Annex A. TEST INSTRUMENT & METHOD | Name of | Manufacturer | Type/Model | Serial Number | Calibration | Calibration | |--|--------------|---|-------------------|-------------|-------------| | Equipment | manaraotaror | Туролночог | Gorial Italiiboi | Date | Due | | P C | Compaq | PV 3.06GHz | 375052-AA1 | N/A | N/A | | Signal Generator | Agilent | 8665B-008 | 3744A10293 | 05/17/2011 | 05/17/2012 | | MultiMeter | Keithley | MiltiMeter 2000 | 1259033 | 06/21/2011 | 06/21/2012 | | S-Parameter Network | • | | | | | | Analyzer | Agilent | 8753ES | US39173518 | 08/04/2011 | 08/04/2012 | | Wireless Communication Test Set | R&S | CMU200 | 111078 | 07/22/2011 | 07/22/2012 | | Power Meter | HP | 437B | 3038A03648 | 05/17/2011 | 05/17/2012 | | E-field PROBE | SATIMO | SSE2 | SN 18/11 EPG122 | 07/19/2011 | 07/19/2012 | | DIPOLE 835 | SATIMO | DIPOLE 835MHz | SN 18/11 DIPC 150 | 06/01/2011 | 06/01/2012 | | DIPOLE 900 | SATIMO | DIPOLE 900MHz | SN 18/11 DIPC 151 | 06/01/2011 | 06/01/2012 | | DIPOLE 1800 | SATIMO | DIPOLE 1800MHz | SN 18/11 DIPC 152 | 06/01/2011 | 06/01/2012 | | DIPOLE 1900 | SATIMO | DIPOLE 1900MHz | SN 18/11 DIPG 153 | 06/01/2011 | 06/01/2012 | | DIPOLE 2000 | SATIMO | DIPOLE 2000MHz | SN 18/11 DIPC 154 | 06/01/2011 | 06/01/2012 | | DIPOLE 2450 | SATIMO | DIPOLE 2450MHz | SN 18/11 DIPJ 155 | 06/01/2011 | 06/01/2012 | | DIPOLE 3500 | SATIMO | DIPOLE 3500MHz | SN 18/11 DIPC 156 | 06/01/2011 | 06/01/2012 | | WaveGuide 5/6 GHz | SATIMO | Wave Guide 5/6GHz | SN 31/10 DIPWGA13 | 06/01/2011 | 06/01/2012 | | COMOHAC E-Field
Probe | SATIMO | EPH30 | SN 24/11 EPH30 | 06/01/2011 | 06/01/2012 | | COMOHAC H-Field
Probe | SATIMO | HPH42 | SN 43/10 HPH42 | 06/01/2011 | 06/01/2012 | | COMOSAR Open
Coaxial Probe | SATIMO | OCP43 | SN 24/11 OCPG43 | 06/01/2011 | 06/01/2012 | | T-Coil Probe | SATIMO | TCP21 | SN 24/11 TCP21 | 06/01/2011 | 06/01/2012 | | Communication Antenna | SATIMO | ANTA3 | SN 20/11 ANTA 3 | 06/20/2011 | 06/20/2012 | | Laptop POSITIONING
DEVICE | SATIMO | LSH15 | SN 24/11 LSH15 | N/A | N/A | | Mobile Phone
POSITIONING DEVICE | SATIMO | MSH73 | SN 24/11 MSH73 | N/A | N/A | | COMOHAC Broadband
Dipole 800-950 | SATIMO | COMOHAC
Broadband Dipole
800-950MHz | SN 24/11 DHA31 | 06/01/2011 | 06/01/2012 | | COMOHAC Broadband
Dipole 1700-2000 | SATIMO | COMOHAC
Broadband Dipole
1700-2000MHz | SN 24/11 DHB32 | 06/01/2011 | 06/01/2012 | | COMOHAC TELEPHONE MAGNETIC FIELD SIMULATOR | SATIMO | TMFS12 | | 06/01/2011 | 06/01/2012 | | DUMMY PROBE | ANTENNESSA | | DP41 | N/A | N/A | Serial# 11070106-SAR Issue Date Sep 28th 2011 Page 2 of 41 www.siemic.com | SAM PHANTOM | SATIMO | SAM87 | SN 24/11 SAM87 | N/A | N/A | |--|----------------------------|-------------|----------------|-----|-----| | Elliptic Phantom | SATIMO | ELLI20 | SN 20/11ELLI20 | N/A | N/A | | PHANTOM TABLE | SATIMO | N/A | N/A | N/A | N/A | | 6 AXIS ROBOT | KUKA | KR5 | 949272 | N/A | N/A | | High Power Solid State
Amplifier
(80MHz~1000MHz) | Instruments for Industry | CMC150 | M631-0408 | N/A | N/A | | Medium Power Solid
State Amplifier
(0.8~4.2GHz) | Instruments for Industry | S41-25 | M629-0408 | N/A | N/A | | Wave Tube Amplifier 4-
8 GHz at 20Watt | Hughes Aircraft
Company | 1277H02F000 | 81 | N/A | N/A | # **Annex B CALIBRATION REPORTS** Serial# 11070106-SAR Issue Date Sep 28th 2011 Page 4 of 41 www.siemic.com # **COMOSAR E-Field Probe Calibration Report** Ref: ACR.200.1.11.SATU.A # SIEMIC TESTING AND CERTIFICATION SERVICES SUITE 311, BUILDING 1, SECTION 30 ,NO.2 KEFA ROAD, SCIENCE AND TECHNOLOGY PARK NAN SHAN DISTRICT, SHENZHEN 518057, GUANGDONG ,P.R.C. SATIMO COMOSAR DOSIMETRIC E-FIELD PROBE SERIAL NO.: SN 18/11 EPG122 > Calibrated at SATIMO US 2105 Barrett Park Dr. - Kennesaw, GA 30144 # 06/01/2011 #### Summary: This document presents the method and results from an accredited COMOSAR Dosimetric E-Field Probe calibration performed in SATIMO USA using the CALISAR / CALIBAIR test bench, for use with a SATIMO COMOSAR system only. All calibration results are traceable to national metrology institutions. Serial# 11070106-SAR Issue Date Sep 28th 2011 Page 5 of 41 www.siemic.com #### COMOSAR E-FIELD PROBE CALIBRATION REPORT Ref: ACR.200.1.11.SATU.A | | Name | Function | Date | Signature | |--------------|---------------|-----------------|-----------|-----------------| | Prepared by: | Jérôme LUC | Product Manager | 7/19/2011 | JES | | Checked by: | Jérôme LUC | Product Manager | 7/19/2011 | Jes | | Approved by: | Kim RUTKOWSKI | Quality Manager | 7/19/2011 | them Putthowski | | | Customer Name | |----------------|---| | Distribution : | SIEMIC Testing
and Certification
Services | | Issue | Date | Modifications | |-------|-----------|-----------------| | A | 7/19/2011 | Initial release | | | | | | | | | | - | | * | | | | | Ref: ACR.200.1.11.SATU.A ### TABLE OF CONTENTS | 1 | De | vice Under Test4 | | |---|-----|-------------------------------|---| | 2 | Pro | duct Description4 | | | | 2.1 | General Information | 4 | | 3 | Me | asurement Method4 | | | | 3.1 | Linearity | 4 | | | 3.2 | Sensitivity | 5 | | | 3.3 | Lower Detection Limit | 5 | | | 3.4 | Isotropy | 5 | | | 3.5 | Boundary Effect | 5 | | 4 | Me | asurement Uncertainty5 | | | 5 | Cal | ibration Measurement Results6 | | | | 5.1 | Sensitivity in air | 6 | | | 5.2 | Linearity | 7 | | | 5.3 | Sensitivity in liquid | 7 | | | 5.4 | Isotropy | 8 | | 6 | Lis | t of Equipment10 | | Ref: ACR. 200.1.11. SATU. A ### 1 DEVICE UNDER TEST | Device Under Test | | | | |--|----------------------------------|--|--| | Device Type | COMOSAR DOSIMETRIC E FIELD PROBE | | | | Manufacturer | Satimo | | | | Model | SSE2 | | | | Serial Number | SN 18/11 EPG122 | | | | Product Condition (new / used) | new | | | | Frequency Range of Probe | 0.7 GHz-6GHz | | | | Resistance of Three Dipoles at Connector | Dipole 1: R1=0.189 MΩ | | | | | Dipole 2: R2=0.191 MΩ | | | | | Dipole 3: R3=0.184 MΩ | | | A yearly calibration interval is recommended. #### 2 PRODUCT DESCRIPTION #### 2.1 GENERAL INFORMATION Satimo's COMOSAR E field Probes are built in accordance to the IEEE 1528, OET 65 Bulletin C and CEI/IEC 62209 standards. Figure 1 – Satimo COMOSAR Dosimetric E field Dipole | Probe Length | 330 mm | |--|--------| | Length of Individual Dipoles | 2 mm | | Maximum external diameter | 8 mm | | Probe Tip External Diameter | 2.5 mm | | Distance between dipoles / probe extremity | 1 mm | #### 3 MEASUREMENT METHOD The IEEE 1528, OET 65 Bulletin C, CENELEC EN50361 and CEI/IEC 62209 standards provide recommended practices for the probe calibrations, including the performance characteristics of interest and methods by which to assess their affect. All calibrations / measurements performed meet the fore mentioned standards. ### 3.1 LINEARITY The evaluation of the linearity was done in free space using the waveguide, performing a power sweep to cover the SAR range 0.01W/kg to 100W/kg. Ref: ACR. 200.1.11. SATU.A #### 3.2 SENSITIVITY The sensitivity factors of the three dipoles were determined using a two step calibration method (air and tissue simulating liquid) using waveguides as outlined in the standards. #### 3.3 LOWER DETECTION LIMIT The lower detection limit was assessed using the same measurement set up as used for the linearity measurement. The required lower detection limit is 10 mW/kg. #### 3.4 ISOTROPY The axial isotropy was evaluated by exposing the probe to a reference wave from a standard dipole with the dipole mounted under the flat phantom in the test configuration suggested for system validations and checks. The probe was rotated along its main axis from 0 - 360 degrees in 15 degree steps. The hemispherical isotropy is determined by inserting the probe in a thin plastic box filled with tissue-equivalent liquid, with the plastic box illuminated with the fields from a half wave dipole. The dipole is rotated about its axis $(0^{\circ}-180^{\circ})$ in 15° increments. At each step the probe is rotated about its axis $(0^{\circ}-360^{\circ})$. #### 3.5 BOUNDARY EFFECT The boundary effect is defined as the deviation between the SAR measured data and the expected exponential decay in the liquid when the probe is oriented normal to the interface. To evaluate this effect, the liquid filled flat phantom is exposed to fields from either a reference dipole or waveguide. With the probe normal to the phantom surface, the peak spatial average SAR is measured and compared to the analytical value at the surface. #### 4 MEASUREMENT UNCERTAINTY The guidelines outlined in the IEEE 1528, OET 65 Bulletin C, CENELEC EN50361 and CEI/IEC 62209 standards were followed to generate the measurement uncertainty associated with an E-field probe calibration using the waveguide technique. All uncertainties listed below represent an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2, traceable to the Internationally Accepted Guides to Measurement Uncertainty. | Uncertainty analysis of the probe calibration in waveguide | | | | | | | |--|--------------------------|-----------------------------|------------|----|-----------------------------|--| | ERROR SOURCES | Uncertainty
value (%) | Probability
Distribution | Divisor | ci | Standard
Uncertainty (%) | | | Incident or forward power | 3.00% | Rectangular | $\sqrt{3}$ | 1 | 1.732% | | | Reflected power | 3.00% | Rectangular | $\sqrt{3}$ | 1 | 1.732% | | | Liquid conductivity | 5.00% | Rectangular | $\sqrt{3}$ | 1 | 2.887% | | | Liquid permittivity | 4.00% | Rectangular | $\sqrt{3}$ | 1 | 2.309% | | | Field homogeneity | 3.00% | Rectangular | $\sqrt{3}$ | 1 | 1.732% | | |
Field probe positioning | 5.00% | Rectangular | $\sqrt{3}$ | 1 | 2.887% | | | Field probe linearity | 3.00% | Rectangular | $\sqrt{3}$ | 1 | 1.732% | | Ref: ACR. 200.1.11. SATU. A | Combined standard uncertainty | | | 5.831% | |---|--|--|---------| | Expanded uncertainty
95 % confidence level k = 2 | | | 11.662% | #### 5 CALIBRATION MEASUREMENT RESULTS | Calibration Parameters | | | |------------------------|-------|--| | Liquid Temperature | 21 °C | | | Lab Temperature | 21 °C | | | Lab Humidity | 45 % | | # 5.1 SENSITIVITY IN AIR | Normx dipole 1 (μV/(V/m) ²) | Normy dipole 2 (μV/(V/m) ²) | Normz dipole $3 (\mu V/(V/m)^2)$ | |---|---|----------------------------------| | 0.89 | 0.98 | 0.22 | | DCP dipole 1 | DCP dipole 2 | DCP dipole 3 | |--------------|--------------|--------------| | (mV) | (mV) | (mV) | | 115 | 117 | 122 | Calibration curves ei=f(V) (i=1,2,3) allow to obtain H-field value using the formula: $$E = \sqrt{{E_1}^2 + {E_2}^2 + {E_3}^2}$$ Dipole 1 Dipole 2 Dipole 3 Page: 6/10 Ref: ACR.200.1.11.SATU.A ### 5.2 LINEARITY # Linearity: I+/-1.47% (+/-0.06dB) # 5.3 SENSITIVITY IN LIQUID | Liquid | Frequency | Permittivity | Epsilon (S/m) | ConvF | |--------|-----------|--------------|---------------|-------| | | (MHz +/- | | | | | | 100MHz) | | | | | HL850 | 835 | 43.04 | 0.88 | 6.04 | | BL850 | 835 | 54.21 | 0.98 | 6.21 | | HL900 | 900 | 41.99 | 0.96 | 5.84 | | BL900 | 900 | 53.68 | 1.04 | 6.06 | | HL1800 | 1750 | 38.73 | 1.37 | 5.78 | | BL1800 | 1750 | 53.55 | 1.51 | 5.99 | | HL1900 | 1880 | 38.51 | 1.42 | 6.18 | | BL1900 | 1880 | 54.65 | 1.54 | 6.38 | | HL2000 | 1950 | 38.55 | 1.46 | 5.75 | | BL2000 | 1950 | 53.54 | 1.49 | 5.87 | | HL2450 | 2450 | 38.77 | 1.88 | 5.81 | | BL2450 | 2450 | 52.36 | 1.97 | 5.98 | | HL3500 | 3500 | 38.69 | 2.87 | 6.03 | | BL3500 | 3500 | 51.87 | 3.21 | 6.27 | | HL5200 | 5200 | 36.80 | 4.87 | 4.93 | | BL5200 | 5200 | 49.25 | 5.06 | 5.09 | | HL5500 | 5500 | 35.83 | 5.35 | 4.69 | | BL5500 | 5500 | 48.28 | 5.58 | 4.91 | | HL5800 | 5800 | 34.75 | 5.77 | 4.71 | | BL5800 | 5800 | 47.51 | 6.07 | 4.84 | LOWER DETECTION LIMIT: 7mW/kg Ref: ACR. 200.1.11. SATU.. ## 5.4 ISOTROPY # HL900 MHz - Axial isotropy: 0.05 dB - Hemispherical isotropy: 0.07 dB # HL1800 MHz - Axial isotropy: 0.05 dB - Hemispherical isotropy: 0.08 dB Ref: ACR.200.1.11.SATU.A ### HL5500 MHz - Axial isotropy: 0.09 dB - Hemispherical isotropy: 0.13 dB Serial# 11070106-SAR Issue Date Sep 28th 2011 Page 13 of 41 www.siemic.com ### COMOSAR E-FIELD PROBE CALIBRATION REPORT Ref: ACR.200.1.11.SATU.A # 6 LIST OF EQUIPMENT | Equipment Summary Sheet | | | | | | |----------------------------------|-------------------------|--------------------|---|---|--| | Equipment
Description | Manufacturer /
Model | Identification No. | Current
Calibration Date | Next Calibration
Date | | | Flat Phantom | Satimo | SN-20/09-SAM71 | Validated. No cal
required. | Validated. No cal
required. | | | COMOSAR Test Bench | Version 3 | NA | Validated. No cal
