FCC SAR Test Report **APPLICANT** : Corporativo Lanix S.A. de C.V. **EQUIPMENT** : Mobile phone **BRAND NAME** : LANIX **MODEL NAME** : Ilium S520 MARKETING NAME : Ilium S520 **FCC ID** : ZC4S520 **STANDARD** : FCC 47 CFR Part 2 (2.1093) **ANSI/IEEE C95.1-1992** IEEE 1528-2003 We, SPORTON INTERNATIONAL (XI'AN) INC., would like to declare that the tested sample has been evaluated in accordance with the procedures and had been in compliance with the applicable technical standards. The test results in this report apply exclusively to the tested model / sample. Without written approval of SPORTON INTERNATIONAL (XI'AN) INC., the test report shall not be reproduced except in full. Reviewed by: Eric Huang / Deputy Manager Cole hyans Approved by: Jones Tsai / Manager **Report No. : FA462803** # SPORTON INTERNATIONAL (XI'AN) INC. 1F, Building A3, No. 39 Chuangye Rd., Xi'an Hi-tech Zone, Shanxi Province, P.R.C. TEL: +86-029-8860-8767 / FAX: +86-029-8860-8791 Issued Date: Aug. 01, 2014 Form version.: 140422 FCC ID: ZC4S520 Page 1 of 42 # **Table of Contents** | | Statement of Compliance | | |----|--|----| | | Administration Data | | | | Guidance Standard | | | 4. | Equipment Under Test (EUT) | 6 | | | 4.1 General Information | 6 | | | 4.2 Maximum Tune-up Limit | | | 5. | RF Exposure Limits | | | | 5.1 Uncontrolled Environment | | | | 5.2 Controlled Environment | | | 6. | Specific Absorption Rate (SAR) | | | | 6.1 Introduction | | | | 6.2 SAR Definition | | | 7. | System Description and Setup | | | | Measurement Procedures | | | ٠. | 8.1 Spatial Peak SAR Evaluation | | | | 8.2 Power Reference Measurement | 12 | | | 8.3 Area Scan | | | | 8.4 Zoom Scan | | | | 8.5 Volume Scan Procedures | | | | 8.6 Power Drift Monitoring | | | a | Test Equipment List | | | | . System Verification | | | | 10.1 Tissue Verification | | | | 10.2 System Performance Check Results | 16 | | 11 | . RF Exposure Positions | | | ٠. | 11.1 Ear and handset reference point | 17 | | | 11.2 Definition of the cheek position. | ι | | | 11.3 Definition of the tilt position | | | | 11.4 Body Worn Accessory | | | | 11.5 Wireless Router | | | 12 | Conducted RF Output Power (Unit: dBm) | | | | . Bluetooth Exclusions Applied | | | 1/ | . Antenna Location | 27 | | | . SAR Test Results | | | | 15.1 Head SAR | | | | 15.2 Hotspot SAR | | | | 15.3 Body Worn Accessory SAR | | | | 15.4 Repeated SAR Measurement | | | 16 | . Simultaneous Transmission Analysis | 34 | | | 16.1 Head Exposure Conditions | | | | 16.2 Hotspot Exposure Conditions | | | | 16.3 Body-Worn Accessory Exposure Conditions | 30 | | | 16.4 SPLSR Evaluation and Analysis | | | 17 | Uncertainty Assessment | ə | | | . References | | | | pendix A. Plots of System Performance Check | 42 | | | ppendix B. Plots of High SAR Measurement | | | | ppendix C. DASY Calibration Certificate | | | | ppendix C. DAST Cambration Certificate | | | | | | TEL: +86-029-8860-8767 / FAX: +86-029-8860-8791 FCC ID: ZC4S520 # **Revision History** **Report No. : FA462803** | REPORT NO. | VERSION | DESCRIPTION | ISSUED DATE | |------------|---------|-------------------------|---------------| | FA462803 | Rev. 01 | Initial issue of report | Aug. 01, 2014 | TEL: +86-029-8860-8767 / FAX: +86-029-8860-8791 Issued Date: Aug. 01, 2014 Form version. : 140422 FCC ID: ZC4S520 Page 3 of 42 # 1. Statement of Compliance The maximum results of Specific Absorption Rate (SAR) found during testing for **Corporativo Lanix S.A. de C.V., Mobile phone, Ilium S520** are as follows. **Report No. : FA462803** | | | | | Highest SA | AR Summary | | |--------------------|-------------------|-------------------|-----------------------------------|--|--|--| | Equipment
Class | Frequency
Band | Operating
Mode | Head
1g SAR (W/kg)
Gap(0cm) | Body-worn
1g SAR (W/kg)
Gap(1cm) | Wireless Router
1g SAR (W/kg)
Gap(1cm) | Simultaneous
Transmission SAR
(W/kg) | | | GSM850 | Voice/Data | 0.64 | 1.13 | 1.13 | 1.56 | | PCE | GSM1900 | Voice/Data | 0.14 | 0.45 | 0.45 | | | | WCDMA Band V | Voice/Data | 0.43 | 0.71 | 0.71 | | | | WCDMA Band II | Voice/Data | 0.14 | 0.34 | 0.37 | | | DTS | WLAN 2.4GHz Band | Data | 1.12 | 0.23 | 0.23 | 1.56 | | DSS | Bluetooth | Data | | | | 1.22 | | | Date of Testing: | | | Jul. 20, 2014 | ~ Jul. 29, 2014 | | This device is in compliance with Specific Absorption Rate (SAR) for general population/uncontrolled exposure limits (1.6 W/kg) specified in FCC 47 CFR part 2 (2.1093) and ANSI/IEEE C95.1-1992, and had been tested in accordance with the measurement methods and procedures specified in IEEE 1528-2003. # 2. Administration Data | Testing Laboratory | | | |--------------------|---|--| | Test Site | SPORTON INTERNATIONAL (XI'AN) INC. | | | | 1F, Building A3, No. 39 Chuangye Rd., Xi'an Hi-tech Zone, Shanxi Province, P. R. C. | | | Test Site Location | TEL: +86-029-8860-8767 | | | | FAX: +86-029-8860-8791 | | **Report No.: FA462803** | | Applicant | |--------------|--| | Company Name | Corporativo Lanix S.A. de C.V. | | Address | Carretera Internacional Hermosillo-Nogales Km 8.5, Hermosillo Sonora, Mexico | | | Manufacturer | |--------------|---| | Company Name | Tinno Mobile Technology Corp. | | | 4/F, H-3 Building, OCT Eastern industrial Park, No.1 XiangShan East Road., Nan Shan District, Shenzhen, P. R. China | # 3. Guidance Standard The Specific Absorption Rate (SAR) testing specification, method, and procedure for this device is in accordance with the following standards: - FCC 47 CFR Part 2 (2.1093) - ANSI/IEEE C95.1-1992 - IEEE 1528-2003 - FCC KDB 865664 D01 SAR Measurement 100 MHz to 6 GHz v01r03 - FCC KDB 865664 D02 SAR Reporting v01r01 - FCC KDB 447498 D01 General RF Exposure Guidance v05r02 - FCC KDB 648474 D04 SAR Evaluation Considerations for Wireless Handsets v01r02 - FCC KDB 248227 D01 SAR meas for 802 11abg v01r02 - FCC KDB 941225 D01 SAR test for 3G devices v02 - FCC KDB 941225 D02 HSPA and 1x Advanced v02r02 - FCC KDB 941225 D03 SAR Test Reduction GSM GPRS EDGE v01 - FCC KDB 941225 D06 Hotspot Mode SAR v01r01 # 4. Equipment Under Test (EUT) # 4.1 General Information | Mobile phone | |---| | Mobile priorie | | LANIX | | Ilium S520 | | Ilium S520 | | ZC4S520 | | 359755050001151 | | GSM850: 824.2 MHz ~ 848.8 MHz
GSM1900: 1850.2 MHz ~ 1909.8 MHz
WCDMA Band V: 826.4 MHz ~ 846.6 MHz
WCDMA Band II: 1852.4 MHz ~ 1907.6 MHz
WLAN 2.4GHz Band: 2412 MHz ~ 2462 MHz
Bluetooth: 2402 MHz ~ 2480 MHz | | •GSM/GPRS/EGPRS •RMC/AMR 12.2Kbps •HSDPA •HSUPA •HSPA+ (Downlink Only) •802.11b/g/n HT20/HT40 •Bluetooth v3.0+EDR, Bluetooth v4.0 LE | | V1.0 | | Ilium S520_TELCEL_SW_01_V03 | | Class B – EUT cannot support Packet Switched and Circuit Switched Network simultaneously but can automatically switch between Packet and Circuit Switched Network. | | Identical Prototype | | | **Report No. : FA462803** #### Remark: - 1. This device supported VoIP in GPRS / EGPRS, WCDMA (e.g. 3rd party VoIP). - 2. This device 2.4GHz WLAN supports Hotspot operation. - 3. This device supports GRPS/EGPRS mode up to multi-slot class12. - 4. This device does not support DTM operation. # 4.2 Maximum Tune-up Limit | Mode | Burst average power(dBm) | | | |-------------------------|--------------------------|----------|--| | Mode | GSM 850 | GSM 1900 | | | GSM (GMSK, 1 Tx slot) | 33.5 | 30.0 | | | GPRS (GMSK, 1 Tx slot) | 33.5 | 30.0 | | | GPRS (GMSK, 2 Tx slots) | 31.5 | 29.5 | | | GPRS (GMSK, 3 Tx slots) | 30.0 | 28.0 | | | GPRS (GMSK, 4 Tx slots) | 29.0 | 28.0 | | | EDGE (8PSK, 1 Tx slot) | 26.5 | 25.5 | | | EDGE (8PSK, 2 Tx slots) | 25.5 | 25.5 | | | EDGE (8PSK, 3 Tx slots) | 23.5 | 22.5 | | | EDGE (8PSK, 4 Tx slots) | 22.5 | 21.5 | | | Mode | Average power(dBm) | | | |-----------------|--------------------|---------------|--| | Wode | WCDMA Band V | WCDMA Band II | | | AMR 12.2Kbps | 23.5 | 23.0 | | | RMC 12.2Kbps | 23.5 | 23.0 | | | HSDPA Subtest-1 | 22.0 | 21.0 | | | HSDPA Subtest-2 | 22.0 | 21.0 | | | HSDPA Subtest-3 | 21.5 | 20.5 | | | HSDPA Subtest-4 | 21.5 | 20.5 | | | HSUPA Subtest-1 | 20.0 | 19.0 | | | HSUPA Subtest-2 | 20.0 | 19.0 | | | HSUPA Subtest-3 | 21.0 | 20.0 | | | HSUPA Subtest-4 | 19.5 | 18.5 | | | HSUPA Subtest-5 | 20.5 | 19.5 | | | | Mode | Maximum Average Power (dBm) | |--------------------|-------------------|-----------------------------| | | 802.11b | 15.0 | | 2.4011- | 802.11g | 13.0 | | 2.4GHz | 802.11n-HT20 | 13.0 | | | 802.11n-HT40 | 11.0 | | Bluetooth v3.0+EDR | | 6.0 | | ı | Bluetooth v4.0 LE | -1.0 | TEL: +86-029-8860-8767 / FAX: +86-029-8860-8791 FCC ID: ZC4S520 Page 7 of 42 Issued Date: Aug. 01, 2014 Form version.: 140422 **Report No. : FA462803** # 5. RF Exposure Limits ### 5.1 Uncontrolled Environment Uncontrolled Environments are defined as locations where there is the exposure of individuals who have no knowledge or control of their exposure. The general population/uncontrolled exposure limits are applicable to situations in which the general public may be exposed or in which persons who are exposed as a consequence of their employment may not be made fully aware of the potential for exposure or cannot exercise control over their
exposure. Members of the general public would come under this category when exposure is not employment-related; for example, in the case of a wireless transmitter that exposes persons in its vicinity. Report No.: FA462803 # 5.2 Controlled Environment Controlled Environments are defined as locations where there is exposure that may be incurred by persons who are aware of the potential for exposure, (i.e. as a result of employment or occupation). In general, occupational/controlled exposure limits are applicable to situations in which persons are exposed as a consequence of their employment, who have been made fully aware of the potential for exposure and can exercise control over their exposure. The exposure category is also applicable when the exposure is of a transient nature due to incidental passage through a location where the exposure levels may be higher than the general population/uncontrolled limits, but the exposed person is fully aware of the potential for exposure and can exercise control over his or her exposure by leaving the area or by some other appropriate means. ### Limits for Occupational/Controlled Exposure (W/kg) | Whole-Body | Partial-Body | Hands, Wrists, Feet and Ankles | |------------|--------------|--------------------------------| | 0.4 | 8.0 | 20.0 | ### Limits for General Population/Uncontrolled Exposure (W/kg) | Whole-Body | Partial-Body | Hands, Wrists, Feet and Ankles | |------------|--------------|--------------------------------| | 0.08 | 1.6 | 4.0 | 1. Whole-Body SAR is averaged over the entire body, partial-body SAR is averaged over any 1 gram of tissue defined as a tissue volume in the shape of a cube. SAR for hands, wrists, feet and ankles is averaged over any 10 grams of tissue defined as a tissue volume in the shape of a cube. TEL: +86-029-8860-8767 / FAX: +86-029-8860-8791 Issued Date: Aug. 01, 2014 Form version. : 140422 FCC ID: ZC4S520 Page 8 of 42 # 6. Specific Absorption Rate (SAR) # 6.1 Introduction SAR is related to the rate at which energy is absorbed per unit mass in an object exposed to a radio field. The SAR distribution in a biological body is complicated and is usually carried out by experimental techniques or numerical modeling. The standard recommends limits for two tiers of groups, occupational/controlled and general population/uncontrolled, based on a person's awareness and ability to exercise control over his or her exposure. In general, occupational/controlled exposure limits are higher than the limits for general population/uncontrolled. **Report No.: FA462803** ## 6.2 SAR Definition The SAR definition is the time derivative (rate) of the incremental energy (dW) absorbed by (dissipated in) an incremental mass (dm) contained in a volume element (dv) of a given density (p). The equation description is as below: $$SAR = \frac{d}{dt} \left(\frac{dW}{dm} \right) = \frac{d}{dt} \left(\frac{dW}{\rho dv} \right)$$ SAR is expressed in units of Watts per kilogram (W/kg) $$SAR = \frac{\sigma |E|^2}{\rho}$$ Where: σ is the conductivity of the tissue, ρ is the mass density of the tissue and E is the RMS electrical field strength. # 7. System Description and Setup The DASY system used for performing compliance tests consists of the following items: **Report No.: FA462803** - A standard high precision 6-axis robot with controller, teach pendant and software. An arm extension for accommodating the data acquisition electronics (DAE). - An isotropic Field probe optimized and calibrated for the targeted measurement. - A data acquisition electronics (DAE) which performs the signal amplification, signal multiplexing, AD-conversion, offset measurements, mechanical surface detection, collision detection, etc. The unit is battery powered with standard or rechargeable batteries. The signal is optically transmitted to the EOC. - The Electro-optical converter (EOC) performs the conversion from optical to electrical signals for the digital communication to the DAE. To use optical surface detection, a special version of the EOC is required. The EOC signal is transmitted to the measurement server. - The function of the measurement server is to perform the time critical tasks such as signal filtering, control of the robot operation and fast movement interrupts. - The Light Beam used is for probe alignment. This improves the (absolute) accuracy of the probe positioning. - A computer running WinXP or Win7 and the DASY5 software. - Remote control and teach pendant as well as additional circuitry for robot safety such as warning lamps, - The phantom, the device holder and other accessories according to the targeted measurement. # 8. Measurement Procedures The measurement procedures are as follows: #### <Conducted power measurement> (a) For WWAN power measurement, use base station simulator to configure EUT WWAN transmission in conducted connection with RF cable, at maximum power in each supported wireless interface and frequency band. **Report No.: FA462803** - (b) Read the WWAN RF power level from the base station simulator. - (c) For WLAN/BT power measurement, use engineering software to configure EUT WLAN/BT continuously transmission, at maximum RF power in each supported wireless interface and frequency band - (d) Connect EUT RF port through RF cable to the power meter, and measure WLAN/BT output power #### <SAR measurement> - (a) Use base station simulator to configure EUT WWAN transmission in radiated connection, and engineering software to configure EUT WLAN/BT continuously transmission, at maximum RF power, in the highest power channel. - (b) Place the EUT in the positions as Appendix D demonstrates. - (c) Set scan area, grid size and other setting on the DASY software. - (d) Measure SAR results for the highest power channel on each testing position. - (e) Find out the largest SAR result on these testing positions of each band - (f) Measure SAR results for other channels in worst SAR testing position if the reported SAR of highest power channel is larger than 0.8 W/kg According to the test standard, the recommended procedure for assessing the peak spatial-average SAR value consists of the following steps: - (a) Power reference measurement - (b) Area scan - (c) Zoom scan - (d) Power drift measurement ### 8.1 Spatial Peak SAR Evaluation The procedure for spatial peak SAR evaluation has been implemented according to the test standard. It can be conducted for 1g and 10g, as well as for user-specific masses. The DASY software includes all numerical procedures necessary to evaluate the spatial peak SAR value. The base for the evaluation is a "cube" measurement. The measured volume must include the 1g and 10g cubes with the highest averaged SAR values. For that purpose, the center of the measured volume is aligned to the interpolated peak SAR value of a previously performed area scan. The entire evaluation of the spatial peak values is performed within the post-processing engine (SEMCAD). The system always gives the maximum values for the 1g and 10g cubes. The algorithm to find the cube with highest averaged SAR is divided into the following stages: - (a) Extraction of the measured data (grid and values) from the Zoom Scan - (b) Calculation of the SAR value at every measurement point based on all stored data (A/D values and measurement parameters) - (c) Generation of a high-resolution mesh within the measured volume - (d) Interpolation of all measured values form the measurement grid to the high-resolution grid - (e) Extrapolation of the entire 3-D field distribution to the phantom surface over the distance from sensor to surface - (f) Calculation of the averaged SAR within masses of 1g and 10g FCC ID : ZC4S520 Page 11 of 42 Form version. : 140422 ### 8.2 Power Reference Measurement The Power Reference Measurement and Power Drift Measurements are for monitoring the power drift of the device under test in the batch process. The minimum distance of probe sensors to surface determines the closest measurement point to phantom surface. This distance cannot be smaller than the distance of sensor calibration points to probe tip as defined in the probe properties. **Report No.: FA462803** ### 8.3 Area Scan The area scan is used as a fast scan in two dimensions to find the area of high field values, before doing a fine measurement around the hot spot. The sophisticated interpolation routines implemented in DASY software can find the maximum found in the scanned area, within a range of the global maximum. The range (in dB0 is specified in the standards for compliance testing. For example, a 2 dB range is required in IEEE standard 1528 and IEC 62209 standards, whereby 3 dB is a requirement when compliance is assessed in accordance with the ARIB standard (Japan), if only one zoom scan follows the area scan, then only the absolute maximum will be taken as reference. For cases where multiple maximums are detected, the number of zoom scans has to be increased accordingly. Area scan parameters extracted from FCC KDB 865664 D01v01r03 SAR measurement 100 MHz to 6 GHz. | | ≤3 GHz | > 3 GHz | |--|--|--| | Maximum distance from closest measurement point (geometric center of probe sensors) to phantom surface | 5 ± 1 mm | $\frac{1}{2} \cdot \delta \cdot \ln(2) \pm 0.5 \text{ mm}$ | | Maximum probe angle from probe axis to phantom surface normal at the measurement location | 30° ± 1° | 20° ± 1° | | | \leq 2 GHz: \leq 15 mm
2 – 3 GHz: \leq 12 mm | $3 - 4 \text{ GHz}: \le 12 \text{ mm}$
$4 - 6 \text{ GHz}: \le 10 \text{ mm}$ | | Maximum area scan spatial resolution: Δx_{Area} , Δy_{Area} | When the x or y dimension of measurement
plane orientation the measurement resolution is x or y dimension of the test of measurement point on the test | on, is smaller than the above, must be \leq the corresponding device with at least one | ### 8.4 Zoom Scan Zoom scans are used assess the peak spatial SAR values within a cubic averaging volume containing 1 gram and 10 gram of simulated tissue. The zoom scan measures points (refer to table below) within a cube shoes base faces are centered on the maxima found in a preceding area scan job within the same procedure. When the measurement is done, the zoom scan evaluates the averaged SAR for 1 gram and 10 gram and displays these values next to the job's label. Report No. : FA462803 Zoom scan parameters extracted from FCC KDB 865664 D01v01r03 SAR measurement 100 MHz to 6 GHz. | | | | ≤3 GHz | > 3 GHz | |--|---|---|--|--| | Maximum zoom scan s | spatial reso | lution: Δx _{Zoom} , Δy _{Zoom} | \leq 2 GHz: \leq 8 mm
2 – 3 GHz: \leq 5 mm [*] | $3 - 4 \text{ GHz: } \le 5 \text{ mm}^*$
$4 - 6 \text{ GHz: } \le 4 \text{ mm}^*$ | | | uniform | grid: Δz _{Zoom} (n) | ≤ 5 mm | 3 – 4 GHz: ≤ 4 mm
4 – 5 GHz: ≤ 3 mm
5 – 6 GHz: ≤ 2 mm | | Maximum zoom scan
spatial resolution,
normal to phantom
surface | | Δz _{Zoom} (1): between 1 st two points closest to phantom surface | ≤ 4 mm | 3 – 4 GHz: ≤ 3 mm
4 – 5 GHz: ≤ 2.5 mm
5 – 6 GHz: ≤ 2 mm | | | urface graded grid Δz_{Zoo} betwee points | | $\leq 1.5 \cdot \Delta z_{Z_{00m}}(n-1)$ | | | Minimum zoom scan volume x, y, z | | ≥ 30 mm | 3 – 4 GHz: ≥ 28 mm
4 – 5 GHz: ≥ 25 mm
5 – 6 GHz: ≥ 22 mm | | Note: δ is the penetration depth of a plane-wave at normal incidence to the tissue medium; see draft standard IEEE P1528-2011 for details. ### 8.5 Volume Scan Procedures The volume scan is used for assess overlapping SAR distributions for antennas transmitting in different frequency bands. It is equivalent to an oversized zoom scan used in standalone measurements. The measurement volume will be used to enclose all the simultaneous transmitting antennas. For antennas transmitting simultaneously in different frequency bands, the volume scan is measured separately in each frequency band. In order to sum correctly to compute the 1g aggregate SAR, the EUT remain in the same test position for all measurements and all volume scan use the same spatial resolution and grid spacing. When all volume scan were completed, the software, SEMCAD postprocessor can combine and subsequently superpose these measurement data to calculating the multiband SAR. ### 8.6 Power Drift Monitoring All SAR testing is under the EUT install full charged battery and transmit maximum output power. In DASY measurement software, the power reference measurement and power drift measurement procedures are used for monitoring the power drift of EUT during SAR test. Both these procedures measure the field at a specified reference position before and after the SAR testing. The software will calculate the field difference in dB. If the power drifts more than 5%, the SAR will be retested. TEL: +86-029-8860-8767 / FAX: +86-029-8860-8791 Issued Date: Aug. 01, 2014 FCC ID : ZC4S520 Page 13 of 42 Form version. : 140422 When zoom scan is required and the <u>reported</u> SAR from the area scan based 1-g SAR estimation procedures of KDB 447498 is $\leq 1.4 \text{ W/kg}$, $\leq 8 \text{ mm}$, $\leq 7 \text{ mm}$ and $\leq 5 \text{ mm}$ zoom scan resolution may be applied, respectively, for 2 GHz to 3 GHz, 3 GHz to 4 GHz and 4 GHz to 6 GHz. # 9. Test Equipment List | Managartanan | Name of Emiliana | T /84 l - l | O serial Normalism | Calib | ration | | |---------------|---------------------------------|---------------|--------------------|---------------|---------------|--| | Manufacturer | Name of Equipment | Type/Model | Serial Number | Last Cal. | Due Date | | | SPEAG | 835MHz System Validation Kit | D835V2 | 4d151 | Mar. 25, 2013 | Mar. 23, 2015 | | | SPEAG | 1900MHz System Validation Kit | D1900V2 | 5d170 | Mar. 27, 2013 | Mar. 25, 2015 | | | SPEAG | 2450MHz System Validation Kit | D2450V2 | 908 | Mar. 26, 2013 | Mar. 24, 2015 | | | SPEAG | Data Acquisition Electronics | DAE4 | 1358 | Apr. 30, 2014 | Apr. 29, 2015 | | | SPEAG | Dosimetric E-Field Probe | EX3DV4 | 3911 | Apr. 22, 2014 | Apr. 21, 2015 | | | SPEAG | SAM Twin Phantom | QD 000 P40 CD | TP-1753 | NCR | NCR | | | SPEAG | SAM Twin Phantom | QD 000 P40 CD | TP-1754 | NCR | NCR | | | SPEAG | Phone Positioner | N/A | N/A | NCR | NCR | | | Agilent | Wireless Communication Test Set | E5515C | MY52102600 | Dec. 30, 2013 | Dec. 29, 2014 | | | Anritsu | Radio communication analyzer | MT8820C | 6201074235 | Nov. 05, 2013 | Nov. 04, 2014 | | | Agilent | ENA Series Network Analyzer | E5071C | MY46111157 | Dec. 30, 2013 | Dec. 29, 2014 | | | Agilent | Dielectric Probe Kit | 85070E | MY44300751 | NCR | NCR | | | Anritsu | Power Meter | ML2495A | 1005002 | Feb. 27, 2014 | Feb. 26, 2015 | | | Anritsu | Power Sensor | MA2411B | 917070 | Feb. 27, 2014 | Feb. 26, 2015 | | | R&S | Spectrum Analyzer | FSP7 | 101045 | Dec. 30, 2013 | Dec. 29, 2014 | | | Agilent | Dual Directional Coupler | 778D | 50422 | Not | te 1 | | | Woken | Attenuator | WK0602-XX | N/A | Not | te 1 | | | PE | Attenuator | PE7005-10 | N/A | Not | te 1 | | | PE | Attenuator | PE7005- 3 | N/A | Not | te 1 | | | AR | Power Amplifier | 5S1G4M2 | 0328767 | Note 1 | | | | Mini-Circuits | Power Amplifier | ZVE-3W | 162601250 | Note 1 | | | | Mini-Circuits | Power Amplifier | ZHL-42W+ | 13440021344 | Not | te 1 | | **Report No.: FA462803** #### **General Note:** - 1. Prior to system verification and validation, the path loss from the signal generator to the system check source and the power meter, which includes the amplifier, cable, attenuator and directional coupler, was measured by the network analyzer. The reading of the power meter was offset by the path loss difference between the path to the power meter and the path to the system check source to monitor the actual power level fed to the system check source. - 2. Referring to KDB 865664 D01v01r03, the dipole calibration interval can be extended to 3 years with justification. The dipoles are also not physically damaged, or repaired during the interval. - 3. The justification data of dipole D835V2, SN: 4d151, D1900V2, SN: 5d170, D2450V2, SN: 908 can be found in appendix C. The return loss is < -20dB, within 20% of prior calibration, the impedance is within 5 ohm of prior calibration. # 10. System Verification # 10.1 Tissue Verification The following tissue formulations are provided for reference only as some of the parameters have not been thoroughly verified. The composition of ingredients may be modified accordingly to achieve the desired target **Report No. : FA462803** tissue parameters required for routine SAR evaluation. | Frequency
(MHz) | Water
(%) | Sugar
(%) | Cellulose
(%) | Salt
(%) | Preventol
(%) | DGBE
(%) | Conductivity
(σ) | Permittivity
(εr) | |--------------------|--------------|--------------|------------------|-------------|------------------|-------------|---------------------|----------------------| | | | | | For Head | | | | | | 835 | 40.3 | 57.9 | 0.2 | 1.4 | 0.2 | 0 | 0.90 | 41.5 | | 1800, 1900, 2000 | 55.2 | 0 | 0 | 0.3 | 0 | 44.5 | 1.40 | 40.0 | | 2450 | 55.0 | 0 | 0 | 0 | 0 | 45.0 | 1.80 | 39.2 | | | | | | For Body | | | | | | 835 | 50.8 | 48.2 | 0 | 0.9 | 0.1 | 0 | 0.97 | 55.2 | | 1800, 1900, 2000 | 70.2 | 0 | 0 | 0.4 | 0 | 29.4 | 1.52 | 53.3 | | 2450 | 68.6 | 0 | 0 | 0 | 0 | 31.4 | 1.95 | 52.7 | ### <Tissue Dielectric Parameter Check Results> | Frequency
(MHz) | Tissue
Type | Liquid
Temp.
