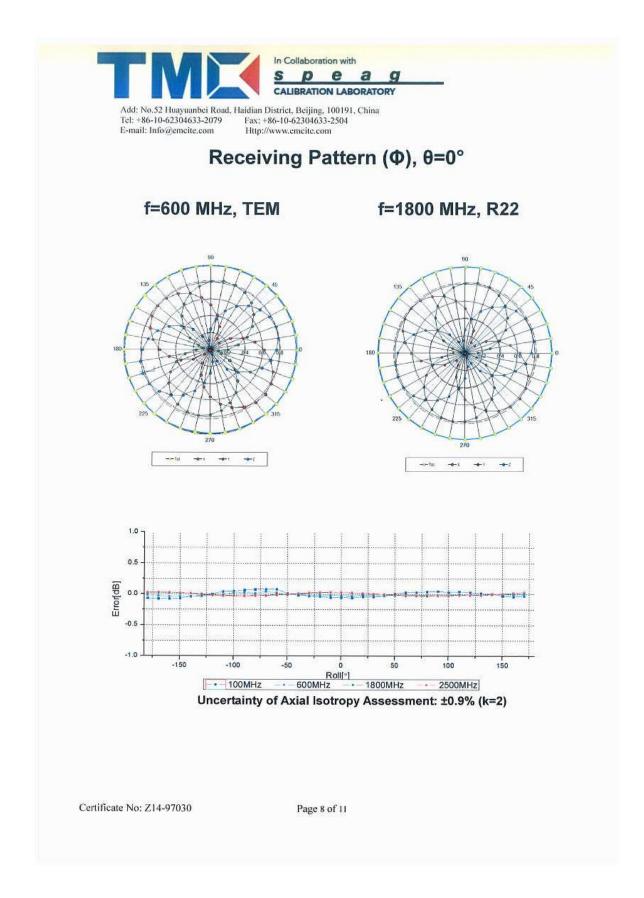
 E-mail: Info@emcite.com
 Http://www.emcite.com

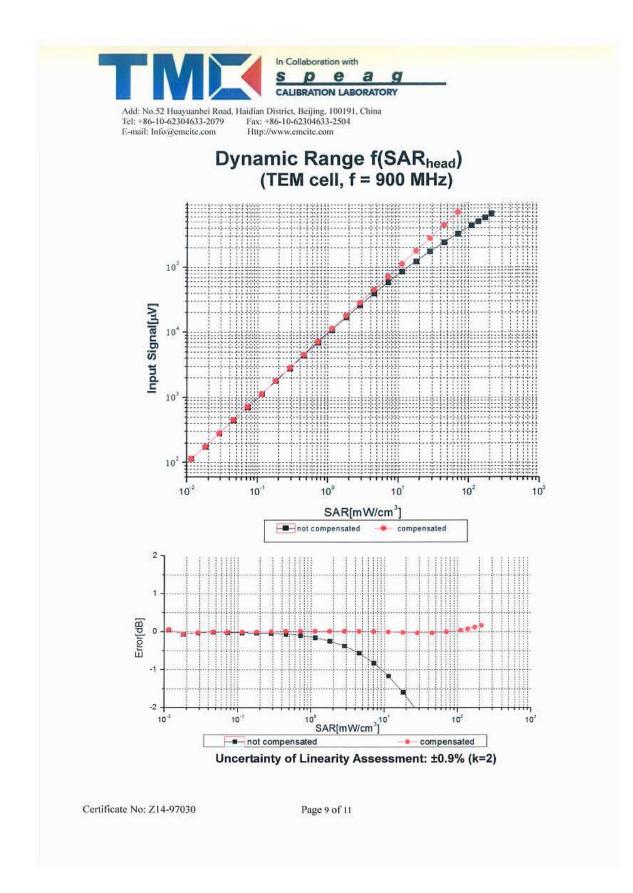
DASY – Parameters of Probe: EX3DV4 - SN: 3844