required. | Validated. No cal
required. | | | Network Analyzer | Rhode & Schwarz
ZVA | SN100132 | 02/2010 | 02/2013 | | | Reference Probe | Satimo | EP 94 SN 37/08 | Characterized prior to test. No cal required. | Characterized prior to test. No cal required. | | | Multimeter | Keithley 2000 | 1188656 | 11/2010 | 11/2013 | | | Signal Generator | Agilent E4438C | MY49070581 | 12/2010 | 12/2013 | | | Amplifier | Aethercomm | SN 046 | Characterized prior to test. No cal required. | Characterized prior to test. No cal required. | | | Power Meter | HP E4418A | US38261498 | 11/2010 | 11/2013 | | | Power Sensor | HP ECP-E26A | US37181460 | 11/2010 | 11/2013 | | | Directional Coupler | Narda 4216-20 | 01386 | Characterized prior to test. No cal required. | Characterized prior to test. No cal required. | | | Waveguide | Mega Industries | 069Y7-158-13-712 | Validated. No cal
required. | Validated. No cal required. | | | Waveguide Transition | Mega Industries | 069Y7-158-13-701 | Validated. No cal
required. | Validated. No cal
required. | | | Waveguide Termination | Mega Industries | 069Y7-158-13-701 | Validated. No cal
required. | Validated. No cal
required. | | | Temperature / Humidity
Sensor | Control Company | 11-661-9 | 3/2010 | 3/2012 | | Serial# 11070106-SAR Issue Date Sep 28th 2011 Page 14 of 41 www.siemic.com # SAR Reference Dipole Calibration Report Ref: ACR.158.4.11.SATU.A # SIEMIC TESTING AND CERTIFICATION SERVICES SUITE 311, BUILDING 1, SECTION 30 ,NO.2 KEFA ROAD, SCIENCE AND TECHNOLOGY PARK NAN SHAN DISTRICT, SHENZHEN 518057, GUANGDONG ,P.R.C. # SATIMO COMOSAR REFERENCE DIPOLE Calibrated at SATIMO US 2105 Barrett Park Dr. - Kennesaw, GA 30144 # 06/01/2011 ## Summary: This document presents the method and results from an accredited SAR reference dipole calibration performed in SATIMO USA using the COMOSAR test bench. All calibration results are traceable to national metrology institutions. Serial# 11070106-SAR Issue Date Sep 28th 2011 Page 15 of 41 www.siemic.com ### SAR REFERENCE DIPOLE CALIBRATION REPORT Ref: ACR, 158.4.11, SATU.A | | Name | Function | Date | Signature | |---------------|---------------|-----------------|----------|----------------| | Prepared by : | Jérôme LUC | Product Manager | 6/7/2011 | JES | | Checked by: | Jérôme LUC | Product Manager | 6/7/2011 | JES | | Approved by: | Kim RUTKOWSKI | Quality Manager | 6/7/2011 | sum Prothowski | | | Customer Name | |----------------|---| | Distribution : | SIEMIC Testing
and Certification
Services | | Issue | Date | Modifications | | |----------|----------|-----------------|--| | A | 6/7/2011 | Initial release | | | <u>l</u> | | | | | 10 | | | | | | | | | Serial# 11070106-SAR Issue Date Sep 28th 2011 Page 16 of 41 www.siemic.com ### SAR REFERENCE DIPOLE CALIBRATION REPORT Ref: ACR. 158.4.11. SATU. A # TABLE OF CONTENTS | 1 | Intro | oduction4 | | |---|-------|------------------------------|---| | 2 | Dev | ice Under Test4 | | | 3 | Proc | luct Description4 | | | | 3.1 | General Information | 4 | | 4 | Mea | surement Method5 | | | | 4.1 | Return Loss Requirements | 5 | | | 4.2 | Mechanical Requirements | 5 | | 5 | Mea | surement Uncertainty5 | | | | 5.1 | Return Loss | 5 | | | 5.2 | Dimension Measurement | 5 | | | 5.3 | Validation Measurement | 5 | | 6 | Cali | bration Measurement Results6 | | | | 6.1 | Return Loss | 6 | | | 6.2 | Mechanical Dimensions | 6 | | 7 | Vali | dation measurement7 | | | | 7.1 | Measurement Condition | 7 | | | 7.2 | Head Liquid Measurement | 7 | | | 7.3 | Measurement Result | 8 | | 8 | List | of Equipment8 | | Ref: ACR. 158.4.11. SATU. A #### 1 INTRODUCTION This document contains a summary of the requirements set forth by the IEEE 1528, OET 65 Bulletin C and CEI/IEC 62209 standards for reference dipoles used for SAR measurement system validations and the measurements that were performed to verify that the product complies with the fore mentioned standards. ### 2 DEVICE UNDER TEST | Device Under Test | | | |--------------------------------|----------------------------------|--| | Device Type | COMOSAR 835 MHz REFERENCE DIPOLE | | | Manufacturer | Satimo | | | Model | SID835 | | | Serial Number | SN 18/11 DIPC150 | | | Product Condition (new / used) | new | | A yearly calibration interval is recommended. #### 3 PRODUCT DESCRIPTION ### 3.1 GENERAL INFORMATION Satimo's COMOSAR Validation Dipoles are built in accordance to the IEEE 1528, OET 65 Bulletin C and CEI/IEC 62209 standards. The product is designed for use with the COMOSAR test bench only. Figure 1 – Satimo COMOSAR Validation Dipole Serial# 11070106-SAR Issue Date Sep 28th 2011 Page 18 of 41 www.siemic.com #### SAR REFERENCE DIPOLE CALIBRATION REPORT Ref: ACR. 158.4.11. SATU. A #### 4 MEASUREMENT METHOD The IEEE 1528, OET 65 Bulletin C and CEI/IEC 62209 standards provide requirements for reference dipoles used for system validation measurements. The following measurements were performed to verify that the product complies with the fore mentioned standards. #### 4.1 RETURN LOSS REQUIREMENTS The dipole used for SAR system validation measurements and checks must have a return loss of -20 dB or better. The return loss measurement shall be performed against a liquid filled flat phantom, with the phantom constucted as outlined in the fore mentioned standards. # 4.2 MECHANICAL REQUIREMENTS The IEEE Std. 1528 and CEI/IEC 62209 standards specify the mechanical components and dimensions of the validation dipoles, with the dimensions frequency and phantom shell thickness dependent. The COMOSAR test bench employs a 2 mm phantom shell thickness therefore the dipoles sold for use with the COMOSAR test bench comply with the requirements set forth for a 2 mm phantom shell thickness. ## 5 MEASUREMENT UNCERTAINTY All uncertainties listed below represent an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2, traceable to the Internationally Accepted Guides to Measurement Uncertainty. ### 5.1 RETURN LOSS The following uncertainties apply to the return loss measurement: | Frequency band | Expanded Uncertainty on Return Loss | |----------------|-------------------------------------| | 400-6000MHz | 0.1 dB | #### 5.2 DIMENSION MEASUREMENT The following uncertainties apply to the dimension measurements: | Length (mm) | Expanded Uncertainty on Length | |-------------|--------------------------------| | 3 - 300 | 0.05 mm | ### 5.3 VALIDATION MEASUREMENT The guidelines outlined in the IEEE 1528, OET 65 Bulletin C, CENELEC EN50361 and CEI/IEC 62209 standards were followed to generate the measurement uncertainty for validation measurements. | Scan Volume | Expanded Uncertainty | |-------------|----------------------|
