

Report No.: SZ13040046S01

SAR TEST REPO

Issued to

Corporativo Lanix S.A. de C.V.

For

Smartphone

Model Name	: Ilium S400
Trade Name	: Lanix
Brand Name	: Lanix
FCC ID	: ZC4S400
Standard	FCC Oet65 Supplement C Jun.2001
	47CFR 2.1093
	ANSI C95.1-1999
	IEEE 1528-2003
MAX SAR	: Head 0.600 W/kg Bochnet ^{yon} 1. Mag
Test date	DE ARLASS
Issue date	2 124-19
	Certification
Shenzhen MORLA	
	oved by Zeng Dexin Review by Samuel porg
Zhu Zhan	Zeng Dexin Samuel Peng J
(Test Engineer)	(Department Manager) (SAR Manager)
Date 2013.4.19 D	ue 2013. 4. 19 Date 2013. 4. 19
CTIA Authorized Test Lab OFTA	HAF GCF' Bluetooth Reg. No.
IEEE 1725 OTA 電訊管理局	Testing Lateratory Dille Cethratic From BQTF 695796

The report refers only to the sample tested and does not apply to the bulk. This report is issued in confidence to the client and it will be strictly treated as such by the Shenzhen MORLAB Communication Technology Co., Ltd. It may not be reproduced rather in its entirety or in part and it may not be used for adverting. The client to whom the report is issued may, however, show or send it . or a certified copy there of prepared by the Shenzhen MORLAB Telecommunication Co., Ltd to his GPRSer. Supplier or others persons directly concerned. Shenzhen MORLAB Telecommunication Co., Ltd will not, without the consent of the client enter into any discussion of correspondence with any third party concerning the contents of the report. In the event of the improper use of the report, Shenzhen MORLAB Telecommunication Co., Ltd reserves the rights to withdraw it and to adopt any other remedies which may be appropriate.

Tel: +86 755 36698525 Fax: +86 755 36698525 Shenzhen MORLAB Communication Technology Co., Ltd. FL3, Building A, FetYang Science Park, No.8 LongChang Road, Block 67, BaoAn District, ShenZhen, GuangDong Province, P. R. China 518101

DIRECTORY

DIRECTORY	2
1. TESTING LABORATORY	4
1.1. Identification of the Responsible Testing Laboratory	. 4
1.2. Identification of the Responsible Testing Location	4
1.3. Accreditation Certificate	4
1.4. List of Test Equipments	5
2. TECHNICAL INFORMATION	6
2.1. Identification of Applicant	6
2.2. Identification of Manufacturer	6
2.3. Equipment Under Test (EUT)	6
2.3.1. Photographs of the EUT	6
2.3.2. Identification of all used EUT	7
2.4. Applied Reference Documents	7
2.5. Device Category and SAR Limits	7
2.6. Test Environment/Conditions	8
3. SPECIFIC ABSORPTION RATE (SAR)	9
3.1. Introduction	9
3.1. Introduction	
	9
3.2. SAR Definition	9 10
3.2. SAR Definition4. SAR MEASUREMENT SETUP	9 10 10
 3.2. SAR Definition 4. SAR MEASUREMENT SETUP 4.1. The Measurement System 	9 10 10 10
 3.2. SAR Definition 4. SAR MEASUREMENT SETUP 4.1. The Measurement System	9 10 10 10 12
 3.2. SAR Definition	. 9 10 10 10 12 12
 3.2. SAR Definition	9 10 10 10 12 12 12
 3.2. SAR Definition	9 10 10 10 12 12 12 12
 3.2. SAR Definition 4. SAR MEASUREMENT SETUP 4.1. The Measurement System 4.2. Probe 4.3. Probe Calibration Process 4.3.1 Dosimetric Assessment Procedure 4.3.2 Free Space Assessment Procedure 4.3.2 Temperature Assessment Procedure 	9 10 10 10 12 12 12 12 12
 3.2. SAR Definition. 4. SAR MEASUREMENT SETUP. 4.1. The Measurement System. 4.2. Probe. 4.3. Probe Calibration Process. 4.3.1 Dosimetric Assessment Procedure. 4.3.2 Free Space Assessment Procedure. 4.3.2 Temperature Assessment Procedure. 4.4. Phantom. 	9 10 10 10 12 12 12 12 13 13
 3.2. SAR Definition	9 10 10 10 12 12 12 12 13 13 14
 3.2. SAR Definition	9 10 10 10 12 12 12 12 13 13 14 17

7. SAR MEASUREMENT EVALUATION	20
7.1. System Setup	20
7.2. Validation Results	21
8. OPERATIONAL CONDITIONS DURING TEST	22
8.1. Informations on the testing	22
8.2. Body-worn Configurations	23
8.3. Measurement procedure	23
8.4. Description of interpolation/extrapolation scheme	24
9. MEASUREMENT OF CONDUCTED PEAK OUTPUT POWER	25
10. TEST RESULTS LIST	28
11. HOTSPOT MODE EVALUATION PROCEDURE	32
12. MULTIPLE TRANSMITTERS EVALUATION	33
ANNEX A EUT SETUP PHOTOS	36
ANNEX B GRAPH TEST RESULTS	42

Change History		
Issue Date Reason for change		
1.0	Apr. 19, 2013	First edition

1. Testing Laboratory

1.1. Identification of the Responsible Testing Laboratory

n Morlab Communications Technology Co., Ltd.
aboratory
ilding A, FeiYang Science Park, No.8 LongChang
lock 67, BaoAn District, ShenZhen, GuangDong
, P. R. China 518101
Luan
36698525
36698525

1.2. Identification of the Responsible Testing Location

Shenzhen Morlab Communications Technology Co., Ltd.
Morlab Laboratory
FL.3, Building A, FeiYang Science Park, No.8 LongChang
Road, Block 67, BaoAn District, ShenZhen, GuangDong
Province, P. R. China 518101

1.3. Accreditation Certificate

Accredited Testing Laboratory: No. CNAS L3572

1.4. List of Test Equipments

No.	Instrument	Туре	Cal. Date	Cal. Due
1	РС	Dell (Pentium IV 2.4GHz, SN:X10-23533)	(n.a)	(n.a)
2	Network Emulator	Aglient (8960, SN:10752)	2012-9-26	1 year
3	Network Analyzer	Agilent(E5071B ,SN:MY42404762)	2012-9-26	1 year
4	Voltmeter	Keithley (2000, SN:1000572)	2012-9-24	1 year
5	Signal Generator	Rohde&Schwarz (SMP_02)	2012-9-24	1 year
6	Power Amplifier	PRANA (Ap32 SV125AZ)	2012-9-24	1 year
7	Power Meter	Agilent (E4416A, SN:MY45102093)	2012-5-07	1 year
8	Power Sensor	Agilent (N8482A, SN:MY41091706)	2012-5-07	1 year
9	Directional coupler	Giga-tronics(SN:1829112)	2012-9-24	1 year
10	Probe	Satimo (SN:SN_3708_EP80)	2012-10-04	1 year
11	Dielectric Probe Kit	Agilent (85033E)	2012-9-24	1 year
12	Phantom	Satimo (SN:SN_36_08_SAM62)	2012-9-24	1 year
13	Liquid	Satimo(Last Calibration: 2013-4-8)	N/A	N/A
14	Dipole 835MHz	Satimo (SN 36/08 DIPC 99)	2012-10-05	1 year
15	Dipole 1900MHz	Satimo (SN 36/08 DIPF 102)	2012-10-05	1 year
16	Dipole 2450MHz	Satimo (SN 36/08 DIPJ 103)	2012-10-05	1 year

2. Technical Information

Note: the following data is based on the information by the applicant.

2.1. Identification of Applicant

Company Name:	Corporativo Lanix S.A. de C.V.
Address:	Carretera Internacional Hermosillo-Nogales Km 8.5, Hermosillo
	Sonora, Mexico

2.2. Identification of Manufacturer

Company Name:	Tinno Mobile Technology Corp.
Address:	4/F, H-3 Building, OCT Eastern industrial Park, No.1 XiangShan East
	Road., Nan Shan District, Shenzhen, P.R. China.

2.3. Equipment Under Test (EUT)

Model Name:	Ilium S400
Trade Name:	Lanix
Brand Name:	Lanix
Hardware Version:	V1.0
Software Version:	V01
Frequency Bands:	GSM 850MHz / PCS 1900MHz;
	WCDMA 850MHZ/ 1900MHz; (Band II, V)
	Bluetooth; Wifi802.11B/G/N (2.4GHz)
Modulation Mode:	GSM/GPRS: GMSK; EDGE:8PSK;
	WCDMA/HSDPA/HSUPA: QPSK;
	WIFI802.11B: DSSS; WIFI802.11G: OFDM
	WIFI 802.11N: OFDM; BT: GFSK/II/8-DPSK/
Multislot Class:	GPRS:Class 12; EDGE:Class 12
GPRS Class:	Class B
DTM:	Not support
Antenna type:	Fixed Internal Antenna
Development Stage:	Identical prototype
Battery Model:	Ilium S400-BAT
Battery specification:	1600mAh
3GPP Version :	Release 6
Hotspot function:	Support

2.3.1. Photographs of the EUT

Please see for photographs of the EUT.

2.3.2. Identification of all used EUT

The EUT identity consists of numerical and letter characters, the letter character indicates the test sample, and the following two numerical characters indicate the software version of the test sample.

EUT Identity	Hardware Version	Software Version
1#	V1.0	V01

2.4. Applied Reference Documents

Leading reference documents for testing:

No.	Identity	Document Title	
1	47 CFR§2.1093	Radiofrequency Radiation Exposure Evaluation: Portable	
		Devices	
2	FCC OET Bulletin	Evaluating Compliance with FCC Guidelines for Human	
	65 (Edition 97-01),	Exposure to Radiofrequency Electromagnetic Fields	
	Supplement C		
	(Edition 01-01)		
3	ANSI C95.1-1999	IEEE Standard for Safety Levels with Respect to Human	
		Exposure to Radio Frequency Electromagnetic Fields, 3kHz to	
		300 GHz	
4	IEEE 1528-2003	Recommended Practice for Determining the Peak	
		Spatial-Average Specific Absorption Rate(SAR) in the Human	
		Body Due to Wireless Communications Devices: Experimental	
		Techniques.	
5	KDB 447498 D1	General RF Exposure Guidance v05	
6	KDB 648474 D1	SAR Evaluation Considerations for Handsets with Multiple	
		Transmitters and Antennas	
7	KDB 248227 D1	SAR Measurement Procedures for 802.11 a/b/g Transmitters	
8	KDB 941225 D1	SAR Measurement Procedures for 3G Devices	
9	KDB 941225 D6	Hot Spot SAR v01	
10	KDB 865664 D1	SAR Measurement 100 MHz to 6 GHz v01	
11	KDB 865664 D2	SAR Reporting v01	

2.5. Device Category and SAR Limits

This device belongs to portable device category because its radiating structure is allowed to be used within 20 centimeters of the body of the user. Limit for General Population/Uncontrolled exposure should be applied for this device, it is 1.6 W/kg as averaged over any 1 gram of tissue.

2.6. Test Environment/Conditions

Normal Temperature (NT):	20 25 °C
Relative Humidity:	30 75 %
Air Pressure:	980 1020 hPa
Test frequency:	GSM 850MHz /PCS 1900MHz;
	WCDMA 850MHz/WCDMA 1900MHz;
	802.11B(2.4GHz);
Operation mode:	Call established
Power Level:	GSM 850 MHz Maximum output power(level 5)
	PCS 1900 MHz Maximum output power(level 0)
	WCDMA 850MHz Maximum output power(All up bits)
	WCDMA 1900MHz Maximum output power(All up bits)
	802.11B Maximum output power(2.4GHz)

During SAR test, EUT is in Traffic Mode (Channel Allocated) at Normal Voltage Condition. A communication link is set up with a System Simulator (SS) by air link, and a call is established. The Absolute Radio Frequency Channel Number (ARFCN) is allocated to 125, 190 and 251 respectively in the case of GSM 850 MHz, or to 512, 661 and 810 respectively in the case of PCS 1900 MHz, or to 9262, 9400 and 9538 respectively in the case of WCDMA 1900, or to 4132, 4182 and 4233 respectively in the case of WCDMA 850MHz, or to 1, 6, 11 respectively in the case of 802.11B (2.4GHz). The EUT is commanded to operate at maximum transmitting power. The EUT shall use its internal transmitter. The antenna(s), battery and accessories shall be those specified by the manufacturer. The EUT battery must be fully charged and checked periodically during the test to ascertain uniform power output. If a wireless link is used, the antenna connected to the output of the base station simulator shall be placed at least 50 cm away from the handset. The signal transmitted by the simulator to the antenna feeding point shall be lower than the output power level of the handset by at least 35 dB.

3. Specific Absorption Rate (SAR)

3.1. Introduction

SAR is related to the rate at which energy is absorbed per unit mass in an object exposed to a radio field. The SAR distribution in a biological body is complicated and is usually carried out by experimental techniques or numerical modeling. The standard recommends limits for two tiers of groups, occupational/controlled and general population/uncontrolled, based on a person's awareness and ability to exercise control over his or her exposure. In general, occupational/controlled exposure limits are higher than the limits for general population/uncontrolled.

3.2. SAR Definition

The SAR definition is the time derivative (rate) of the incremental energy (dW) absorbed by (dissipated in) an incremental mass (dm) contained in a volume element (dv) of a given density. ρ). The equation description is as below:

$$\mathbf{SAR} = \frac{d}{dt} \left(\frac{dW}{dm} \right) = \frac{d}{dt} \left(\frac{dW}{\rho dv} \right)$$

SAR is expressed in units of Watts per kilogram (W/kg) SAR measurement can be either related to the temperature elevation in tissue by

$$SAR = C \frac{\delta T}{\delta t}$$

, where C is the specific head capacity, δ T is the temperature rise and δ t the exposure duration, or related to the electrical field in the tissue by

$$SAR = \frac{\sigma |E|^2}{\rho}$$

, where σ is the conductivity of the tissue, ρ is the mass density of the tissue and E is the rms electrical field strength.

However for evaluating SAR of low power transmitter, electrical field measurement is typically applied.

4. SAR Measurement Setup

4.1. The Measurement System

Comosar is a system that is able to determine the SAR distribution inside a phantom of human being according to different standards. The Comosar system consists of the following items:

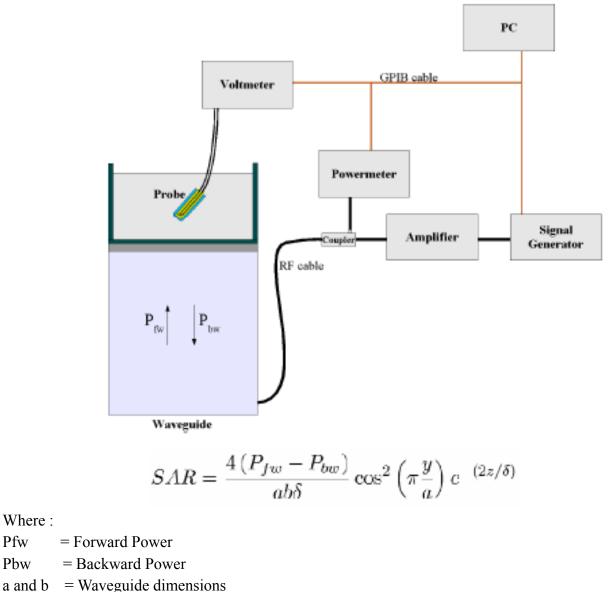
- Main computer to control all the system
- 6 axis robot
- Data acquisition system
- Miniature E-field probe
- Phone holder
- Head simulating tissue

The following figure shows the system.

The EUT under test operating at the maximum power level is placed in the phone holder, under the phantom, which is filled with head simulating liquid. The E-Field probe measures the electric field inside the phantom. The OpenSAR software computes the results to give a SAR value in a 1g or 10g mass.