(°C) | Conductivity (σ) | Permittivity (ε _r) | Conductivity
Target (σ) | Permittivity
Target (ε _r) | Delta (σ)
(%) | Delta (ε _r)
(%) | Limit (%) | Date | |--------------------|----------------|-------------------------|------------------|--------------------------------|----------------------------|--|------------------|--------------------------------|-----------|---------------| | 835 | Head | 22.9 | 0.916 | 41.029 | 0.90 | 41.50 | 1.78 | -1.13 | ±5 | Jul. 22, 2014 | | 1900 | Head | 22.8 | 1.412 | 39.311 | 1.40 | 40.00 | 0.86 | -1.72 | ±5 | Jul. 21, 2014 | | 2450 | Head | 22.6 | 1.809 | 37.604 | 1.80 | 39.20 | 0.50 | -4.07 | ±5 | Jul. 29, 2014 | | 835 | Body | 22.7 | 0.975 | 54.261 | 0.97 | 55.2 | 0.52 | -1.70 | ±5 | Jul. 20, 2014 | | 1900 | Body | 22.6 | 1.528 | 53.974 | 1.52 | 53.30 | 0.53 | 1.26 | ±5 | Jul. 20, 2014 | | 2450 | Body | 22.6 | 1.984 | 51.165 | 1.95 | 52.70 | 1.74 | -2.91 | ±5 | Jul. 29, 2014 | # 10.2 System Performance Check Results Comparing to the original SAR value provided by SPEAG, the verification data should be within its specification of 10 %. Below table shows the target SAR and measured SAR after normalized to 1W input power. The table below indicates the system performance check can meet the variation criterion and the plots can be referred to Appendix A of this report. | Date | Frequency
(MHz) | Tissue
Type | Input
Power
(mW) | Dipole
S/N | Probe
S/N | DAE
S/N | Measured
SAR
(W/kg) | Targeted
S.AR
(W/kg) | Normalized
SAR
(W/kg) | Deviation
(%) | |---------------|--------------------|----------------|------------------------|---------------|--------------|------------|---------------------------|----------------------------|-----------------------------|------------------| | Jul. 22, 2014 | 835 | Head | 250 | 4d151 | 3911 | 1358 | 2.40 | 9.49 | 9.6 | 1.16 | | Jul. 21, 2014 | 1900 | Head | 250 |
5d170 | 3911 | 1358 | 10.20 | 40.20 | 40.8 | 1.49 | | Jul. 29, 2014 | 2450 | Head | 250 | 908 | 3911 | 1358 | 13.80 | 54.00 | 55.2 | 2.22 | | Jul. 20, 2014 | 835 | Body | 250 | 4d151 | 3911 | 1358 | 2.34 | 9.43 | 9.36 | -0.74 | | Jul. 20, 2014 | 1900 | Body | 250 | 5d170 | 3911 | 1358 | 9.88 | 41.20 | 39.52 | -4.08 | | Jul. 29, 2014 | 2450 | Body | 250 | 908 | 3911 | 1358 | 13.30 | 50.40 | 53.2 | 5.56 | Fig 8.3.1 System Performance Check Setup Fig 8.3.2 Setup Photo **Report No. : FA462803** # 11. RF Exposure Positions # 11.1 Ear and handset reference point Figure 9.1.1 shows the front, back, and side views of the SAM phantom. The center-of-mouth reference point is labeled "M," the left ear reference point (ERP) is marked "LE," and the right ERP is marked "RE." Each ERP is 15 mm along the B-M (back-mouth) line behind the entrance-to-ear-canal (EEC) point, as shown in Figure 9.1.2 The Reference Plane is defined as passing through the two ear reference points and point M. The line N-F (neck-front), also called the reference pivoting line, is normal to the Reference Plane and perpendicular to both a line passing through RE and LE and the B-M line (see Figure 9.1.3). Both N-F and B-M lines should be marked on the exterior of the phantom shell to facilitate handset positioning. Posterior to the N-F line the ear shape is a flat surface with 6 mm thickness at each ERP, and forward of the N-F line the ear is truncated, as illustrated in Figure 9.1.2. The ear truncation is introduced to preclude the ear lobe from interfering with handset tilt, which could lead to unstable positioning at the cheek. Fig 9.1.1 Front, back, and side views of SAM twin phantom Fig 9.1.2 Close-up side view of phantom showing the ear region. **Report No. : FA462803** Fig 9.1.3 Side view of the phantom showing relevant markings and seven cross-sectional plane locations TEL: +86-029-8860-8767 / FAX: +86-029-8860-8791 Issued Date: Aug. 01, 2014 FCC ID : ZC4S520 Page 17 of 42 Form version. : 140422 ### 11.2 Definition of the cheek position - 1. Ready the handset for talk operation, if necessary. For example, for handsets with a cover piece (flip cover), open the cover. If the handset can transmit with the cover closed, both configurations must be tested. - 2. Define two imaginary lines on the handset—the vertical centerline and the horizontal line. The vertical centerline passes through two points on the front side of the handset—the midpoint of the width wt of the handset at the level of the acoustic output (point A in Figure 9.2.1 and Figure 9.2.2), and the midpoint of the width wb of the bottom of the handset (point B). The horizontal line is perpendicular to the vertical centerline and passes through the center of the acoustic output (see Figure 9.2.1). The two lines intersect at point A. Note that for many handsets, point A coincides with the center of the acoustic output; however, the acoustic output may be located elsewhere on the horizontal line. Also note that the vertical centerline is not necessarily parallel to the front face of the handset (see Figure 9.2.2), especially for clamshell handsets, handsets with flip covers, and other irregularly-shaped handsets. - 3. Position the handset close to the surface of the phantom such that point A is on the (virtual) extension of the line passing through points RE and LE on the phantom (see Figure 9.2.3), such that the plane defined by the vertical centerline and the horizontal line of the handset is approximately parallel to the sagittal plane of the phantom. - 4. Translate the handset towards the phantom along the line passing through RE and LE until handset point A touches the pinna at the ERP. - 5. While maintaining the handset in this plane, rotate it around the LE-RE line until the vertical centerline is in the plane normal to the plane containing B-M and N-F lines, i.e., the Reference Plane. - 6. Rotate the handset around the vertical centerline until the handset (horizontal line) is parallel to the N-F line. - 7. While maintaining the vertical centerline in the Reference Plane, keeping point A on the line passing through RE and LE, and maintaining the handset contact with the pinna, rotate the handset about the N-F line until any point on the handset is in contact with a phantom point below the pinna on the cheek. See Figure 9.2.3. The actual rotation angles should be documented in the test report. Fig 9.2.1 Handset vertical and horizontal reference lines—"fixed case **Report No.: FA462803** Fig 9.2.2 Handset vertical and horizontal reference lines—"clam-shell case" Fig 9.2.3 cheek or touch position. The reference points for the right ear (RE), left ear (LE), and mouth (M), which establish the Reference Plane for handset positioning, are indicated. ### 11.3 Definition of the tilt position 1. Ready the handset for talk operation, if necessary. For example, for handsets with a cover piece (flip cover), open the cover. If the handset can transmit with the cover closed, both configurations must be tested. **Report No.: FA462803** - 2. While maintaining the orientation of the handset, move the handset away from the pinna along the line passing through RE and LE far enough to allow a rotation of the handset away from the cheek by 15°. - 3. Rotate the handset around the horizontal line by 15°. - 4. While maintaining the orientation of the handset, move the handset towards the phantom on the line passing through RE and LE until any part of the handset touches the ear. The tilt position is obtained when the contact point is on the pinna. See Figure 9.3.1. If contact occurs at any location other than the pinna, e.g., the antenna at the back of the phantom head, the angle of the handset should be reduced. In this case, the tilt position is obtained if any point on the handset is in contact with the pinna and a second point Fig 9.3.1 Tilt position. The reference points for the right ear (RE), left ear (LE), and mouth (M), which define the Reference Plane for handset positioning, are indicated. # 11.4 Body Worn Accessory Body-worn operating configurations are tested with the belt-clips and holsters attached to the device and positioned against a flat phantom in a normal use configuration (see Figure 9.4). Per KDB 648474 D04v01r02, body-worn accessory exposure is typically related to voice mode operations when handsets are carried in body-worn accessories. The body-worn accessory procedures in FCC KDB 447498 D01v05r02 should be used to test for body-worn accessory SAR compliance, without a headset connected to it. This enables the test results for such configuration to be compatible with that required for hotspot mode when the body-worn accessory test separation distance is greater than or equal to that required for hotspot mode, when applicable. When the reported SAR for body-worn accessory, measured without a headset connected to the handset is < 1.2 W/kg, the highest reported SAR configuration for that wireless mode and frequency band should be repeated for that body-worn accessory with a handset attached to the handset. **Report No.: FA462803** Accessories for body-worn operation configurations are divided into two categories: those that do not contain metallic components and those that do contain metallic components and those that do contain metallic components. When multiple accessories that do not contain metallic components are supplied with the device, the device is tested with only the accessory that dictates the closest spacing to the body. Then multiple accessories that contain metallic components are test with the device with each accessory. If multiple accessories share an identical metallic component (i.e. the same metallic belt-chip used with different holsters with no other metallic components) only the accessory that dictates the closest spacing to the body is tested. Fig 9.4 Body Worn Position ### 11.5 Wireless Router Some battery-operated handsets have the capability to transmit and receive user through simultaneous transmission of WIFI simultaneously with a separate licensed transmitter. The FCC has provided guidance in FCC HDB Publication 941225 D06v01r01 where SAR test considerations for handsets (L x W \ge 9 cm x 5 cm) are based on a composite test separation distance of 10mm from the front, back and edges of the device containing transmitting antennas within 2.5cm of their edges, determined form general mixed use conditions for this type of devices. Since the hotspot SAR results may overlap with the body-worn accessory SAR requirements, the more conservative configurations can be considered, thus excluding some body-worn accessory SAR tests. When the user enables the personal wireless router functions for the handset, actual operations include simultaneous transmission of both the WIFI transmitter and another licensed transmitter. Both transmitters often do not transmit at the same transmitting frequency and thus cannot be evaluated for SAR under actual use conditions due to the limitations of the SAR assessment probes. Therefore, SAR must be evaluated for each frequency transmission and mode separately and spatially summed with the WIFI transmitter according to FCC KDB Publication 447498 D01v05r02 publication procedures. The "Portable Hotspot" feature on the handset was NOT activated during SAR assessments, to ensure the SAR measurements were evaluated for a single transmission frequency RF signal at a time. # 12. Conducted RF Output Power (Unit: dBm) ### <GSM Conducted Power> 1. Per KDB 447498 D01v05r02, the maximum output power channel is used for SAR testing and for further SAR test reduction. **Report No.: FA462803** - 2. According to October 2013TCB Workshop, For GSM/GPRS/EGPRS, the number of time slots to test for SAR should correspond to the highest source-based time-averaged maximum output power configuration, Considering the possibility of e.g. 3rd party VoIP operation for head and body-worn SAR testing, the EUT was set in GPRS (4Tx slots) for GSM850/GSM1900 band
due to its highest frame-average power. - 3. For hotspot mode SAR testing, GPRS/EGPRS should be evaluated, therefore the EUT was set in GPRS 4 Tx slots for GSM850/GSM1900 band due to its highest frame-average power. | Band GSM850 | Burst Av | erage Pow | er (dBm) | Tune-up Frame-Average Power (dBm) | | | Tune-up | | |---|--|--|--|--|--|--|--|---------------------------------------| | TX Channel | 128 | 189 | 251 | Limit | 128 | 189 | 251 | Limit | | Frequency (MHz) | 824.2 | 836.4 | 848.8 | (dBm) | 824.2 | 836.4 | 848.8 | (dBm) | | GSM (GMSK, 1 Tx slot) | 32.93 | 32.75 | 32.33 | 33.5 | 23.93 | 23.75 | 23.33 | 24.5 | | GPRS (GMSK, 1 Tx slot) – CS1 | 32.91 | 32.71 | 32.32 | 33.5 | 23.91 | 23.71 | 23.32 | 24.5 | | GPRS (GMSK, 2 Tx slots) – CS1 | 31.41 | 31.03 | 31.26 | 31.5 | 25.41 | 25.03 | 25.26 | 25.5 | | GPRS (GMSK, 3 Tx slots) – CS1 | 29.47 | 29.09 | 29.33 | 30.0 | 25.21 | 24.83 | 25.07 | 25.74 | | GPRS (GMSK, 4 Tx slots) – CS1 | 28.48 | 28.12 | 28.35 | 29.0 | <mark>25.48</mark> | 25.12 | 25.35 | 26.0 | | EDGE (8PSK, 1 Tx slot) – MCS5 | 26.44 | 26.20 | 25.95 | 26.5 | 17.44 | 17.20 | 16.95 | 17.5 | | EDGE (8PSK, 2 Tx slots) – MCS5 | 25.38 | 25.21 | 24.98 | 25.5 | 19.38 | 19.21 | 18.98 | 19.5 | | EDGE (8PSK, 3 Tx slots) – MCS5 | 23.40 | 23.25 | 23.07 | 23.5 | 19.14 | 18.99 | 18.81 | 19.24 | | EDGE (8PSK, 4 Tx slots) – MCS5 | 22.26 | 22.15 | 21.86 | 22.5 | 19.26 | 19.15 | 18.86 | 19.5 | | Band GSM1900 | Burst Av | erage Pow | er (dBm) | Tune-up | Frame-A | erage Pov | ver (dBm) | Tune-up | | TX Channel | 512 | 661 | 810 | Limit | 512 | 661 | 810 | Limit | | Frequency (MHz) | 1850.2 | 1880 | 1909.8 | (dBm) | 1850.2 | 1000 | 4000 0 | (dBm) | | r requericy (ivii iz) | 1000.2 | 1000 | 1909.6 | (aDiii) | 1000.2 | 1880 | 1909.8 | | | GSM (GMSK, 1 Tx slot) | 29.63 | 29.00 | 28.99 | 30.0 | 20.63 | 20.00 | 1909.8 | 21.0 | | | | | | , , | | | | 21.0
21.0 | | GSM (GMSK, 1 Tx slot) | 29.63 | 29.00 | 28.99 | 30.0 | 20.63 | 20.00 | 19.99 | | | GSM (GMSK, 1 Tx slot) GPRS (GMSK, 1 Tx slot) – CS1 | 29.63 29.61 | 29.00
28.97 | 28.99
28.95 | 30.0
30.0 | 20.63
20.61 | 20.00
19.97 | 19.99
19.95 | 21.0 | | GSM (GMSK, 1 Tx slot) GPRS (GMSK, 1 Tx slot) – CS1 GPRS (GMSK, 2 Tx slots) – CS1 | 29.63
29.61
29.14 | 29.00
28.97
28.48 | 28.99
28.95
28.41 | 30.0
30.0
29.5 | 20.63
20.61
23.14 | 20.00
19.97
22.48 | 19.99
19.95
22.41 | 21.0
23.5 | | GSM (GMSK, 1 Tx slot) GPRS (GMSK, 1 Tx slot) – CS1 GPRS (GMSK, 2 Tx slots) – CS1 GPRS (GMSK, 3 Tx slots) – CS1 | 29.63
29.61
29.14
27.79 | 29.00
28.97
28.48
26.91 | 28.99
28.95
28.41
26.79 | 30.0
30.0
29.5
28.0 | 20.63
20.61
23.14
23.53 | 20.00
19.97
22.48
22.65 | 19.99
19.95
22.41
22.53 | 21.0
23.5
23.74 | | GSM (GMSK, 1 Tx slot) GPRS (GMSK, 1 Tx slot) – CS1 GPRS (GMSK, 2 Tx slots) – CS1 GPRS (GMSK, 3 Tx slots) – CS1 GPRS (GMSK, 4 Tx slots) – CS1 | 29.63
29.61
29.14
27.79
26.72 | 29.00
28.97
28.48
26.91
25.75 | 28.99
28.95
28.41
26.79
25.55 | 30.0
30.0
29.5
28.0
28.0 | 20.63
20.61
23.14
23.53
23.72 | 20.00
19.97
22.48
22.65
22.75 | 19.99
19.95
22.41
22.53
22.55 | 21.0
23.5
23.74
25.0 | | GSM (GMSK, 1 Tx slot) GPRS (GMSK, 1 Tx slot) – CS1 GPRS (GMSK, 2 Tx slots) – CS1 GPRS (GMSK, 3 Tx slots) – CS1 GPRS (GMSK, 4 Tx slots) – CS1 EDGE (8PSK, 1 Tx slot) – MCS5 | 29.63
29.61
29.14
27.79
26.72
25.42 | 29.00
28.97
28.48
26.91
25.75
24.93 | 28.99
28.95
28.41
26.79
25.55
24.51 | 30.0
30.0
29.5
28.0
28.0
25.5 | 20.63
20.61
23.14
23.53
23.72
16.42 | 20.00
19.97
22.48
22.65
22.75
15.93 | 19.99
19.95
22.41
22.53
22.55
15.51 | 21.0
23.5
23.74
25.0
16.5 | Remark: The frame-averaged power is linearly scaled the maximum burst averaged power over 8 time slots. The calculated method are shown as below: Frame-averaged power = Maximum burst averaged power (1 Tx Slot) - 9 dB Frame-averaged power = Maximum burst averaged power (2 Tx Slots) - 6 dB Frame-averaged power = Maximum burst averaged power (3 Tx Slots) - 4.26 dB Frame-averaged power = Maximum burst averaged power (4 Tx Slots) - 3 dB SPORTON INTERNATIONAL (XI'AN) INC. ### <WCDMA Conducted Power> - 1. The following tests were conducted according to the test requirements outlines in 3GPP TS 34.121 specification. - 2. The procedures in KDB 941225 D01 are applied for 3GPP Rel. 6 HSPA to configure the device in the required sub-test mode(s) to determine SAR test exclusion. Report No. : FA462803 A summary of these settings are illustrated below: #### **HSDPA Setup Configuration:** - a. The EUT was connected to Base Station Agilent E5515C referred to the Setup Configuration. - b. The RF path losses were compensated into the measurements. - c. A call was established between EUT and Base Station with following setting: - i. Set Gain Factors (β_c and β_d) and parameters were set according to each - ii. Specific sub-test in the following table, C10.1.4, quoted from the TS 34.121 - Set RMC 12.2Kbps + HSDPA mode. - iv. Set Cell Power = -86 dBm - v. Set HS-DSCH Configuration Type to FRC (H-set 1, QPSK) - vi. Select HSDPA Uplink Parameters - vii. Set Delta ACK, Delta NACK and Delta CQI = 8 - viii. Set Ack-Nack Repetition Factor to 3 - ix. Set CQI Feedback Cycle (k) to 4 ms - x. Set CQI Repetition Factor to 2 - xi. Power Ctrl Mode = All Up bits - d. The transmitted maximum output power was recorded. Table C.10.1.4: β values for transmitter characteristics tests with HS-DPCCH | Sub-test | βc | βa | β _d