 1 g | 16.19 % | | 10 g | 15.86 % | Page: 5/9 Serial# 11070106-SAR Issue Date Sep 28th 2011 Page 19 of 41 www.siemic.cor #### SAR REFERENCE DIPOLE CALIBRATION REPORT Ref: ACR. 158.4.11. SATU.A ### 6 CALIBRATION MEASUREMENT RESULTS # 6.1 RETURN LOSS | Frequency (MHz) | Return Loss (dB) | Requirement (dB) | |-----------------|------------------|------------------| | 835 | -35.8 | -20 | # 6.2 MECHANICAL DIMENSIONS | Frequency MHz | L mm | | h m | h mm | | d mm | | |---------------|-------------|----------|-------------|----------|------------|----------|--| | | required | measured | required | measured | required | measured | | | 300 | 420.0 ±1 %. | | 250.0 ±1 %. | | 6.35 ±1 %. | | | | 450 | 290.0 ±1 %. | | 166.7 ±1 %. | | 6.35 ±1 %. | | | | 750 | 176.0 ±1 %. | | 100.0 ±1 %. | | 6.35 ±1 %. | | | | 835 | 161.0 ±1 %. | PASS | 89.8 ±1 %. | PASS | 3.6 ±1 %. | PASS | | | 900 | 149.0 ±1 %. | | 83.3 ±1 %. | | 3.6 ±1 %. | | | | 1450 | 89.1 ±1 %. | | 51.7 ±1 %. | | 3.6 ±1 %. | | | | 1500 | 80.5 ±1 %. | | 50.0 ±1 %. | | 3.6 ±1 %. | | | | 1640 | 79.0 ±1 %. | | 45.7 ±1 %. | | 3.6 ±1 %. | | | | 1750 | 75.2 ±1 %. | | 42.9 ±1 %. | | 3.6 ±1 %. | | | | 1800 | 72.0 ±1 %. | | 41.7 ±1 %. | | 3.6 ±1 %. | | | | 1900 | 68.0 ±1 %. | | 39.5 ±1 %. | | 3.6 ±1 %. | | | | 1950 | 66.3 ±1 %. | | 38.5 ±1 %. | | 3.6 ±1 %. | | | | 2000 | 64.5 ±1 %. | | 37.5 ±1 %. | | 3.6 ±1 %. | | | | 2100 | 61.0 ±1 %. | | 35.7 ±1 %. | | 3.6 ±1 %. | | | | 2300 | 55.5 ±1 %. | | 32.6 ±1 %. | | 3.6 ±1 %. | | | | 2450 | 51.5 ±1 %. | | 30.4 ±1 %. | | 3.6 ±1 %. | | | | 2600 | 48.5 ±1 %. | | 28.8 ±1 %. | | 3.6 ±1 %. | | | | 3000 | 41.5 ±1 %. | | 25.0 ±1 %. | | 3.6 ±1 %. | | | | 3500 | 37.0±1 %. | | 26.4 ±1 %. | | 3.6 ±1 %. | | | | 3700 | 34.7±1 %. | | 26.4 ±1 %. | | 3.6 ±1 %. | | | Page: 6/9 Ref: ACR, 158, 4, 11, SATU, A #### 7 VALIDATION MEASUREMENT The IEEE Std. 1528, OET 65 Bulletin C and CEI/IEC 62209 standards state that the system validation measurements must be performed using a reference dipole meeting the fore mentioned return loss and mechanical dimension requirements. The validation measurement must be performed against a liquid filled flat phantom, with the phantom constructed as outlined in the fore mentioned standards. Per the standards, the dipole shall be positioned below the bottom of the phantom, with the dipole length centered and parallel to the longest dimension of the flat phantom, with the top surface of the dipole at the described distance from the bottom surface of the phantom. # 7.1 MEASUREMENT CONDITION | Software | OPENSAR V4 | |---|--| | Phantom | SN 20/09 SAM71 | | Probe | SN 18/11 EPG122 | | Liquid | Head Liquid Values: eps': 43.0 sigma: 0.88 | | Distance between dipole center and liquid | 15.0 mm | | A rea scan resolution | dx=8mm/dy=8mm | | Zoon Scan Resolution | dx=8mm/dy=8m/dz=5mm | | Frequency | 835 MHz | | Input power | 20 dBm | | Liquid Temperature | 21 °C | | Lab Temperature | 21 °C | | Lab Humidity | 45 % | ## 7.2 HEAD LIQUID MEASUREMENT | Frequency
MHz | Relative per | Relative permittivity (ϵ_r') | | ity (σ) S/m | |------------------|--------------|---------------------------------------|-----------|-------------| | | required | measured | required | measured | | 300 | 45.3 ±5 % | | 0.87 ±5 % | | | 450 | 43.5 ±5 % | | 0.87 ±5 % | | | 750 | 41.9 ±5 % | | 0.89 ±5 % | | | 835 | 41.5 ±5 % | PASS | 0.90 ±5 % | PASS | | 900 | 41.5 ±5 % | | 0.97 ±5 % | | | 1450 | 40.5 ±5 % | | 1.20 ±5 % | | | 1500 | 40.4 ±5 % | | 1.23 ±5 % | | | 1640 | 40.2 ±5 % | | 1.31 ±5 % | | | 1750 | 40.1 ±5 % | | 1.37 ±5 % | | | 1800 | 40.0 ±5 % | | 1.40 ±5 % | | | 1900 | 40.0 ±5 % | | 1.40 ±5 % | | | 1950 | 40.0 ±5 % | | 1.40 ±5 % | | | 2000 | 40.0 ±5 % | | 1.40 ±5 % | | | 2100 | 39.8 ±5 % | | 1.49 ±5 % | | | 2300 | 39.5 ±5 % | | 1.67 ±5 % | | | 2450 | 39.2 ±5 % | | 1.80 ±5 % | | | 2600 | 39.0 ±5 % | | 1.96 ±5 % | | | 3000 | 38.5 ±5 % | | 2.40 ±5 % | | | 3500 | 37.9 ±5 % | | 2.91 ±5 % | | Page: 7/9 Ref: ACR. 158.4.11. SATU. A ### 7.3 MEASUREMENT RESULT The IEEE Std. 1528 and CEI/IEC 62209 standards state that the system validation measurements should produce the SAR values shown below (for phantom thickness of 2 mm), within the uncertainty for the system validation. All SAR values are normalized to 1 W forward power. In bracket, the measured SAR is given with the used input power. | Frequency
MHz | 1 g SAR (W/kg/W) | | 10 g SAR | (W/kg/W) | |------------------|------------------|-------------|----------|-------------| | | required | measured | required | measured | | 300 | 2.85 | | 1.94 | | | 450 | 4.58 | | 3.06 | | | 750 | 8.49 | | 5.55 | | | 835 | 9.56 | 9.59 (0.96) | 6.22 | 6.25 (0.62) | | 900 | 10.9 | | 6.99 | | | 1450 | 29 | | 16 | | | 1500 | 30.5 | | 16.8 | | | 1640 | 34.2 | | 18.4 | | | 1750 | 36.4 | | 19.3 | | | 1800 | 38.4 | | 20.1 | | | 1900 | 39.7 | | 20.5 | | | 1950 | 40.5 | | 20.9 | | | 2000 | 41.1 | | 21.1 | | | 2100 | 43.6 | | 21.9 | | | 2300 | 48.7 | | 23.3 | | | 2450 | 52.4 | | 24 | | | 2600 | 55.3 | | 24.6 | | | 3000 | 63.8 | | 25.7 | | | 3500 | 67.1 | | 25 | | Page: 8/9 This document shall not be reproduced, except in full or in part, without the written approval of SATIMO. The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of SATIMO. Serial# 11070106-SAR Issue Date Sep 28th 2011 Page 22 of 41 www.siemic.com ### SAR REFERENCE DIPOLE CALIBRATION REPORT Ref: ACR, 158.4.11.SATU.A # 8 LIST OF EQUIPMENT | | Equipment Summary Sheet | | | | | | |------------------------------------|-------------------------|--------------------|---|---|--|--| | Equipment
Description | Manufacturer /
Model | Identification No. | Current
Calibration Date | Next Calibration
Date | | | | Flat Phantom | Satimo | SN-20/09-SAM71 | Validated. No cal
required. | Validated. No cal required. | | | | COMOSAR Test Bench | Version 3 | NA | Validated. No cal required. | Validated. No cal
required. | | | | Network Analyzer | Rhode & Schwarz