4.2. Probe

For the measurements the Specific Dosimetric E-Field Probe SN 37/08 EP80 with following specifications is used


- Dynamic range: 0.01-100 W/kg
- Tip Diameter : 6.5 mm
- Distance between probe tip and sensor center: 2.5mm
- Distance between sensor center and the inner phantom surFront: 4 mm (repeatability better than +/- 1mm)

- Probe linearity: <0.25 dB
- Axial Isotropy: <0.25 dB
- Spherical Isotropy: <0.25 dB
- Calibration range: 835to 2500MHz for head & body simulating liquid.

Angle between probe axis (evaluation axis) and suFront normal line: 1ess than 30°

Probe calibration is realized, in compliance with CENELEC EN 62209 and IEEE 1528 std, with CALISAR, Antennessa proprietary calibration system. The calibration is performed with the EN 622091 annexe technique using reference guide at the five frequencies.

= Skin depth 1

Where : Pfw

Pbw

Keithley configuration:

Rate = Medium; Filter =ON; RDGS=10; FILTER TYPE =MOVING AVERAGE; RANGE AUTO After each calibration, a SAR measurement is performed on a validation dipole and compared with a NPL calibrated probe, to verify it.

The calibration factors, CF(N), for the 3 sensors corresponding to dipole 1, dipole 2 and dipole 3 are:

$$CF(N)=SAR(N)/Vlin(N)$$
 (N=1,2,3)

The linearised output voltage Vlin(N) is obtained from the displayed output voltage V(N) using

Vlin(N)=V(N)*(1+V(N)/DCP(N)) (N=1,2,3)

where DCP is the diode compression point in mV.

4.3. Probe Calibration Process

4.3.1 Dosimetric Assessment Procedure

Each E-Probe/Probe Amplifier combination has unique calibration parameters. SATIMO Probe calibration procedure is conducted to determine the proper amplifier settings to enter in the probe parameters. The amplifier settings are determined for a given frequency by subjecting the probe to a known E-field density (1 mW/cm2) using an with CALISAR, Antenna proprietary calibration system.

4.3.2 Free Space Assessment Procedure

The free space E-field from amplified probe outputs is determined in a test chamber. This calibration can be performed in a TEM cell if the frequency is below 1 GHz and in a waveguide or other methodologies above 1 GHz for free space. For the free space calibration, the probe is placed in the volumetric center of the cavity and at the proper orientation with the field. The probe is rotated 360 degrees until the three channels show the maximum reading. The power density readings equates to 1 mW/cm2.

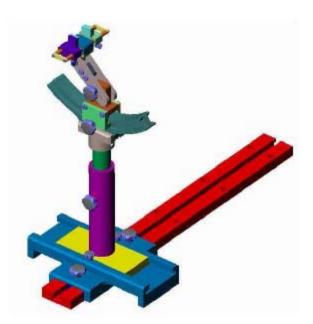
4.3.2 Temperature Assessment Procedure

E-field temperature correlation calibration is performed in a flat phantom filled with the appropriate simulated head tissue. The E-field in the medium correlates with the temperature rise in the dielectric medium. For temperature correlation calibration a RF transparent thermistor-based temperature probe is used in conjunction with the E-field probe.

SAR = $C \frac{\Delta T}{\Delta t}$ Where: $\Delta t = \text{exposure time (30 seconds),}$ C = heat capacity of tissue (brain or muscle), $\Delta T = \text{temperature increase due to RF exposure.}$

SAR is proportional to $\Delta T/\Delta t$, the initial rate of tissue heating, before thermal diffusion takes place. The electric field in the simulated tissue can be used to estimate SAR by equating the thermally derived SAR to that with the E- field component.

2	Where:
$SAR = \frac{ E ^2 \cdot \sigma}{\sigma}$	σ = simulated tissue conductivity,
ρ	ρ = Tissue density (1.25 g/cm3 for brain tissue)



4.4. Phantom

For the measurements the Specific Anthropomorphic Mannequin (SAM) defined by the IEEE SCC-34/SC2 group is used. The phantom is a polyurethane shell integrated in a wooden table. The thickness of the phantom amounts to $2mm \pm 0.2mm$. It enables the dosimetric evaluation of left and right phone usage and includes an additional flat phantom part for the simplified performance check. The phantom set-up includes a cover, which prevents the evaporation of the liquid.

4.5. Device Holder

The positioning system allows obtaining cheek and tilting position with a very good accuracy. In compliance with CENELEC, the tilt angle uncertainty is lower than 1°.

Device holder

System Material	Permittivity	Loss Tangent
Delrin	3.7	0.005

5. Tissue Simulating Liquids

Simulant liquids used for testing at frequencies of 835MHz, 1900MHz and 2450MHz, are made mainly of sugar, salt and water solutions may be left in the phantoms. Approximately 20litres are needed for an upright head compared to about 25 litres for a horizontal bath phantom. The liquid height from the ear reference point (ERP) of the phantom to the liquid top surFront is or from the flat phantom to the liquid top surFront is 15cm.

Following are the recipes for head and body tissue simulating liquid for frequency band 835 MHz , 1900 MHz and 2450MHz.

Ingredients	Frequen	cy Band	Frequen	cy Band	Frequency Band		
(% by weight)	835N	ЛНz	1900	MHz	2450	MHz	
Tissue Type	Head	Body	Head	Body	Head	Body	
Water	41.45	52.4	54.9	40.4	62.7	73.2	
Salt(NaCl)	1.45	1.4	0.18	0.5	0.5	0.04	
Sugar	56.0	45.0	0.0	58.0	0.0	0.0	
HEC	1.0	1.0	0.0	1.0	0.0	0.0	
Bactericide	0.1	0.1	0.0	0.1	0.0	0.0	
Triton X-100	0.0	0.0	0.0	0.0	0.0	0.0	
DGBE	0.0	0.0	44.92	0.0	36.8	0.0	
Acticide SPX	0.0	0.0	0.0	0.0	0.0	26.7	
Dielectric	42.45	56.1	39.9	54.0	39.8	52.5	
Constant	42.43	30.1	39.9	34.0	39.8	32.3	
Conductivity	0.91	0.95	1.42	1.45	1.88	1.97	
(S/m)	0.91	0.93	1.42	1.43	1.00	1.97	

Table 1: Dielectric Performance of Head Tissue Simulating Liquid

Temperature: 22.0~23.8°C, humidity: 54~60%.							
Frequency	Description	Permittivity ε	Conductivity σ (S/m)				
	Reference result per OET65	41.5	0.90				
	$\pm 5\%$ window	39.425 to 43.575	0.855 to 0.945				
	Reference result per probe	41.5	0.90				
835 MHz	calibration						
	$\pm 5\%$ window	39.425 to 43.575	0.855 to 0.945				
	Validation value (Apr. 8)	42.532816	0.932509				
	Reference result per OET65	40	1.40				
	$\pm 5\%$ window	38 to 42	1.33 to 1.47				
1900MHz	Reference result per probe calibration ±5% window	42 39.9 to 44.1	1.40 1.33 to 1.47				
	Validation value (Apr. 8)	41.357921	1.403817				

	Reference result per OET65	39.2	1.80
	\pm 5% window	37.24 to 41.16	1.71 to 1.89
2450 MHz	Reference result per probe calibration ±5% window	39.2 37.24 to 41.16	1.80 1.71 to 1.89
	Validation value (Apr. 8)	40.3287921	1.780123

Table 2: Dielectric Performance of Body Tissue Simulating Liquid

Frequency	2.0~23.8°C, humidity: 54~60%. Description	Permittivity ε	Conductivity σ (S/m)
Trequency	Reference result per OET65	55.2	0.97
	$\pm 5\%$ window	52.44 to 57.96	0.9215 to 1.0185
	Reference result per probe	56.1	0.95
835 MHz	calibration		
	$\pm 5\%$ window	53.295 to 58.905	0.905 to 0.998
	Validation value (Apr. 8)	56.120982	0.960921
	Reference result per OET65	53.3	1.52
	\pm 5% window	50.635 to 55.965	1.444 to 1.596
	Reference result per probe	54	1.45
1900MHz	calibration		
	±5% window	51.3 to 56.7	1.378 to 1.523
	Validation value (Apr. 8)	54.319082	1.490328
	Reference result per OET65	52.7	1.95
	\pm 5% window	50.635 to 55.965	1.853 to 2.048
	Reference result per probe	52.5	1.78
2450 MHz	calibration		
	±5% window	49.875 to 55.125	1.691 to 1.869
	Validation value (Apr. 8)	52.629031	1.855902

Note:1.The dielectric parameters of the liquids were verified prior to the SAR evaluation using an Agilent 85033E Dielectric Probe Kit and an Agilent Network Analyzer.

2.For body-worn measurements, the device was tested against flat phantom representing the user body. Under measurement phone was put on in the phone holder.

3.Per KDB 450824 D01, tissue used during test are within 5% tolerances of probe calibration report, and also within 5% of the target dielectric parameters for OET65.

"when the actual tissue dielectric parameters are recorded for the probe calibration, the differences for ε and σ between probe calibration and routine measurements should each be $\leq 5\%$ while satisfying the required $\pm 5\%$ tolerances in target dielectric parameters. "(KDB 450824 D01)

6. Uncertainty Assessment

The following table includes the uncertainty table of the IEEE 1528. The values are determined by Antennessa.

6.1. UNCERTAINTY EVALUATION FOR EUT SAR TEST

a	b	c	d	e=f(d,k)	f	g	h=c*f/e	i= c*g/ e	k
Uncertainty Component	Sec.	Tol	Prob.	Div.	Ci	Ci	1g Ui	10g	Vi
		(+-	Dist.		(1g)	(10g)	(+-%)	Ui	
		%)						(+-	
								%)	
Measurement System									
Probe calibration	E.2.1	4.76	N	1	1	1	4.76	4.76	∞
Axial Isotropy	E.2.2	2.5	R	$\sqrt{3}$	0.7	0.7	1.01	1.01	∞
Hemispherical Isotropy	E.2.2	4.0	R	$\sqrt{3}$	0.7	0.7	1.62	1.62	8
Boundary effect	E.2.3	1.0	R	$\sqrt{3}$	1	1	0.58	0.58	∞
Linearity	E.2.4	5.0	R	$\sqrt{3}$	1	1	2.89	2.89	∞
System detection limits	E.2.5	1.0	R	$\sqrt{3}$	1	1	0.58	0.58	∞
Readout Electronics	E.2.6	0.02	N	1	1	1	0.02	0.02	∞
Reponse Time	E.2.7	3.0	R	$\sqrt{3}$	1	1	1.73	1.73	~
Integration Time	E.2.8	2.0	R	$\sqrt{3}$	1	1	1.15	1.15	~
RF ambient Conditions	E.6.1	3.0	R	$\sqrt{3}$	1	1	1.73	1.73	∞
Probe positioner Mechanical	E.6.2	2.0	R	$\sqrt{3}$	1	1	1.15	1.15	~
Tolerance	E ()	0.05					0.02	0.02	
Probe positioning with respect to Phantom Shell	E.6.3	0.05	R	$\sqrt{3}$	1	1	0.03	0.03	00
Extrapolation, interpolation and	E.5.2	5.0	R	$\sqrt{3}$	1	1	2.89	2.89	∞
integration Algoritms for Max.									
SAR Evaluation									
Test sample Related									
Test sample positioning	E.4.2.1	0.03	N	1	1	1	0.03	0.03	N
									1
Device Holder Uncertainty	E.4.1.1	5.00	N	1	1	1	5.00	5.00	N-
Output power Power drift -	6.6.2	4.04	R	$\sqrt{3}$	1	1	2.33	2.33	1
SAR drift measurement	0.0.2	1.04				1	2.55		
Phantom and Tissue Parameter	·s	1	1	I	1	1	1	1	1
Phantom Uncertainty (Shape and thickness tolerances)	E.3.1	0.05	R	$\sqrt{3}$	1	1	0.03	0.03	~

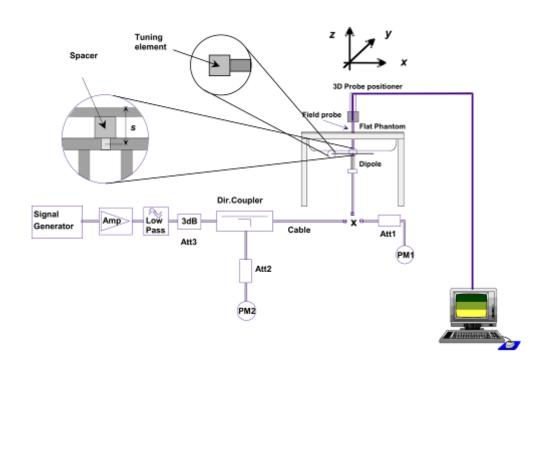
Liquid conductivity - deviation	E.3.2	4.57	R	$\sqrt{3}$	0.64	0.43	1.69	1.13	8
from target value									
Liquid conductivity -	E.3.3	5.00	N	1	0.64	0.43	3.20	2.15	М
measurement uncertainty									
Liquid permittivity - deviation	E.3.2	3.69	R	$\sqrt{3}$	0.6	0.49	1.28	1.04	∞
from target value									
Liquid permittivity -	E.3.3	10.00	N	1	0.6	0.49	6.00	4.90	М
measurement uncertainty									
Combined Standard			RSS				11.55	10.6	
Uncertainty								7	
Expanded Uncertainty			K=2				23.11	21.3	
(95% Confidence interval)								3	

6.2. UNCERTAINTY FOR SYSTEM PERFORMANCE CHECK

a	b	c	d	e = f(d,k)	f	g	h = c*f/e	i=	k
u	0		u		1	5		c*g/	ĸ
								e	
Uncertainty Component	Sec.	Tol	Prob.	Div.	Ci	Ci	1g Ui	10g	Vi
- · · · · · · · · · · · · · ·		(+-	Dist.		(1g)	(10g)	(+-%)	Ui	
		%)				(- 6)		(+-	
		,						%)	
Measurement System									L
Probe calibration	E.2.1	4.76	N	1	1	1	4.76	4.76	∞
Axial Isotropy	E.2.2	2.5	R	$\sqrt{3}$	0.7	0.7	1.01	1.01	∞
Hemispherical Isotropy	E.2.2	4.0	R	$\sqrt{3}$	0.7	0.7	1.62	1.62	∞
Boundary effect	E.2.3	1.0	R	$\sqrt{3}$	1	1	0.58	0.58	∞
Linearity	E.2.4	5.0	R	$\sqrt{3}$	1	1	2.89	2.89	∞
System detection limits	E.2.5	1.0	R	$\sqrt{3}$	1	1	0.58	0.58	∞
Readout Electronics	E.2.6	0.02	N	1	1	1	0.02	0.02	∞
Reponse Time	E.2.7	3.0	R	$\sqrt{3}$	1	1	1.73	1.73	∞
Integration Time	E.2.8	2.0	R	$\sqrt{3}$	1	1	1.15	1.15	∞
RF ambient Conditions	E.6.1	3.0	R	$\sqrt{3}$	1	1	1.73	1.73	∞
Probe positioner Mechanical	E.6.2	2.0	R	$\sqrt{3}$	1	1	1.15	1.15	∞
Tolerance									
Probe positioning with respect	E.6.3	0.05	R	$\sqrt{3}$	1	1	0.03	0.03	∞
to Phantom Shell									
Extrapolation, interpolation and	E.5.2	5.0	R	$\sqrt{3}$	1	1	2.89	2.89	∞
integration Algoritms for Max.									
SAR Evaluation									
Dipole				1			1		
Dipole axis to liquid Distance	8,E.4.2	1.00	N	$\sqrt{3}$	1	1	0.58	0.58	∞

Input power and SAR drift	8,6.6.2	4.04	R	$\sqrt{3}$	1	1	2.33	2.33	8
measurement									
Phantom and Tissue Parameter	rs								
Phantom Uncertainty (Shape	E.3.1	0.05	R	$\sqrt{3}$	1	1	0.03	0.03	∞
and thickness tolerances)								!	
Liquid conductivity - deviation	E.3.2	4.57	R	$\sqrt{3}$	0.64	0.43	1.69	1.13	∞
from target value								'	
Liquid conductivity -	E.3.3	5.00	N	$\sqrt{3}$	0.64	0.43	1.85	1.24	М
measurement uncertainty								!	
Liquid permittivity - deviation	E.3.2	3.69	R	$\sqrt{3}$	0.6	0.49	1.28	1.04	∞
from target value									
Liquid permittivity -	E.3.3	10.00	N	$\sqrt{3}$	0.6	0.49	3.46	2.83	М
measurement uncertainty								!	
Combined Standard			RSS				8.83	8.37	
Uncertainty								!	
Expanded Uncertainty			K=2				17.66	16.7	
(95% Confidence interval)								3	

7. SAR Measurement Evaluation


7.1. System Setup

In the simplified setup for system evaluation, the DUT is replaced by a calibrated dipole and the power source is replaced by a continuous wave which comes from a signal generator at frequency 835 MHz, 1900 MHz and 2450MHz. The calibrated dipole must be placed beneath the flat phantom section of the SAM twin phantom with the correct distance holder. The distance holder should touch the phantom surface with a light pressure at the reference marking and be oriented parallel to the long side of the phantom.