(SF) | β₀/βа | βнs
(Note1,
Note 2) | CM (dB)
(Note 3) | MPR (dB)
(Note 3) | |----------|-------------------|-------------------|------------------------|-------------------|---------------------------|---------------------|----------------------| | 1 | 2/15 | 15/15 | 64 | 2/15 | 4/15 | 0.0 | 0.0 | | 2 | 12/15
(Note 4) | 15/15
(Note 4) | 64 | 12/15
(Note 4) | 24/15 | 1.0 | 0.0 | | 3 | 15/15 | 8/15 | 64 | 15/8 | 30/15 | 1.5 | 0.5 | | 4 | 15/15 | 4/15 | 64 | 15/4 | 30/15 | 1.5 | 0.5 | Note 1: \triangle_{ACK} , \triangle_{NACK} and $\triangle_{CQI} = 30/15$ with $\beta_{ls} = 30/15 * \beta_c$. Note 2: For the HS-DPCCH power mask requirement test in clause 5.2C, 5.7A, and the Error Vector Magnitude (EVM) with HS-DPCCH test in clause 5.13.1A, and HSDPA EVM with phase discontinuity in clause 5.13.1AA, \triangle ACK and \triangle NACK = 30/15 with β _{hs} = 30/15 * β _c, and \triangle CQI = 24/15 with $\beta_{ls} = 24/15 * \beta_c$. Note 3: CM = 1 for β_e/β_d =12/15, β_{hs}/β_e =24/15. For all other combinations of DPDCH, DPCCH and HSDPCCH the MPR is based on the relative CM difference. This is applicable for only UEs that support HSDPA in release 6 and later releases. Note 4: For subtest 2 the β_c/β_d ratio of 12/15 for the TFC during the measurement period (TF1, TF0) is achieved by setting the signalled gain factors for the reference TFC (TF1, TF1) to β_c = 11/15 and β_d = 15/15 **Setup Configuration** #### **HSUPA Setup Configuration:** - The EUT was connected to Base Station Agilent E5515C referred to the Setup Configuration. - The RF path losses were compensated into the measurements. - A call was established between EUT and Base Station with following setting *: - Call Configs = 5.2B, 5.9B, 5.10B, and 5.13.2B with QPSK - Set the Gain Factors (β_c and β_d) and parameters (AG Index) were set according to each specific sub-test in the following table, C11.1.3, quoted from the TS 34.121 **Report No.: FA462803** - iii. Set Cell Power = -86 dBm - iv. Set Channel Type = 12.2k + HSPA - Set UE Target Power - vi. Power Ctrl Mode= Alternating bits - vii. Set and observe the E-TFCI - viii. Confirm that E-TFCI is equal to the target E-TFCI of 75 for sub-test 1, and other subtest's E-TFCI - The transmitted maximum output power was recorded. Table C.11.1.3: β values for transmitter characteristics tests with HS-DPCCH and E-DCH | Sub-
test | βс | βa | β _d
(SF) | βc/βd | βнs
(Note1) | βес | β _{ed}
(Note 5)
(Note 6) | β _{ed}
(SF) | β _{ed}
(Codes) | CM
(dB)
(Note
2) | MPR
(dB)
(Note
2) | AG
Index
(Note
6) | E-
TFCI | |--------------|-------------------|----------------------|------------------------|----------------------|----------------|-------------|--|-------------------------|----------------------------|---------------------------|----------------------------|----------------------------|------------| | 1 | 11/15
(Note 3) | 15/15
(Note
3) | 64 | 11/15
(Note
3) | 22/15 | 209/2
25 | 1309/225 | 4 | 1 | 1.0 | 0.0 | 20 | 75 | | 2 | 6/15 | 15/15 | 64 | 6/15 | 12/15 | 12/15 | 94/75 | 4 | 1 | 3.0 | 2.0 | 12 | 67 | | 3 | 15/15 | 9/15 | 64 | 15/9 | 30/15 | 30/15 | β _{ed} 1: 47/15
β _{ed} 2: 47/15 | 4
4 | 2 | 2.0 | 1.0 | 15 | 92 | | 4 | 2/15 | 15/15 | 64 | 2/15 | 4/15 | 2/15 | 56/75 | 4 | 1 | 3.0 | 2.0 | 17 | 71 | | 5 | 15/15
(Note 4) | 15/15
(Note
4) | 64 | 15/15
(Note
4) | 30/15 | 24/15 | 134/15 | 4 | 1 | 1.0 | 0.0 | 21 | 81 | - Note 1: $\Delta_{\rm ACK}$, $\Delta_{\rm NACK}$ and $\Delta_{\rm CQI}$ = 30/15 with β_{hs} = 30/15 * β_c . - CM = 1 for β_c/β_d =12/15, $\beta_h s/\beta_c$
=24/15. For all other combinations of DPDCH, DPCCH, HS- DPCCH, E-DPDCH Note 2: and E-DPCCH the MPR is based on the relative CM difference. - For subtest 1 the β_C/β_d ratio of 11/15 for the TFC during the measurement period (TF1, TF0) is achieved by Note 3: setting the signalled gain factors for the reference TFC (TF1, TF1) to β_c = 10/15 and β_d = 15/15. - For subtest 5 the β_d/β_d ratio of 15/15 for the TFC during the measurement period (TF1, TF0) is achieved by Note 4: setting the signalled gain factors for the reference TFC (TF1, TF1) to β_c = 14/15 and β_d = 15/15. - Note 5: In case of testing by UE using E-DPDCH Physical Layer category 1, Sub-test 3 is omitted according to TS25.306 Table 5.1g. - Note 6: β_{ed} can not be set directly, it is set by Absolute Grant Value. **Setup Configuration** FCC ID: ZC4S520 Page 23 of 42 # < WCDMA Conducted Power> #### **General Note:** 3. SAR testing in AMR configuration is not required when the maximum average output of each RF channel for AMR 12.2Kbps is less than 0.25dB higher than that measured in RMC 12.2Kbps Report No.: FA462803 Per KDB 941225 D02v02r02, RMC 12.2kbps setting is used to evaluate SAR. If HSDPA/HSUPA output power is < 0.25dB higher than RMC, or reported SAR with RMC 12.2kbps setting is ≤ 1.2W/kg, HSDPA/HSUPA SAR evaluation can be excluded.. | | Ва | nd | | WCDMA V | ' | | | WCDMA II | | Tung un | |------|-----------------|-----------------|-------|---------|--------------------|----------------|--------------------|----------|--------|------------------| | | TX Ch | annel | 4132 | 4182 | 4233 | Tune-up | 9262 | 9400 | 9538 | Tune-up
Limit | | | Rx Ch | annel | 4357 | 4407 | 4458 | Limit
(dBm) | 9662 | 9800 | 9938 | (dBm) | | | Frequency (MHz) | | | 836.4 | 846.6 | (==) | 1852.4 | 1880 | 1907.6 | (=:::) | | MPR | 3GPP Rel 99 | AMR 12.2Kbps | 22.39 | 22.45 | 22.54 | 23.5 | 21.68 | 21.27 | 21.20 | 23.0 | | (dB) | 3GPP Rel 99 | RMC 12.2Kbps | 22.40 | 22.46 | <mark>22.55</mark> | 23.5 | <mark>21.69</mark> | 21.28 | 21.22 | 23.0 | | 0 | 3GPP Rel 6 | HSDPA Subtest-1 | 21.43 | 21.45 | 21.58 | 22.0 | 20.77 | 20.39 | 20.26 | 21.0 | | 0 | 3GPP Rel 6 | HSDPA Subtest-2 | 21.51 | 21.44 | 21.60 | 22.0 | 20.79 | 20.37 | 20.26 | 21.0 | | 0.5 | 3GPP Rel 6 | HSDPA Subtest-3 | 21.03 | 21.01 | 21.16 | 21.5 | 20.31 | 19.92 | 19.80 | 20.5 | | 0.5 | 3GPP Rel 6 | HSDPA Subtest-4 | 21.01 | 20.99 | 21.13 | 21.5 | 20.27 | 19.91 | 19.76 | 20.5 | | 0 | 3GPP Rel 6 | HSUPA Subtest-1 | 19.57 | 19.50 | 19.66 | 20.0 | 18.81 | 18.48 | 18.38 | 19.0 | | 2 | 3GPP Rel 6 | HSUPA Subtest-2 | 19.56 | 19.48 | 19.67 | 20.0 | 18.83 | 18.46 | 18.36 | 19.0 | | 1 | 3GPP Rel 6 | HSUPA Subtest-3 | 20.53 | 20.48 | 20.63 | 21.0 | 19.82 | 19.47 | 19.33 | 20.0 | | 2 | 3GPP Rel 6 | HSUPA Subtest-4 | 19.00 | 18.96 | 19.14 | 19.5 | 18.28 | 17.88 | 17.80 | 18.5 | | 0 | 3GPP Rel 6 | HSUPA Subtest-5 | 20.04 | 19.97 | 20.16 | 20.5 | 19.34 | 18.96 | 18.86 | 19.5 | # < WLAN Conducted Power> ### **General Note:** For 2.4GHz WLAN SAR testing, highest average RF output power channel for the lowest data rate for 802.11b were selected for SAR evaluation. 802.11g/n HT20/HT40 were not investigated since the average output powers over all channels and data rates were not more than 0.25 dB higher than the tested channel in the lowest data rate of 802.11b mode. **Report No. : FA462803** | | | | WLAN 2.4GHz 802.1 | 1b Average Power (dl | Bm) | | Tune up | | |---------------------------------------|-----------|-----------|-------------------|----------------------|---------|---------|----------------|--| | Power vs. Channel Power vs. Data Rate | | | | | | | | | | Channel | Frequency | Data Rate | Channal | 2Mbno | E EMbas | 11 Mbps | Limit
(dBm) | | | Channel | (MHz) | 1Mbps | Channel | 2Mbps | 5.5Mbps | 11Mbps | (==, | | | CH 1 | 2412 | 14.46 | | | | | | | | CH 6 | 2437 | 14.49 | CH 11 | 14.90 | 14.92 | 14.91 | 15.0 | | | CH 11 | 2462 | 14.95 | | | | | | | | | | | WLAN 2.4 | GHz 802.1 | 1g Average | e Power (d | Bm) | | | | _ | |---------------------------------------|-----------|-----------|----------|-----------|------------|------------|----------|------------------|--------|--------|-------| | Power vs. Channel Power vs. Data Rate | | | | | | | | Tune up
Limit | | | | | Channel | Frequency | Data Rate | Channel | 9Mbps | 12Mbps | 18Mbps | 24Mbps | 36Mbps | 48Mbps | 54Mbps | (dBm) | | Channel | (MHz) | 6Mbps | Channel | alviops | TZIVIDPS | rolvibps | 24IVIDPS | Squivioes | 46WDPS | 54Mbps | (' / | | CH 01 | 2412 | 11.29 | | | | | | | | | | | CH 06 | 2437 | 11.56 | CH 11 | 11.86 | 11.89 | 11.71 | 11.89 | 11.80 | 11.88 | 11.86 | 13.0 | | CH 11 | 2462 | 11.95 | | | | | | | | | | | | | V | VLAN 2.4G | Hz 802.11r | n HT20 Ave | erage Powe | er (dBm) | | | | | |---------|---------------|--------------------|---------------------|------------|------------|------------|----------|-------------|-------|-------|----------------| | Po | wer vs. Chanr | iel | Power vs. MCS Index | | | | | | | | | | Channel | Frequency | MCS
Index | Channel | MCS1 | MCS2 | MCS3 | MCS4 | MCS5 | MCS6 | MCS7 | Limit
(dBm) | | | (MHz) | MCS0 | | | | | | | | | | | CH 01 | 2412 | 11.35 | | | | | | | | | | | CH 06 | 2437 | 11.75 | CH 11 | 12.04 | 11.89 | 11.94 | 11.95 | 11.95 12.06 | 11.96 | 12.03 | 13.0 | | CH 11 | 2462 | <mark>12.09</mark> | | | | | | | | | | | | | V | VLAN 2.4G | Hz 802.11r | n HT40 Ave | erage Powe | er (dBm) | | | | | |---------|---------------|--------------|---------------------|------------|------------|------------|----------|-------|-------|-------|----------------| | Po | wer vs. Chanr | iel | Power vs. MCS Index | | | | | | | | | | Channel | Frequency | MCS
Index | Channel | MCS1 | MCS2 | MCS3 | MCS4 | MCS5 | MCS6 | MCS7 | Limit
(dBm) | | | (MHz) | MCS0 | | | | | | | | | | | CH 03 | 2422 | 10.55 | | | | | | | | | | | CH 06 | 2437 | 10.58 | CH 09 | 10.61 | 10.63 | 10.62 | 10.61 | 10.54 | 10.63 | 10.60 | 11.0 | | CH 09 | 2452 | 10.70 | | | | | | | | | | # 13. Bluetooth Exclusions Applied | Mode Band | Average power(dBm) | | | | | | | | |------------------|--------------------|-------------------|--|--|--|--|--|--| | Mode Danu | Bluetooth v3.0+EDR | Bluetooth v4.0 LE | | | | | | | | 2.4GHz Bluetooth | 6.0 | -1.0 | | | | | | | **Report No.: FA462803** #### Note: 1. Per KDB 447498 D01v05r02, the 1-g and 10-g SAR test exclusion thresholds for 100 MHz to 6 GHz at *test separation distances* ≤ 50 mm are determined by: [(max. power of channel, including tune-up tolerance, mW)/(min. test separation distance, mm)] $[\sqrt{f(GHz)}] \le 3.0$ for 1-g SAR and ≤ 7.5 for 10-g extremity SAR - f(GHz) is the RF channel transmit frequency in GHz - Power and distance are rounded to the nearest mW and mm before calculation - · The result is rounded to one decimal place for comparison | Bluetooth Max Power (dBm) | Separation Distance (mm) | Frequency (GHz) | exclusion thresholds | |---------------------------|--------------------------|-----------------|----------------------| | 6.0 | 0 | 2.48 | 1.3 | #### Note: Per KDB 447498 D01v05r02, when the minimum test separation distance is < 5 mm, a distance of 5 mm is applied to determine SAR test exclusion. The test exclusion threshold is 1.3 which is <= 3, SAR testing is not required. **SPORTON INTERNATIONAL (XI'AN) INC.**TEL: +86-029-8860-8767 / FAX: +86-029-8860-8791 # 14. Antenna Location **Report No. : FA462803** | Distance of the Antenna to the EUT surface/edge | | | | | | | | | | | |---|--------|--------|-------|--------|--------|--------|--|--|--|--| | Antennas Back Front Top Side Bottom Side Right Side Left Side | | | | | | | | | | | | WWAN Main | ≤ 25mm | ≤ 25mm | 133mm | ≤ 25mm | ≤ 25mm | ≤ 25mm | | | | | | BT&WLAN ≤ 25mm ≤ 25mm 133mm 56mm ≤ 25mm | | | | | | | | | | | | Positions for SAR tests; Hotspot mode | | | | | | | | | | | | |---|-----|-----|----|-----|-----|-----|--|--|--|--|--| | Antennas Back Front Top Side Bottom Side Right Side Left Side | | | | | | | | | | | | | WWAN Main | Yes | Yes | No | Yes | Yes | Yes | | | | | | | BT&WLAN Yes Yes No No Yes | | | | | | | | | | | | ### **General Note:** Referring to KDB 941225 D06 v01r01, when the overall device length and width are ≥ 9cm*5cm, the test distance is 10 mm. SAR must be measured for all sides and surfaces with a transmitting antenna located within 25mm from that surface or edge ### SPORTON INTERNATIONAL (XI'AN) INC. TEL: +86-029-8860-8767 / FAX: +86-029-8860-8791 Issued Date: Aug. 01, 2014 FCC ID: ZC4S520 Page 27 of 42 Form version.: 140422 # 15. SAR Test Results #### **General Note:** - 1. Per KDB 447498 D01v05r02, the reported SAR is the measured SAR value adjusted for maximum tune-up tolerance. - a. Tune-up scaling Factor = tune-up limit power (mW) / EUT RF power (mW), where tune-up limit is the maximum rated power among all production units. **Report No.: FA462803** - b. Reported SAR(W/kg)= Measured SAR(W/kg)*Tune-up Scaling Factor - Per KDB 447498 D01v05r02, for each exposure position, testing of other required channels within the operating mode of a frequency band is not required when the reported 1-g or 10-g SAR for the mid-band or highest output power channel is: - ≤ 0.8 W/kg or 2.0 W/kg, for 1-g or 10-g respectively, when the transmission band is ≤ 100 MHz - ≤ 0.6 W/kg or 1.5 W/kg, for 1-g or 10-g respectively, when the transmission band is between 100 MHz and 200 MHz - ≤ 0.4 W/kg or 1.0 W/kg, for 1-g or 10-g respectively, when the transmission band is ≥ 200 MHz - According to October 2013TCB Workshop, For GSM / GPRS/EGPRS, the number of time slots to test for SAR should correspond to the highest source-based time-averaged maximum output power configuration, Considering the possibility of e.g. 3rd party VoIP operation for head and body-worn SAR testing, the EUT was set in GPRS (4Tx slots) for GSM850/GSM1900 band due
to its highest frame-average power. - For hotspot mode SAR testing, GPRS and EDGE should be evaluated, therefore the EUT was set in GPRS 4 Tx slots for GSM850/GSM1900 band due to its highest frame-average power. - Per KDB 648474 D04v01r02, when the reported SAR for a body-worn accessory measured without a headset connected to the handset is ≤ 1.2 W/kg, SAR testing with a headset connected to the handset is not required. - Per KDB 941225 D02v02r02, RMC 12.2kbps setting is used to evaluate SAR. If HSDPA/HSUPA output power is < 0.25dB higher than RMC, or reported SAR with RMC 12.2kbps setting is ≤ 1.2W/kg, HSDPA/HSUPA SAR evaluation can be excluded.. - This device 2.4GHz WLAN supports Hotspot operation. SPORTON INTERNATIONAL (XI'AN) INC. TEL: +86-029-8860-8767 / FAX: +86-029-8860-8791 Issued Date: Aug. 01, 2014 Form version. : 140422 FCC ID: ZC4S520 Page 28 of 42 # 15.1 Head SAR # <GSM SAR> | Plot
No. | Band | Mode | Test
Position | Ch. | Freq.
(MHz) | Average
Power
(dBm) | Tune-Up
Limit
(dBm) | Tune-up
Scaling
Factor | Power
Drift
(dB) | Measured
1g SAR
(W/kg) | Reported
1g SAR
(W/kg) | |-------------|---------|-------------------------------|------------------|-----|----------------|---------------------------|---------------------------|------------------------------|------------------------|------------------------------|------------------------------| | #01 | GSM850 | GPRS (GMSK 4 Tx slots) | Right Cheek | 128 | 824.2 | 28.48 | 29.00 | 1.127 | 0.05 | 0.566 | <mark>0.638</mark> | | | GSM850 | GPRS (GMSK 4 Tx slots) | Right Tilted | 128 | 824.2 | 28.48 | 29.00 | 1.127 | -0.08 | 0.393 | 0.443 | | | GSM850 | GPRS (GMSK 4 Tx slots) | Left Cheek | 128 | 824.2 | 28.48 | 29.00 | 1.127 | 0.03 | 0.514 | 0.579 | | | GSM850 | GPRS (GMSK 4 Tx slots) | Left Tilted | 128 | 824.2 | 28.48 | 29.00 | 1.127 | -0.09 | 0.404 | 0.455 | | #02 | GSM1900 | GPRS (GMSK 4 Tx slots) | Right Cheek | 512 | 1850.2 | 26.72 | 28.00 | 1.343 | -0.07 | 0.107 | <mark>0.144</mark> | | | GSM1900 | GPRS (GMSK 4 Tx slots) | Right Tilted | 512 | 1850.2 | 26.72 | 28.00 | 1.343 | -0.09 | 0.033 | 0.044 | | | GSM1900 | GPRS (GMSK 4 Tx slots) | Left Cheek | 512 | 1850.2 | 26.72 | 28.00 | 1.343 | 0.12 | 0.061 | 0.082 | | | GSM1900 | GPRS (GMSK 4 Tx slots) | Left Tilted | 512 | 1850.2 | 26.72 | 28.00 | 1.343 | -0.08 | 0.011 | 0.015 | **Report No. : FA462803** # <WCDMA SAR> | Plot
No. | Band | Mode | Test
Position | Ch. | Freq.