ZVA | SN100132 | 02/2010 | 02/2013 | | | | Calipers | Carrera | CALIPER-01 | 12/2010 | 12/2013 | | | | Reference Probe | Satimo | EPG122 SN 18/11 | Characterized prior to test. No cal required. | Characterized prior to test. No cal required. | | | | Multimeter | Keithley 2000 | 1188656 | 11/2010 | 11/2013 | | | | Signal Generator | Agilent E4438C | MY49070581 | 12/2010 | 12/2013 | | | | Amplifier | Aethercomm | SN 046 | Characterized prior to test. No cal required. | Characterized prior to test. No cal required. | | | | Power Meter | HP E4418A | US38261498 | 11/2010 | 11/2013 | | | | Power Sensor | HP ECP-E26A | US37181460 | 11/2010 | 11/2013 | | | | Directional Coupler | Narda 4216-20 | 01386 | Characterized prior to test. No cal required. | Characterized prior to test. No cal required. | | | | Temperature and
Humidity Sensor | Control Company | 11-661-9 | 3/2010 | 3/2012 | | | Serial# 11070106-SAR Issue Date Sep 28th 2011 Page 23 of 41 www.siemic.com # SAR Reference Dipole Calibration Report Ref: ACR.158.7.11.SATU.A # SIEMIC TESTING AND CERTIFICATION SERVICES SUITE 311, BUILDING 1, SECTION 30 ,NO.2 KEFA ROAD, SCIENCE AND TECHNOLOGY PARK NAN SHAN DISTRICT, SHENZHEN 518057, GUANGDONG ,P.R.C. # SATIMO COMOSAR REFERENCE DIPOLE Calibrated at SATIMO US 2105 Barrett Park Dr. - Kennesaw, GA 30144 06/01/2011 ## Summary: This document presents the method and results from an accredited SAR reference dipole calibration performed in SATIMO USA using the COMOSAR test bench. All calibration results are traceable to national metrology institutions. Serial# 11070106-SAR Issue Date Sep 28th 2011 Page 24 of 41 www.siemic.com ### SAR REFERENCE DIPOLE CALIBRATION REPORT Ref: ACR. 158.7.11.SATU.A | | Name | Function | Date | Signature | |---------------|---------------|-----------------|----------|----------------| | Prepared by : | Jérôme LUC | Product Manager | 6/7/2011 | JES | | Checked by: | Jérôme LUC | Product Manager | 6/7/2011 | JES | | Approved by: | Kim RUTKOWSKI | Quality Manager | 6/7/2011 | sum Putthowski | | | Customer Name | |----------------|-------------------------------------| | Distribution : | SIEMIC Testing
and Certification | | | Services | | Issue | Date | Modifications | |-------|----------
--| | A | 6/7/2011 | Initial release | | | | | | | | | | | | | | 2 | | is a second of the t | Ref: ACR. 158.7.11.SATU.A # TABLE OF CONTENTS | 1 | Intro | duction4 | | |---|-------|------------------------------|---| | 2 | Devi | ce Under Test4 | | | 3 | Prod | uct Description4 | | | | 3.1 | General Information | 4 | | 4 | Mea | surement Method5 | | | | 4.1 | Return Loss Requirements | 5 | | | 4.2 | Mechanical Requirements | 5 | | 5 | Mea | surement Uncertainty5 | | | | 5.1 | Return Loss | 5 | | | 5.2 | Dimension Measurement | 5 | | | 5.3 | Validation Measurement | 5 | | 6 | Calil | oration Measurement Results6 | | | | 6.1 | Return Loss | 6 | | | 6.2 | Mechanical Dimensions | 6 | | 7 | Vali | dation measurement7 | | | | 7.1 | Measurement Condition | 7 | | | 7.2 | Head Liquid Measurement | 7 | | | 7.3 | Measurement Result | 8 | | 8 | List | of Equipment8 | | Ref: ACR. 158.7.11. SATU.A #### 1 INTRODUCTION This document contains a summary of the requirements set forth by the IEEE 1528, OET 65 Bulletin C and CEI/IEC 62209 standards for reference dipoles used for SAR measurement system validations and the measurements that were performed to verify that the product complies with the fore mentioned standards. #### 2 DEVICE UNDER TEST | Device Under Test | | | |--------------------------------|-----------------------------------|--| | Device Type | COMOSAR 1900 MHz REFERENCE DIPOLE | | | Manufacturer | Satimo | | | Model | SID1900 | | | Serial Number | SN 18/11 DIPG153 | | | Product Condition (new / used) | new | | A yearly calibration interval is recommended. #### 3 PRODUCT DESCRIPTION # 3.1 GENERAL INFORMATION Satimo's COMOSAR Validation Dipoles are built in accordance to the IEEE 1528, OET 65 Bulletin C and CEI/IEC 62209 standards. The product is designed for use with the COMOSAR test bench only. Figure 1 – Satimo COMOSAR Validation Dipole Serial# 11070106-SAR Issue Date Sep 28th 2011 Page 27 of 41 www.siemic.com #### SAR REFERENCE DIPOLE CALIBRATION REPORT Ref: ACR. 158.7.11. SATU.A #### 4 MEASUREMENT METHOD The IEEE 1528, OET 65 Bulletin C and CEI/IEC 62209 standards provide requirements for reference dipoles used for system validation measurements. The following measurements were performed to verify that the product complies with the fore mentioned standards. ### 4.1 RETURN LOSS REQUIREMENTS The dipole used for SAR system validation measurements and checks must have a return loss of -20 dB or better. The return loss measurement shall be performed against a liquid filled flat phantom, with the phantom constucted as outlined in the fore mentioned standards. ## 4.2 MECHANICAL REQUIREMENTS The IEEE Std. 1528 and CEI/IEC 62209 standards specify the mechanical components and dimensions of the validation dipoles, with the dimensions frequency and phantom shell thickness dependent. The COMOSAR test bench employs a 2 mm phantom shell thickness therefore the dipoles sold for use with the COMOSAR test bench comply with the requirements set forth for a 2 mm phantom shell thickness. #### 5 MEASUREMENT UNCERTAINTY All uncertainties listed below represent an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2, traceable to the Internationally Accepted Guides to Measurement Uncertainty. # 5.1 RETURN LOSS The following uncertainties apply to the return loss measurement: | Frequency band | Expanded Uncertainty on Return Loss | | |----------------|-------------------------------------|--| | 400-6000MHz | 0.1 dB | | ## 5.2 DIMENSION MEASUREMENT The following uncertainties apply to the dimension measurements: | Length (mm) | Expanded Uncertainty on Length | |-------------|--------------------------------| | 3 - 300 | 0.05 mm | #### 5.3 VALIDATION MEASUREMENT The guidelines outlined in the IEEE 1528, OET 65 Bulletin C, CENELEC EN50361 and CEI/IEC 62209 standards were followed to generate the measurement uncertainty for validation measurements. | Scan Volume | Expanded Uncertainty | |-------------|----------------------| | 1 g | 16.19 % | | 10 g | 15.86 % | Page: 5/9 Serial# 11070106-SAR