Equipments:

name	Type and specification
Signal generator	Rohde&Schwarz (SMP_02)
Directional coupler	Giga-tronics(SN:1829112)
Amplifier	PRANA (Ap32 SV125AZ)
	835MHz:SN 36/08 DIPC 99
Reference dipole	1900MHz:SN 36/08 DIPF 102
	2450MHz:SN 36/08 DIPJ 103

System Verification Setup Block Diagram

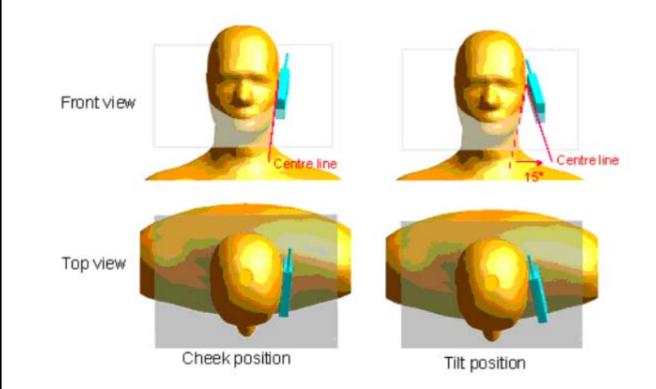
7.2. Validation Results

After system check testing, the SAR result will be normalized to 1W forward input power and compared with the reference SAR value derived from validation dipole certificate report. The deviation of system check should be within 10 %.

Frequency	835MHz(H)	835MHz(B)	1900MHz(H)	1900MHz(B)
Target value (1g)	9.740 W/Kg	9.880 W/Kg	40.320 W/Kg	38.530 W/Kg
Test value (1g 250 mW input)	2.407 W/Kg	2.361 W/Kg	9.683 W/Kg	9.805 W/Kg
Normalized value (1g)	9.628 W/Kg	9.444 W/Kg	38.732 W/Kg	39.220 W/Kg

Frequency	2450MHz(H)	2450MHz(B)
Target value (1g)	50.450 W/Kg	53.590 W/Kg
Test value (1g 250 mW input)	12.051 W/Kg	12.803 W/Kg
Normalized value (1g)	48.204 W/Kg	51.212 W/Kg

Note: System checks the specific test data please see page 145~156



8. Operational Conditions During Test

8.1. Informations on the testing

The mobile phone antenna and battery are those specified by the manufacturer. The battery is fully charged before each measurement. The output power and frequency are controlled using a base station simulator. The mobile phone is set to transmit at its highest output peak power level.

The mobile phone is test in the "cheek" and "tilted" positions on the left and right sides of the phantom. The mobile phone is placed with the vertical centre line of the body of the mobile phone and the horizontal line crossing the centre of the earpiece in a plane parallel to the sagittal plane of the phantom.

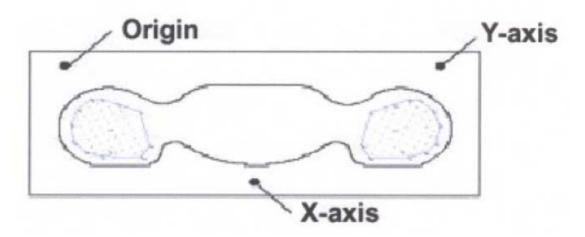
Description of the "cheek" position:

The mobile phone is well placed in the reference plane and the earpiece is in contact with the ear. Then the mobile phone is moved until any point on the front side get in contact with the cheek of the phantom or until contact with the ear is lost.

Description of the "tilted" position:

The mobile phone is well placed in the "cheek" position as described above. Then the mobile phone is moved outward away from the month by an angle of 15 degrees or until contact with the ear lost.

Remark: Please refer to Appendix B for the test setup photos.



8.2. Body-worn Configurations

The body-worn configurations shall be tested with the supplied accessories (belt-clips, holsters, etc.) attached to the device in normal use configuration.

The depth of the body tissue was 15.1cm. The distance between the back of the device and the bottom of the flat phantom is 1.5cm(taking into account of the IEEE 1528 and the place of the antenna)

For body-worn and other configurations a flat phantom shall be used which is comprised of material with electrical properties similar to the corresponding tissues.

SAR Measurement Points in Area Scan

8.3. Measurement procedure

The following steps are used for each test position

- Establish a call with the maximum output power with a base station simulator. The connection between the mobile and the base station simulator is established via air interFront
- Measurement of the local E-field value at a fixed location. This value serves as a reference value for calculating a possible power drift.
- Measurement of the SAR distribution with a grid of 8 to 16mm * 8 to16 mm and a constant distance to the inner surFront of the phantom. Since the sensors can not directly measure at the inner phantom surFront, the values between the sensors and the inner phantom surFront are extrapolated. With these values the area of the maximum SAR is calculated by an interpolation scheme.
- Around this point, a cube of 30 * 30 * 30 mm or 32 * 32 * 32 mm is assessed by measuring 5 or 8
 * 5 or 8*4 or 5 mm. With these data, the peak spatial-average SAR value can be calculated.

8.4. Description of interpolation/extrapolation scheme

The local SAR inside the phantom is measured using small dipole sensing elements inside a probe body. The probe tip must not be in contact with the phantom surFront in order to minimize measurements errors, but the highest local SAR will occur at the surFront of the phantom.

An extrapolation is using to determinate this highest local SAR values. The extrapolation is based on a fourth-order least-square polynomial fit of measured data. The local SAR value is then extrapolated from the liquid surFront with a 1mm step.

The measurements have to be performed over a limited time (due to the duration of the battery) so the step of measurement is high. It could vary between 5 and 8 mm. To obtain an accurate assessment of the maximum SAR averaged over 10 grams and 1 gram requires a very fine resolution in the three dimensional scanned data array.

9. Measurement Of Conducted Peak output power

1. WCDMA Conducted peak output power

	band	W	CDMA 8	350	WCDMA 1900		
Item	ARFCN	4132	4175	4233	9262	9400	9538
	subtest		dBm			dBm	
5.2(WCDMA)	non	24.55	24.53	24.43	23.49	23.35	23.56
	1	24.44	24.26	24.39	23.42	23.33	23.53
HSDPA	2	24.43	24.23	24.36	23.41	23.31	23.51
пэрга	3	23.95	23.75	23.86	22.95	22.88	23.05
	4	23.91	23.72	23.84	22.92	22.85	23.02
	1	24.43	24.25	24.36	23.41	23.32	23.45
	2	22.44	22.24	22.35	21.51	21.37	21.42
HSUPA	3	23.42	23.24	23.33	22.52	22.29	22.47
	4	22.44	22.29	22.35	21.39	21.31	21.41
	5	24.42	24.23	24.34	23.40	23.31	23.43

2. GSM Conducted peak output power

Band	Channel	Frequency (MHz)	Output Power (dBm)
GSM	128	824.2	32.81
850	190	836.6	33.11
830	251	848.8	33.37
DCS	512	1850.2	29.62
PCS 1900	661	1880.0	29.86
1900	810	1909.8	29.30

3. GPRS Mode Conducted peak output power

Dand	Dand Channel		Output Power(dBm)			
Band Channel	(MHz)	Slot 1	Slot 2	Slot 3	Slot 4	
CGM	128	824.2	32.01	30.28	28.31	27.17
GSM 850	190	836.6	32.31	30.11	28.24	27.47
830	251	848.8	32.56	30.05	28.07	27.25
DCS	512	1850.2	27.08	27.11	26.45	25.23
PCS	661	1880.0	29.67	28.27	26.30	25.45
1900	810	1909.8	29.21	28.20	26.54	25.37

GPRS Time-based Average Power

Band Channel	Frequency	Output Power(dBm)				
	Channel	(MHz)	Slot 1	Slot 2	Slot 3	Slot 4
CGM	128	824.2	23.01	24.26	24.05	24.16
GSM 850	190	836.6	23.31	24.09	23.98	24.46
830	251	848.8	23.56	24.03	23.81	24.24
DCS	512	1850.2	18.08	21.09	22.19	22.22
PCS	661	1880.0	20.67	22.25	22.04	22.44
1900	810	1909.8	20.21	22.18	22.28	22.36

4. EDGE Mode Conducted peak output power

Band Channel	Frequency	Output Power(dBm)				
	Channel	(MHz)	Slot 1	Slot 2	Slot 3	Slot 4
CGM	128	824.2	32.82	29.43	28.35	27.21
GSM 850	190	836.6	33.16	29.31	28.40	27.30
830	251	848.8	33.40	29.30	28.33	27.24
DCG	512	1850.2	27.78	27.83	26.33	25.16
PCS 1900	661	1880.0	30.30	27.52	26.05	24.92
	810	1909.8	29.92	27.38	25.96	24.87

EDGE Time-based Average Power

Band	Band Channel	Frequency	Output Power(dBm)			
	(MHz)	Slot 1	Slot 2	Slot 3	Slot 4	
CGM	128	824.2	23.82	23.41	24.09	24.20
GSM	190	836.6	24.16	23.29	24.14	24.29
850	251	848.8	24.40	23.28	24.07	24.23
DCG	512	1850.2	18.78	21.81	22.07	22.15
PCS 1900	661	1880.0	21.30	21.50	21.79	21.91
1900	810	1909.8	20.92	21.36	21.70	21.86

Timeslot consignations:

No. Of Slots	Slot 1	Slot 2	Slot 3	Slot 4
Slot Consignation	1Up4Down	2Up2Down	3Up2Down	4Up1Down
Duty Cycle	1:8	1:2	1:2.67	1:2
Correct Factor	-9.00dB	-6.02dB	-4.26dB	-3.01dB

5. Wifi peak output power

		Frequency	Output Power(dBm)			
Band	Band Channel	(MHz)	802.11B	802.11G	802.11N20	
		(11112)	(DSSS)	(OFDM)	(OFDM)	
	1	2412	11.19	8.26	8.33	
Wifi	6	2437	11.96	9.02	9.12	
-	11	2462	12.81	9.63	9.65	

			Output
Dand	Channel	Frequency	Power(dBm)
Band		(MHz)	802.11N40
			(OFDM)
	3	2422	8.35
Wifi	6	2437	8.83
	9	2452	9.37

6. Bluetooth peak output power

Dand	Dand Channal		Output Power(dBm)		
Dallu	Band Channel	(MHz)	GFSK	П/4-DQPSK	8-DPSK
	0	2402	5.219	5.189	5.104
BT	39	2441	4.322	3.664	3.537
	78	2480	2.985	2.051	2.080

10. Test Results List

Temperature: 21.0~23.8°C, humidity: 54~60%.							
Phantom Configurations		Device Test Positions	Device Test channel	SAR(W/Kg), 1g Peak	Scaling Factor	Scaled SAR (W/Kg), 1g	
Right Si		Cheek/Touch		0.427		0.446	
Of Hea	ad	Ear/Tilt	'	0.261		0.273	
Left Sid	de	Cheek/Touch	251	0.372	1.045	0.389	
Of Hea	ad	Ear/Tilt	231	0.246	1.043	0.257	
	GSM	Back upward		0.626		0.654	
	G2M	Front upward	ا ا	0.516		0.539	
Dedre		Back upward		0.621		0.625	
Body (10mm	l l	Front upward	'	0.380		0.383	
(10mm	GPRS	Edge A	190	0.225	1.007	0.227	
Separation)	Í	Edge B		0.202		0.203	
	l l	Edge C	1	0.192		0.193	
l l	EDGE	Back upward	128	0.592	1.047	0.620	

Summary of Measurement Results (GSM 850MHz Band)

Summary of Measurement Results (GSM 1900MHz Band)

Temperature: 21.0~23.8°C, humidity: 54~60%.						
Phantom		Device Test	Device Test	SAR(W/Kg),	Scaling	Scaled SAR
Configura	tions	Positions	channel	1g Peak	Factor	(W/Kg), 1g
Right S	ide	Cheek/Touch		0.417		0.431
Of Hea	ad	Ear/Tilt		0.084		0.087
Left Si	de	Cheek/Touch		0.447	1 0 2 2	0.462
Of Head		Ear/Tilt	661	0.108	1.033	0.112
	GSM	Back upward		0.580	-	0.599
	U2IM	Front upward		0.523		0.540
De la		Back upward		0.744	1.012	0.753
Body		Front upward		0.428		0.433
(10mm Separation)	GPRS	Edge A	661	0.287		0.290
Separation)		Edge B		0.166		0.168
		Edge C		0.385		0.390
	EDGE	Back upward	512	0.609	1.081	0.658

Note:

1. GPRS/EDGE test Scenario(Based on the Max. Time-based Average Power)

Band	Channel	Slots	Power level	Duty Cycle
GPRS850	190	4	5	1:2
EDGE850	190	4	5	1:2
GPRS1900	512	4	0	1:2
EDGE1900	810	4	0	1:2

Summary of Measurement Results (WCDMA 850MHz Band)

Temperature: 21.0~23.8°C, humidity: 54~60%.						
Phantom Configurations	Device Test Positions	Device Test channel	SAR(W/Kg), 1g Peak	Scaling Factor	Scaled SAR (W/Kg), 1g	
Right Side	Cheek/Touch		0.341		0.378	
Of Head	Ear/Tilt		0.219		0.243	
Left Side	Cheek/Touch		0.316		0.350	
Of Head	Ear/Tilt		0.219		0.243	
	Back upward	4132	0.567	1.109	0.629	
Body	Front upward		0.504		0.559	
(10mm	Edge A		0.407		0.451	
Separation)	Edge B		0.318		0.353	
	Edge C		0.078		0.087	

Summary of Measurement Results (WCDMA 1900MHz Band)

Temperature: 21.0~23.8°C, humidity: 54~60%.						
Phantom Configurations	Device Test Positions	Device Test channel	SAR(W/Kg), 1g Peak	Scaling Factor	Scaled SAR (W/Kg), 1g	
Right Side	Cheek/Touch		0.371		0.411	
Of Head	Ear/Tilt		0.091		0.101	
Left Side	Cheek/Touch		0.542		0.600	
Of Head	Ear/Tilt		0.103		0.114	
	Back upward	9538	0.675	1.107	0.747	
Body	Front upward		0.489		0.541	
(10mm	Edge A		0.306		0.339	
Separation)	Edge B		0.310		0.343	
	Edge C		0.184		0.204	