(MHz) | Average
Power
(dBm) | Tune-Up
Limit
(dBm) | Tune-up
Scaling
Factor | | Measured
1g SAR
(W/kg) | Reported
1g SAR
(W/kg) | |-------------|---------------|-----------|------------------|------|----------------|---------------------------|---------------------------|------------------------------|-------|------------------------------|------------------------------| | #03 | WCDMA Band V | RMC 12.2K | Right Cheek | 4233 | 846.6 | 22.55 | 23.50 | 1.245 | 0.06 | 0.349 | 0.434 | | | WCDMA Band V | RMC 12.2K | Right Tilted | 4233 | 846.6 | 22.55 | 23.50 | 1.245 | -0.09 | 0.264 | 0.329 | | | WCDMA Band V | RMC 12.2K | Left Cheek | 4233 | 846.6 | 22.55 | 23.50 | 1.245 | 0.07 | 0.319 | 0.397 | | | WCDMA Band V | RMC 12.2K | Left Tilted | 4233 | 846.6 | 22.55 | 23.50 | 1.245 | -0.03 | 0.265 | 0.330 | | #04 | WCDMA Band II | RMC 12.2K | Right Cheek | 9262 | 1852.4 | 21.69 | 23.00 | 1.352 | 0.08 | 0.100 | 0.135 | | | WCDMA Band II | RMC 12.2K | Right Tilted | 9262 | 1852.4 | 21.69 | 23.00 | 1.352 | -0.13 | 0.028 | 0.038 | | | WCDMA Band II | RMC 12.2K | Left Cheek | 9262 | 1852.4 | 21.69 | 23.00 | 1.352 | 0.03 | 0.056 | 0.076 | | | WCDMA Band II | RMC 12.2K | Left Tilted | 9262 | 1852.4 | 21.69 | 23.00 | 1.352 | -0.03 | 0.034 | 0.046 | # <DTS WLAN SAR> | Plot
No. | Band | Mode | Test
Position | Ch. | Freq.
(MHz) | Average
Power
(dBm) | Tune-Up
Limit
(dBm) | Tune-up
Scaling
Factor | Power
Drift
(dB) | Measured
1g SAR
(W/kg) | Reported
1g SAR
(W/kg) | |-------------|-------------|---------------|------------------|-----|----------------|---------------------------|---------------------------|------------------------------|------------------------|------------------------------|------------------------------| | | WLAN 2.4GHz | 802.11b 1Mbps | Right Cheek | 11 | 2462 | 14.95 | 15.00 | 1.012 | -0.03 | 1.010 | 1.022 | | | WLAN 2.4GHz | 802.11b 1Mbps | Right Tilted | 11 | 2462 | 14.95 | 15.00 | 1.012 | -0.06 | 0.750 | 0.759 | | | WLAN 2.4GHz | 802.11b 1Mbps | Left Cheek | 11 | 2462 | 14.95 | 15.00 | 1.012 | -0.07 | 0.405 | 0.410 | | | WLAN 2.4GHz | 802.11b 1Mbps | Left Tilted | 11 | 2462 | 14.95 | 15.00 | 1.012 | -0.05 | 0.330 | 0.334 | | | WLAN 2.4GHz | 802.11b 1Mbps | Right Cheek | 1 | 2412 | 14.46 | 15.00 | 1.132 | -0.02 | 0.952 | 1.078 | | #05 | WLAN 2.4GHz | 802.11b 1Mbps | Right Cheek | 6 | 2437 | 14.49 | 15.00 | 1.125 | -0.04 | 0.998 | <mark>1.122</mark> | # 15.2 Hotspot SAR | Distance of the Antenna to the EUT surface/edge | | | | | | | | | | | | |---|--------|--------|-------|--------|--------|--------|--|--|--|--|--| | Antennas Back Front Top Side Bottom Side Right Side Left Side | | | | | | | | | | | | | WWAN Main | ≤ 25mm | ≤ 25mm | 133mm | ≤ 25mm | ≤ 25mm | ≤ 25mm | | | | | | | BT&WLAN ≤ 25mm ≤ 25mm 133mm 56mm ≤ 25mm | | | | | | | | | | | | **Report No. : FA462803** | Positions for SAR tests; Hotspot mode | | | | | | | | | | | | |---|-----|-----|----|-----|-----|-----|--|--|--|--|--| | Antennas Back Front Top Side Bottom Side Right Side Left Side | | | | | | | | | | | | | WWAN Main | Yes | Yes | No | Yes | Yes | Yes | | | | | | | BT&WLAN Yes Yes Yes No No Yes | | | | | | | | | | | | #### General Note: Referring to KDB 941225 D06 v01r01, when the overall device length and width are ≥ 9cm*5cm, the test distance is 10 mm. SAR must be measured for all sides and surfaces with a transmitting antenna located within 25mm from that surface or edge ### <GSM SAR> | Plot
No. | Band | Mode | Test
Position | Gap
(cm) | Ch. | Freq.
(MHz) | Average
Power
(dBm) | Tune-Up
Limit
(dBm) | Tune-up
Scaling
Factor | Power
Drift
(dB) | Measured
1g SAR
(W/kg) | Reported
1g SAR
(W/kg) | |-------------|---------|------------------------|------------------|-------------|-----|----------------|---------------------------|---------------------------|------------------------------|------------------------|------------------------------|------------------------------| | | GSM850 | GPRS (GMSK 4 Tx slots) | Front | 1 | 128 | 824.2 | 28.48 | 29.00 | 1.127 | -0.03 | 0.636 | 0.717 | | | GSM850 | GPRS (GMSK 4 Tx slots) | Back | 1 | 128 | 824.2 | 28.48 | 29.00 | 1.127 | -0.06 | 0.963 | 1.085 | | | GSM850 | GPRS (GMSK 4 Tx slots) | Left side | 1 | 128 | 824.2 | 28.48 | 29.00 | 1.127 | -0.02 | 0.541 | 0.610 | | | GSM850 | GPRS (GMSK 4 Tx slots) | Right side | 1 | 128 | 824.2 | 28.48 | 29.00 | 1.127 | -0.09 | 0.662 | 0.746 | | | GSM850 | GPRS (GMSK 4 Tx slots) | Bottom side | 1 | 128 | 824.2 | 28.48 | 29.00 | 1.127 | -0.05 | 0.130 | 0.147 | | | GSM850 | GPRS (GMSK 4 Tx slots) | Back | 1 | 189 | 836.4 | 28.12 | 29.00 | 1.225 | -0.05 | 0.909 | 1.113 | | #06 | GSM850 | GPRS (GMSK 4 Tx slots) | Back | 1 | 251 | 848.8 | 28.35 | 29.00 | 1.161 | -0.05 | 0.974 | <mark>1.131</mark> | | | GSM1900 | GPRS (GMSK 4 Tx slots) | Front | 1 | 512 | 1850.2 | 26.72 | 28.00 | 1.343 | 0.02 | 0.151 | 0.203 | | | GSM1900 | GPRS (GMSK 4 Tx slots) | Back | 1 | 512 | 1850.2 | 26.72 | 28.00 | 1.343 | -0.12 | 0.334 | 0.448 | | | GSM1900 | GPRS (GMSK 4 Tx slots) | Left side | 1 | 512 | 1850.2 | 26.72 | 28.00 | 1.343 | -0.05 | 0.068 | 0.091 | | | GSM1900 | GPRS (GMSK 4 Tx slots) | Right side | 1 | 512 | 1850.2 | 26.72 | 28.00 | 1.343 | -0.03 | 0.057 | 0.077 | | #07 | GSM1900 | GPRS (GMSK 4 Tx slots) | Bottom side | 1 | 512 | 1850.2 | 26.72 | 28.00 | 1.343 | -0.04 | 0.336 | <mark>0.451</mark> | FCC ID : ZC4S520 Page 30 of 42 Form version. : 140422 # <WCDMA SAR> | Plot
No. | Band | Mode | Test
Position | Gap
(cm) | Ch. | Freq.
(MHz) | Average
Power
(dBm) | Tune-Up
Limit
(dBm) | Tune-up
Scaling
Factor | Power
Drift
(dB) | Measured
1g SAR
(W/kg) | Reported
1g SAR
(W/kg) | |-------------|---------------|-----------|------------------|-------------|------|----------------|---------------------------|---------------------------|------------------------------|------------------------|------------------------------|------------------------------| | | WCDMA Band V | RMC 12.2K | Front | 1 | 4233 | 846.6 | 22.55 | 23.50 | 1.245 | -0.18 | 0.417 | 0.519 | | #08 | WCDMA Band V | RMC 12.2K | Back | 1 | 4233 | 846.6 | 22.55 | 23.50 | 1.245 | -0.02 | 0.570 | <mark>0.709</mark> | | | WCDMA Band V | RMC 12.2K | Left side | 1 | 4233 | 846.6 | 22.55 | 23.50 | 1.245 | -0.06 | 0.326 | 0.406 | | | WCDMA Band V | RMC 12.2K | Right side | 1 | 4233 | 846.6 | 22.55 | 23.50 | 1.245 | -0.03 | 0.471 | 0.586 | | | WCDMA Band V | RMC 12.2K | Bottom side | 1 | 4233 | 846.6 | 22.55 | 23.50 | 1.245 | -0.03 | 0.092 | 0.114 | | | WCDMA Band II | RMC 12.2K | Front | 1 | 9262 | 1852.4 | 21.69 | 23.00 | 1.352 | 0.19 | 0.142 | 0.192 | | | WCDMA Band II | RMC 12.2K | Back | 1 | 9262 | 1852.4 | 21.69 | 23.00 | 1.352 | 0.02 | 0.249 | 0.337 | | | WCDMA Band II | RMC 12.2K | Left side | 1 | 9262 | 1852.4 | 21.69 | 23.00 | 1.352 | -0.13 | 0.059 | 0.080 | | | WCDMA Band II | RMC 12.2K | Right side | 1 | 9262 | 1852.4 | 21.69 | 23.00 | 1.352 | -0.05 | 0.047 | 0.064 | | #09 | WCDMA Band II | RMC 12.2K | Bottom side | 1 | 9262 | 1852.4 | 21.69 | 23.00 | 1.352 | 0.15 | 0.275 | 0.372 | **Report No. : FA462803** # <DTS WLAN SAR> | Plot
No. | Rand | Mode | Test
Position | Gap
(cm) | Ch. | Freq.
(MHz) | Average
Power
(dBm) | Tune-Up
Limit
(dBm) | Tune-up
Scaling
Factor |
Power
Drift
(dB) | Measured
1g SAR
(W/kg) | Reported
1g SAR
(W/kg) | |-------------|-------------|---------------|------------------|-------------|-----|----------------|---------------------------|---------------------------|------------------------------|------------------------|------------------------------|------------------------------| | #10 | WLAN 2.4GHz | 802.11b 1Mbps | Front | 1 | 11 | 2462 | 14.95 | 15.00 | 1.012 | -0.01 | 0.227 | <mark>0.230</mark> | | | WLAN 2.4GHz | 802.11b 1Mbps | Back | 1 | 11 | 2462 | 14.95 | 15.00 | 1.012 | -0.07 | 0.170 | 0.172 | | | WLAN 2.4GHz | 802.11b 1Mbps | Left side | 1 | 11 | 2462 | 14.95 | 15.00 | 1.012 | -0.03 | 0.148 | 0.150 | | | WLAN 2.4GHz | 802.11b 1Mbps | Top side | 1 | 11 | 2462 | 14.95 | 15.00 | 1.012 | -0.09 | 0.072 | 0.073 | # 15.3 Body Worn Accessory SAR # <GSM SAR> | Plot
No. | Band | Mode | Test
Position | Gap
(cm) | Ch. | Freq.
(MHz) | Average
Power
(dBm) | | Tune-up
Scaling
Factor | | Measured
1g SAR
(W/kg) | Reported
1g SAR
(W/kg) | |-------------|---------|------------------------|------------------|-------------|-----|----------------|---------------------------|-------|------------------------------|-------|------------------------------|------------------------------| | | GSM850 | GPRS (GMSK 4 Tx slots) | Front | 1 | 128 | 824.2 | 28.48 | 29.00 | 1.127 | -0.03 | 0.636 | 0.717 | | | GSM850 | GPRS (GMSK 4 Tx slots) | Back | 1 | 128 | 824.2 | 28.48 | 29.00 | 1.127 | -0.06 | 0.963 | 1.085 | | | GSM850 | GPRS (GMSK 4 Tx slots) | Back | 1 | 189 | 836.4 | 28.12 | 29.00 | 1.225 | -0.05 | 0.909 | 1.113 | | #06 | GSM850 | GPRS (GMSK 4 Tx slots) | Back | 1 | 251 | 848.8 | 28.35 | 29.00 | 1.161 | -0.05 | 0.974 | <mark>1.131</mark> | | | GSM1900 | GPRS (GMSK 4 Tx slots) | Front | 1 | 512 | 1850.2 | 26.72 | 28.00 | 1.343 | 0.02 | 0.151 | 0.203 | | #11 | GSM1900 | GPRS (GMSK 4 Tx slots) | Back | 1 | 512 | 1850.2 | 26.72 | 28.00 | 1.343 | -0.12 | 0.334 | <mark>0.448</mark> | **Report No. : FA462803** # <WCDMA SAR> | Plot
No. | Band | Mode | Test
Position | Gap
(cm) | Ch. | Freq.
(MHz) | Average
Power
(dBm) | Tune-Up
Limit
(dBm) | Tune-up
Scaling
Factor | | Measured
1g SAR
(W/kg) | Reported
1g SAR
(W/kg) | |-------------|---------------|-----------|------------------|-------------|------|----------------|---------------------------|---------------------------|------------------------------|-------|------------------------------|------------------------------| | | WCDMA Band V | RMC 12.2K | Front | 1 | 4233 | 846.6 | 22.55 | 23.50 | 1.245 | -0.18 | 0.417 | 0.519 | | #08 | WCDMA Band V | RMC 12.2K | Back | 1 | 4233 | 846.6 | 22.55 | 23.50 | 1.245 | -0.02 | 0.570 | <mark>0.709</mark> | | | WCDMA Band II | RMC 12.2K | Front | 1 | 9262 | 1852.4 | 21.69 | 23.00 | 1.352 | 0.19 | 0.142 | 0.192 | | #12 | WCDMA Band II | RMC 12.2K | Back | 1 | 9262 | 1852.4 | 21.69 | 23.00 | 1.352 | 0.02 | 0.249 | 0.337 | ### <DTS WLAN SAR> | Plot
No. | Band | Mode | Test
Position | Gap
(cm) | Ch. | Freq.
(MHz) | Average
Power
(dBm) | Tune-Up
Limit
(dBm) | Tune-up
Scaling
Factor | Power
Drift
(dB) | Measured
1g SAR
(W/kg) | Reported
1g SAR
(W/kg) | |-------------|-------------|---------------|------------------|-------------|-----|----------------|---------------------------|---------------------------|------------------------------|------------------------|------------------------------|------------------------------| | #10 | WLAN 2.4GHz | 802.11b 1Mbps | Front | 1 | 11 | 2462 | 14.95 | 15.00 | 1.012 | -0.01 | 0.227 | 0.230 | | | WLAN 2.4GHz | 802.11b 1Mbps | Back | 1 | 11 | 2462 | 14.95 | 15.00 | 1.012 | -0.07 | 0.17 | 0.172 | # SPORTON LAB. FCC SAR Test Report # 15.4 Repeated SAR Measurement | No. | Band | Mode | Test
Position | Gap
(cm) | Ch. | Freq.
(MHz) | Power | Tune-Up
Limit
(dBm) | Tune-up
Scaling
Factor | | Measured
1g SAR
(W/kg) | | Reported
1g SAR
(W/kg) | |-----|----------------|------------------------|------------------|-------------|-----|----------------|-------|---------------------------|------------------------------|-------|------------------------------|-------|------------------------------| | 1st | WLAN
2.4GHz | 802.11b 1Mbps | Right Cheek | - | 11 | 2462 | 14.95 | 15.00 | 1.012 | -0.03 | 1.010 | 1 | 1.022 | | 2nd | WLAN
2.4GHz | 802.11b 1Mbps | Right Cheek | - | 11 | 2462 | 14.95 | 15.00 | 1.012 | -0.07 | 0.989 | 1.022 | 1.000 | | 1st | GSM850 | GPRS (GMSK 4 Tx slots) | Back | 1 | 251 | 848.8 | 28.35 | 29.00 | 1.161 | -0.05 | 0.974 | 1 | 1.131 | | 2nd | GSM850 | GPRS (GMSK 4 Tx slots) | Back | 1 | 251 | 848.8 | 28.35 | 29.00 | 1.161 | -0.01 | 0.963 | 1.012 | 1.118 | **Report No. : FA462803** #### **General Note:** - 1. Per KDB 865664 D01v01r03, for each frequency band, repeated SAR measurement is required only when the measured SAR is ≥0.8W/kg - 2. Per KDB 865664 D01v01r03, if the ratio among the repeated measurement is ≤ 1.2 and the measured SAR <1.45W/kg, only one repeated measurement is required. - 3. The ratio is the difference in percentage between original and repeated *measured SAR*. - 4. All measurement SAR result is scaled-up to account for tune-up tolerance and is compliant. TEL: +86-029-8860-8767 / FAX: +86-029-8860-8791 Issued Date: Aug. 01, 2014 FCC ID: ZC4S520 Form version. : 140422 Page 33 of 42 # 16. Simultaneous Transmission Analysis | NO. | Simultaneous Transmission Configurations | P | ortable Hands | et | Note | |-----|--|------|---------------|---------|---------------------| | | | Head | Body-worn | Hotspot | | | 1. | GSM(Voice) + WLAN2.4GHz(data) | Yes | Yes | - | - | | 2. | WCDMA(Voice) + WLAN2.4GHz(data) | Yes | Yes | - | - | | 3. | GSM(Voice) + Bluetooth(data) | Yes | Yes | ı | - | | 4. | WCDMA((Voice) + Bluetooth(data) | Yes | Yes | - | - | | 5. | GPRS/EDGE(Data) + WLAN2.4GHz(data) | Yes | Yes | Yes | 2.4GHz Hotspot | | 6. | WCDMA(Data) + WLAN2.4GHz(data) | Yes | Yes | Yes | 2.4GHz Hotspot | | 7. | GPRS/EDGE(Data) + Bluetooth(data) | Yes | Yes | Yes | Bluetooth Tethering | | 8. | WCDMA(Data) + Bluetooth(data) | Yes | Yes | Yes | Bluetooth Tethering | #### **General Note:** FCC ID: ZC4S520 - 1. This device supported VoIP in GPRS / EDGE and WCDMA (e.g. 3rd party VoIP). - 2. WLAN and Bluetooth share the same antenna, and cannot transmit simultaneously. - 3. The Scaled SAR summation is calculated based on the same configuration and test position. - 4. Per KDB 447498 D01v05r02, simultaneous transmission SAR is compliant if, - i) Scalar SAR summation < 1.6W/kg. - ii) SPLSR = (SAR1 + SAR2)^1.5 / (min. separation distance, mm), and the peak separation distance is determined from the square root of [(x1-x2)2 + (y1-y2)2 + (z1-z2)2], where (x1, y1, z1) and (x2, y2, z2) are the coordinates of the extrapolated peak SAR locations in the zoom scan. - iii) If SPLSR ≤ 0.04, simultaneously transmission SAR measurement is not necessary. - iv) Simultaneously transmission SAR measurement, and the reported multi-band SAR < 1.6W/kg. - For simultaneous transmission analysis, Bluetooth SAR is estimated per KDB 447498 D01v05r02 based on the formula below. - i) (max. power of channel, including tune-up tolerance, mW)/(min. test separation distance, mm)]-[$\sqrt{f(GHz)/x}$] W/kg for test separation distances \leq 50 mm; where x = 7.5 for 1-g SAR, and x = 18.75 for 10-g SAR. - ii) When the minimum separation distance is < 5mm, the distance is used 5mm to determine SAR test exclusion. - iii) 0.4 W/kg for 1-g SAR and 1.0 W/kg for 10-g SAR, when the test separation distances is > 50 mm. | Bluetooth | Exposure Position | Head | Hotspot | Body worn | |-----------|----------------------|------------|------------|------------| | Max Power | Test separation | 0 mm | 10 mm | 10 mm | | 6.0 dBm | Estimated SAR (W/kg) | 0.168 W/kg | 0.084 W/kg | 0.084 W/kg | Page 34 of 42 Report No. : FA462803 # 16.1 Head Exposure Conditions # <WWAN PCE + WLAN DTS> | | | | WWAN PCE | WLAN DTS | Summed | | | |---------|---------|-------------------|--------------------|--------------------|-------------------|-------|---------| | MWAN | l Band | Exposure Position | WWAN SAR
(W/kg) | WLAN SAR
(W/kg) | SAR
(W/kg) | SPLSR | Case No | | | | Right Cheek | 0.638 | 1.122 | 1.76 | 0.03 | #1 | | | GSM850 | Right Tilted | 0.443 | 0.759 | 1.20 | | | | | | Left Cheek | 0.579 | 0.410 | 0.99 | | | | GSM | | Left Tilted | 0.455 | 0.334 | 0.79 | | | | | | Right Cheek | 0.144 | 1.122 | 1.27 | | | | | CCM4000 | Right Tilted | 0.044 | 0.759 | 0.80 | | | | | GSM1900 | Left Cheek | 0.082 | 0.410 | 0.49 | | | | | | Left Tilted | 0.015 | 0.334 | 0.35 | | | | | | Right Cheek | 0.434 | 1.122 | <mark>1.56</mark> | | | | | Band V | Right Tilted | 0.329 | 0.759 | 1.09 | | | | | banu v | Left Cheek | 0.397 | 0.410 | 0.81 | | | | WCDMA | | Left Tilted | 0.330 | 0.334 | 0.66 | | | | WCDIVIA | | Right Cheek | 0.135 | 1.122 | 1.26 | | | | | Band II | Right Tilted | 0.038 | 0.759 | 0.80 | | | | | Dang II | Left Cheek | 0.076 | 0.410 | 0.49 | | | | | _ | Left Tilted | 0.046 | 0.334 | 0.38 | | | Report No. : FA462803 # <WWAN PCE + Bluetooth DSS> | WWAN | Band | Exposure Position | WWAN PCE
WWAN SAR
(W/kg) | Bluetooth DSS
Estimated SAR
(W/kg) | Summed
SAR (W/kg) | SPLSR | Case No | |----------|----------------|-------------------|--------------------------------|--|----------------------|-------|---------| | | | Right Cheek | 0.638 | 0.168 | 0.81 | | | | | GSM850 | Right Tilted | 0.443 | 0.168 | 0.61 | | | | | GSIVIOSU | Left Cheek | 0.579 | 0.168 | 0.75 | | | | CSM | | Left Tilted | 0.455 | 0.168 | 0.62 | | | | GSIVI | GSM
GSM1900 | Right Cheek | 0.144 | 0.168 | 0.31 | | | | | | Right Tilted | 0.044 | 0.168 | 0.21 | | | | | | Left Cheek | 0.082 | 0.168 | 0.25 | | | | | | Left Tilted | 0.015 | 0.168 | 0.18 | | | | | | Right Cheek | 0.434 |
0.168 | 0.60 | | | | | Band V | Right Tilted | 0.329 | 0.168 | 0.50 | | | | | Danu v | Left Cheek | 0.397 | 0.168 | 0.57 | | | | WCDMA | | Left Tilted | 0.330 | 0.168 | 0.50 | | | | VVCDIVIA | | Right Cheek | 0.135 | 0.168 | 0.30 | | | | | Band II | Right Tilted | 0.038 | 0.168 | 0.21 | | | | | Dand II | Left Cheek | 0.076 | 0.168 | 0.24 | | | | | | Left Tilted | 0.046 | 0.168 | 0.21 | | | # 16.2 Hotspot Exposure Conditions # <WWAN PCE+ WLAN DTS> | | N Band | Exposure
Position | WWAN PCE
WWAN SAR
(W/kg) | WLAN DTS
WLAN SAR
(W/kg) | Summed
SAR (W/kg) | SPLSR | Case No | |-------|----------|----------------------|--------------------------------|--------------------------------|----------------------|-------|---------| | | | Front | 0.717 | 0.230 | 0.95 | | | | | | Back | 1.131 | 0.172 | 1.30 | | | | | GSM850 | Left side | 0.61 | 0.150 | 0.76 | | | | | GSIVI650 | Right side | 0.746 | | 0.75 | | | | | | Top side | | 0.073 | 0.07 | | | | GSM | | Bottom side | 0.147 | | 0.15 | | | | GSIVI | | Front | 0.203 | 0.230 | 0.43 | | | | | GSM1900 | Back | 0.448 | 0.172 | 0.62 | | | | | | Left side | 0.091 | 0.150 | 0.24 | | | | | | Right side | 0.077 | | 0.08 | | | | | | Top side | | 0.073 | 0.07 | | | | | | Bottom side | 0.451 | | 0.45 | | | | | | Front | 0.519 | 0.230 | 0.75 | | | | | | Back | 0.709 | 0.172 | 0.88 | | | | | Band V | Left side | 0.406 | 0.150 | 0.56 | | | | | Ballu V | Right side | 0.586 | | 0.59 | | | | | | Top side | | 0.073 | 0.07 | | | | WCMDA | | Bottom side | 0.114 | | 0.11 | | | | WCMDA | | Front | 0.192 | 0.230 | 0.42 | | | | | | Back | 0.337 | 0.172 | 0.51 | | | | | Band II | Left side | 0.080 | 0.150 | 0.23 | | | | | Danu II | Right side | 0.064 | | 0.06 | | | | | | Top side | | 0.073 | 0.07 | | | | | | Bottom side | 0.372 | | 0.37 | | | Report No.: FA462803 TEL: +86-029-8860-8767 / FAX: +86-029-8860-8791 Issued Date: Aug. 01, 2014 Form version. : 140422 FCC ID: ZC4S520 Page 36 of 42 <WWAN PCE+ Bluetooth DSS> | WWAN Band | | Exposure | WWAN PCE | Bluetooth DSS | Summed | | | |-----------|-------------|-------------|--------------------|----------------------|------------|-------|---------| | WWA | WWAN Band | | WWAN SAR