Issue Date Sep 28th 2011 Page 28 of 41 www.siemic.com #### SAR REFERENCE DIPOLE CALIBRATION REPORT Ref: ACR. 158.7.11. SATU. A # 6 CALIBRATION MEASUREMENT RESULTS # 6.1 RETURN LOSS | Frequency (MHz) | Return Loss (dB) | Requirement (dB) | |-----------------|------------------|------------------| | 1900 | -25.9 | -20 | # 6.2 MECHANICAL DIMENSIONS | Frequency MHz | L mm | | Hz L mm h mm | d mm | | | |---------------|-------------|----------|--------------|----------|------------|----------| | | required | measured | required | measured | required | measured | | 300 | 420.0 ±1 %. | | 250.0 ±1 %. | | 6.35 ±1 %. | | | 450 | 290.0 ±1 %. | | 166.7 ±1 %. | | 6.35 ±1 %. | | | 750 | 176.0 ±1 %. | | 100.0 ±1 %. | | 6.35 ±1 %. | | | 835 | 161.0 ±1 %. | | 89.8 ±1 %. | | 3.6 ±1 %. | | | 900 | 149.0 ±1 %. | | 83.3 ±1 %. | | 3.6 ±1 %. | | | 1450 | 89.1 ±1 %. | | 51.7 ±1 %. | | 3.6 ±1 %. | | | 1500 | 80.5 ±1 %. | | 50.0 ±1 %. | | 3.6 ±1 %. | | | 1640 | 79.0 ±1 %. | | 45.7 ±1 %. | | 3.6 ±1 %. | | | 1750 | 75.2 ±1 %. | | 42.9 ±1 %. | | 3.6 ±1 %. | | | 1800 | 72.0 ±1 %. | | 41.7 ±1 %. | | 3.6 ±1 %. | | | 1900 | 68.0 ±1 %. | PASS | 39.5 ±1 %. | PASS | 3.6 ±1 %. | PASS | | 1950 | 66.3 ±1 %. | | 38.5 ±1 %. | | 3.6 ±1 %. | | | 2000 | 64.5 ±1 %. | | 37.5 ±1 %. | | 3.6 ±1 %. | | | 2100 | 61.0 ±1 %. | | 35.7 ±1 %. | | 3.6 ±1 %. | | | 2300 | 55.5 ±1 %. | | 32.6 ±1 %. | | 3.6 ±1 %. | | | 2450 | 51.5 ±1 %. | | 30.4 ±1 %. | | 3.6 ±1 %. | | | 2600 | 48.5 ±1 %. | | 28.8 ±1 %. | | 3.6 ±1 %. | | | 3000 | 41.5 ±1 %. | | 25.0 ±1 %. | | 3.6 ±1 %. | | | 3500 | 37.0±1 %. | | 26.4 ±1 %. | | 3.6 ±1 %. | | | 3700 | 34.7±1 %. | | 26.4 ±1 %. | | 3.6 ±1 %. | | Page: 6/9 Ref: ACR, 158, 7, 11, SATU, A #### 7 VALIDATION MEASUREMENT The IEEE Std. 1528, OET 65 Bulletin C and CEI/IEC 62209 standards state that the system validation measurements must be performed using a reference dipole meeting the fore mentioned return loss and mechanical dimension requirements. The validation measurement must be performed against a liquid filled flat phantom, with the phantom constructed as outlined in the fore mentioned standards. Per the standards, the dipole shall be positioned below the bottom of the phantom, with the dipole length centered and parallel to the longest dimension of the flat phantom, with the top surface of the dipole at the described distance from the bottom surface of the phantom. # 7.1 MEASUREMENT CONDITION | Software | OPENSAR V4 | |---|--| | Phantom | SN 20/09 SAM71 | | Probe | SN 18/11 EPG122 | | Liquid | Head Liquid Values: eps': 38.5 sigma: 1.42 | | Distance between dipole center and liquid | 10.0 mm | | Area scan resolution | dx=8mm/dy=8mm | | Zoon Scan Resolution | dx=8mm/dy=8m/dz=5mm | | Frequency | 1900 MHz | | Input power | 20 dBm | | Liquid Temperature | 21 °C | | Lab Temperature | 21 °C | | Lab Humidity | 45 % | #### 7.2 HEAD LIQUID MEASUREMENT | Frequency
MHz | Relative per | Relative permittivity (ϵ_{r}') | | ity (σ) S/m | |------------------|--------------|---|-----------|-------------| | | required | measured | required | measured | | 300 | 45.3 ±5 % | | 0.87 ±5 % | | | 450 | 43.5 ±5 % | | 0.87 ±5 % | | | 750 | 41.9 ±5 % | | 0.89 ±5 % | | | 835 | 41.5 ±5 % | | 0.90 ±5 % | | | 900 | 41.5 ±5 % | | 0.97 ±5 % | | | 1450 | 40.5 ±5 % | | 1.20 ±5 % | | | 1500 | 40.4 ±5 % | | 1.23 ±5 % | | | 1640 | 40.2 ±5 % | | 1.31 ±5 % | | | 1750 | 40.1 ±5 % | | 1.37 ±5 % | | | 1800 | 40.0 ±5 % | | 1.40 ±5 % | | | 1900 | 40.0 ±5 % | PASS | 1.40 ±5 % | PASS | | 1950 | 40.0 ±5 % | | 1.40 ±5 % | | | 2000 | 40.0 ±5 % | | 1.40 ±5 % | | | 2100 | 39.8 ±5 % | | 1.49 ±5 % | | | 2300 | 39.5 ±5 % | | 1.67 ±5 % | | | 2450 | 39.2 ±5 % | | 1.80 ±5 % | | | 2600 | 39.0 ±5 % | | 1.96 ±5 % | | | 3000 | 38.5 ±5 % | | 2.40 ±5 % | | |
3500 | 37.9 ±5 % | | 2.91 ±5 % | | Page: 7/9 Ref: ACR. 158.7.11.SATU.A # 7.3 MEASUREMENT RESULT The IEEE Std. 1528 and CEI/IEC 62209 standards state that the system validation measurements should produce the SAR values shown below (for phantom thickness of 2 mm), within the uncertainty for the system validation. All SAR values are normalized to 1 W forward power. In bracket, the measured SAR is given with the used input power. | Frequency
MHz | 1 g SAR (W/kg/W) | | 10 g SAR | (W/kg/W) | |------------------|------------------|--------------|----------|--------------| | | required | measured | required | measured | | 300 | 2.85 | | 1.94 | | | 450 | 4.58 | | 3.06 | | | 750 | 8.49 | | 5.55 | | | 835 | 9.56 | | 6.22 | | | 900 | 10.9 | | 6.99 | | | 1450 | 29 | | 16 | | | 1500 | 30.5 | | 16.8 | | | 1640 | 34.2 | | 18.4 | | | 1750 | 36.4 | | 19.3 | | | 1800 | 38.4 | | 20.1 | | | 1900 | 39.7 | 39.92 (3.99) | 20.5 | 20.49 (2.05) | | 1950 | 40.5 | | 20.9 | | | 2000 | 41.1 | | 21.1 | | | 2100 | 43.6 | | 21.9 | | | 2300 | 48.7 | | 23.3 | | | 2450 | 52.4 | | 24 | | | 2600 | 55.3 | | 24.6 | | | 3000 | 63.8 | | 25.7 | | | 3500 | 67.1 | | 25 | | Page: 8/9 This document shall not be reproduced, except in full or in part, without the written approval of SATIMO. The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of SATIMO. Serial# 11070106-SAR Issue Date Sep 28th 2011 Page 31 of 41 www.siemic.com ### SAR REFERENCE DIPOLE CALIBRATION REPORT Ref: ACR. 158.7.11. SATU.A # 8 LIST OF EQUIPMENT | | Equipment Summary Sheet | | | | |------------------------------------|-------------------------|-----------------|---|---| | Equipment
Description | - · · Identification No | | Current
Calibration Date | Next Calibration
Date | | Flat Phantom | Satimo | SN-20/09-SAM71 | Validated. No cal
required. | Validated. No cal
required. | | COMOSAR Test Bench | Version 3 | NA | Validated. No cal
required. | Validated. No cal
required. | | Network Analyzer | Rhode & Schwarz
ZVA | SN100132 | 02/2010 | 02/2013 | | Calipers | Carrera | CALIPER-01 | 12/2010 | 12/2013 | | Reference Probe | Satimo | EPG122 SN 18/11 | Characterized prior to test. No cal required. | Characterized prior to test. No cal required. | | Multimeter | Keithley 2000 | 1188656 | 11/2010 | 11/2013 | | Signal Generator | Agilent E4438C | MY49070581 | 12/2010 | 12/2013 | | Amplifier | Aethercomm | SN 046 | Characterized prior to test. No cal required. | Characterized prior to test. No cal required. | | Power Meter | HP E4418A | US38261498 | 11/2010 | 11/2013 | | Power Sensor | HP ECP-E26A | US37181460 | 11/2010 | 11/2013 | | Directional Coupler | Narda 4216-20 | 01386 | Characterized prior to test. No cal required. | Characterized prior to test. No cal required. | | Temperature and