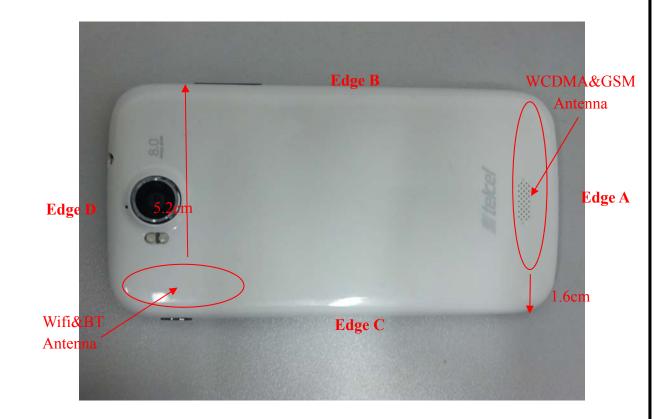
Temperature: 21.0~23.8°C, humidity: 54~60%.							
Phantom Configurations	Device Test Positions	Device Test channel	SAR(W/Kg), 1g Peak	Scaling Factor	Scaled SAR (W/Kg), 1g		
Right Side	Cheek/Touch		0.129		0.135		
Of Head	Ear/Tilt		0.086	1.045	0.090		
Left Side	Cheek/Touch		0.139		0.145		
Of Head	Ear/Tilt		0.084		0.088		
	Back upward	6	0.160		0.167		
Body (10mm	Front upward		0.033		0.034		
	Edge C		0.035		0.037		
Separation)	Edge D		0.081		0.085		

Summary of Measurement Results (WLAN 802.11B Band)

Note:

- 1.When the 1-g SAR for the mid-band channel or the channel with the highest output power satisfy the following conditions, testing of the other channels in the band is not required. (Per KDB 447498 D01 General RF Exposure Guidance v05)
 - $\leq~0.8~{
 m W/kg}$ and transmission band $~\leq~100~{
 m MHz}$
 - $\leq~0.6~{
 m W/kg}$ and, 100 MHz < transmission bandwidth $\,\leq~200~{
 m MHz}$
 - $\,\leqslant\,$ 0.4 W/kg and transmission band > 200 MHz
- 2.The WCDMA mode is test with 12.2kbps RMC and TPC set to all "1", if maximum SAR for 12.2kbps RMC is ≤ 75% of the SAR limit (i.e. 1.2W/Kg 1g) and maximum average output of each RF channel with HSDPA/HSUPA active is less than 1/4 dB higher than that measured without HSDPA/HSUPA using 12.2kbps RMC, according to KDB 941225D01v02, SAR is not required for this handset with HSPA capabilities.
- 3. During 802.11b(2.4GHz) testing, engineering testing software installed on the EUT can provide continuous transmitting RF signal.The RF signal utilized in SAR measurement has almost 100% duty cycle, and its crest factor is 1.

4. Scaling Factor calculation


Band	Tune-up power tolerance	SAR test channel	Scaling
Dallu	(dBm)	Power (dBm)	Factor
GSM 850	PCL = 5, PWR = 32.5+-0.5	32.74	1.062
GPRS 850	PCL = 5, PWR =27+-0.5(4 slots)	27.31	1.045
EDGE 850	PCL = 5, PWR =27+-0.5 (4 slots)	27.13	1.089
PCS 1900	PCL = 0, PWR = 28.5+-0.5	28.56	1.107
GPRS 1900	PCL=0,PWR= 24+-0.5(4 slots)	24.27	1.054
EDGE 1900	PCL=0,PWR=24+-0.5(4 slots)	24.17	1.079
WCDMA 850	Max output power = $24(+1/-2)$	24.63	1.089
WCDMA 1900	Max output power =23 (+ $1/-2$)	23.66	1.081
802.11B(2.4GHz)	Max output power =13.5 +-0.5	13.82	1.042

11. Hotspot Mode Evaluation Procedure

The SAR evaluation procedures for Portable Devices with Wireless Router function is according to KDB 941225 D06 Hot Spot SAR v01.

- 1. SAR must be tested for all surFronts and edges (side) with a transmitting antenna with in 2.5 cm from that surFront or edge, at a test separation distance of 10 mm, in the wireless modes that support wireless routing.
- 2. Edge configurations:

Assessment	Hotspot side for SAR					
Test distance: 10mm						
Antennas	Back	Front	Edge A	Edge B	Edge C	Edge D
WCDMA/GSM	Yes	Yes	Yes	Yes	Yes	No
WLAN&BT	Yes	Yes	No	No	Yes	Yes

12. **Multiple Transmitters Evaluation** The are two transmitters build in EUT, As followed: 3. Edge configurations: **Edge B** WCDMA&GSM Antenna Edge A **Edge D** 8.6cm .6cm Wifi&B1 **Edge** C Antenna Stand-alone SAR **TEST distance: 5mm** Band **SAR Test Exclusion Threshold(mW)** Highest test power(mW) Per KDB 447498 D01v05 10 19.953 **WIFI(2.4G)** BT 10 3.548

According to the chart above, WIFI2.4G is required for Stand-alone SAR test, BT is not required. The SAR test for 802.11b(2.4GHz) is required, 802.11g/HT20 is not required, for the maximum average output power is less than 1/4 dB higher than measured on the corresponding 802.11b channels. As per KDB 248227

The SAR test for BT is not required for highest power is not exceed the power threshold for 2450MHz at the test distance of 5mm.

The BT stand-alone SAR is not required, the standalone SAR must be estimated according to following to determine simultaneous transmission SAR test exclusion:

(max. power of channel, including tune-up tolerance, mW)/(min. test separation distance,mm)]·[$\sqrt{f(GHz)/x}$] W/kg for test separation distances ≤ 50 mm;

where x = 7.5 for 1-g SAR, and x = 18.75 for 10-g SAR.

(Max power=3.548 mW(per tune up); *min. test separation distance*=5mm for head, 10mm for body; f=2.4GHz)

BT estimated Head SAR = 0.147 W/Kg (1g); BT estimated Body SAR = 0.073W/Kg (1g)

Description of Simultaneous Transmit Capabilities Transmitter Combinations Scenario **Explanation** No. Supported for **Supported? Mobile Hotspot?** 1 GSM(Voice)+GSM(Data) No No 2 Yes WCDMA(Voice)+WCDMA(Data) Yes 3 No GSM(Voice)+WCDMA(Data) No Note 1 4 No WCDMA(Voice)+GSM(Data) No 5 GSM(Data)+WCDMA(Voice) No No 6 GSM(Voice)+WCDMA(Voice) No No 7 Note 2 GSM(Voice)+WiFi (/ BT) No Yes 8 WCDMA(Voice)+WiFi (/BT) Yes No 9 WCDMA(Voice)+WCDMA(Data)+WiFi Yes Yes 10 GSM(Data)+WiFi Yes Note 3 Yes 11 Yes Yes WCDMA(Data)+WiFi

Not applicable	Applicable	Head	Body-worn	Hotspot
1,3,4,5,6	2,7,8,9,10,11	2,7,8,9	2,7,8,9	9,10,11

Note:

- 1. EUT system architecture does not support simultaneous voice and data(except on WCDMA), multiple voice channels, or multiple data channels during a single session on the cellular net work.
- 2. Supported for voice plus background data.
- 3. Support for mobile hotspot operation.
- 4. When the user enables the personal wireless router functions for the handset, actual operations include simultaneous transmission of both the WiFi transmitter and another licensed transmitter. Both transmitter often do not transmit at the same transmitting frequency and thus cannot be evaluated for SAR under actual use conditions. The "Portable Hotspot" feature on the handset was NOT activated, to ensure the SAR measurements were evaluated for a single transmission frequency RF signal.
- 5. The hotspot SAR result may overlap with the body-worn accessory SAR requirements, per KDB 941225 D06, the more conservative configurations can be considered, thus excluding some

unnecessary body-worn accessory SAR tests.

- 6. GSM supports voice and data transmission, though not simultaneously. WCDMA supports voice and data transmission simultaneously.
- 7. Though users can use WLAN and Bluetooth simultaneously, but the real situation is that WLAN and Bluetooth are used by time sharing and no overlap transmission
- 8.For Scenario No.2,8,9,11, WCDMA and WiFi is tested separately, the WCDMA mode is test with 12.2kbps RMC and TPC set to all "1", if maximum SAR for 12.2kbps RMC is ≤ 75% of the SAR limit (i.e. 1.2W/Kg 1g) and maximum average output of each RF channel with HSDPA/HSUPA active is less than 1/4 dB higher than that measured without HSDPA/HSUPA using 12.2kbps RMC, according to KDB 941225D01v02, SAR is not required for this handset with HSPA capabilities.
- 9.For Scenario No.7,10, GSM and WiFi is tested separately, the GSM mode do not supports voice and data transmission simultaneously, voice (GSM) and data (GPRS/EDGE) is tested separately.

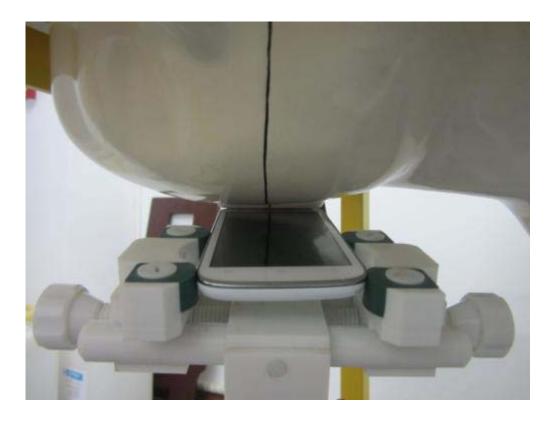
10. Applicable Multiple Scenario Evaluation

Test Position	WCDMA&GSM	Bluetooth $SAB(W/K_{\alpha})$	WiFi	∑1-g SARMax	(W/Kg)
POSITION	SARMax (W/Kg) SAR(W/Kg) SARMax(W/Kg)		SARMax(W/Kg)	BT&Main Ant	WiFi&Main Ant
Head SAR	0.600	0.147	0.145	0.747	0.745
Body SAR	0.753	0.073	0.167	0.826	0.920

Simultaneous Transmission SAR evaluation is not required for Wifi and WCDMA&GSM, because the sum of 1g SAR_{Max} is **0.920**W/Kg < 1.6W/Kg for Wifi and WCDMA&GSM.

Simultaneous Transmission SAR evaluation is not required for BT and WCDMA&GSM, because the sum of 1g SARMax is **0.826**W/Kg < 1.6W/Kg for BT and WCDMA&GSM.

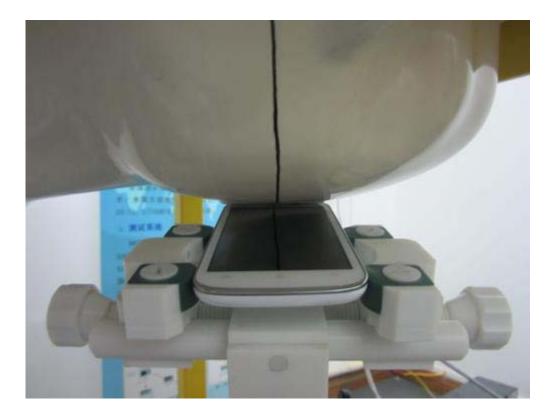
(According to KDB 447498D01v05, the sum of the highest <u>reported</u> SAR of each antenna does not exceed the limit, simultaneous transmission SAR evaluation is not required.)



Annex A EUT Setup Photos

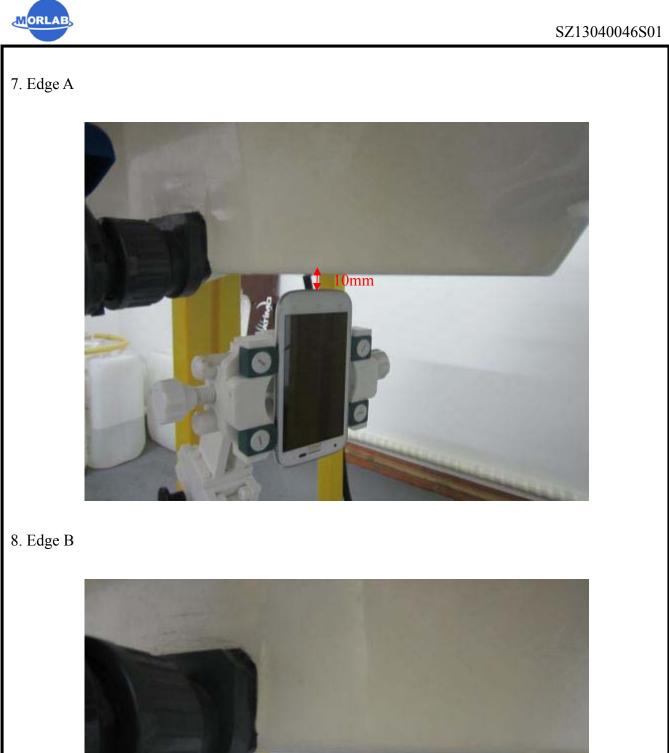
1 EUT Right Head Touch Cheek Position

2 EUT Right Head Tilt15 Position

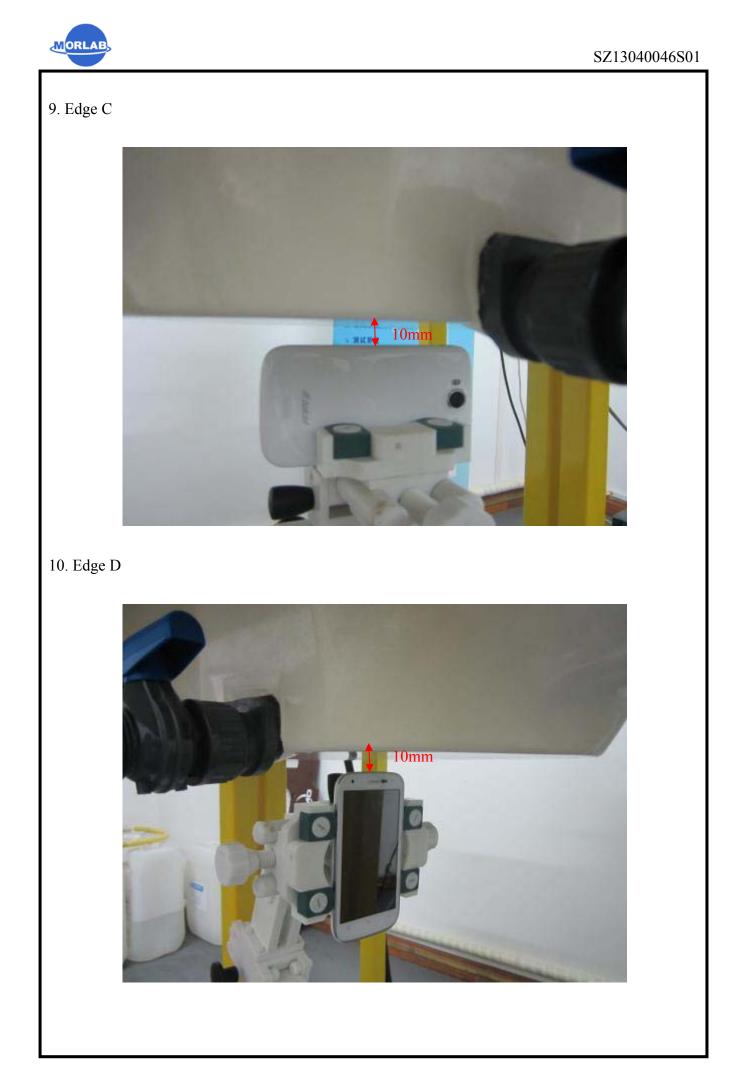


3 EUT Left Head Touch Cheek Position

4 EUT Left Head Tilt15 Position



5 Side Position with earphone



6 Side Position

Liquid Level Photo

Liquid depth :15.5cm

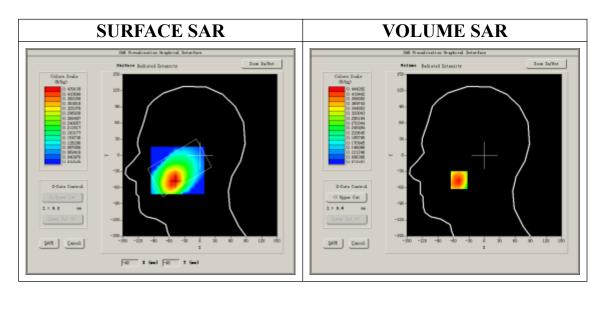
Annex B Graph Test Results

BAND	PARAMETERS	
	Measurement 1: Right Head with Cheek device position on High	
	Channel in GSM mode	
	Measurement 2: Right Head with Tilt device position on High	
	Channel in GSM mode	
	Measurement 3: Left Head with Cheek device position on High	
	Channel in GSM mode	
	Measurement 4: Left Head with Tilt device position on High	
	Channel in GSM mode	
	Measurement 5: Flat Plane with Body device position on High	
	Channel in GSM mode	
	Measurement 6: Flat Plane with Body device position on High	
GSM850	Channel in GSM mode	
	Measurement 7: Flat Plane with Body device position on Middle	
	Channel in GPRS mode	
	Measurement 8: Flat Plane with Body device position on Middle	
	Channel in GPRS mode	
	Measurement 9: Flat Plane with Body device position on Middle	
	Channel in GPRS mode	
	Measurement 10: Flat Plane with Body device position on Middle	
	Channel in GPRS mode	
	Measurement 11: Flat Plane with Body device position on Middle	
	Channel in GPRS mode	
	Measurement 12: Flat Plane with Body device position on Low	
	Channel in EDGE mode	
	Measurement 13: Right Head with Cheek device position on Middle	
	Channel in GSM mode	
	Measurement 14: Right Head with Tilt device position on Middle	
	Channel in GSM mode	
	Measurement 15: Left Head with Cheek device position on Middle	
	Channel in GSM mode	
	Measurement 16: Left Head with Tilt device position on Middle	
	Channel in GSM mode	
<u>GSM1900</u>	Measurement 17: Flat Plane with Body device position Middle	
	Channel in GSM mode	
	Measurement 18: Flat Plane with Body device position on Middle	
	Channel in GSM mode	
	Measurement 19: Flat Plane with Body device position on Middle	
	Channel in GPRS mode	
	<u>Measurement 20:</u> Flat Plane with Body device position on Middle Channel in GPRS mode	