(W/kg) | Estimated SAR (W/kg) | SAR (W/kg) | SPLSR | Case No | | | | Front | 0.717 | 0.084 | 0.80 | | | | | | Back | 1.131 | 0.084 | 1.22 | | | | | GSM850 | Left side | 0.61 | 0.084 | 0.69 | | | | | GSIVIOSO | Right side | 0.746 | | 0.75 | | | | | | Top side | | 0.084 | 0.08 | | | | GSM | | Bottom side | 0.147 | | 0.15 | | | | GSIVI | | Front | 0.203 | 0.084 | 0.29 | | | | | | Back | 0.448 | 0.084 | 0.53 | | | | GSM1900 | GSM1000 | Left side | 0.091 | 0.084 | 0.18 | | | | | GSIVI1900 | Right side | 0.077 | | 0.08 | | | | | Top side | | 0.084 | 0.08 | | | | | | Bottom side | 0.451 | | 0.45 | | | | | | | Front | 0.519 | 0.084 | 0.60 | | | | | | Back | 0.709 | 0.084 | 0.79 | | | | | Band V | Left side | 0.406 | 0.084 | 0.49 | | | | | Dallu V | Right side | 0.586 | | 0.59 | | | | | | Top side | | 0.084 | 0.08 | | | | WCMDA | | Bottom side | 0.114 | | 0.11 | | | | | | Front | 0.192 | 0.084 | 0.28 | | | | | | Back | 0.337 | 0.084 | 0.42 | | | | | Band II | Left side | 0.080 | 0.084 | 0.16 | | | | | Dallu II | Right side | 0.064 | | 0.06 | | | | | | Top side | | 0.084 | 0.08 | | | | | | Bottom side | 0.372 | | 0.37 | | | **Report No. : FA462803** TEL: +86-029-8860-8767 / FAX: +86-029-8860-8791 Issued Date: Aug. 01, 2014 Form version. : 140422 FCC ID: ZC4S520 Page 37 of 42 # 16.3 Body-Worn Accessory Exposure Conditions #### < WWAN PCE+ WLAN DTS> | WW | AN Band | Exposure Position | WWAN PCE
WWAN SAR
(W/kg) | WLAN DTS
WLAN SAR
(W/kg) | Summed
SAR (W/kg) | SPLSR | Case No | |----------|----------|-------------------|--------------------------------|--------------------------------|----------------------|-------|---------| | | GSM850 | Front | 0.717 | 0.23 | 0.95 | | | | GSM | GSIVIOSU | Back | 1.131 | 0.172 | 1.30 | | | | GSIVI | GSM1900 | Front | 0.203 | 0.23 | 0.43 | | | | | | Back | 0.448 | 0.172 | 0.62 | | | | | Band V | Front | 0.519 | 0.23 | 0.75 | | | | WCMDA | | Back | 0.709 | 0.172 | 0.88 | | | | VVCIVIDA | Band II | Front | 0.192 | 0.23 | 0.42 | | | | | DailU II | Back | 0.337 | 0.172 | 0.51 | | | **Report No. : FA462803** #### <WWAN PCE+ Bluetooth DSS> | WWAN Band | | | WWAN PCE | Bluetooth DSS | Summed | | | |-----------|----------|-------------------|--------------------|----------------------|------------|-------|---------| | | | Exposure Position | WWAN SAR
(W/kg) | Estimated SAR (W/kg) | SAR (W/kg) | SPLSR | Case No | | | GSM850 | Front | 0.717 | 0.084 | 0.80 | | | | GSM | G3101030 | Back | 1.131 | 0.084 | 1.22 | | | | GSIVI | | Front | 0.203 | 0.084 | 0.29 | | | | GSM1900 | Back | 0.448 | 0.084 | 0.53 | | | | | | Band V | Front | 0.519 | 0.084 | 0.60 | | | | | Back | 0.709 | 0.084 | 0.79 | | | | | WCMDA | Front | 0.192 | 0.084 | 0.28 | | | | | | Band II | Back | 0.337 | 0.084 | 0.42 | | | TEL: +86-029-8860-8767 / FAX: +86-029-8860-8791 Issued Date: Aug. 01, 2014 Form version. : 140422 FCC ID: ZC4S520 Page 38 of 42 # 16.4 SPLSR Evaluation and Analysis #### **General Note:** SPLSR = $(SAR_1 + SAR_2)^{1.5} / (min. separation distance, mm)$. If SPLSR ≤ 0.04 , simultaneously transmission SAR measurement is not necessary Report No.: FA462803 | | Band | Position | SAR | Gap | SAR pe | eak location | n (m) | 3D
distance | Summed SAR | SPLSR | Simultaneous | |------|-------------|-------------|--------|------|--------|--------------|--------|----------------|------------|---------|--------------| | Case | Danu | Position | (W/kg) | (cm) | Х | Υ | Z | (mm) | (W/kg) | Results | SAR | | #1 | GSM850 | Right Cheek | 0.638 | 0 | 0.0647 | -0.269 | -0.174 | 71.1 | 1.76 | 0.03 | Not required | | | WLAN 2.4GHz | Right Cheek | 1.122 | 0 | 0.0237 | -0.327 | -0.172 | 7 1.1 | 1.76 | 0.03 | Not required | WI | .AN | | | | | | | | | | | | | litro- | M. | | | | | | | | | | | | 1111 | M. | | | | | | | | | | 3 | | hi. | 4 | | | | | | | | | | | | | | | Mr. F. | 1 | | | | | | | | | | | | 17/2 | | | | | | | | | | | | | WWAN | | | | | | | | | | | | | TOTAL | Test Engineer: Kat Yin # 17. Uncertainty Assessment The component of uncertainly may generally be categorized according to the methods used to evaluate them. The evaluation of uncertainly by the statistical analysis of a series of observations is termed a Type An evaluation of uncertainty. The evaluation of uncertainty by means other than the statistical analysis of a series of observation is termed a Type B evaluation of uncertainty. Each component of uncertainty, however evaluated, is represented by an estimated standard deviation, termed standard uncertainty, which is determined by the positive square root of the estimated variance. **Report No.: FA462803** A Type A evaluation of standard uncertainty may be based on any valid statistical method for treating data. This includes calculating the standard deviation of the mean of a series of independent observations; using the method of least squares to fit a curve to the data in order to estimate the parameter of the curve and their standard deviations; or carrying out an analysis of variance in order to identify and quantify random effects in certain kinds of measurement. A type B evaluation of standard uncertainty is typically based on scientific judgment using all of the relevant information available. These may include previous measurement data, experience, and knowledge of the behavior and properties of relevant materials and instruments, manufacture's specification, data provided in calibration reports and uncertainties assigned to reference data taken from handbooks. Broadly speaking, the uncertainty is either obtained from an outdoor source or obtained from an assumed distribution, such as the normal distribution, rectangular or triangular distributions indicated in table below. | Uncertainty Distributions | Normal | Rectangular | Triangular | U-Shape | |------------------------------------|--------------------|-------------|------------|---------| | Multi-plying Factor ^(a) | 1/k ^(b) | 1/√3 | 1/√6 | 1/√2 | - (a) standard uncertainty is determined as the product of the multiplying factor and the estimated range of variations in the measured quantity - (b) κ is the coverage factor #### **Table 17.1. Standard Uncertainty for Assumed Distribution** The combined standard uncertainty of the measurement result represents the estimated standard deviation of the result. It is obtained by combining the individual standard uncertainties of both Type A and Type B evaluation using the usual "root-sum-squares" (RSS) methods of combining standard deviations by taking the positive square root of the estimated variances. Expanded uncertainty is a measure of uncertainty that defines an interval about the measurement result within which the measured value is confidently believed to lie. It is obtained by multiplying the combined standard uncertainty by a coverage factor. Typically, the coverage factor ranges from 2 to 3. Using a coverage factor allows the true value of a measured quantity to be specified with a defined probability within the specified uncertainty range. For purpose of this document, a coverage factor two is used, which corresponds to confidence interval of about 95 %. The DASY uncertainty Budget is shown in the following tables. | Error Description | Uncertainty
Value
(±%) | Probability
Distribution | Divisor | Ci
(1g) | Ci
(10g) | Standard
Uncertainty
(1g) | Standard
Uncertainty
(10g) | |-------------------------------|------------------------------|-----------------------------|---------|------------|-------------|---------------------------------|----------------------------------| | Measurement System | | | | | | | | | Probe Calibration | 6.0 | Normal | 1 | 1 | 1 | ± 6.0 % | ± 6.0 % | |
Axial Isotropy | 4.7 | Rectangular | √3 | 0.7 | 0.7 | ± 1.9 % | ± 1.9 % | | Hemispherical Isotropy | 9.6 | Rectangular | √3 | 0.7 | 0.7 | ± 3.9 % | ± 3.9 % | | Boundary Effects | 1.0 | Rectangular | √3 | 1 | 1 | ± 0.6 % | ± 0.6 % | | Linearity | 4.7 | Rectangular | √3 | 1 | 1 | ± 2.7 % | ± 2.7 % | | System Detection Limits | 1.0 | Rectangular | √3 | 1 | 1 | ± 0.6 % | ± 0.6 % | | Readout Electronics | 0.3 | Normal | 1 | 1 | 1 | ± 0.3 % | ± 0.3 % | | Response Time | 0.8 | Rectangular | √3 | 1 | 1 | ± 0.5 % | ± 0.5 % | | Integration Time | 2.6 | Rectangular | √3 | 1 | 1 | ± 1.5 % | ± 1.5 % | | RF Ambient Noise | 3.0 | Rectangular | √3 | 1 | 1 | ± 1.7 % | ± 1.7 % | | RF Ambient Reflections | 3.0 | Rectangular | √3 | 1 | 1 | ± 1.7 % | ± 1.7 % | | Probe Positioner | 0.4 | Rectangular | √3 | 1 | 1 | ± 0.2 % | ± 0.2 % | | Probe Positioning | 2.9 | Rectangular | √3 | 1 | 1 | ± 1.7 % | ± 1.7 % | | Max. SAR Eval. | 1.0 | Rectangular | √3 | 1 | 1 | ± 0.6 % | ± 0.6 % | | Test Sample Related | | | | | | | | | Device Positioning | 2.9 | Normal | 1 | 1 | 1 | ± 2.9 % | ± 2.9 % | | Device Holder | 3.6 | Normal | 1 | 1 | 1 | ± 3.6 % | ± 3.6 % | | Power Drift | 5.0 | Rectangular | √3 | 1 | 1 | ± 2.9 % | ± 2.9 % | | Phantom and Setup | | | | | | | | | Phantom Uncertainty | 4.0 | Rectangular | √3 | 1 | 1 | ± 2.3 % | ± 2.3 % | | Liquid Conductivity (Target) | 5.0 | Rectangular | √3 | 0.64 | 0.43 | ± 1.8 % | ± 1.2 % | | Liquid Conductivity (Meas.) | 2.5 | Normal | 1 | 0.64 | 0.43 | ± 1.6 % | ± 1.1 % | | Liquid Permittivity (Target) | 5.0 | Rectangular | √3 | 0.6 | 0.49 | ± 1.7 % | ± 1.4 % | | Liquid Permittivity (Meas.) | 2.5 | Normal | 1 | 0.6 | 0.49 | ± 1.5 % | ± 1.2 % | | Combined Standard Uncertainty | , | | | | , | ± 11.0 % | ± 10.8 % | | | | | | | | 1 | • | **Report No. : FA462803** K=2 ± 21.5 % ± 22.0 % Table 17.2. Uncertainty Budget for frequency range 300 MHz to 3 GHz Coverage Factor for 95 % **Expanded Uncertainty** TEL: +86-029-8860-8767 / FAX: +86-029-8860-8791 Issued Date: Aug. 01, 2014 Form version. : 140422 FCC ID: ZC4S520 Page 41 of 42 # 18. References [1] FCC 47 CFR Part 2 "Frequency Allocations and Radio Treaty Matters; General Rules and Regulations" **Report No. : FA462803** - [2] ANSI/IEEE Std. C95.1-1992, "IEEE Standard for Safety Levels with Respect to Human Exposure to Radio Frequency Electromagnetic Fields, 3 kHz to 300 GHz", September 1992 - [3] IEEE Std. 1528-2003, "Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003 - [4] FCC KDB 248227 D01 v01r02, "SAR Measurement Procedures for 802.11 a/b/g Transmitters", May 2007 - [5] FCC KDB 447498 D01 v05r02, "Mobile and Portable Device RF Exposure Procedures and Equipment Authorization Policies", Feb 2014 - [6] FCC KDB 648474 D04 v01r02, "SAR Evaluation Considerations for Wireless Handsets", Dec 2013. - [7] FCC KDB 941225 D01 v02, "SAR Measurement Procedures for 3G Devices CDMA 2000 / Ev-Do / WCDMA / HSDPA / HSPA", October 2007 - [8] FCC KDB 941225 D02 v02r02, "SAR Guidance for HSPA, HSPA+, DC-HSDPA and 1x-Advanced", May 2013. - [9] FCC KDB 941225 D03 v01, "Recommended SAR Test Reduction Procedures for GSM / GPRS / EDGE", December 2008 - [10] FCC KDB 941225 D06 v01r01, "SAR Evaluation Procedures for Portable Devices with Wireless Router Capabilities", May 2013. - [11] FCC KDB 865664 D01 v01r03, "SAR Measurement Requirements for 100 MHz to 6 GHz", Feb 2014. - [12] FCC KDB 865664 D02 v01r01, "RF Exposure Compliance Reporting and Documentation Considerations" May 2013. # Appendix A. Plots of System Performance Check **Report No. : FA462803** The plots are shown as follows. SPORTON INTERNATIONAL (XI'AN) INC. #### System Check Head 835MHz 140722 **DUT: D835V2-SN: 4d151** Communication System: CW; Frequency: 835 MHz; Duty Cycle: 1:1 Medium: HSL_835_140722 Medium parameters used: f = 835 MHz; σ = 0.916 S/m; ϵ_r = 41.029; ρ = 1000 kg/m^3 Ambient Temperature: 23.6°C; Liquid Temperature: 22.9°C #### DASY5 Configuration: - Probe: EX3DV4 SN3911; ConvF(9.84, 9.84, 9.84); Calibrated: 2014/4/22; - Sensor-Surface: 2mm (Mechanical Surface Detection) - Electronics: DAE4 Sn1358; Calibrated: 2014/4/30 - Phantom: SAM1; Type: QD000P40CD; Serial: TP:1753 - Measurement SW: DASY52, Version 52.8 (5); SEMCAD X Version 14.6.8 (7028) **Pin=250mW/Area Scan (61x61x1):** Interpolated grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 3.05 W/kg **Pin=250mW/Zoom Scan (5x5x7)/Cube 0:** Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 58.522 V/m; Power Drift = -0.05 dB Peak SAR (extrapolated) = 3.57 W/kg SAR(1 g) = 2.4 W/kg; SAR(10 g) = 1.59 W/kg Maximum value of SAR (measured) = 3.03 W/kg 0 dB = 3.03 W/kg #### System Check Head 1900MHz 140721 #### **DUT: D1900V2-SN: 5d170** Communication System: CW; Frequency: 1900 MHz; Duty Cycle: 1:1 Medium: HSL_1900_140721 Medium parameters used: f = 1900 MHz; $\sigma = 1.412$ S/m; $\epsilon_r = 39.311$; ρ $= 1000 \text{ kg/m}^3$ Ambient Temperature : 23.7 °C; Liquid Temperature : 22.8 °C #### DASY5 Configuration: - Probe: EX3DV4 SN3911; ConvF(8.09, 8.09, 8.09); Calibrated: 2014/4/22; - Sensor-Surface: 2mm (Mechanical Surface Detection) - Electronics: DAE4 Sn1358; Calibrated: 2014/4/30 - Phantom: SAM2; Type: SF222R62EF; Serial: TP⊲976 - Measurement SW: DASY52, Version 52.8 (5); SEMCAD X Version 14.6.8 (7028) **Pin=250mW/Area Scan (61x61x1):** Interpolated grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 14.6 W/kg **Pin=250mW/Zoom Scan (5x5x7)/Cube 0:** Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 102.5 V/m; Power Drift = -0.06 dB Peak SAR (extrapolated) = 18.6 W/kg SAR(1 g) = 10.2 W/kg; SAR(10 g) = 5.34 W/kgMaximum value of SAR (measured) = 14.5 W/kg 0 dB = 14.5 W/kg #### System Check Head 2450MHz 140729 #### **DUT: D2450V2-SN: 908** Communication System: CW; Frequency: 2450 MHz; Duty Cycle: 1:1 Medium: HSL_2450_140729 Medium parameters used: f = 2450 MHz; σ = 1.809 S/m; ϵ_r = 37.604; ρ $= 1000 \text{ kg/m}^3$ Ambient Temperature: 23.7 °C; Liquid Temperature: 22.6 °C #### DASY5 Configuration: - Probe: EX3DV4 SN3911; ConvF(7.04, 7.04, 7.04); Calibrated: 2014/4/22; - Sensor-Surface: 2mm (Mechanical Surface Detection) - Electronics: DAE4 Sn1358; Calibrated: 2014/4/30 - Phantom: SAM1; Type: QD000P40CD; Serial: TP:1753 - Measurement SW: DASY52, Version 52.8 (5); SEMCAD X Version 14.6.8 (7028) **Pin=250mW/Area Scan (81x81x1):** Interpolated grid: dx=12mm, dy=12mm Maximum value of SAR (interpolated) = 21.0 W/kg **Pin=250mW/Zoom Scan (7x7x7)/Cube 0:** Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 90.931 V/m; Power Drift = -0.03 dB Peak SAR (extrapolated) = 28.9 W/kg SAR(1 g) = 13.8 W/kg; SAR(10 g) = 6.41 W/kgMaximum value of SAR (measured) = 21.2 W/kg 0 dB = 21.2 W/kg #### System Check Body 835MHz 140720 #### **DUT: D835V2-SN: 4d151** Communication System: CW; Frequency: 835 MHz; Duty Cycle: 1:1 Medium: MSL_835_140720 Medium parameters used: f = 835 MHz; $\sigma = 0.975$ S/m; $\epsilon_r = 54.261$; $\rho = 0.975$ Medium: $\epsilon_r = 54.261$ 1000 kg/m^3 Ambient Temperature: 23.5 °C; Liquid Temperature: 22.7 °C #### DASY5 Configuration: - Probe: EX3DV4 SN3911; ConvF(10.02, 10.02, 10.02); Calibrated: 2014/4/22; - Sensor-Surface: 2mm (Mechanical Surface Detection) - Electronics: DAE4 Sn1358; Calibrated: 2014/4/30 - Phantom: SAM1; Type: QD000P40CD; Serial: TP:1753 - Measurement SW: DASY52, Version 52.8 (5); SEMCAD X Version 14.6.8 (7028) **Pin=250mW/Area Scan (61x61x1):** Interpolated grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 2.53 W/kg **Pin=250mW/Zoom Scan (5x5x7)/Cube 0:** Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 50.506 V/m; Power Drift = -0.06 dB Peak SAR (extrapolated) = 3.41 W/kg SAR(1 g) = 2.34 W/kg; SAR(10 g) = 1.56 W/kgMaximum value of SAR (measured) = 2.50 W/kg 0 dB = 2.50 W/kg #### System Check Body 1900MHz 140720 #### DUT: D1900V2-SN: 5d170 Communication System: CW; Frequency: 1900 MHz; Duty Cycle: 1:1 Medium: MSL_1900_140720 Medium parameters used: f = 1900 MHz; σ = 1.528 S/m; ϵ_r = 53.974; ρ $= 1000 \text{ kg/m}^3$ Ambient Temperature: 23.5 °C; Liquid Temperature: 22.6 °C #### DASY5 Configuration: - Probe: EX3DV4 SN3911; ConvF(7.83, 7.83, 7.83); Calibrated: 2014/4/22; - Sensor-Surface: 2mm (Mechanical Surface Detection) - Electronics: DAE4 Sn1358; Calibrated: 2014/4/30 - Phantom: SAM2; Type: QD000P40CD; Serial: TP:1976 - Measurement SW: DASY52, Version 52.8 (5); SEMCAD X Version 14.6.8 (7028) **Pin=250mW/Area Scan (61x61x1):** Interpolated grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 13.0 W/kg Pin=250mW/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 81.139 V/m; Power Drift = -0.01 dB Peak SAR (extrapolated) = 16.4 W/kg SAR(1 g) = 9.88 W/kg; SAR(10 g) = 4.88 W/kgMaximum value of SAR (measured) = 13.0 W/kg #### System Check Body 2450MHz 140729 **DUT: D2450V2-SN: 908** Communication System: CW; Frequency: 2450 MHz; Duty Cycle: 1:1 Medium: MSL_2450_140729 Medium parameters used: f = 2450 MHz; σ = 1.984 S/m; ϵ_r = 51.165; ρ $= 1000 \text{ kg/m}^3$ Ambient Temperature: 23.6°C; Liquid Temperature: 22.6°C #### DASY5 Configuration: - Probe: EX3DV4 SN3911; ConvF(7.32, 7.32, 7.32); Calibrated: 2014/4/22; - Sensor-Surface: 2mm (Mechanical Surface Detection) - Electronics: DAE4 Sn1358; Calibrated: 2014/4/30 - Phantom: SAM2; Type: QD000P40CD; Serial: TP:1754 - Measurement SW: DASY52, Version 52.8 (5); SEMCAD X Version 14.6.8 (7028) **Pin=250mW/Area Scan (81x81x1):** Interpolated grid: dx=12mm, dy=12mm Maximum value of SAR (interpolated) = 19.9 W/kg Pin=250mW/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 86.868 V/m; Power Drift = -0.07 dB Peak SAR (extrapolated) = 26.9 W/kg SAR(1 g) = 13.3 W/kg; SAR(10 g) = 6.24 W/kgMaximum value of SAR (measured)