Humidity Sensor | Control Company | 11-661-9 | 3/2010 | 3/2012 | Serial# 11070106-SAR Issue Date Sep 28th 2011 Page 32 of 41 www.siemic.com # SAR Reference Dipole Calibration Report Ref: ACR.158.9.11.SATU.A # SIEMIC TESTING AND CERTIFICATION SERVICES SUITE 311, BUILDING 1, SECTION 30 ,NO.2 KEFA ROAD, SCIENCE AND TECHNOLOGY PARK NAN SHAN DISTRICT, SHENZHEN 518057, GUANGDONG ,P.R.C. # SATIMO COMOSAR REFERENCE DIPOLE Calibrated at SATIMO US 2105 Barrett Park Dr. - Kennesaw, GA 30144 # 06/01/2011 # Summary: This document presents the method and results from an accredited SAR reference dipole calibration performed in SATIMO USA using the COMOSAR test bench. All calibration results are traceable to national metrology institutions. Serial# 11070106-SAR Issue Date Sep 28th 2011 Page 33 of 41 www.siemic.com #### SAR REFERENCE DIPOLE CALIBRATION REPORT Ref: ACR. 158.9.11. SATU.A | | Name | Function | Date | Signature | |--------------|---------------|-----------------|----------|---------------| | Prepared by: | Jérôme LUC | Product Manager | 6/7/2011 | JE | | Checked by: | Jérôme LUC | Product Manager | 6/7/2011 | JES | | Approved by: | Kim RUTKOWSKI | Quality Manager | 6/7/2011 | Jum Puthowski | | | Customer Name | |---------------|---| | Distribution: | SIEMIC Testing
and Certification
Services | | Issue | Date | Modifications | |-------|----------|-----------------| | A | 6/7/2011 | Initial release | | | | | | | | | | | | | Serial# 11070106-SAR Issue Date Sep 28th 2011 Page 34 of 41 www.siemic.com ### SAR REFERENCE DIPOLE CALIBRATION REPORT Ref: ACR. 158.9.11.SATU.A ### TABLE OF CONTENTS | 1 | Intro | Introduction4 | | | | | | |---|-------|------------------------------|---|--|--|--|--| | 2 | Devi | Device Under Test4 | | | | | | | 3 | Prod | uct Description4 | | | | | | | | 3.1 | General Information | 4 | | | | | | 4 | Mea | surement Method5 | | | | | | | | 4.1 | Return Loss Requirements | 5 | | | | | | | 4.2 | Mechanical Requirements | 5 | | | | | | 5 | Mea | surement Uncertainty5 | | | | | | | | 5.1 | Return Loss | 5 | | | | | | | 5.2 | Dimension Measurement | 5 | | | | | | | 5.3 | Validation Measurement | 5 | | | | | | 6 | Calil | oration Measurement Results6 | | | | | | | | 6.1 | Return Loss | 6 | | | | | | | 6.2 | Mechanical Dimensions | 6 | | | | | | 7 | Vali | dation measurement7 | | | | | | | | 7.1 | Measurement Condition | 7 | | | | | | | 7.2 | Head Liquid Measurement | 7 | | | | | | | 7.3 | Measurement Result | 8 | | | | | | 8 | List | of Equipment8 | | | | | | Ref: ACR. 158.9.11. SATU. A #### 1 INTRODUCTION This document contains a summary of the requirements set forth by the IEEE 1528, OET 65 Bulletin C and CEI/IEC 62209 standards for reference dipoles used for SAR measurement system validations and the measurements that were performed to verify that the product complies with the fore mentioned standards. #### 2 DEVICE UNDER TEST | Device Under Test | | | |--------------------------------|-----------------------------------|--| | Device Type | COMOSAR 2450 MHz REFERENCE DIPOLE | | | Manufacturer | Satimo | | | Model | SID2450 | | | Serial Number | SN 18/11 DIPJ155 | | | Product Condition (new / used) | new | | A yearly calibration interval is recommended. ## 3 PRODUCT DESCRIPTION ### 3.1 GENERAL INFORMATION Satimo's COMOSAR Validation Dipoles are built in accordance to the IEEE 1528, OET 65 Bulletin C and CEI/IEC 62209 standards. The product is designed for use with the COMOSAR test bench only. Figure 1 – Satimo COMOSAR Validation Dipole Serial# 11070106-SAR Issue Date Sep 28th 2011 Page 36 of 41 www.siemic.com #### SAR REFERENCE DIPOLE CALIBRATION REPORT Ref: ACR, 158, 9, 11, SATU, A #### 4 MEASUREMENT METHOD The IEEE 1528, OET 65 Bulletin C and CEI/IEC 62209 standards provide requirements for reference dipoles used for system validation measurements. The following measurements were performed to verify that the product complies with the fore mentioned standards. #### 4.1 RETURN LOSS REOUIREMENTS The dipole used for SAR system validation measurements and checks must have a return loss of -20 dB or better. The return loss measurement shall be performed against a liquid filled flat phantom, with the phantom constucted as outlined in the fore mentioned standards. #### 4.2 MECHANICAL REQUIREMENTS The IEEE Std. 1528 and CEI/IEC 62209 standards specify the mechanical components and dimensions of the validation dipoles, with the dimensions frequency and phantom shell thickness dependent. The COMOSAR test bench employs a 2 mm phantom shell thickness therefore the dipoles sold for use with the COMOSAR test bench comply with the requirements set forth for a 2 mm phantom shell thickness. #### 5 MEASUREMENT UNCERTAINTY All uncertainties listed below represent an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2, traceable to the Internationally Accepted Guides to Measurement Uncertainty. # 5.1 RETURN LOSS The following uncertainties apply to the return loss measurement: | Frequency band | Expanded Uncertainty on Return Loss | | |----------------|-------------------------------------|--| | 400-6000MHz | 0.1 dB | | #### 5.2 DIMENSION MEASUREMENT The following uncertainties apply to the dimension measurements: | Length (mm) | Expanded Uncertainty on Length | | |-------------|--------------------------------|--| | 3 - 300 | 0.05 mm | | #### 5.3 VALIDATION MEASUREMENT The guidelines outlined in the IEEE 1528, OET 65 Bulletin C, CENELEC EN50361 and CEI/IEC 62209 standards were followed to generate the measurement uncertainty for validation measurements. | Scan Volume | Expanded Uncertainty | |-------------|----------------------| | 1 g | 16.19 % | | 10 g | 15.86 % | Page: 5/9 Ref: ACR. 158.9.11. SATU.A # 6 CALIBRATION MEASUREMENT RESULTS # 6.1 RETURN LOSS | Frequency (MHz) | Return Loss (dB) | Requirement (dB) | |-----------------|------------------|------------------| | 2450 | -32.00 | -20 | # 6.2 MECHANICAL DIMENSIONS | Frequency MHz | L mm | | h mm | | d mm | | |---------------|-------------|----------|-------------|----------|-------------|----------| | | required | measured | required | measured | required | measured | | 300 | 420.0 ±1 %. | | 250.0 ±1 %. | | 6.35 ±1 %. | | | 450 | 290.0 ±1 %. | | 166.7 ±1 %. | | 6.35 ±1 %. | | | 750 | 176.0 ±1 %. | | 100.0 ±1 %. | | 6.35 ±1 %. | | | 835 | 161.0 ±1 %. | | 89.8 ±1 %. | | 3.6 ±1 %. | | | 900 | 149.0 ±1 %. | | 83.3 ±1 %. | | 3.6 ±1 %. | | | 1450 | 89.1 ±1 %. | | 51.7 ±1 %. | | 3.6 ±1 %. | | | 1500 | 80.5 ±1 %. | | 50.0 ±1 %. | | 3.6 ±1 %. | | | 1640 | 79.0 ±1 %. | | 45.7 ±1 %. | | 3.6 ±1 %. | | | 1750 | 75.2 ±1 %. | | 42.9 ±1 %. | | 3.6 ±1 %. | | | 1800 | 72.0 ±1 %. | | 41.7 ±1 %. | | 3.6 ±1 %. | | | 1900 | 68.0 ±1 %. | | 39.5 ±1 %. | | 3.6 ±1 %. | | | 1950 | 66.3 ±1 %. | | 38.5 ±1 %. | | 3.6 ±1 %. | | | 2000 | 64.5 ±1 %. | | 37.5 ±1 %. | | 3.6 ±1 %. | | | 2100 | 61.0 ±1 %. | | 35.7 ±1 %. | | 3.6 ±1 %. | | | 2300 | 55.5 ±1 %. | | 32.6