	Measurement 21: Flat Plane with Body device position on Middle
	Channel in GPRS mode
	Measurement 22: Flat Plane with Body device position on Middle
	Channel in GPRS mode
	Measurement 23: Flat Plane with Body device position on Middle
	Channel in GPRS mode
	Measurement 24: Flat Plane with Body device position on Low
	Channel in EDGE mode
	Measurement 25: Right Head with Cheek device position on Low
	Channel in WCDMA mode
	Measurement 26: Right Head with Tilt device position on Low
	Channel in WCDMA mode
	Measurement 27: Left Head with Cheek device position on Low
	Channel in WCDMA mode
	Measurement 28: Left Head with Tilt device position on Low
	Channel in WCDMA mode
	Measurement 29: Flat Plane with Body device position on Low
	Channel in WCDMA mode
	Measurement 30: Flat Plane with Body device position on Low
<u>WCDMA</u>	Channel in WCDMA mode
<u>850</u>	Measurement 31: Flat Plane with Body device position on Low
	Channel in WCDMA mode
	Measurement 32: Flat Plane with Body device position on Low
	Channel in WCDMA mode
	Measurement 33: Flat Plane with Body device position on Low
	Channel in WCDMA mode
	Measurement 34: Right Head with Cheek device position on High
	Channel in WCDMA mode
	Measurement 35: Right Head with Tilt device position on High
	Channel in WCDMA mode
	Measurement 36: Left Head with Cheek device position on High
	Channel in WCDMA mode
	Measurement 37: Left Head with Tilt device position on High
	Channel in WCDMA mode
WCDMA	Measurement 38: Flat Plane with Body device position on High
<u>1900</u>	Channel in WCDMA mode
	Measurement 39: Flat Plane with Body device position on High
	Channel in WCDMA mode
	Measurement 40: Flat Plane with Body device position on High
	Channel in WCDMA mode
	Measurement 41: Flat Plane with Body device position on High
	Channel in WCDMA mode
	Measurement 42: Flat Plane with Body device position on High
	Channel in WCDMA mode

	Measurement 43: Right Head with Cheek device position on High	
Channel in DSSS mode <u>Measurement 44:</u> Right Head with Tilt device position on Hig		Channel in DSSS mode
		Measurement 44: Right Head with Tilt device position on High
	Channel in DSSS mode	
Measurement 45: Left Head with Cheek device position on High		Measurement 45: Left Head with Cheek device position on High
		Channel in DSSS mode
	Measurement 46:Left Head with Tilt device position on High802.11BMeasurement 46:(2450)Measurement 47:Flat Plane with Body device position on High	
	Channel in DSSS mode	
	Measurement 48: Flat Plane with Body device position on High	
	Channel in DSSS mode	
Measurement 49:Flat Plane with Body device position on High Channel in DSSS modeMeasurement 50:Flat Plane with Body device position on High		Measurement 49: Flat Plane with Body device position on High
		Channel in DSSS mode
		Measurement 50: Flat Plane with Body device position on High
		Channel in DSSS mode

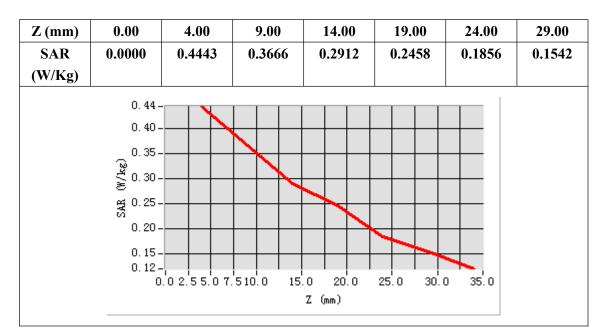
Type: Phone measurement (Complete) Area scan resolution: dx=8mm,dy=8mm Zoom scan resolution: dx=8mm, dy=8mm, dz=5mm Date of measurement: 2013.4.8 Measurement duration: 7 minutes 49 seconds

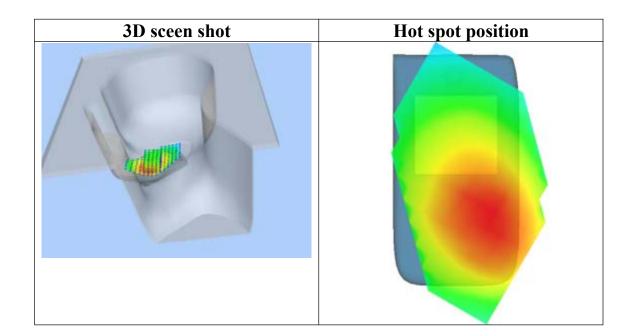

A. Experimental conditions.

Phantom File	sam_direct_droit2_surf8mm.txt
Phantom	Right head
Device Position	Cheek
Band	GSM850
Channels	High
Signal	GSM

B. SAR Measurement Results

Higher Band SAR (Channel 251):

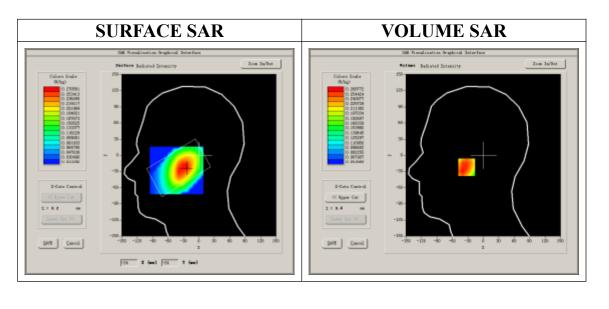

Frequency (MHz)	848.800000
Relative permittivity (real part)	42.532816
Conductivity (S/m)	0.932509
Power drift(%)	-1.090000
Ambient Temperature:	22.9°C
Liquid Temperature:	22.1°C
ConvF:	28.479,25.214,27.19
Crest factor:	1:8



Maximum location: X=8.00, Y=49.00

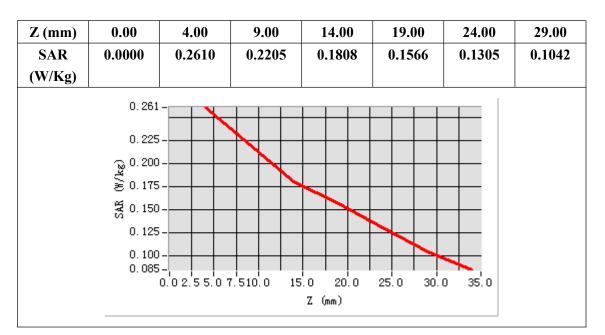
SAR 10g (W/Kg)	0.321653
SAR 1g (W/Kg)	0.427153

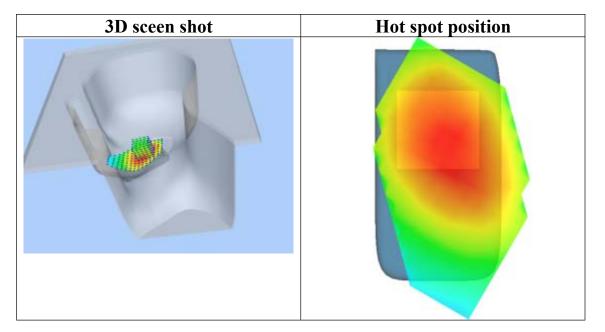
Type: Phone measurement (Complete) Area scan resolution: dx=8mm,dy=8mm Zoom scan resolution: dx=8mm, dy=8mm, dz=5mm Date of measurement: 2013.4.8 Measurement duration: 7 minutes 33 seconds


A. Experimental conditions.

Phantom File	sam_direct_droit2_surf8mm.txt
Phantom	Right head
Device Position	Tilt
Band	GSM850
Channels	High
Signal	GSM

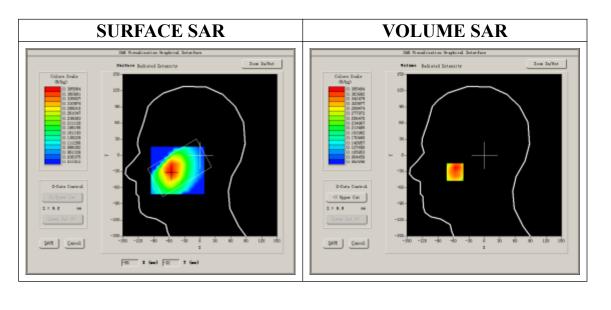
B. SAR Measurement Results


Higher Band SAR (Channel 25):


Frequency (MHz)	848.800000
Relative permittivity (real part)	42.532816
Conductivity (S/m)	0.932509
Power drift(%)	-0.380000
Ambient Temperature:	22.9°C
Liquid Temperature:	22.1°C
ConvF:	28.479,25.214,27.19
Crest factor:	1:8

SAR 10g (W/Kg)	0.203151
SAR 1g (W/Kg)	0.261078

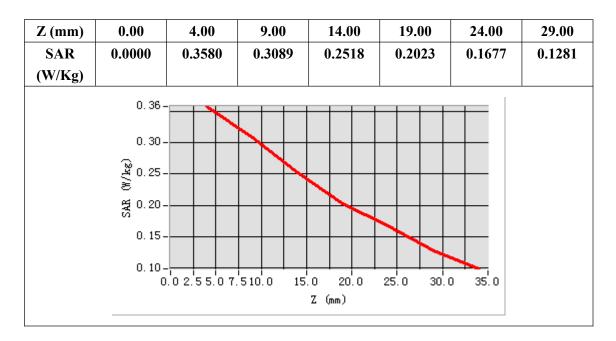
Type: Phone measurement (Complete) Area scan resolution: dx=8mm,dy=8mm Zoom scan resolution: dx=8mm, dy=8mm, dz=5mm Date of measurement: 2013.4.8 Measurement duration: 7 minutes 47 seconds

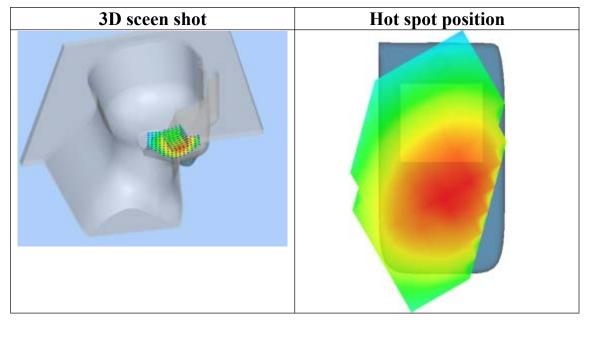

A. Experimental conditions.

Phantom File	sam_direct_droit2_surf8mm.txt
Phantom	Left head
Device Position	Cheek
Band	GSM850
Channels	High
Signal	GSM

B. SAR Measurement Results

Higher Band SAR (Channel 251):

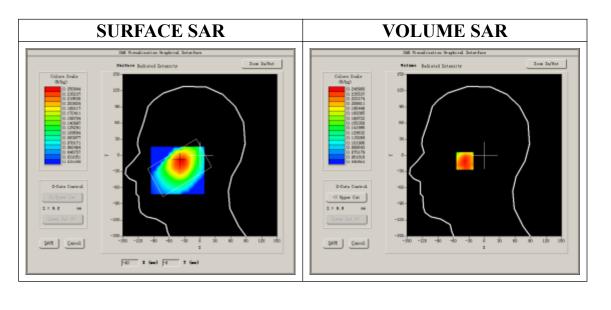

Frequency (MHz)	848.800000
Relative permittivity (real part)	42.532816
Conductivity (S/m)	0.932509
Power drift(%)	-1.810000
Ambient Temperature:	22.9°C
Liquid Temperature:	22.1°C
ConvF:	28.479,25.214,27.19
Crest factor:	1:8



Maximum location: X=8.00, Y=49.00

SAR 10g (W/Kg)	0.279291
SAR 1g (W/Kg)	0.372077

Type: Phone measurement (Complete) Area scan resolution: dx=8mm,dy=8mm Zoom scan resolution: dx=8mm, dy=8mm, dz=5mm Date of measurement: 2013.4.8 Measurement duration: 7 minutes 33 seconds

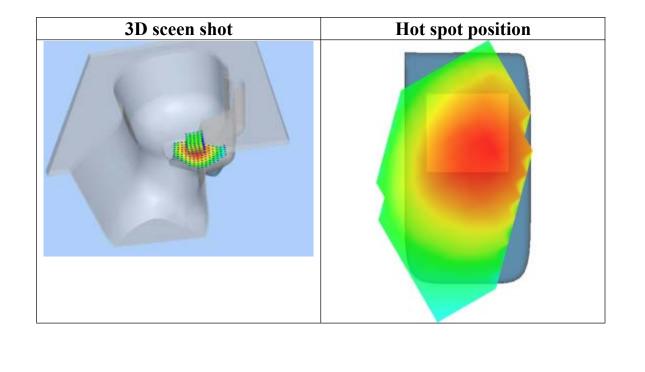

A. Experimental conditions.

Phantom File	sam_direct_droit2_surf8mm.txt
Phantom	Left head
Device Position	Tilt
Band	GSM850
Channels	High
Signal	GSM

B. SAR Measurement Results

Higher Band SAR (Channel 251):

Frequency (MHz)	848.800000
Relative permittivity (real part)	42.532816
Conductivity (S/m)	0.932509
Power drift(%)	-0.950000
Ambient Temperature:	22.9°C
Liquid Temperature:	22.1°C
ConvF:	28.479,25.214,27.19
Crest factor:	1:8