= 20.2 W/kg # Appendix B. Plots of High SAR Measurement **Report No. : FA462803** The plots are shown as follows. SPORTON INTERNATIONAL (XI'AN) INC. # #01 GSM850_GPRS (GMSK 4 Tx slots)_Right Cheek_Ch128 Communication System: GPRS (GMSK 4 Tx slot); Frequency: 824.2 MHz; Duty Cycle: 1:2.08 Medium: HSL_835_140722 Medium parameters used: f = 824.2 MHz; $\sigma = 0.906$ S/m; $\epsilon_r = 41.145$; $\rho = 1000$ kg/m³ Date: 2014/7/22 Ambient Temperature: 23.6°C; Liquid Temperature: 22.9°C #### DASY5 Configuration: - Probe: EX3DV4 SN3911; ConvF(9.84, 9.84, 9.84); Calibrated: 2014/4/22; - Sensor-Surface: 2mm (Mechanical Surface Detection) - Electronics: DAE4 Sn1358; Calibrated: 2014/4/30 - Phantom: SAM1; Type: QD000P40CD; Serial: TP:1753 - Measurement SW: DASY52, Version 52.8 (5); SEMCAD X Version 14.6.8 (7028) **Ch128/Area Scan (61x111x1):** Interpolated grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.622 W/kg Ch128/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 9.412 V/m; Power Drift = 0.05 dB Peak SAR (extrapolated) = 0.667 W/kg SAR(1 g) = 0.566 W/kg; SAR(10 g) = 0.455 W/kg Maximum value of SAR (measured) = 0.634 W/kg # #02 GSM1900_GPRS (GMSK 4 Tx slots)_Right Cheek_Ch512 Communication System: GPRS (GMSK 4 Tx slot); Frequency: 1850.2 MHz; Duty Cycle: 1:2.08 Medium: HSL_1900_140721 Medium parameters used: f = 1850.2 MHz; $\sigma = 1.351$ S/m; $\epsilon_r = 39.39$; $\rho = 1000$ kg/m³ Date: 2014/7/21 Ambient Temperature: 23.7 °C; Liquid Temperature: 22.8 °C #### DASY5 Configuration: - Probe: EX3DV4 SN3911; ConvF(8.09, 8.09, 8.09); Calibrated: 2014/4/22; - Sensor-Surface: 2mm (Mechanical Surface Detection) - Electronics: DAE4 Sn1358; Calibrated: 2014/4/30 - Phantom: SAM2; Type: QD000P40CD; Serial: TP:1754 - Measurement SW: DASY52, Version 52.8 (5); SEMCAD X Version 14.6.8 (7028) **Ch512/Area Scan (61x111x1):** Interpolated grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.137 W/kg Ch512/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 3.904 V/m; Power Drift = -0.07 dB Peak SAR (extrapolated) = 0.147 W/kg SAR(1 g) = 0.107 W/kg; SAR(10 g) = 0.070 W/kg Maximum value of SAR (measured) = 0.129 W/kg ### #03 WCDMA Band V RMC 12.2K Right Cheek Ch4233 Communication System: WCDMA; Frequency: 846.6 MHz; Duty Cycle: 1:1 Medium: HSL_835_140722 Medium parameters used: f = 846.6 MHz; $\sigma = 0.926$ S/m; $\epsilon_r = 40.905$; $\rho = 1000 \text{ kg/m}^3$ Date: 2014/7/22 Ambient Temperature: 23.6°C; Liquid Temperature: 22.9°C #### DASY5 Configuration: - Probe: EX3DV4 SN3911; ConvF(9.84, 9.84, 9.84); Calibrated: 2014/4/22; - Sensor-Surface: 2mm (Mechanical Surface Detection) - Electronics: DAE4 Sn1358; Calibrated: 2014/4/30 - Phantom: SAM1; Type: QD000P40CD; Serial: TP:1753 - Measurement SW: DASY52, Version 52.8 (5); SEMCAD X Version 14.6.8 (7028) Ch4233/Area Scan (61x111x1): Interpolated grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.382 W/kg Ch4233/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 7.385 V/m; Power Drift = 0.06 dB Peak SAR (extrapolated) = 0.407 W/kg SAR(1 g) = 0.349 W/kg; SAR(10 g) = 0.278 W/kg Maximum value of SAR (measured) = 0.391 W/kg # #04 WCDMA Band II_RMC 12.2K_Right Cheek_Ch9262 Communication System: WCDMA; Frequency: 1852.4 MHz; Duty Cycle: 1:1 Medium: HSL_1900_140721 Medium parameters used: f = 1852.4 MHz; $\sigma = 1.353$ S/m; $\epsilon_r = 39.378$; Date: 2014/7/21 $\rho = 1000 \text{ kg/m}^3$ Ambient Temperature: 23.7 °C; Liquid Temperature: 22.8 °C implent Temperature · 25.7 C; Liquid Temperature · 22.8 C #### DASY5 Configuration: - Probe: EX3DV4 SN3911; ConvF(8.09, 8.09, 8.09); Calibrated: 2014/4/22; - Sensor-Surface: 2mm (Mechanical Surface Detection) - Electronics: DAE4 Sn1358; Calibrated: 2014/4/30 - Phantom: SAM2; Type: QD000P40CD; Serial: TP:1754 - Measurement SW: DASY52, Version 52.8 (5); SEMCAD X Version 14.6.8 (7028) Ch9262/Area Scan (61x111x1): Interpolated grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.128 W/kg Ch9262/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 3.266 V/m; Power Drift = 0.08 dB Peak SAR (extrapolated) = 0.137 W/kg SAR(1 g) = 0.100 W/kg: SAR(10 g) = 0.065 W/kg SAR(1 g) = 0.100 W/kg; SAR(10 g) = 0.065 W/kgMaximum value of SAR (measured) = 0.119 W/kg #### #05 WLAN 2.4GHz 802.11b 1Mbps Right Cheek Ch6 Communication System: 802.11b; Frequency: 2437 MHz; Duty Cycle: 1:1 Medium: HSL_2450_140729 Medium parameters used: f = 2437 MHz; σ = 1.795 S/m; ϵ_r = 37.678; ρ Date: 2014/7/29 $= 1000 \text{ kg/m}^3$ Ambient Temperature : 23.7 °C; Liquid Temperature : 22.6 °C #### DASY5 Configuration: - Probe: EX3DV4 SN3911; ConvF(7.04, 7.04, 7.04); Calibrated: 2014/4/22; - Sensor-Surface: 2mm (Mechanical Surface Detection) - Electronics: DAE4 Sn1358; Calibrated: 2014/4/30 - Phantom: SAM1; Type: QD000P40CD; Serial: TP:1753 - Measurement SW: DASY52, Version 52.8 (5); SEMCAD X Version 14.6.8 (7028) **Ch6/Area Scan (81x141x1):** Interpolated grid: dx=12mm, dy=12mm Maximum value of SAR (interpolated) = 1.54 W/kg Ch6/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 12.818 V/m; Power Drift = -0.04 dB Peak SAR (extrapolated) = 1.99 W/kg SAR(1 g) = 0.998 W/kg; SAR(10 g) = 0.494 W/kg Maximum value of SAR (measured) = 1.46 W/kg # #06 GSM850_GPRS (GMSK 4 Tx slots)_Back_1.0cm_Ch251 Communication System: GPRS (GMSK 4 Tx slot); Frequency: 848.8 MHz; Duty Cycle: 1:2.08 Medium: MSL_835_140720 Medium parameters used: f = 848.8 MHz; $\sigma = 0.989$ S/m; $\epsilon_r = 54.136$; $\rho = 1000$ kg/m³ Date: 2014/7/20 Ambient Temperature: 23.5 °C; Liquid Temperature: 22.7 °C #### DASY5 Configuration: - Probe: EX3DV4 SN3911; ConvF(10.02, 10.02, 10.02); Calibrated: 2014/4/22; - Sensor-Surface: 2mm (Mechanical Surface Detection) - Electronics: DAE4 Sn1358; Calibrated: 2014/4/30 - Phantom: SAM1; Type: QD000P40CD; Serial: TP:1753 - Measurement SW: DASY52, Version 52.8 (5); SEMCAD X Version 14.6.8 (7028) **Ch251/Area Scan (61x111x1):** Interpolated grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 1.12 W/kg Ch251/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 30.615 V/m; Power Drift = -0.05 dB Peak SAR (extrapolated) = 1.17 W/kg SAR(1 g) = 0.974 W/kg; SAR(10 g) = 0.779 W/kg Maximum value of SAR (measured) = 1.09 W/kg # #07 GSM1900_GPRS (GMSK 4 Tx slots)_Bottom side_1.0cm_Ch512 Communication System: GPRS (GMSK 4 Tx slot); Frequency: 1850.2 MHz; Duty Cycle: 1:2.08 Medium: MSL_1900_140720 Medium parameters used: f = 1850.2 MHz; $\sigma = 1.469$ S/m; $\epsilon_r = 54.083$; $\rho = 1000$ kg/m³ Date: 2014/7/20 Ambient Temperature : 23.5 °C; Liquid Temperature : 22.6 °C #### DASY5 Configuration: - Probe: EX3DV4 SN3911; ConvF(7.83, 7.83, 7.83); Calibrated: 2014/4/22; - Sensor-Surface: 2mm (Mechanical Surface Detection) - Electronics: DAE4 Sn1358; Calibrated: 2014/4/30 - Phantom: SAM2; Type: QD000P40CD; Serial: TP:1754 - Measurement SW: DASY52, Version 52.8 (5); SEMCAD X Version 14.6.8 (7028) **Ch512/Area Scan (31x61x1):** Interpolated grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.454 W/kg Ch512/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 6.198 V/m; Power Drift = -0.04 dB Peak SAR (extrapolated) = 0.532 W/kg SAR(1 g) = 0.336 W/kg; SAR(10 g) = 0.192 W/kg Maximum value of SAR (measured) = 0.445 W/kg #### #08 WCDMA Band V RMC 12.2K Back 1.0cm Ch4233 Communication System: WCDMA; Frequency: 846.6 MHz; Duty Cycle: 1:1 Medium: MSL_835_140720 Medium parameters used: f = 846.6 MHz; $\sigma = 0.986$ S/m; $\epsilon_r = 54.155$; $\rho = 1000 \text{ kg/m}^3$ Date: 2014/7/20 Ambient Temperature: 23.5 °C; Liquid Temperature: 22.7 °C #### DASY5 Configuration: - Probe: EX3DV4 SN3911; ConvF(10.02, 10.02, 10.02); Calibrated: 2014/4/22; - Sensor-Surface: 2mm (Mechanical Surface Detection) - Electronics: DAE4 Sn1358; Calibrated: 2014/4/30 - Phantom: SAM1; Type: QD000P40CD; Serial: TP:1753 - Measurement SW: DASY52, Version 52.8 (5); SEMCAD X Version 14.6.8 (7028) Ch4233/Area Scan (61x111x1): Interpolated grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.654 W/kg **Ch4233/Zoom Scan (5x5x7)/Cube 0:** Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 23.393 V/m; Power Drift = -0.02 dB Peak SAR (extrapolated) = 0.686 W/kg SAR(1 g) = 0.570 W/kg; SAR(10 g) = 0.457 W/kg Maximum value of SAR (measured) = 0.638 W/kg 0 dB = 0.638 W/kg # #09 WCDMA Band II RMC 12.2K Bottom side 1.0cm Ch9262 Communication System: WCDMA; Frequency: 1852.4 MHz; Duty Cycle: 1:1 Medium: MSL 1900 140720 Medium parameters used: f = 1852.4 MHz; $\sigma = 1.472$ S/m; $\varepsilon_r = 54.075$; $\rho = 1000 \text{ kg/m}^3$ Ambient Temperature: 23.5 °C; Liquid Temperature: 22.6 °C #### DASY5 Configuration: - Probe: EX3DV4 SN3911; ConvF(7.83, 7.83, 7.83); Calibrated: 2014/4/22; - Sensor-Surface: 2mm (Mechanical Surface Detection) - Electronics: DAE4 Sn1358; Calibrated: 2014/4/30 - Phantom: SAM2; Type: QD000P40CD; Serial: TP:1754 - Measurement SW: DASY52, Version 52.8 (5); SEMCAD X Version 14.6.8 (7028) Ch9262/Area Scan (31x61x1): Interpolated grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.365 W/kg Ch9262/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 5.415 V/m; Power Drift = -0.15 dB Peak SAR (extrapolated) = 0.428 W/kg SAR(1 g) = 0.275 W/kg; SAR(10 g) = 0.156 W/kg Maximum value of SAR (measured) = 0.363 W/kg 0 dB = 0.363 W/kg Communication System: 802.11b; Frequency: 2462 MHz; Duty Cycle: 1:1 Medium: MSL_2450_140729 Medium parameters used: f = 2462 MHz; σ = 2.002 S/m; ϵ_r = 51.118; ρ Date: 2014/7/29 $= 1000 \text{ kg/m}^3$ Ambient Temperature: 23.6°C; Liquid Temperature: 22.6°C #### DASY5 Configuration: - Probe: EX3DV4 SN3911; ConvF(7.32, 7.32, 7.32); Calibrated: 2014/4/22; - Sensor-Surface: 2mm (Mechanical Surface
Detection) - Electronics: DAE4 Sn1358; Calibrated: 2014/4/30 - Phantom: SAM2; Type: QD000P40CD; Serial: TP:1754 - Measurement SW: DASY52, Version 52.8 (5); SEMCAD X Version 14.6.8 (7028) Ch11/Area Scan (81x141x1): Interpolated grid: dx=12mm, dy=12mm Maximum value of SAR (interpolated) = 0.308 W/kg Ch11/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 6.518 V/m; Power Drift = -0.01 dB Peak SAR (extrapolated) = 0.377 W/kg SAR(1 g) = 0.227 W/kg; SAR(10 g) = 0.132 W/kg Maximum value of SAR (measured) = 0.307 W/kg 0 dB = 0.307 W/kg # #11 GSM1900_GPRS (GMSK 4 Tx slots)_Back_1.0cm_Ch512 Communication System: GPRS (GMSK 4 Tx slot); Frequency: 1850.2 MHz; Duty Cycle: 1:2.08 Medium: MSL_1900_140720 Medium parameters used: f = 1850.2 MHz; $\sigma = 1.469$ S/m; $\epsilon_r = 54.083$; $\rho = 1000$ kg/m³ Date: 2014/7/20 Ambient Temperature: 23.5 °C; Liquid Temperature: 22.6 °C #### DASY5 Configuration: - Probe: EX3DV4 SN3911; ConvF(7.83, 7.83, 7.83); Calibrated: 2014/4/22; - Sensor-Surface: 2mm (Mechanical Surface Detection) - Electronics: DAE4 Sn1358; Calibrated: 2014/4/30 - Phantom: SAM2; Type: QD000P40CD; Serial: TP:1754 - Measurement SW: DASY52, Version 52.8 (5); SEMCAD X Version 14.6.8 (7028) Ch512/Area Scan (61x111x1): Interpolated grid: dx=15 mm, dy=15 mm Maximum value of SAR (interpolated) = 0.433 W/kg Ch512/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 7.164 V/m; Power Drift = -0.12 dB Peak SAR (extrapolated) = 0.499 W/kg SAR(1 g) = 0.334 W/kg; SAR(10 g) = 0.202 W/kg Maximum value of SAR (measured) = 0.411 W/kg # #12 WCDMA Band II_RMC 12.2K_Back_1.0cm_Ch9262 Communication System: WCDMA; Frequency: 1852.4 MHz; Duty Cycle: 1:1 Medium: MSL_1900_140720 Medium parameters used: f = 1852.4 MHz; $\sigma = 1.472$ S/m; $\varepsilon_r = 54.075$; Date: 2014/7/20 $\rho = 1000 \text{ kg/m}^3$ Ambient Temperature: 23.5 °C; Liquid Temperature: 22.6 °C #### DASY5 Configuration: - Probe: EX3DV4 SN3911; ConvF(7.83, 7.83, 7.83); Calibrated: 2014/4/22; - Sensor-Surface: 2mm (Mechanical Surface Detection) - Electronics: DAE4 Sn1358; Calibrated: 2014/4/30 - Phantom: SAM2; Type: QD000P40CD; Serial: TP:1754 - Measurement SW: DASY52, Version 52.8 (5); SEMCAD X Version 14.6.8 (7028) Ch9262/Area Scan (61x111x1): Interpolated grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.310 W/kg Ch9262/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 5.924 V/m; Power Drift = 0.02 dB Peak SAR (extrapolated) = 0.381 W/kg SAR(1 g) = 0.249 W/kg; SAR(10 g) = 0.148 W/kg Maximum value of SAR (measured) = 0.311 W/kg 0 dB = 0.311 W/kg # Appendix C. DASY Calibration Certificate **Report No. : FA462803** The DASY calibration certificates are shown as follows. SPORTON INTERNATIONAL (XI'AN) INC. # Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstresse 43, 8004 Zurich, Switzerland Schweizerischer Kallbrierdienst Service sulsse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Accreditation No.: SCS 108 Client Sporton-KS (Auden) Certificate No: D835V2-4d151 Mar13 # **CALIBRATION CERTIFICATE** Object D835V2 - SN: 4d151 Calibration procedure(s) QA CAL-05.v9 Calibration procedure for dipole validation kits above 700 MHz Calibration date: March 25, 2013 This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility; environment temperature (22 ± 3)°C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) | Primary Standards | 10 # | Cal Date (Certificate No.) | Scheduled Calibration | |-----------------------------|-------------------|-----------------------------------|------------------------| | Power meter EPM-442A | GB37480704 | 01-Nov-12 (No. 217-01640) | Oct-13 | | Power sensor HP 8481A | US37292783 | 01-Nov-12 (No. 217-01640) | Oct-13 | | Reference 20 dB Attenuator | SN: 5058 (20k) | 27-Mar-12 (No. 217-01530) | Apr-13 | | Type-N mismatch combination | SN 5047 3 / 06327 | 27-Mar-12 (No. 217-01533) | Apr-13 | | Reference Probe ES3DV3 | SN 3205 | 28-Dec-12 (No. ES3-3205_Dec12) | Dec-13 | | DAE4 | SN: 601 | 27-Jun-12 (No. DAE4-B01_Jun12) | dun-13 | | Secondary Standards | ID # | Check Date (in house) | Scheduled Check | | Power sensor HP 8481A | MY41092317 | 18-Oct-02 (in house check Oct-11) | In house check: Oct-13 | | RF generator R&S SMT-06 | 100005 | 04-Aug-99 (in house check Oct-11) | In house check: Oct-13 | | Network Analyzer HP 8753E | US37390585 S4206 | 18-Oct-01 (in house check Oct-12) | In house check: Oct-19 | | | Name | Function | Signature | | Calibrated by: | Jeton Kastrati | Laboratory Technician | Ile | | | | | | Issued: March 26, 2013 This calibration certificate shall not be reproduced except in full without written approval of the laboratory. ### Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstresse 43, 8004 Zurich, Switzerland S Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accreditation No.: SCS 108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multileteral Agreement for the recognition of calibration certificates Glossary: TSL tissue simulating liquid ConvF N/A sensitivity in TSL / NORM x,y,z not applicable or not measured Calibration is Performed According to the Following Standards: a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003 b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005 c) Federal Communications Commission Office of Engineering & Technology (FCC OET), "Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields; Additional Information for Evaluating Compliance of Mobile and Portable Devices with FCC Limits for Human Exposure to Radiofrequency Emissions", Supplement C (Edition 01-01) to Bulletin 65 #### Additional Documentation: d) DASY4/5 System Handbook #### Methods Applied and Interpretation of Parameters: - Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated. - Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis. - Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required. - Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required. - SAR measured: SAR measured at the stated antenna input power. - SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector. - SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result. The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%. #### Measurement Conditions DASY system configuration, as far as not given on page 1. | DASY Version | DASY5 | V52.8.5 | |------------------------------|------------------------|-------------| | Extrapolation | Advanced Extrapolation | | | Phantom | Modular Flat Phantom | | | Distance Dipole Center - TSL | 15 mm | with Spacer | | Zoom Scan Resolution | dx. dy, dz = 5 mm | | | Frequency | 835 MHz ± 1 MHz | | # **Head TSL parameters** The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 41.5 | 0.90 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 40.9 ± 6 % | 0.94 mho/m ± 6 % | | Head TSL temperature change during test | < 0.5 °C | | 1 | # SAR result with Head TSL | SAR averaged over 1 cm ³ (1 g) of Head TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 2.46 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 9.49 W/kg ± 17.0 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Head TSL | condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 1.59 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 6.18 W/kg ± 16.5 % (k=2) | # **Body TSL parameters** The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Body TSL parameters | 22.0 °C | 55.2 | 0.97 mho/m | | Measured Body TSL parameters | (22.0 ± 0.2) °C | 54.1 ± 6 % | 1,02 mho/m ± 6 % | | Body TSL temperature change during test | < 0.5 °C | pend | - | # SAR result with Body TSL |
SAR averaged over 1 cm3 (1 g) of Body TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 2,46 W/kg | | SAR for nominal Body TSL parameters | normalized to 1W | 9.43 W/kg ± 17.0 % (k=2) | | SAR averaged over 10 cm3 (10 g) of Body TSL | condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 1.61 W/kg | | SAR for nominal Body TSL parameters | normalized to 1W | 6.23 W/kg ± 16.5 % (k=2) | ### Appendix #### Antenna Parameters with Head TSL | Impedance, transformed to feed point | 51.7 Ω - 2.2 μΩ | | |--------------------------------------|-----------------|--| | Return Loss | - 31.2 dB | | ### Antenna Parameters with Body TSL | Impedance, transformed to feed point | 47.1 Ω - 4.3]Ω | | |--------------------------------------|-----------------|--| | Return Loss | - 25.4 dB | | # General Antenna Parameters and Design | Harris A. P. A. A. Marine Laurence | VALUE TO THE PROPERTY OF P | |------------------------------------|--| | Electrical Delay (one direction) | 1,391 ns | After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured. The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged. #### Additional EUT Data | Manufactured by | SPEAG | |-----------------|----------------| | Manufactured on | March 27, 2012 | #### DASY5 Validation Report for Head TSL Date: 25.03.2013 Test Laboratory: SPEAG, Zurich, Switzerland DUT: Dipole 835 MHz; Type; D835V2; Serial: D835V2 - SN: 4d151 Communication System: CW; Frequency: 835 MHz Medium parameters used: f = 835 MHz; $\sigma = 0.94$ S/m; $\varepsilon_f = 40.9$; $\rho = 1000$ kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007) #### DASY52 Configuration: Probe: ES3DV3 - SN3205; ConvF(6.05, 6.05, 6.05); Calibrated: 28.12.2012; Sensor-Surface: 3mm (Mechanical Surface Detection) Electronics: DAE4 Sn601; Calibrated: 27.06.2012 Phantom: Flat Phantom 4.9L; Type: QD000P49AA; Serial: 1001 DASY52 52.8,5(1059); SEMCAD X 14.6.8(7028) # Dipole Calibration for Head Tissue/Pin=250 mW, d=15mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 56.742 V/m; Power Drift = 0.01 dB Peak SAR (extrapolated) = 3.74 W/kg SAR(1 g) = 2.46 W/kg; SAR(10 g) = 1.59 W/kg Maximum value of SAR (measured) = 2.88 W/kg 0 dB = 2.88 W/kg = 4.59 dBW/kg # Impedance Measurement Plot for Head TSL # DASY5 Validation Report for Body TSL Date: 25.03.2013 Test Laboratory: SPEAG, Zurich, Switzerland DUT: Dipole 835 MHz; Type: D835V2; Serial: D835V2 - SN: 4d151 Communication System: CW; Frequency: 835 MHz Medium parameters used: f = 835 MHz; $\sigma = 1.02 \text{ S/m}$; $\varepsilon_r = 54.1$; $\rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007) #### DASY52 Configuration: Probe: ES3DV3 - SN3205; ConvF(6.04, 6.04, 6.04); Calibrated: 28.12.2012; Sensor-Surface: 3mm (Mechanical Surface Detection) Electronics: DAE4 Sn601; Calibrated: 27,06.2012 Phantom: Flat Phantom 4.9L.; Type: QD000P49AA; Serial: 1001 DASY52 52.8.5(1059); SEMCAD X 14.6.8(7028) # Dipole Calibration for Body Tissue/Pin=250 mW, d=15mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 54.816 V/m; Power Drift = 0.01 dB Peak SAR (extrapolated) = 3.63 W/kg SAR(1 g) = 2.46 W/kg; SAR(10 g) = 1.61 W/kg Maximum value of SAR (measured) = 2.87 W/kg # Impedance Measurement Plot for Body TSL # **Extended Dipole Calibrations** Referring to KDB 865664 D01 v01r03, if dipoles are verified in return loss (<-20dB, within 20% of prior calibration), and in impedance (within 5 ohm of prior calibration), the annual calibration is not necessary and the calibration interval can be extended. # <Dipole Verification Data> - D835V2, serial no. 4d151(Date of Measurement 03.24.2014) 835MHz - Head TEL: 886-3-327-3456 FAX: 886-3-328-4978 #### <Justification of the extended calibration> | | | | | | D835V2 – s | erial no | . 4d151 | | | | | | |------------------------|---------------------|--------------|----------------------------|----------------|---------------------------|----------------|---------------------|--------------|----------------------------|----------------|---------------------------|----------------| | TSL | Head | | | | Body | | | | | | | | | Date of
Measurement | Return-Loss
(dB) | Delta
(%) | Real
Impedance
(ohm) | Delta
(ohm) | Imaginary Impedance (ohm) | Delta
(ohm) | Return-Loss
(dB) | Delta
(%) | Real
Impedance
(ohm) | Delta
(ohm) | Imaginary Impedance (ohm) | Delta