±1 %. | | 3.6 ±1 %. | | | 2450 | 51.5 ±1 %. | PASS | 30.4 ±1 %. | PASS | 3.6 ±1 %. | PASS | | 2600 | 48.5 ±1 %. | | 28.8 ±1 %. | | 3.6 ±1 %. | | | 3000 | 41.5 ±1 %. | | 25.0 ±1 %. | | 3.6 ±1 %. | | | 3500 | 37.0±1 %. | | 26.4 ±1 %. | | 3.6 ±1 %. | | | 3700 | 34.7±1 %. | | 26.4 ±1 %. | | 3.6 ±1 %. | | Page: 6/9 Serial# 11070106-SAR Issue Date Sep 28th 2011 Page 38 of 41 www.siemic.com #### SAR REFERENCE DIPOLE CALIBRATION REPORT Ref: ACR, 158, 9, 11, SATU, A #### 7 VALIDATION MEASUREMENT The IEEE Std. 1528, OET 65 Bulletin C and CEI/IEC 62209 standards state that the system validation measurements must be performed using a reference dipole meeting the fore mentioned return loss and mechanical dimension requirements. The validation measurement must be performed against a liquid filled flat phantom, with the phantom constructed as outlined in the fore mentioned standards. Per the standards, the dipole shall be positioned below the bottom of the phantom, with the dipole length centered and parallel to the longest dimension of the flat phantom, with the top surface of the dipole at the described distance from the bottom surface of the phantom. ## 7.1 MEASUREMENT CONDITION | Software | OPENSAR V4 | |---|--| | Phantom | SN 20/09 SAM71 | | Probe | SN 18/11 EPG122 | | Liquid | Head Liquid Values: eps' : 38.8 sigma : 1.88 | | Distance between dipole center and liquid | 10.0 mm | | Area scan resolution | dx=8mm/dy=8mm | | Zoon Scan Resolution | dx=8mm/dy=8m/dz=5mm | | Frequency | 2450 MHz | | Input power | 20 dBm | | Liquid Temperature | 21 °C | | Lab Temperature | 21 °C | | Lab Humidity | 45 % | ### 7.2 HEAD LIQUID MEASUREMENT | Frequency
MHz | Relative per | mittivity (ε_{r}) | Conductivity (a) S/m | | |------------------|--------------|---------------------------------|----------------------|----------| | | required | measured | required | measured | | 300 | 45.3 ±5 % | | 0.87 ±5 % | | | 450 | 43.5 ±5 % | | 0.87 ±5 % | | | 750 | 41.9 ±5 % | | 0.89 ±5 % | | | 835 | 41.5 ±5 % | | 0.90 ±5 % | | | 900 | 41.5 ±5 % | | 0.97 ±5 % | | | 1450 | 40.5 ±5 % | | 1.20 ±5 % | | | 1500 | 40.4 ±5 % | | 1.23 ±5 % | | | 1640 | 40.2 ±5 % | | 1.31 ±5 % | | | 1750 | 40.1 ±5 % | | 1.37 ±5 % | | | 1800 | 40.0 ±5 % | | 1.40 ±5 % | | | 1900 | 40.0 ±5 % | | 1.40 ±5 % | | | 1950 | 40.0 ±5 % | | 1.40 ±5 % | | | 2000 | 40.0 ±5 % | | 1.40 ±5 % | | | 2100 | 39.8 ±5 % | | 1.49 ±5 % | | | 2300 | 39.5 ±5 % | | 1.67 ±5 % | | | 2450 | 39.2 ±5 % | PASS | 1.80 ±5 % | PASS | | 2600 | 39.0 ±5 % | | 1.96 ±5 % | | | 3000 | 38.5 ±5 % | | 2.40 ±5 % | | | 3500 | 37.9 ±5 % | | 2.91 ±5 % | | Page: 7/9 Ref: ACR. 158.9.11. SATU. A # 7.3 MEASUREMENT RESULT The IEEE Std. 1528 and CEI/IEC 62209 standards state that the system validation measurements should produce the SAR values shown below (for phantom thickness of 2 mm), within the uncertainty for the system validation. All SAR values are normalized to 1 W forward power. In bracket, the measured SAR is given with the used input power. | Frequency
MHz | 1 g SAR (W/kg/W) | | 10 g SAR | (W/kg/W) | |------------------|------------------|--------------|----------|--------------| | | required | measured | required | measured | | 300 | 2.85 | | 1.94 | | | 450 | 4.58 | | 3.06 | | | 750 | 8.49 | | 5.55 | | | 835 | 9.56 | | 6.22 | | | 900 | 10.9 | | 6.99 | | | 1450 | 29 | | 16 | | | 1500 | 30.5 | | 16.8 | | | 1640 | 34.2 | | 18.4 | | | 1750 | 36.4 | | 19.3 | | | 1800 | 38.4 | | 20.1 | | | 1900 | 39.7 | | 20.5 | | | 1950 | 40.5 | | 20.9 | | | 2000 | 41.1 | | 21.1 | | | 2100 | 43.6 | | 21.9 | | | 2300 | 48.7 | | 23.3 | | | 2450 | 52.4 | 53.82 (5.38) | 24 | 24.12 (2.41) | | 2600 | 55.3 | | 24.6 | | | 3000 | 63.8 | | 25.7 | | | 3500 | 67.1 | | 25 | | Page: 8/9 Serial# 11070106-SAR Issue Date Sep 28th 2011 Page 40 of 41 www.siemic.com ### SAR REFERENCE DIPOLE CALIBRATION REPORT Ref: ACR. 158.9.11. SATU. A # 8 LIST OF EQUIPMENT | Equipment Summary Sheet | | | | | | | | |--|------------------------|--------------------|---|---|--|--|--| | Equipment Manufacturer / Description Model | | Identification No. | Current
Calibration Date | Next Calibration
Date | | | | | Flat Phantom | Satimo | SN-20/09-SAM71 | Validated. No cal
required. | Validated. No cal
required. | | | | | COMOSAR Test Bench | Version 3 | NA | Validated. No cal
required. | Validated. No cal
required. | | | | | Network Analyzer | Rhode & Schwarz
ZVA | SN100132 | 02/2010 | 02/2013 | | | | | Calipers | Carrera | CALIPER-01 | 12/2010 | 12/2013 | | | | | Reference Probe | Satimo | EPG122 SN 18/11 | Characterized prior to test. No cal required. | Characterized prior to test. No cal required. | | | | | Multimeter | Keithley 2000 | 1188656 | 11/2010 | 11/2013 | | | | | Signal Generator | Agilent E4438C | MY49070581 | 12/2010 | 12/2013 | | | | | Amplifier | Aethercomm | SN 046 | Characterized prior to test. No cal required. | Characterized prior to test. No cal required. | | | | | Power Meter | HP E4418A | US38261498 | 11/2010 | 11/2013 | | | | | Power Sensor | HP ECP-E26A | US37181460 | 11/2010 | 11/2013 | | | | | Directional Coupler | Narda 4216-20 | 01386 | Characterized prior to test. No cal required. | Characterized prior to test. No cal required. | | | | | Temperature and
Humidity Sensor | Control Company | 11-661-9 | 3/2010 | 3/2012 | | | | Serial# 11070106-SAR Issue Date Sep 28th 2011 Page 41 of 41 www.siemic.com # Annex C SAR System PHOTOGRAPHS Liquid depth ≥ 15cm