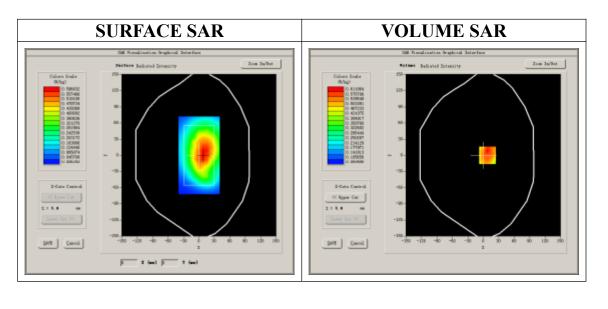


Maximum location: X=8.00, Y=49.00

SAR 10g (W/Kg)	0.192723
SAR 1g (W/Kg)	0.246367

Z (mm)	0.00	4.00	9.00	14.00	19.00	24.00	29.00
SAR	0.0000	0.2489	0.1973	0.1763	0.1469	0.1276	0.1025
(W/Kg)							
	0.249	-					
	0.225						
	0.200						
	(2 ₹ 0.175 ≋	_					
	ළි සු 0.150						
	. 150 중 0. 125						
	0.100						
	0.077						
		o.'o 2.'5 5.'o 1	r.'510.0 15	0 20.0	25.0 30.	0 35.0	
				Z (mm)			
						_	

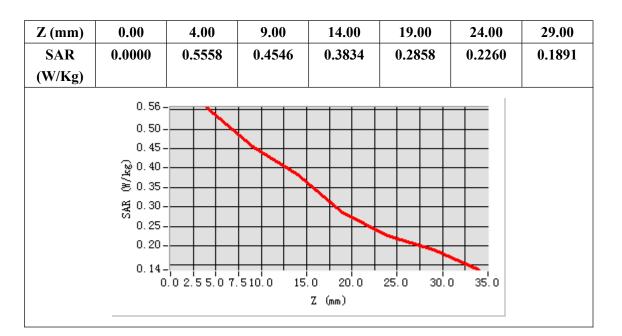
Type: Phone measurement (Complete) Area scan resolution: dx=8mm,dy=8mm Zoom scan resolution: dx=8mm, dy=8mm, dz=5mm Date of measurement: 2013.4.8 Measurement duration: 9 minutes 11 seconds

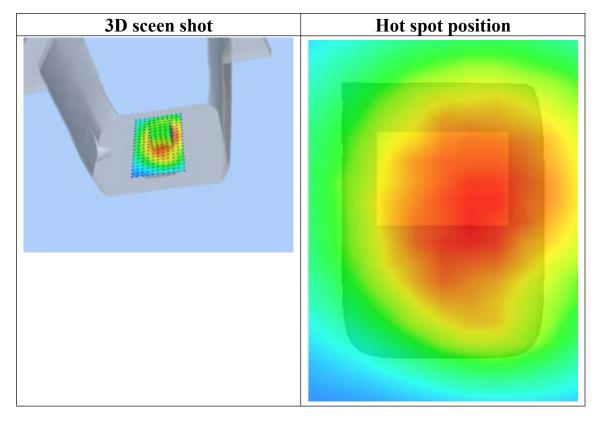

A. Experimental conditions.

Phantom File	surf_sam_plan.txt
Phantom	Flat Plane
Device Position	Body
Band	GSM850
Channels	High
Signal	GSM

B. SAR Measurement Results

Higher Band SAR (Channel 251):

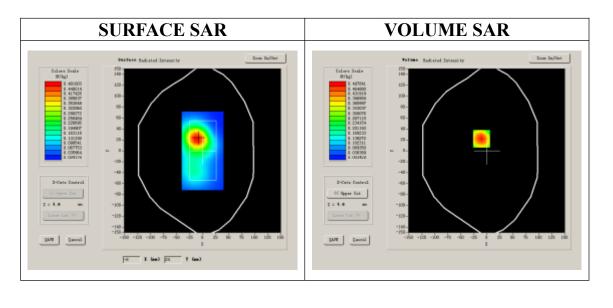

Frequency (MHz)	848.800000
Relative permittivity (real part)	56.120982
Conductivity (S/m)	0.960921
Power drift(%)	-0.920000
Ambient Temperature:	22.9°C
Liquid Temperature:	22.1°C
ConvF:	28.559,25.681,27.588
Crest factor:	1:8



Maximum location: X=8.00, Y=5.00

SAR 10g (W/Kg)	0.464920
SAR 1g (W/Kg)	0.625621

Type: Phone measurement (Complete) Area scan resolution: dx=8mm,dy=8mm Zoom scan resolution: dx=8mm, dy=8mm, dz=5mm Date of measurement: 2013.4.8 Measurement duration: 9 minutes 10 seconds

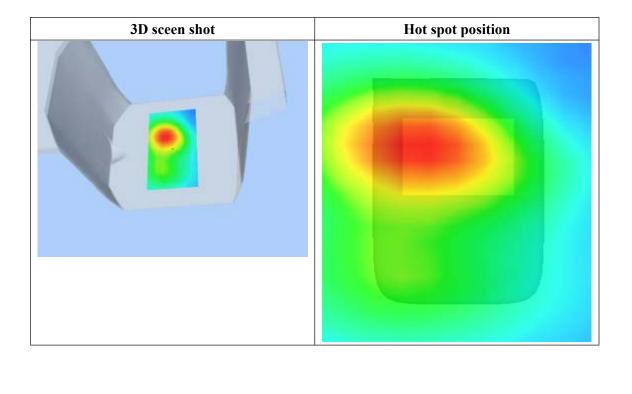

A. Experimental conditions.

Phantom File	surf_sam_plan.txt
Phantom	Flat Plane
Device Position	Body
Band	GSM850
Channels	High
Signal	GSM

B. SAR Measurement Results

Higher Band SAR (Channel 251):

Frequency (MHz)	848.800000
Relative permittivity (real part)	56.120982
Conductivity (S/m)	0.960921
Power drift(%)	-1.020000
Ambient Temperature:	22.9°C
Liquid Temperature:	22.1°C
ConvF:	28.559,25.681,27.588
Crest factor:	1:8

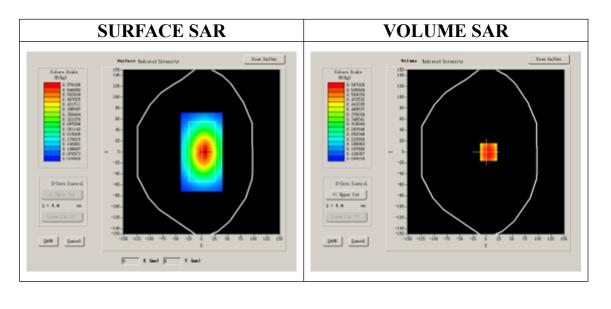


Maximum location: X=-10.00, Y=22.00

SAR 10g (W/Kg)	0.276805
SAR 1g (W/Kg)	0.515980

Z (mm)	0.00	4.00	9.00	14.00	19.00	24.00	29.00
SAR (W/Kg)	0.0000	0.5421	0.2811	0.1391	0.0715	0.0369	0.0190
	SAF	R, Z Axi	s Scan	(X = -1	0, Y =	22)	
	0.5-						
	0.4-						
	(³ 2 2 2 3 2 0.3-	$ \rangle$					
	- ¥ 0.2-		\mathbb{N}^+				
	0.1-		+				
	0.0-	.5 5.0 7.51	0.0 15.0	20.0	25.0 30	.0 35.0	
	0.0 2			(mm)			

Type: Phone measurement (Complete) Area scan resolution: dx=8mm,dy=8mm Zoom scan resolution: dx=8mm, dy=8mm, dz=5mm Date of measurement: 2013.4.8 Measurement duration: 9 minutes 11 seconds

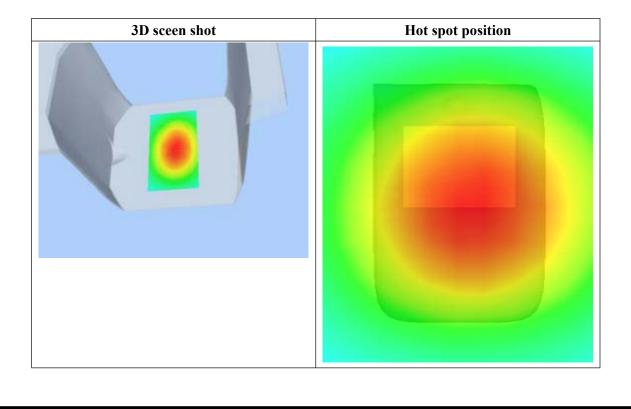

A. Experimental conditions.

Phantom File	surf_sam_plan.txt			
Phantom	Flat Plane			
Device Position	Body			
Band	GSM850			
Channels	Middle			
Signal	GPRS			

B. SAR Measurement Results

Middle Band SAR (Channel 190):

Frequency (MHz)	836.600000
Relative permittivity (real part)	56.120982
Conductivity (S/m)	0.960921
Power drift(%)	-0.720000
Ambient Temperature:	22.9°C
Liquid Temperature:	22.1°C
ConvF:	28.559,25.681,27.588
Crest factor:	1:2

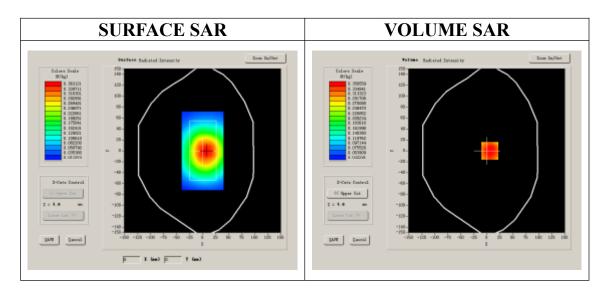


Maximum location: X=5.00, Y=0.00

SAR 10g (W/Kg)	0.448835
SAR 1g (W/Kg)	0.621434

Z (mm) SAR (W/Kg)	0.00 0.0000	4.00 0.6438	9.00 0.4937	14.00 0.3668	19.00 0.2739	24.00 0.2090	29.00 0.1683
	S	AR. 7. A	xis Scar) (X = !	5. Y = (1)	
	0.6-						
	0.6						
	(27 (27) (27) (27) (27) (27) (27) (27) (
	2001 10.3-						
	0.2-						
	0.1-	.5 5.0 7.51	0.0 15.0	20.0	25.0 30	.0 35.0	
			Z	(mm)			

Type: Phone measurement (Complete) Area scan resolution: dx=8mm,dy=8mm Zoom scan resolution: dx=8mm, dy=8mm, dz=5mm Date of measurement: 2013.4.8 Measurement duration: 9 minutes 11 seconds

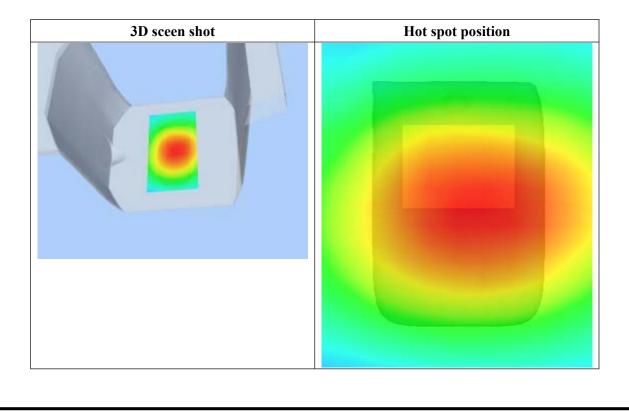

A. Experimental conditions.

Phantom File	surf_sam_plan.txt			
Phantom	Flat Plane			
Device Position	Body			
Band	GSM850			
Channels	Middle			
Signal	GPRS			

B. SAR Measurement Results

Middle Band SAR (Channel 190):

Frequency (MHz)	836.600000
Relative permittivity (real part)	56.120982
Conductivity (S/m)	0.960921
Power drift(%)	-1.350000
Ambient Temperature:	22.9°C
Liquid Temperature:	22.1°C
ConvF:	28.559,25.681,27.588
Crest factor:	1:2

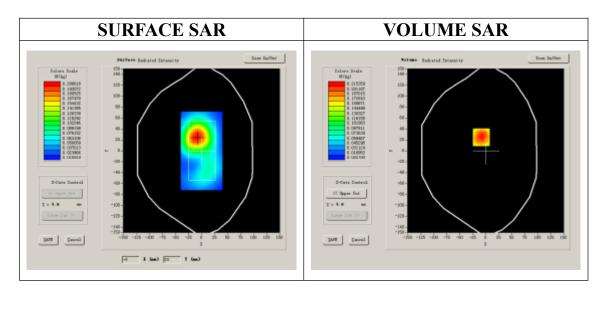


Maximum location: X=6.00, Y=0.00

SAR 10g (W/Kg)	0.264574
SAR 1g (W/Kg)	0.379840

Z (mm)	0.00	4.00	9.00	14.00	19.00	24.00	29.00
SAR (W/Kg)	0.0000	0.3914	0.2840	0.2032	0.1457	0.1026	0.0748
	ر	AR 7 A-	vie Scar	• (X = 1	6, Y = (n	
		III, <i>D</i> II.		1 (X -)	, 1 – (,,	
	0.39-						
	0.35-						
	0.30-	+					
	بر بر 0.25-						
	(²³ 7 0.25 ₩ 0.20 ₩ 0.20						
	8 0.15						
	0.10-						
	0.05-	2.55.07.5	10.0 15.0) 20.0	25.0 30	.0 35.0	
	0.01	2.00.01.0		, 20.0 (mm)	20.0 00	.0 .0.0	
_							

Type: Phone measurement (Complete) Area scan resolution: dx=8mm,dy=8mm Zoom scan resolution: dx=8mm, dy=8mm, dz=5mm Date of measurement: 2013.4.8 Measurement duration: 9 minutes 10 seconds

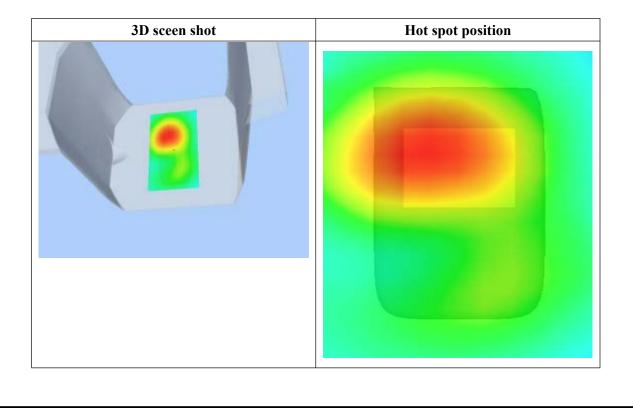

A. Experimental conditions.

Phantom File	surf_sam_plan.txt			
Phantom	Flat Plane			
Device Position	Body			
Band	GSM850			
Channels	Middle			
Signal	GPRS			

B. SAR Measurement Results

Middle Band SAR (Channel 190):

Frequency (MHz)	836.600000
Relative permittivity (real part)	56.120982
Conductivity (S/m)	0.960921
Power drift(%)	-0.710000
Ambient Temperature:	22.9°C
Liquid Temperature:	22.1°C
ConvF:	28.559,25.681,27.588
Crest factor:	1:2

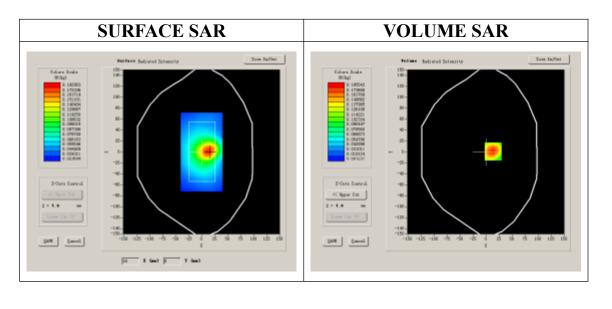


Maximum location: X=-9.00, Y=25.00

SAR 10g (W/Kg)	0.123647
SAR 1g (W/Kg)	0.225270

Z (mm)	0.00	4.00	9.00	14.00	19.00	24.00	29.00
SAR (W/Kg)	0.0000	0.2345	0.1219	0.0626	0.0322	0.0173	0.0092
	SA 0. 23 -	R, Z Ax:	is Scan	(x = -9	9, ¥ = 2	25)	
	0. 20 -	İN					
	(₩ 0.15- ₩/%) gr 0.10	+					
	0.05						
	0.03	2.'5 5.'0 7.'5) 20່.0 (ທາ)	25.0 30	.0 35.0	