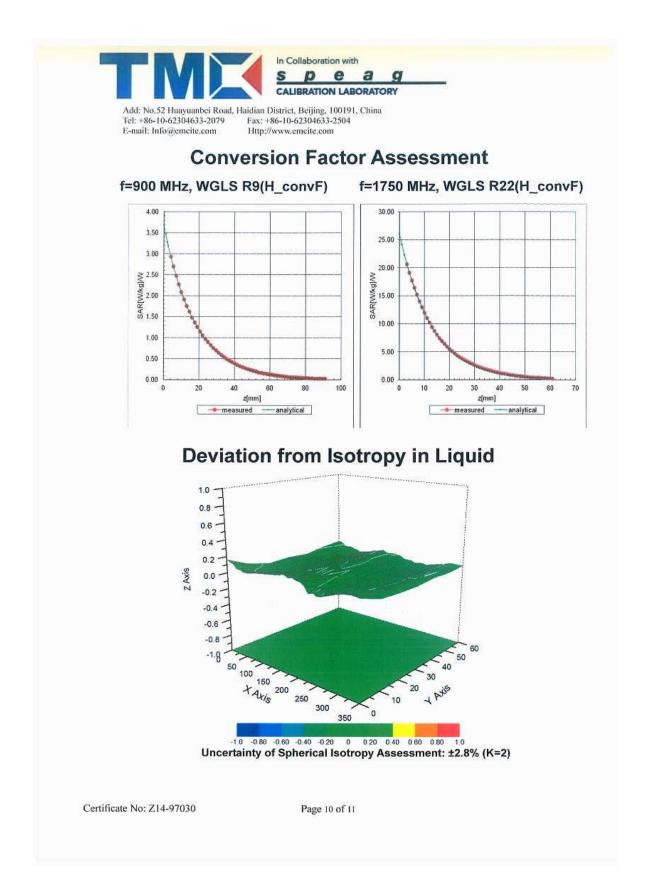

f [MHz] ^C	Relative Permittivity ^F	Conductivity (S/m) ^F	ConvF X	ConvF Y	ConvF Z	Alpha ^G	Depth ^G (mm)	Unct. (k=2)
850	55.2	0.99	9.77	9.77	9.77	0.21	1.33	±12%
900	55.0	1.05	9.79	9.79	9.79	0.32	1.05	±12%
1750	53.4	1.49	8.51	8.51	8.51	0.16	2.03	±12%
1900	53.3	1.52	7.99	7.99	7.99	0.15	2.68	±12%
2000	53.3	1.52	8.33	8.33	8.33	0.15	2.96	±12%
2100	53.2	1.62	8.22	8.22	8.22	0.16	3.30	±12%
2300	52.9	1.81	7.88	7.88	7.88	0.38	1.05	±12%
2450	52.7	1.95	7.64	7.64	7.64	0.39	1.00	±12%
2600	52.5	2.16	7.33	7.33	7.33	0.44	0.94	±12%
3500	51.3	3.31	7.00	7.00	7.00	0.44	1.08	±13%
5200	49.0	5.30	5.10	5.10	5.10	0.35	1.29	±13%
5500	48.6	5.65	4.45	4.45	4.45	0.39	1.52	±13%
5800	48.2	6.00	4.54	4.54	4.54	0.43	1.73	±13%

Calibration Parameter Determined in Body Tissue Simulating Media

^C Frequency validity of ±100MHz only applies for DASY v4.4 and higher (Page 2), else it is restricted to ±50MHz. The uncertainty is the RSS of ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. ^F At frequency below 3 GHz, the validity of tissue parameters (ϵ and σ) can be relaxed to ±10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters. ^G Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ± 1% for frequencies below 3 GHz and below ± 2% for the frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary.


Certificate No: Z14-97030


Page 6 of 11



Certificate No: Z14-97030

Page 7 of 11

 Add: No.52 Huayuanbei Road, Haidian District, Beijing, 100191, China

 Tel: +86-10-62304633-2079
 Fax: +86-10-62304633-2504

 E-mail: Info@emcite.com
 Http://www.emcite.com

DASY - Parameters of Probe: EX3DV4 - SN: 3844

Other Probe Parameters

Sensor Arrangement	Triangular
Connector Angle (°)	23.1
Mechanical Surface Detection Mode	enabled
Optical Surface Detection Mode	disable
Probe Overall Length	337mm
Probe Body Diameter	10mm
Tip Length	9mm
Tip Diameter	2.5mm
Probe Tip to Sensor X Calibration Point	1mm
Probe Tip to Sensor Y Calibration Point	1mm
Probe Tip to Sensor Z Calibration Point	1mm
Recommended Measurement Distance from Surface	2mm

Certificate No: Z14-97030

Page 11 of 11