(ohm) | | 03.25.2013 | -31.201 | | 51.736 | | -2.201 | | -25.418 | | 47.059 | | -4.2930 | | | 03.24.2014 | -30.505 | 2.23 | 51.767 | 0.031 | -2.252 | -0.051 | -25.828 | -1.613 | 47.599 | 0.54 | -4.453 | -0.16 | The return loss is < -20dB, within 20% of prior calibration; the impedance is within 5 ohm of prior calibration. Therefore the verification result should support extended calibration. TEL: 886-3-327-3456 FAX: 886-3-328-4978 ### Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S Schweizerischer Kalibrierdienst C Service suisse d'étalonnage Servizio svizzero di taratura S Swiss Calibration Service Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Accreditation No.: SCS 108 Client Sporton KS (Auden) Certificate No: D1900V2-5d170 Mar13 ### CALIBRATION CERTIFICATE Object D1900V2 - SN: 5d170 Calibration procedure(s) QA CAL-05.v9 Calibration procedure for dipole validation kits above 700 MHz Calibration date: March 27, 2013 This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility; environment temperature (22 ± 3)°C and humidity < 70% Calibration Equipment used (M&TE critical for calibration) | ID# | Cal Date (Certificate No.) | Scheduled Calibration | |--------------------|---|------------------------| | GB37480704 | 01-Nov-12 (No. 217-01640) | Oct-13 | | US37292783 | 01-Nov-12 (No. 217-01640) | Oct-13 | | SN: 5058 (20k) | 27-Mar-12 (No. 217-01530) | Apr-13 | | SN: 5047.3 / 06327 | 27-Mar-12 (No. 217-01533) | Apr-13 | | SN: 3205 | 28-Dec-12 (No. ES3-3205, Dec12) | Dec-13 | | SN: 601 | 27-Jun-12 (No. DAE4-601_Jun12) | Jun-13 | | 1D.W | Check Date (in house) | Scheduled Check | | MY41092317 | 18-Oct-92 (in house check Oct-11) | In house check: Oct-13 | | 100005 | 04-Aug-99 (in house check Oct-11) | In house check: Oct-13 | | US37390585 S4206 | 18-Oct-01 (in house check Oct-12) | In house check: Oct-13 | | Name | Function | Signature | | Leif Klysner | Laboratory Technician | Sef flow | | Katja Pokovic | Technical Manager | 00111 | | |
GB37480704
US37292783
SN: 5058 (20k)
SN: 5047.3 / 06327
SN: 3205
SN: 601
ID #
MY41092317
100005
US37390585 S4206
Name
Leit Klysner | GB37480704 | Issued: March 27, 2013 This calibration certificate shall not be reproduced except in full without written approval of the laboratory. ### Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland Schweizerischer Kallbrierdienst Service suisse d'étalonnage C Servizio svizzero di taratura Swiss Calibration Service Accreditation No.: SCS 108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates #### Glossary: TSL tissue simulating liquid ConvF sensitivity in TSL / NORM x.v.z N/A not applicable or not measured ### Calibration is Performed According to the Following Standards: a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003 b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)". February 2005 Federal Communications Commission Office of Engineering & Technology (FCC OET). "Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields; Additional Information for Evaluating Compliance of Mobile and Portable Devices with FCC Limits for Human Exposure to Radiofrequency Emissions", Supplement C (Edition 01-01) to Bulletin 65 #### Additional Documentation: d) DASY4/5 System Handbook ### Methods Applied and Interpretation of Parameters: - · Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated. - Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis. - · Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required. - Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required. - SAR measured: SAR measured at the stated antenna input power. - SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector. - SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result. The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%. ### **Measurement Conditions** DASY system configuration, as far as not given on page 1. | DASY Version | DASY5 | V52.8.5 | |------------------------------|------------------------|-------------| | Extrapolation | Advanced Extrapolation | 1743-1412 | | Phantom | Modular Flat Phantom | | | Distance Dipole Center - TSL | 10 mm | with Spacer | | Zoom Scan Resolution | dx, dy, dz = 5 mm | | | Frequency | 1900 MHz ± 1 MHz | | ### Head TSL parameters The following parameters and calculations were applied | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 40.0 | 1.40 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 39.3 ± 6 % | 1.38 mho/m ± 6 % | | Head TSL temperature change during test | < 0.5 °C | | | ### SAR result with Head TSL | SAR averaged over 1 cm3 (1 g) of Head TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 10.0 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 40.2 W/kg ± 17.0 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Head TSL | condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 5.25 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 21.1 W/kg ± 16.5 % (k=2) | ### **Body TSL parameters** The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Body TSL parameters | 22.0 °C | 53.3 | 1.52 mho/m | | Measured Body TSL parameters | (22.0 ± 0.2) °C | 51.8 ± 6 % | 1.53 mho/m ± 6 % | | Body TSL temperature change during test | < 0.5 °C | | | ### SAR result with Body TSL | SAR averaged over 1 cm3 (1 g) of Body TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 10.4 W/kg | | SAR for nominal Body TSL parameters | normalized to 1W | 41.2 W/kg ± 17.0 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Body TSL | condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 5.49 W/kg | | SAR for nominal Body TSL parameters | normalized to 1W | 21.8 W/kg ± 16.5 % (k=2) | ### Appendix ### Antenna Parameters with Head TSL | Impedance, transformed to feed point | 53,8 Ω + 4.7 μΩ | | | |--------------------------------------|-----------------|--|--| | Return Loss | - 24.7 dB | | | ### Antenna Parameters with Body TSL | Impedance, transformed to feed point | 49.6 Ω + 5.0 jΩ | | |--------------------------------------|-----------------|--| | Return Loss | - 26.0 dB | | ### General Antenna Parameters and Design | Electrical Delay (one direction) | 1,202 ns | |----------------------------------|----------| |----------------------------------|----------| After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured. The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to me dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged. #### Additional EUT Data | Manufactured by | SPEAG | | | |-----------------|---------------|--|--| | Manufactured on | June 08, 2012 | | | ### **DASY5 Validation Report for Head TSL** Date: 27.03.2013 Test Laboratory: SPEAG, Zurich, Switzerland DUT: Dipole 1900 MHz; Type: D1900V2; Serial: D1900V2 - SN: 5d170 Communication System: CW; Frequency: 1900 MHz Medium parameters used: f = 1900 MHz; $\sigma = 1.38 \text{ S/m}$; $\varepsilon_r = 39.3$; $\rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007) ### DASY52 Configuration: - Probe: ES3DV3 SN3205; ConvF(4.98, 4.98, 4.98); Calibrated: 28,12,2012; - Sensor-Surface: 3mm (Mechanical Surface Detection) - Electronics: DAE4 Sn601; Calibrated: 27.06.2012 - Phantom: Flat Phantom 5.0 (front); Type: QD000P50AA; Serial: 1001 - DASY52 52.8.5(1059); SEMCAD X 14.6.8(7028) ### Dipole Calibration for Head Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 96.871 V/m; Power Drift = 0.05 dB Peak SAR (extrapolated) = 18.2 W/kg SAR(1 g) = 10 W/kg; SAR(10 g) = 5.25 W/kg Maximum value of SAR (measured) = 12.4 W/kg 0 dB = 12.4 W/kg = 10.93 dBW/kg ### Impedance Measurement Plot for Head TSL ### **DASY5 Validation Report for Body TSL** Date: 27.03.2013 Test Laboratory: SPEAG, Zurich, Switzerland DUT: Dipole 1900 MHz; Type: D1900V2; Serial: D1900V2 - SN: 5d170 Communication System: CW; Frequency: 1900 MHz Medium parameters used: f = 1900 MHz; $\sigma = 1.53$ S/m; $\epsilon_r = 51.8$; $\rho = 1000$ kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007) ### DASY52 Configuration: Probe: ES3DV3 - SN3205; ConvF(4.6, 4.6, 4.6); Calibrated: 28.12.2012; Sensor-Surface; 3mm (Mechanical Surface Detection) Electronics: DAE4 Sn601; Calibrated: 27.06.2012 Phantom: Flat Phantom 5.0 (back): Type: QD000P50AA; Serial: 1002 DASY52 52.8.5(1059); SEMCAD X 14.6.8(7028) ### Dipole Calibration for Body Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 96.871 V/m; Power Drift = 0.01 dB Peak SAR (extrapolated) = 18.0 W/kg SAR(1 g) = 10.4 W/kg; SAR(10 g) = 5.49 W/kg Maximum value of SAR (measured) = 13.2 W/kg 0 dB = 13.2 W/kg = 11.21 dBW/kg ## Impedance Measurement Plot for Body TSL ### **Extended Dipole Calibrations** Referring to KDB 865664 D01 v01r03, if dipoles are verified in return loss (<-20dB, within 20% of prior calibration), and in impedance (within 5 ohm of prior calibration), the annual calibration is not necessary and the calibration interval can be extended. # <Dipole Verification Data> - D1900V2, serial no. 5d170(Date of Measurement 03.26.2014) 1900MHz - Head TEL: 886-3-327-3456 FAX: 886-3-328-4978 #### <Justification of the extended calibration> | | D1900V2 – serial no. 5d170 | | | | | | | | | | | | |------------------------|----------------------------|--------------
----------------------------|----------------|---------------------------|----------------|---------------------|--------------|----------------------------|----------------|---------------------------|----------------| | TSL | TSL Head | | | | | Body | | | | | | | | Date of
Measurement | Return-Loss
(dB) | Delta
(%) | Real
Impedance
(ohm) | Delta
(ohm) | Imaginary Impedance (ohm) | Delta
(ohm) | Return-Loss
(dB) | Delta
(%) | Real
Impedance
(ohm) | Delta
(ohm) | Imaginary Impedance (ohm) | Delta
(ohm) | | 03.27.2013 | -24.733 | | 53.791 | | 4.682 | | -25.967 | | 49.588 | | 4.996 | | | 03.26.2014 | -24.628 | 0.425 | 55.002 | 1.211 | 3.868 | -0.814 | -26.017 | -0.193 | 49.067 | -0.521 | 5.486 | 0.490 | The return loss is < -20dB, within 20% of prior calibration; the impedance is within 5 ohm of prior calibration. Therefore the verification result should support extended calibration. TEL: 886-3-327-3456 FAX: 886-3-328-4978 ### Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Client Sporton-KS (Auden) Accreditation No.: SCS 108 Certificate No: D2450V2-908_Mar13 ### CALIBRATION CERTIFICATE Object D2450V2 - SN: 908 Calibration procedure(s) QA CAL-05.v9 Calibration procedure for dipole validation kits above 700 MHz Calibration date: March 26, 2013 This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) | Primary Standards | ID# | Cal Date (Certificate No.) | Scheduled Calibration | |-----------------------------|--------------------|-----------------------------------|------------------------| | Power meter EPM-442A | GB37480704 | 01-Nov-12 (No. 217-01640) | Oct-13 | | Power sensor HP 8481A | US37292783 | 01-Nov-12 (No. 217-01640) | Oct-13 | | Reference 20 dB Attenuator | SN: 5058 (20k) | 27-Mar-12 (No. 217-01530) | Apr-13 | | Type-N mismatch combination | SN: 5047,3 / 06327 | 27-Mar-12 (No. 217-01533) | Apr-13 | | Reference Probe ES3DV3 | SN: 3205 | 28-Dec-12 (No. ES3-3205_Dec12) | Dec-13 | | DAE4 | SN: 601 | 27-Jun-12 (No. DAE4-601_Jun12) | Jun-13 | | Secondary Standards | 1D # | Check Date (in house) | Scheduled Check | | Power sensor HP B481A | MY41092317 | 18-Oct-02 (in house check Oct-11) | In house check: Oct-13 | | RF generator R&S SMT-06 | 100005 | 04-Aug-99 (in house check Oct-11) | In house check: Oct-13 | | Network Analyzer HP 8753E | US37390585 S4206 | 18-Oct-01 (in house check Oct-12) | In house check: Oct-13 | | | Name | Function | Signature | | Calibrated by: | Claudio Leubler | Laboratory Technician | A | | | | | 201 | issued: March 26, 2013 This calibration certificate shall not be reproduced except in full without written approval of the laboratory. ### Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura S Swiss Calibration Service Accreditation No.: SCS 108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates #### Glossary: TSL tissue simulating liquid ConvF N/A sensitivity in TSL / NORM x,y,z not applicable or not measured ### Calibration is Performed According to the Following Standards: a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003 iEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005 c) Federal Communications Commission Office of Engineering & Technology (FCC OET), "Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields; Additional Information for Evaluating Compliance of Mobile and Portable Devices with FCC Limits for Human Exposure to Radiofrequency Emissions", Supplement C (Edition 01-01) to Bulletin 65 #### Additional Documentation: d) DASY4/5 System Handbook #### Methods Applied and Interpretation of Parameters: - Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated. - Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis. - Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required. - Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required. - SAR measured: SAR measured at the stated antenna input power. - SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector. - SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result. The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%. ### Measurement Conditions DASY system configuration, as far as not given on page 1. | DASY Version | DASY5 | V52.8.5 | |------------------------------|------------------------|-------------| | Extrapolation | Advanced Extrapolation | | | Phantom | Modular Flat Phantom | | | Distance Dipole Center - TSL | 10 mm | with Spacer | | Zoom Scan Resolution | dx, dy, dz = 5 mm | | | Frequency | 2450 MHz ± 1 MHz | | Head TSL parameters The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 39.2 | 1.80 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 37.8 ± 6 % | 1,85 mho/m ± 6 % | | Head TSL temperature change during test | < 0.5 °C | 1. Vanit | Ann | ### SAR result with Head TSL | SAR averaged over 1 cm ³ (1 g) of Head TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 13.8 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 54.0 W/kg ± 17.0 % (k=2) | | SAR averaged over 10 cm3 (10 g) of Head TSL | condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 6.36 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 25.1 W/kg ± 16.5 % (k=2) | Body TSL parameters The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Body TSL parameters | 22.0 °C | 52.7 | 1.95 mho/m | | Measured Body TSL parameters | (22.0 ± 0.2) °C | 50.7 ± 6 % | 2.01 mho/m ± 6 % | | Body TSL temperature change during test | < 0.5 °C | - | 1-0- | ### SAR result with Body TSL | SAR averaged over 1 cm ³ (1 g) of Body TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 12.9 W/kg | | SAR for nominal Body TSL parameters | normalized to 1W | 50.4 W/kg ± 17.0 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Body TSL | condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 5,94 W/kg | | SAR for nominal Body TSL parameters | normalized to 1W | 23.4 W/kg ± 16.5 % (k=2) | ### Appendix ### Antenna Parameters with Head TSL | Impedance, transformed to feed point | 56.5 Ω - 0.1 jΩ | | |--------------------------------------|-----------------|--| | Return Loss | - 24.3 dB | | ### Antenna Parameters with Body TSL | Impedance, transformed to feed point | 52.6 Ω + 1.9 Ω | |--------------------------------------|-----------------| | Return Loss | - 30.0 dB | ### General Antenna Parameters and Design | Electrical Delay (one direction) | 1.156 ns | |----------------------------------|----------| After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured. The dipole is made of standard semingid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or
the soldered connections near the feedpoint may be damaged. #### Additional EUT Data | Manufactured by | SPEAG | |-----------------|-------------------| | Manufactured on | December 19, 2012 | ### DASY5 Validation Report for Head TSL Date: 26.03.2013 Test Laboratory: SPEAG, Zurich, Switzerland DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN: 908 Communication System: CW; Frequency: 2450 MHz. Medium parameters used: f = 2450 MHz; $\sigma = 1.85 \text{ S/m}$; $\varepsilon_r = 37.8$; $\rho = 1000 \text{ kg/m}^2$ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007) #### DASY52 Configuration: Probe; ES3DV3 - SN3205; ConvF(4.52, 4.52, 4.52); Calibrated: 28.12.2012; Sensor-Surface: 3mm (Mechanical Surface Detection) Electronics: DAE4 Sn601; Calibrated: 27.06.2012 Phantom: Flat Phantom 5.0 (front); Type: QD000P50AA; Serial: 1001 DASY52 52.8.5(1059); SEMCAD X 14.6.8(7028) ### Dipole Calibration for Head Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 94.957 V/m; Power Drift = 0.04 dB Peak SAR (extrapolated) = 28.8 W/kg SAR(1 g) = 13.8 W/kg; SAR(10 g) = 6.36 W/kg Maximum value of SAR (measured) = 17.9 W/kg 0 dB = 17.9 W/kg = 12.53 dBW/kg ### Impedance Measurement Plot for Head TSL ### DASY5 Validation Report for Body TSL Date: 26.03.2013 Test Laboratory: SPEAG, Zurich, Switzerland DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN: 908 Communication System: CW; Frequency: 2450 MHz Medium parameters used: f = 2450 MHz; $\sigma = 2.01 \text{ S/m}$; $\varepsilon_r = 50.7$; $\rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007) #### DASY52 Configuration: - Probe: ES3DV3 SN3205; ConvF(4.42, 4.42, 4.42); Calibrated: 28,12.2012; - Sensor-Surface: 3mm (Mechanical Surface Detection) - Electronics: DAE4 Sn601; Calibrated: 27.06.2012 - Phantom: Flat Phantom 5.0 (back); Type: QD000P50AA; Serial: 1002 - DASY52 52.8.5(1059); SEMCAD X 14.6.8(7028) ### Dipole Calibration for Body Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 94.957 V/m; Power Drift = 0.00 dB Peak SAR (extrapolated) = 27.0 W/kg SAR(1 g) = 12.9 W/kg; SAR(10 g) = 5.94 W/kg Maximum value of SAR (measured) = 17.1 W/kg 0 dB = 17.1 W/kg = 12.33 dBW/kg ### Impedance Measurement Plot for Body TSL ### **Extended Dipole Calibrations** Referring to KDB 865664 D01 v01r03, if dipoles are verified in return loss (<-20dB, within 20% of prior calibration), and in impedance (within 5 ohm of prior calibration), the annual calibration is not necessary and the calibration interval can be extended. # <Dipole Verification Data> - D2450V2, serial no. 908(Date of Measurement 03.25.2014) 2450MHz - Head TEL: 886-3-327-3456 FAX: 886-3-328-4978 #### <Justification of the extended calibration> | | D2450V2 – serial no. 908 | | | | | | | | | | | | |------------------------|--------------------------|--------------|----------------------------|----------------|---------------------------|----------------|---------------------|--------------|----------------------------|----------------|---------------------------|----------------| | TSL Head | | | Body | | | | | | | | | | | Date of
Measurement | Return-Loss
(dB) | Delta
(%) | Real
Impedance
(ohm) | Delta
(ohm) | Imaginary Impedance (ohm) | Delta
(ohm) | Return-Loss
(dB) | Delta
(%) | Real
Impedance
(ohm) | Delta
(ohm) | Imaginary Impedance (ohm) | Delta