Type: Phone measurement (Complete) Area scan resolution: dx=8mm,dy=8mm Zoom scan resolution: dx=8mm, dy=8mm, dz=5mm Date of measurement: 2013.4.8 Measurement duration: 9 minutes 10 seconds

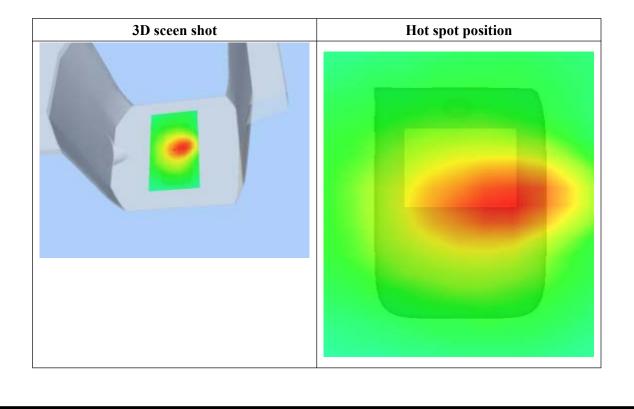

A. Experimental conditions.

Phantom File	surf_sam_plan.txt
Phantom	Flat Plane
Device Position	Body
Band	GSM850
Channels	Middle
Signal	GPRS

B. SAR Measurement Results

Middle Band SAR (Channel 190):

Frequency (MHz)	836.600000
Relative permittivity (real part)	56.120982
Conductivity (S/m)	0.960921
Power drift(%)	-0.360000
Ambient Temperature:	22.9°C
Liquid Temperature:	22.1°C
ConvF:	28.559,25.681,27.588
Crest factor:	1:2

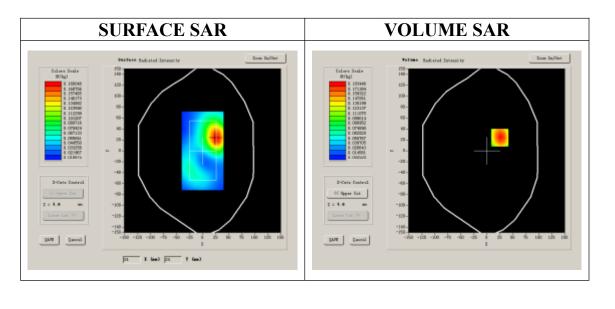


Maximum location: X=14.00, Y=1.00

SAR 10g (W/Kg)	0.117066
SAR 1g (W/Kg)	0.202464

Z (mm) SAR (W/Kg)	0.00 0.0000	4.00 0.2107	9.00 0.1109	14.00 0.0655	19.00 0.0411	24.00 0.0264	29.00 0.0187
	0.211 - 0.175 - 0.150 - 0.125 - 0.100 - 0.075 - 0.050 - 0.014 -		ris Scan				
	0.0	2.5 5.0 7.9		0 20.0 Z (mm)	25.0 30). 0 35. 0	

Type: Phone measurement (Complete) Area scan resolution: dx=8mm,dy=8mm Zoom scan resolution: dx=8mm, dy=8mm, dz=5mm Date of measurement: 2013.4.8 Measurement duration: 9 minutes 10 seconds

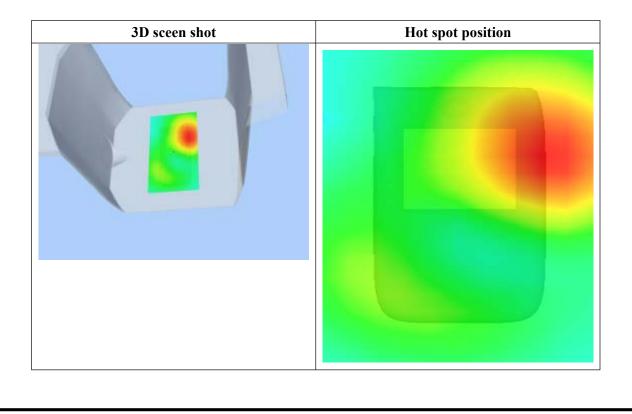

A. Experimental conditions.

Phantom File	surf_sam_plan.txt
Phantom	Flat Plane
Device Position	Body
Band	GSM850
Channels	Middle
Signal	GPRS

B. SAR Measurement Results

Middle Band SAR (Channel 190):

Frequency (MHz)	836.600000
Relative permittivity (real part)	56.120982
Conductivity (S/m)	0.960921
Power drift(%)	-2.030000
Ambient Temperature:	22.9°C
Liquid Temperature:	22.1°C
ConvF:	28.559,25.681,27.588
Crest factor:	1:2

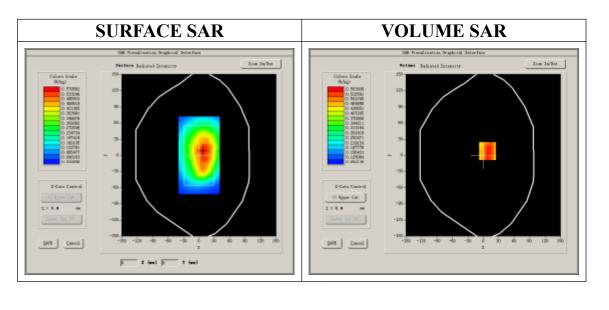


Maximum location: X=25.00, Y=24.00

SAR 10g (W/Kg)	0.104635
SAR 1g (W/Kg)	0.191565

(W/Kg) SAR, Z Axis Scan (X = 25, Y = 24) $0.200-0.175-0.150-0.150-0.125-0.100-0.125-0.000-000-00-$	Z (mm)	0.00	4.00	9.00	14.00	19.00	24.00	29.00
SAR, Z Axis Scan (X = 25, Y = 24) 0.200-0.175-0.150-0.150-0.125-0.100-0.125-0.005-0.005-0.025-0.005-0.025-0.005-0.025-0.005-0.025-0.005	SAR	0.0000	0.1998	0.1004	0.0532	0.0295	0.0153	0.0093
0.200- 0.175- 0.150- (%) 0.125- 0.100- %) 0.100- %) 0.075- 0.050- 0.050- 0.025- 0.025- 0.025- 0.025- 0.02.55.07.510.0 15.0 20.0 25.0 30.0 35.0	(W/Kg)							
0. 200 - 0. 175 - 0. 150 - 0. 125 - 0. 100 - 0. 075 - 0. 050 - 0. 050 - 0. 025								
0.175- 0.150- 0.125- 0.100- 0.075- 0.050- 0.050- 0.025- 0.025- 0.025- 0.025- 0.025- 0.025- 0.025- 0.025- 0.02.55.07.510.0 15.0 20.0 25.0 30.0 35.0		SA	R, Z Ax	is Scan	(X = 25)	$5, \Upsilon = 2$	24)	
0.150- () 0.125- 0.100- () 0.075- 0.075- 0.050- 0.025-		0. 200 -						
Y 0.125- 0.100- Y 0.075- 0.050- 0.025- 0.005- 0.005- 0.005- 0.005- 0.005- 0.005- 0.005- 0.025-		0. 175	+ $+$ $+$					
<pre> 0.075- 0.050- 0.025- 0.025- 0.005- 0.025- 0.025- 0.025- 0.025- 0.025- 0.025- 0.025- 0.0255.07.510.0 15.0 20.0 25.0 30.0 35.0 </pre>		0. 150 -	+ $+$					
<pre> 0.075- 0.050- 0.025- 0.025- 0.005- 0.025- 0.025- 0.025- 0.025- 0.025- 0.025- 0.025- 0.0255.07.510.0 15.0 20.0 25.0 30.0 35.0 </pre>		ຼິ ພິ 0. 125 -	X					
0.050 - 0.025 - 0.005 - 0.0 2.5 5.0 7.510.0 15.0 20.0 25.0 30.0 35.0		È 0.100-						
0.025- 0.005- 0.0 2.5 5.0 7.510.0 15.0 20.0 25.0 30.0 35.0		≋ 0.075-						
0.005 - 0.0 2.5 5.0 7.510.0 15.0 20.0 25.0 30.0 35.0		0.050		+N				
0.02.55.07.510.0 15.0 20.0 25.0 30.0 35.0		0. 025 -						
Z (mm)		U. U	2.55.07.5			25.0 30	.0 35.0	
2 (mm)	_				5 (mm)			

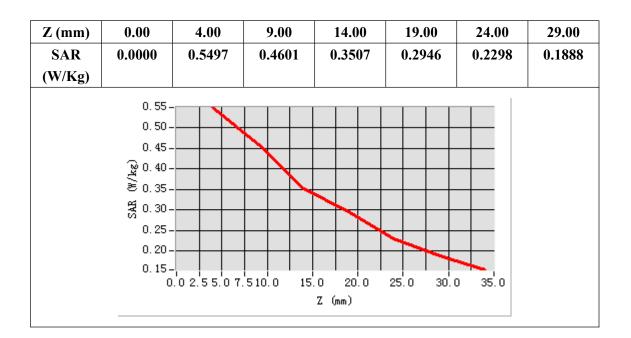
Type: Phone measurement (Complete) Area scan resolution: dx=8mm,dy=8mm Zoom scan resolution: dx=8mm, dy=8mm, dz=5mm Date of measurement: 2013.4.8 Measurement duration: 9 minutes 10 seconds

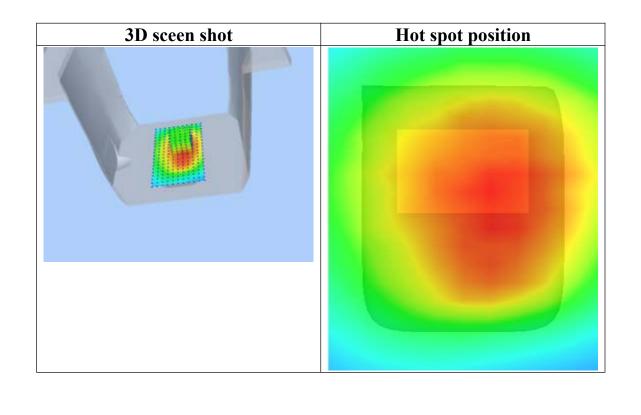

A. Experimental conditions.

Phantom File	surf_sam_plan.txt
Phantom	Flat Plane
Device Position	Body
Band	GSM850
Channels	Low
Signal	EDGE

B. SAR Measurement Results

Lower Band SAR (Channel 128):


Frequency (MHz)	824.200000
Relative permittivity (real part)	56.120982
Conductivity (S/m)	0.960921
Power drift(%)	-0.810000
Ambient Temperature:	22.9°C
Liquid Temperature:	22.1°C
ConvF:	28.559,25.681,27.588
Crest factor:	1:2



Maximum location: X=8.00, Y=5.00

SAR 10g (W/Kg)	0.442339
SAR 1g (W/Kg)	0.592186

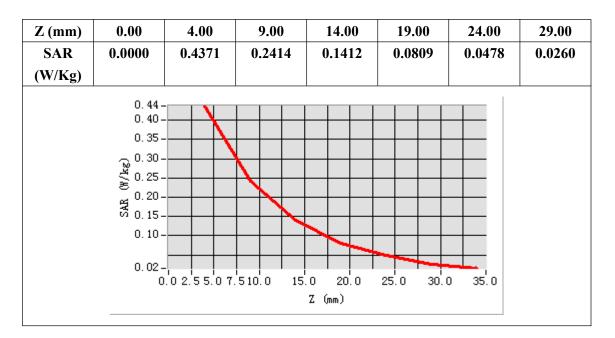
Type: Phone measurement (Complete) Area scan resolution: dx=8mm,dy=8mm Zoom scan resolution: dx=8mm, dy=8mm, dz=5mm Date of measurement: 2013.4.8 Measurement duration: 8 minutes 33 seconds

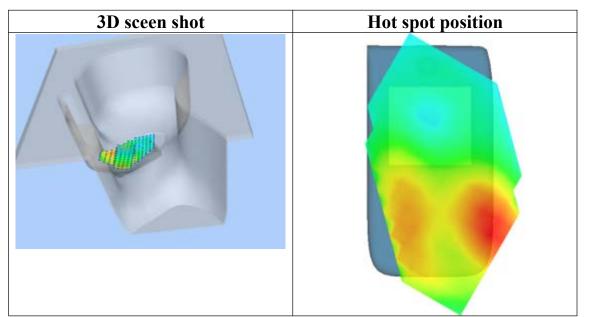
A. Experimental conditions.

Phantom File	sam_direct_droit2_surf8mm.txt
Phantom	Right head
Device Position	Cheek
Band	GSM1900
Channels	Middle
Signal	GSM

B. SAR Measurement Results

Middle Band SAR (Channel 661):


Frequency (MHz)	1880.000000
Relative permittivity (real part)	41.357921
Conductivity (S/m)	1.403817
Power drift(%)	-0.820000
Ambient Temperature:	22.9°C
Liquid Temperature:	22.1°C
ConvF:	40.136,34.843,38.721
Crest factor:	1:8



Maximum location: X=9.00, Y=7.00

SAR 10g (W/Kg)	0.224301
SAR 1g (W/Kg)	0.416680

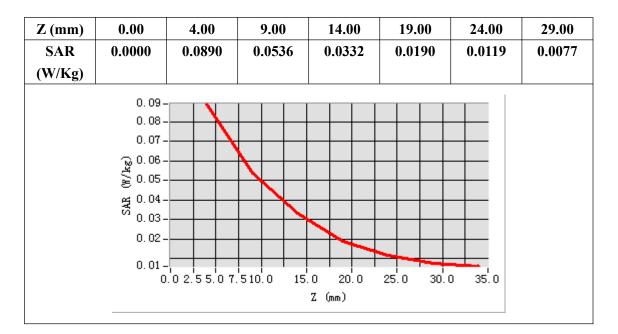
Type: Phone measurement (Complete) Area scan resolution: dx=8mm,dy=8mm Zoom scan resolution: dx=8mm, dy=8mm, dz=5mm Date of measurement: 2013.4.8 Measurement duration: 8 minutes 33 seconds

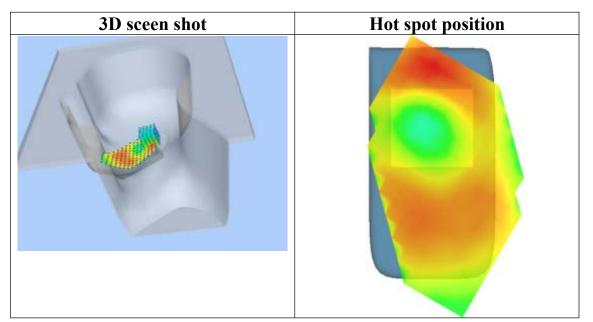

A. Experimental conditions.

Phantom File	sam_direct_droit2_surf8mm.txt
Phantom	Right head
Device Position	Tilt
Band	GSM1900
Channels	Middle
Signal	GSM

B. SAR Measurement Results

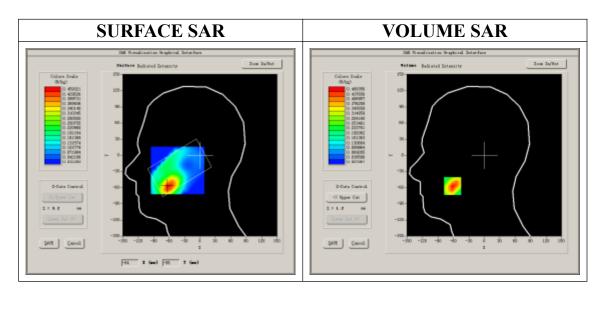
Middle Band SAR (Channel 661):


Frequency (MHz)	1880.000000
Relative permittivity (real part)	41.357921
Conductivity (S/m)	1.403817
Power drift(%)	-0.050000
Ambient Temperature:	22.9°C
Liquid Temperature:	22.1°C
ConvF:	40.136,34.843,38.721
Crest factor:	1:8