(ohm) | | 03.26.2013 | -24.251 | | 56.531 | | -0.125 | | -30.033 | | 52.631 | | 1.881 | | | 03.25.2014 | -25.155 | -0.373 | 56.061 | -0.47 | -0.059 | 0.066 | -29.785 | 0.826 | 52.379 | -0.252 | 1.510 | -0.371 | The return loss is < -20dB, within 20% of prior calibration; the impedance is within 5 ohm of prior calibration. Therefore the verification result should support extended calibration. TEL: 886-3-327-3456 FAX: 886-3-328-4978 Zeughausstrasse 43, 8004 Zurich, Switzerland Phone +41 44 245 9700, Fax +41 44 245 9779 info@speag.com, http://www.speag.com ### **IMPORTANT NOTICE** #### **USAGE OF THE DAE 4** The DAE unit is a delicate, high precision instrument and requires careful treatment by the user. There are no serviceable parts inside the DAE. Special attention shall be given to the following points: Battery Exchange: The battery cover of the DAE4 unit is closed using a screw, over tightening the screw may cause the threads inside the DAE to wear out. **Shipping of the DAE**: Before shipping the DAE to SPEAG for calibration, remove the batteries and pack the DAE in an antistatic bag. This antistatic bag shall then be packed into a larger box or container which protects the DAE from impacts during transportation. The package shall be marked to indicate that a fragile instrument is inside. **E-Stop Failures**: Touch detection may be malfunctioning due to broken magnets in the E-stop. Rough handling of the E-stop may lead to damage of these magnets. Touch and collision errors are often caused by dust and dirt accumulated in the E-stop. To prevent E-stop failure, the customer shall always mount the probe to the DAE carefully and keep the DAE unit in a non-dusty environment if not used for measurements. **Repair**: Minor repairs are performed at no extra cost during the annual calibration. However, SPEAG reserves the right to charge for any repair especially if rough unprofessional handling caused the defect. **DASY Configuration Files:** Since the exact values of the DAE input resistances, as measured during the calibration procedure of a DAE unit, are not used by the DASY software, a nominal value of 200 MOhm is given in the corresponding configuration file. #### Important Note: Warranty and calibration is void if the DAE unit is disassembled partly or fully by the Customer. #### **Important Note:** Never attempt to grease or oil the E-stop assembly. Cleaning and readjusting of the Estop assembly is allowed by certified SPEAG personnel only and is part of the annual calibration procedure. #### Important Note: To prevent damage of the DAE probe connector pins, use great care when installing the probe to the DAE. Carefully connect the probe with the connector notch oriented in the mating position. Avoid any rotational movement of the probe body versus the DAE while turning the locking nut of the connector. The same care shall be used when disconnecting the probe from the DAE. ### Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland C Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Client Sporton CN (Auden) Certificate No: DAE4-1358_Apr14 Accreditation No.: SCS 108 ### **CALIBRATION CERTIFICATE** Object DAE4 - SD 000 D04 BJ - SN: 1358 Calibration procedure(s) QA CAL-06.v26 Calibration procedure for the data acquisition electronics (DAE) Calibration date: April 30, 2014 This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) | Primary Standards | ID# | Cal Date (Certificate No.) | Scheduled Calibration | |-------------------------------|--------------------|----------------------------|------------------------| | Keithley Multimeter Type 2001 | SN: 0810278 | 01-Oct-13 (No:13976) | Oct-14 | | Secondary Standards | ID# | Check Date (in house) | Scheduled Check | | Auto DAE Calibration Unit | SE UWS 053 AA 1001 | 07-Jan-14 (in house check) | In house check: Jan-15 | | Calibrator Box V2.1 | SE UMS 006 AA 1002 | 07-Jan-14 (in house check) | In house check: Jan-15 | Name Function Signature Calibrated by: R.Mayoraz Technician Technician Technician Approved by: Pin Bomholt Deputy Technical Manager Issued: April 30, 2014 This calibration certificate shall not be reproduced except in full without written approval of the laboratory. ### Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Accreditation No.: SCS 108 ### Glossary DAE dat Connector angle data acquisition electronics information used in DASY system to align probe sensor X to the robot coordinate system. ### Methods Applied and Interpretation of Parameters - DC Voltage Measurement: Calibration Factor assessed for use in DASY system by comparison with a calibrated instrument traceable to national standards. The figure given corresponds to the full scale range of the voltmeter in the respective range. - Connector angle: The angle of the connector is assessed measuring the angle mechanically by a tool inserted. Uncertainty is not required. - The following parameters as documented in the Appendix contain technical information as a result from the performance test and require no uncertainty. - DC Voltage Measurement Linearity: Verification of the Linearity at +10% and -10% of the nominal calibration voltage. Influence of offset voltage is included in this measurement. - Common mode sensitivity: Influence of a positive or negative common mode voltage on the differential measurement. - Channel separation: Influence of a voltage on the
neighbor channels not subject to an input voltage. - AD Converter Values with inputs shorted: Values on the internal AD converter corresponding to zero input voltage - Input Offset Measurement. Output voltage and statistical results over a large number of zero voltage measurements. - Input Offset Current: Typical value for information; Maximum channel input offset current, not considering the input resistance. - Input resistance: Typical value for information: DAE input resistance at the connector, during internal auto-zeroing and during measurement. - Low Battery Alarm Voltage: Typical value for information. Below this voltage, a battery alarm signal is generated. - Power consumption: Typical value for information. Supply currents in various operating modes. ### **DC Voltage Measurement** A/D - Converter Resolution nominal DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec | Calibration Factors | Х | Y | , . Z | |---------------------|-----------------------|-----------------------|-----------------------| | High Range | 403.476 ± 0.02% (k=2) | 403.505 ± 0.02% (k=2) | 403.509 ± 0.02% (k=2) | | Low Range | 3.96075 ± 1.50% (k=2) | 3.98590 ± 1.50% (k=2) | 3.99195 ± 1.50% (k=2) | ### **Connector Angle** | Connector Angle to be used in DASY system | 136.0 ° ± 1 ° | |--|---------------| | 3.0 10 10 10 10 10 10 10 10 10 10 10 10 10 | 100.0 = 1 | Certificate No: DAE4-1358_Apr14 Page 3 of 5 ### **Appendix** 1. DC Voltage Linearity | High Range | Reading (μV) | Difference (μV) | Error (%) | |-------------------|--------------|-----------------|-----------| | Channel X + Input | 200038.03 | 1.76 | 0.00 | | Channel X + Input | 20005.43 | 1.37 | 0.01 | | Channel X - Input | -20004.06 | 1.92 | -0.01 | | Channel Y + Input | 200034.40 | -1.98 | -0.00 | | Channel Y + Input | 20002.81 | -0.99 | -0.00 | | Channel Y - Input | -20005.22 | 0.94 | -0.00 | | Channel Z + Input | 200037.68 | 1.44 | 0.00 | | Channel Z + Input | 20002.59 | -1.11 | -0.01 | | Channel Z - Input | -20007.07 | -0.94 | 0.00 | | Low Range | Reading (μV) | Difference (μV) | Error (%) | |-------------------|--------------|-----------------|-----------| | Channel X + Input | 2000.15 | -0.26 | -0.01 | | Channel X + Input | 201.04 | 0.44 | 0.22 | | Channel X - Input | -198.78 | 0.53 | -0.27 | | Channel Y + Input | 2000.38 | 0.18 | 0.01 | | Channel Y + Input | 200.06 | -0.29 | -0.15 | | Channel Y - Input | -200.10 | -0.50 | 0.25 | | Channel Z + Input | 2000.16 | -0.17 | -0.01 | | Channel Z + Input | 198.55 | -1.98 | -0.99 | | Channel Z - Input | -201.27 | -1.72 | 0.86 | 2. Common mode sensitivity DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec | | Common mode
Input Voltage (mV) | High Range
Average Reading (μV) | Low Range
Average Reading (μV) | |-----------|-----------------------------------|------------------------------------|-----------------------------------| | Channel X | 200 | 23.14 | 21.30 | | | - 200 | -20.01 | -21.49 | | Channel Y | 200 | -27.07 | -27.39 | | | - 200 | 27.21 | 26.98 | | Channel Z | 200 | -11.40 | -11.75 | | | - 200 | 9.24 | 9.23 | ### 3. Channel separation DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec | | Input Voltage (mV) | Channel X (μV) | Channel Y (μV) | Channel Z (μV) | |-----------|--------------------|----------------|----------------|----------------| | Channel X | 200 | v | 3.10 | -3.59 | | Channel Y | 200 | 9.08 | - | 3.89 | | Channel Z | 200 | 9.17 | 6.05 | | ### 4. AD-Converter Values with inputs shorted DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec | | High Range (LSB) | Low Range (LSB) | |-----------|------------------|-----------------| | Channel X | 15575 | 16462 | | Channel Y | 16051 | 15758 | | Channel Z | 16070 | 16201 | ### 5. Input Offset Measurement DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec Input $10M\Omega$ | | Average (μV) | min. Offset (μV) | max. Offset (μV) | Std. Deviation (µV) | |-----------|--------------|------------------|------------------|---------------------| | Channel X | -1.05 | -2.31 | -0.30 | 0.37 | | Channel Y | -0.30 | -1.37 | 0.51 | 0.40 | | Channel Z | -1.60 | -2.40 | -0.66 | 0.37 | #### 6. Input Offset Current Nominal Input circuitry offset current on all channels: <25fA 7. Input Resistance (Typical values for information) | | Zeroing (kOhm) | Measuring (MOhm) | | | |-----------|----------------|------------------|--|--| | Channel X | 200 | 200 | | | | Channel Y | 200 | 200 | | | | Channel Z | 200 | 200 | | | 8. Low Battery Alarm Voltage (Typical values for information) | Typical values | Alarm Level (VDC) | | |----------------|-------------------|--| | Supply (+ Vcc) | +7.9 | | | Supply (- Vcc) | -7.6 | | 9. Power Consumption (Typical values for information) | Typical values | Switched off (mA) | Stand by (mA) | Transmitting (mA) | | |----------------|-------------------|---------------|-------------------|--| | Supply (+ Vcc) | +0.01 | +6 | +14 | | | Supply (- Vcc) | -0.01 | -8 | -9 | | Certificate No: DAE4-1358_Apr14 ### Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S C S Accreditation No.: SCS 108 Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Client Sporton-CN (Auden) Certificate No: EX3-3911_Apr14 ### **CALIBRATION CERTIFICATE** Object EX3DV4 - SN:3911 Calibration procedure(s) QA CAL-01.v9, QA CAL-23.v5, QA CAL-25.v6 Calibration procedure for dosimetric E-field probes Calibration date: April 22, 2014 This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) | Primary Standards | ds ID Cal Date (Certificate No.) | | Scheduled Calibration | |----------------------------|----------------------------------|-----------------------------------|------------------------| | Power meter E4419B | GB41293874 | 03-Apr-14 (No. 217-01911) | Apr-15 | | Power sensor E4412A | MY41498087 | 03-Apr-14 (No. 217-01911) | Apr-15 | | Reference 3 dB Attenuator | SN: S5054 (3c) | 03-Apr-14 (No. 217-01915) | Apr-15 | | Reference 20 dB Attenuator | SN: S5277 (20x) | 03-Apr-14 (No. 217-01919) | Apr-15 | | Reference 30 dB Attenuator | SN: S5129 (30b) | 03-Apr-14 (No. 217-01920) | Apr-15 | | Reference Probe ES3DV2 | SN: 3013 | 30-Dec-13 (No. ES3-3013_Dec13) | Dec-14 | | DAE4 | SN: 660 | 13-Dec-13 (No. DAE4-660_Dec13) | Dec-14 | | Secondary Standards | ID | Check Date (in house) | Scheduled Check | | RF generator HP 8648C | US3642U01700 | 4-Aug-99 (in house check Apr-13) | In house check: Apr-16 | | Network Analyzer HP 8753E | US37390585 | 18-Oct-01 (in house check Oct-13) | In house check: Oct-14 | Name Function Signature Calibrated by: Jeton Kastrati Laboratory Technician Approved by: Katja Pokovic Technical Manager Issued: April 23, 2014 This calibration certificate shall not be reproduced except in full without written approval of the laboratory. #### Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S Schweizerischer Kalibrierdienst C Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accreditation No.: SCS 108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates #### Glossary: TSL tissue simulating liquid NORMx,y,z sensitivity in free space ConvF sensitivity in TSL / NORMx,y,z DCP diode compression point CF crest factor (1/duty_cycle) of the RF signal modulation dependent linearization parameters Polarization φ rotation around probe axis Polarization 9 9 rotation around an axis that is in the plane normal to probe axis (at measurement center), i.e., 9 = 0 is normal to probe axis Connector Angle information used in DASY system to align probe sensor X to the robot coordinate system #### Calibration is Performed According to the Following Standards: a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013 b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005 ### Methods Applied and Interpretation of Parameters: Certificate No: EX3-3911_Apr14 - NORMx,y,z: Assessed for E-field polarization 9 = 0 (f ≤ 900 MHz in TEM-cell; f > 1800 MHz: R22 waveguide). NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not affect the E²-field uncertainty inside TSL (see below ConvF). - NORM(f)x,y,z = NORMx,y,z * frequency_response (see Frequency Response Chart). This linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included in the stated uncertainty of ConvF. - DCPx,y,z: DCP are numerical linearization parameters assessed based on the data of power sweep with CW signal (no uncertainty required). DCP does not depend on frequency nor media. - PAR: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal characteristics - Ax,y,z; Bx,y,z; Cx,y,z; Dx,y,z; VRx,y,z: A, B, C, D are numerical linearization parameters assessed
based on the data of power sweep for specific modulation signal. The parameters do not depend on frequency nor media. VR is the maximum calibration range expressed in RMS voltage across the diode. - ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f ≤ 800 MHz) and inside waveguide using analytical field distributions based on power measurements for f > 800 MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx,y,z * ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from ± 50 MHz to ± 100 MHz - Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna. - Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required. - Connector Angle: The angle is assessed using the information gained by determining the NORMx (no uncertainty required). EX3DV4 - SN:3911 April 22, 2014 # Probe EX3DV4 SN:3911 Manufactured: September 4, 2012 Calibrated: April 22, 2014 Calibrated for DASY/EASY Systems (Note: non-compatible with DASY2 system!) ### DASY/EASY - Parameters of Probe: EX3DV4 - SN:3911 #### **Basic Calibration Parameters** | | Sensor X | Sensor X Sensor Y | | Unc (k=2) | | |--------------------------|----------|-------------------|------|-----------|--| | Norm $(\mu V/(V/m)^2)^A$ | 0.46 | 0.45 | 0.55 | ± 10.1 % | | | DCP (mV) ^B | 100.0 | 96.7 | 97.5 | | | #### **Modulation Calibration Parameters** | UID | Communication System Name | | A
dB | B
dB√μV | С | D
dB | VR
mV | Unc ^b
(k=2) | |-----|---------------------------|---|---------|------------|-----|---------|----------|---------------------------| | 0 | CW | X | 0.0 | 0.0 | 1.0 | 0.00 | 131.2 | ±3.5 % | | | | Y | 0.0 | 0.0 | 1.0 | | 131.9 | | | | | Z | 0.0 | 0.0 | 1.0 | | 144.7 | - | The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%. A The uncertainties of NormX,Y,Z do not affect the E2-field uncertainty inside TSL (see Pages 5 and 6). ^B Numerical linearization parameter: uncertainty not required. E Uncertainty is determined using the max. deviation from linear response applying rectangular distribution and is expressed for the square of the field value. EX3DV4- SN:3911 April 22, 2014 ### DASY/EASY - Parameters of Probe: EX3DV4 - SN:3911 ### Calibration Parameter Determined in Head Tissue Simulating Media | f (MHz) ^C | Relative
Permittivity ^F | Conductivity
(S/m) F | ConvF X | ConvF Y | ConvF Z | Alpha ^G | Depth ^G (mm) | Unct.
(k=2) | |----------------------|---------------------------------------|-------------------------|---------|---------|---------|--------------------|-------------------------|----------------| | 750 | 41.9 | 0.89 | 10.27 | 10.27 | 10.27 | 0.25 | 1.18 | ± 12.0 % | | 835 | 41.5 | 0.90 | 9.84 | 9.84 | 9.84 | 0.38 | 0.86 | ± 12.0 % | | 900 | 41.5 | 0.97 | 9.62 | 9.62 | 9.62 | 0.23 | 1.23 | ± 12.0 % | | 1750 | 40.1 | 1.37 | 8.52 | 8.52 | 8.52 | 0.80 | 0.50 | ± 12.0 % | | 1900 | 40.0 | 1.40 | 8.09 | 8.09 | 8.09 | 0.36 | 0.78 | ± 12.0 % | | 2000 | 40.0 | 1.40 | 7.98 | 7.98 | 7.98 | 0.80 | 0.54 | ± 12.0 % | | 2300 | 39.5 | 1.67 | 7.56 | 7.56 | 7.56 | 0.70 | 0.59 | ± 12.0 % | | 2450 | 39.2 | 1.80 | 7.04 | 7.04 | 7.04 | 0.56 | 0.67 | ± 12.0 % | | 2600 | 39.0 | 1.96 | 6.87 | 6.87 | 6.87 | 0.44 | 0.80 | ± 12.0 % | ^c Frequency validity of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to ± 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. F At frequencies below 3 GHz, the validity of tissue parameters (ϵ and σ) can be relaxed to \pm 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ϵ and σ) is restricted to \pm 5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters. ^G Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ± 1% for frequencies below 3 GHz and below ± 2% for frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary. ### DASY/EASY - Parameters of Probe: EX3DV4 - SN:3911 ### Calibration Parameter Determined in Body Tissue Simulating Media | f (MHz) ^C | Relative
Permittivity ^F | Conductivity (S/m) F | ConvF X | ConvF Y | ConvF Z | Alpha ^G | Depth ^G
(mm) | Unct.
(k=2) | |----------------------|---------------------------------------|----------------------|---------|---------|---------|--------------------|----------------------------|----------------| | 750 | 55.5 | 0.96 | 10.06 | 10.06 | 10.06 | 0.24 | 1.17 | ± 12.0 % | | 835 | 55.2 | 0.97 | 10.02 | 10.02 | 10.02 | 0.46 | 0.80 | ± 12.0 % | | 900 | 55.0 | 1.05 | 9.74 | 9.74 | 9.74 | 0.28 | 1.04 | ± 12.0 % | | 1750 | 53.4 | 1.49 | 8.11 | 8.11 | 8.11 | 0.36 | 0.84 | ± 12.0 % | | 1900 | 53.3 | 1.52 | 7.83 | 7.83 | 7.83 | 0.32 | 0.92 | ± 12.0 % | | 2000 | 53.3 | 1.52 | 7.94 | 7.94 | 7.94 | 0.51 | 0.72 | ± 12.0 % | | 2300 | 52.9 | 1.81 | 7.53 | 7.53 | 7.53 | 0.38 | 0.83 | ± 12.0 % | | 2450 | 52.7 | 1.95 | 7.32 | 7.32 | 7.32 | 0.80 | 0.56 | ± 12.0 % | | 2600 | 52.5 | 2.16 | 7.09 | 7.09 | 7.09 | 0.80 | 0.57 | ± 12.0 % | ^C Frequency validity of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to ± 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. F At frequencies below 3 GHz, the validity of tissue parameters (ϵ and σ) can be relaxed to \pm 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ε and σ) is restricted to ± 5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters. Galpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ± 1% for frequencies below 3 GHz and below ± 2% for frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary. # Frequency Response of E-Field (TEM-Cell:ifi110 EXX, Waveguide: R22) Uncertainty of Frequency Response of E-field: ± 6.3% (k=2) EX3DV4- SN:3911 April 22, 2014 ## Receiving Pattern (ϕ), $\vartheta = 0^{\circ}$ Uncertainty of Axial Isotropy Assessment: ± 0.5% (k=2) Tot EX3DV4-SN:3911 April 22, 2014 # Dynamic Range f(SAR_{head}) (TEM cell , f_{eval}= 1900 MHz) Uncertainty of Linearity Assessment: ± 0.6% (k=2) EX3DV4- SN:3911 April 22, 2014 ### **Conversion Factor Assessment** ### Deviation from Isotropy in Liquid Error (φ, θ), f = 900 MHz April 22, 2014 ## DASY/EASY - Parameters of Probe: EX3DV4 - SN:3911 ### **Other Probe Parameters** | Sensor Arrangement | Triangular | |---|------------| | Connector Angle (°) | 8.2 | | Mechanical Surface Detection Mode | enabled | | Optical Surface Detection Mode | disabled | | Probe Overall Length | 337 mm | | Probe Body Diameter | 10 mm | | Tip Length | 9 mm | | Tip Diameter | 2.5 mm | | Probe Tip to Sensor X Calibration Point | 1 mm | | Probe Tip to Sensor Y Calibration Point | 1 mm | | Probe Tip to Sensor Z Calibration Point | 1 mm | | Recommended Measurement Distance from Surface | 2 mm |