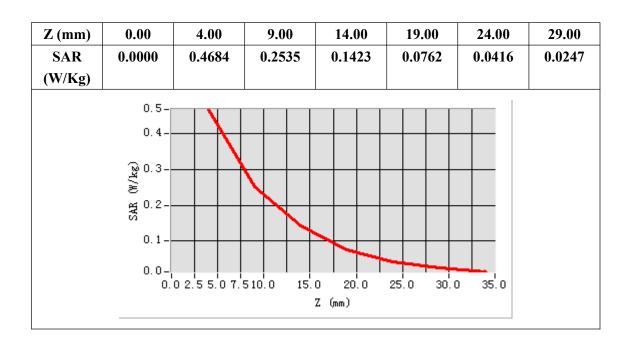
Maximum location: X=9.00, Y=7.00

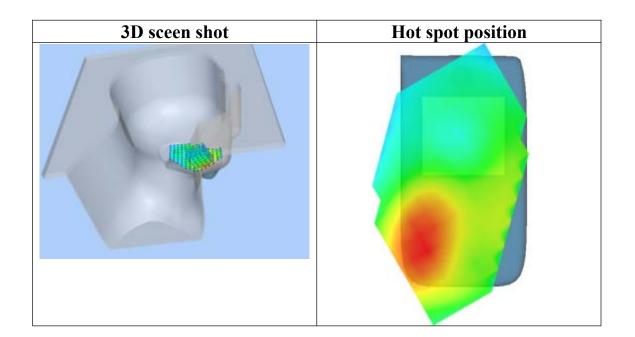
SAR 10g (W/Kg)	0.047537
SAR 1g (W/Kg)	0.084067


Type: Phone measurement (Complete) Area scan resolution: dx=8mm,dy=8mm Zoom scan resolution: dx=8mm, dy=8mm, dz=5mm Date of measurement: 2013.4.8 Measurement duration: 7 minutes 57 seconds

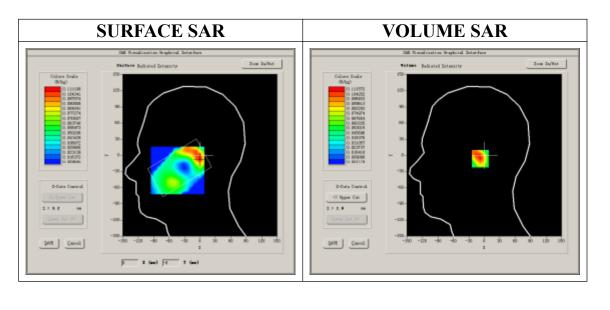
A. Experimental conditions.

Phantom File	sam_direct_droit2_surf8mm.txt			
Phantom	Left head			
Device Position	Cheek			
Band	GSM1900			
Channels	Middle			
Signal	GSM			


B. SAR Measurement Results

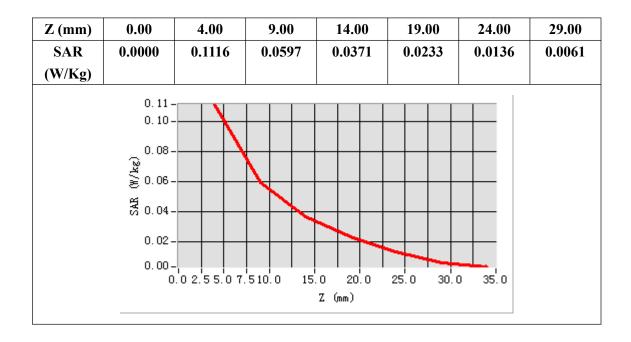

Frequency (MHz)	1880.000000			
Relative permittivity (real part)	41.357921			
Conductivity (S/m)	1.403817			
Power drift(%)	-0.250000			
Ambient Temperature:	22.9°C			
Liquid Temperature:	22.1°C			
ConvF:	40.136,34.843,38.721			
Crest factor:	1:8			

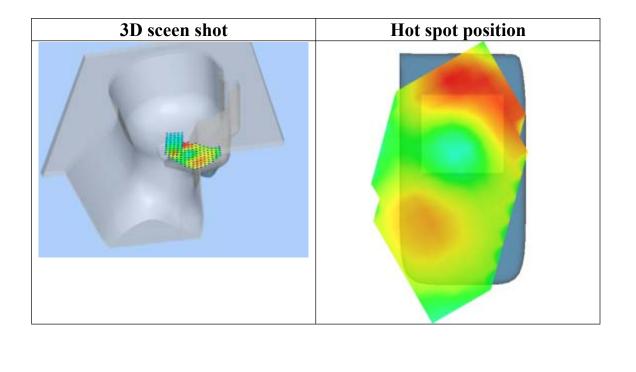
SAR 10g (W/Kg)	0.235439
SAR 1g (W/Kg)	0.447377


Type: Phone measurement (Complete) Area scan resolution: dx=8mm,dy=8mm Zoom scan resolution: dx=8mm, dy=8mm, dz=5mm Date of measurement: 2013.4.8 Measurement duration: 7 minutes 18 seconds

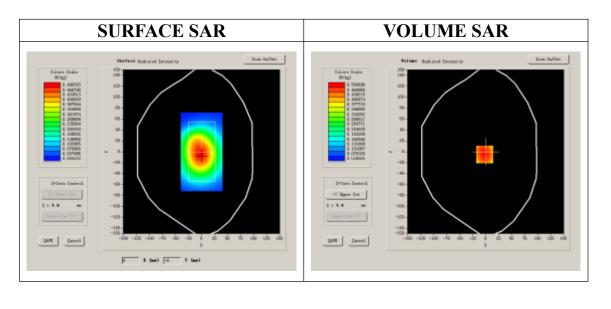
A. Experimental conditions.

Phantom File	sam_direct_droit2_surf8mm.txt			
Phantom	Left head			
Device Position	Tilt			
Band	GSM1900			
Channels	Middle			
Signal	GSM			


B. SAR Measurement Results


Frequency (MHz)	1880.000000			
Relative permittivity (real part)	41.357921			
Conductivity (S/m)	1.403817			
Power drift(%)	-1.030000			
Ambient Temperature:	22.9°C			
Liquid Temperature:	22.1°C			
ConvF:	40.136,34.843,38.721			
Crest factor:	1:8			

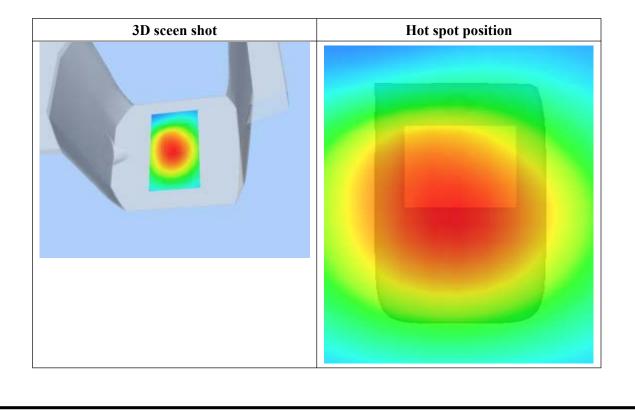
SAR 10g (W/Kg)	0.059782
SAR 1g (W/Kg)	0.108495


Type: Phone measurement (Complete) Area scan resolution: dx=8mm,dy=8mm Zoom scan resolution: dx=8mm, dy=8mm, dz=5mm Date of measurement: 2013.4.8 Measurement duration: 9 minutes 8 seconds

A. Experimental conditions.

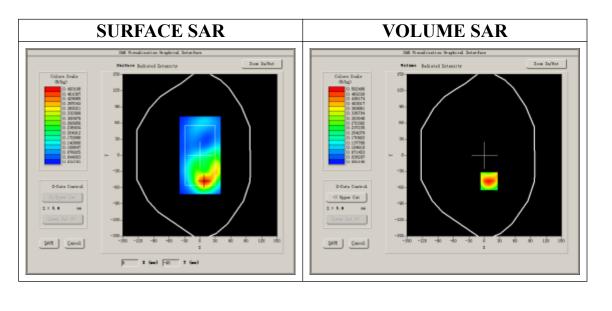
Phantom File	surf_sam_plan.txt			
Phantom	Flat Plane			
Device Position	Body			
Band	GSM1900			
Channels	Middle			
Signal	GSM			

B. SAR Measurement Results


Frequency (MHz)	1880.000000			
Relative permittivity (real part)	54.319082			
Conductivity (S/m)	1.490328			
Power drift(%)	-0.320000			
Ambient Temperature:	22.9°C			
Liquid Temperature:	22.1°C			
ConvF:	40.625,34.773,38.535			
Crest factor:	1:8			

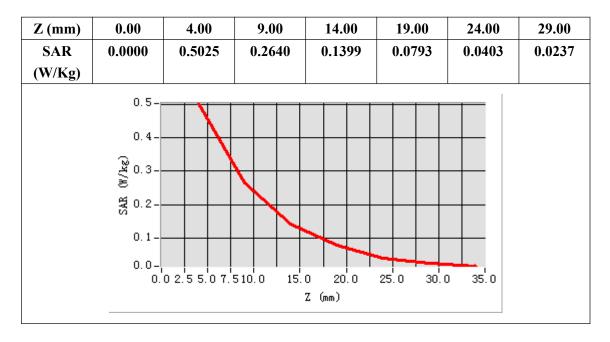
SAR 10g (W/Kg)	0.396190
SAR 1g (W/Kg)	0.579573

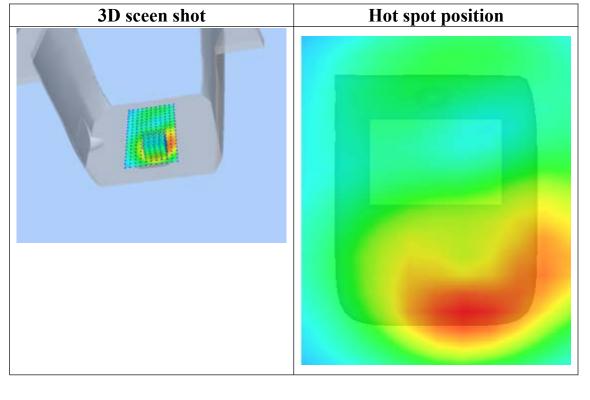
Z (mm)	0.00	4.00	9.00	14.00	19.00	24.00	29.00
SAR (W/Kg)	0.0000	0.6009	0.4208	0.2938	0.2048	0.1437	0.0993
	SA	R, ZAx	is Scan	(X = -2	2, Y = -	-5)	
	0.6-						
	0.5-	+N	+ $+$ $+$				
	ي ي 0.4-						
	(290.4- ∭/Ж) 8WS		\mathbb{N}				
	о 0.2-						
	0.1-						
	0.02	2.5 5.0 7.51		20.0 (mm)	25.0 30	.0 35.0	


Type: Phone measurement (Complete) Area scan resolution: dx=8mm,dy=8mm Zoom scan resolution: dx=8mm, dy=8mm, dz=5mm Date of measurement: 2013.4.8 Measurement duration: 9 minutes 9 seconds

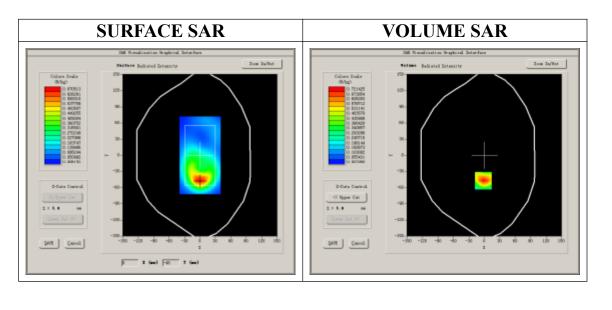
A. Experimental conditions.

Phantom File	surf_sam_plan.txt			
Phantom	Flat Plane			
Device Position	Body			
Band	GSM1900			
Channels	Middle			
Signal	GSM			


B. SAR Measurement Results

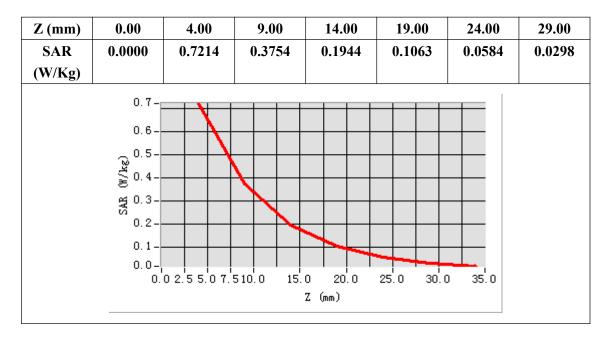

Frequency (MHz)	1880.000000			
Relative permittivity (real part)	54.319082			
Conductivity (S/m)	1.490328			
Power drift(%)	-1.040000			
Ambient Temperature:	22.9°C			
Liquid Temperature:	22.1°C			
ConvF:	40.625,34.773,38.535			
Crest factor:	1:8			

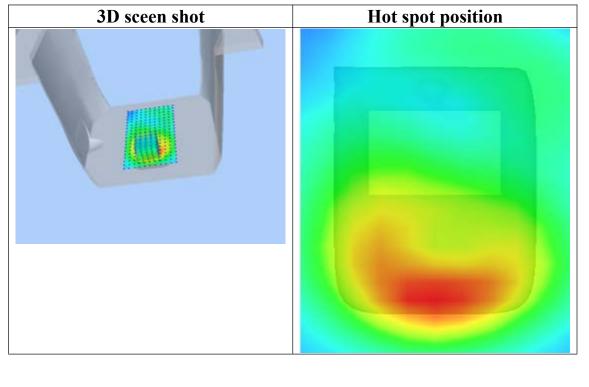
SAR 10g (W/Kg)	0.268635			
SAR 1g (W/Kg)	0.522662			


Type: Phone measurement (Complete) Area scan resolution: dx=8mm,dy=8mm Zoom scan resolution: dx=8mm, dy=8mm, dz=5mm Date of measurement: 2013.4.8 Measurement duration: 9 minutes 8 seconds

A. Experimental conditions.

Phantom File	surf_sam_plan.txt			
Phantom	Flat Plane			
Device Position	Body			
Band	GSM1900			
Channels	Middle			
Signal	GPRS			


B. SAR Measurement Results


Frequency (MHz)	1880.000000				
Relative permittivity (real part)	54.319082				
Conductivity (S/m)	1.490328				
Power drift(%)	-0.310000				
Ambient Temperature:	22.9°C				
Liquid Temperature:	22.1°C				
ConvF:	40.625,34.773,38.535				
Crest factor:	1:2				

SAR 10g (W/Kg)	0.380867
SAR 1g (W/Kg)	0.744159

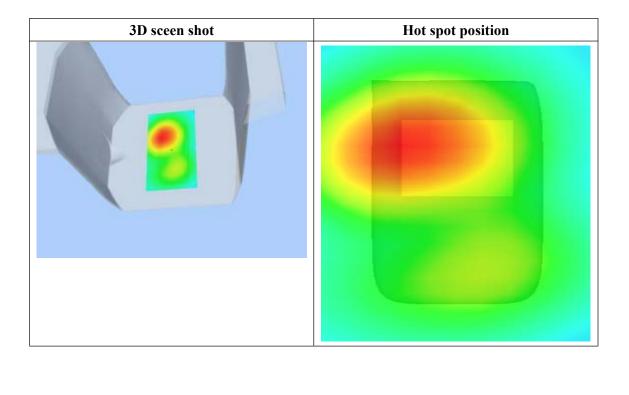

Type: Phone measurement (Complete) Area scan resolution: dx=8mm,dy=8mm Zoom scan resolution: dx=8mm, dy=8mm, dz=5mm Date of measurement: 2013.4.8 Measurement duration: 9 minutes 8 seconds

A. Experimental conditions.

Phantom File	surf_sam_plan.txt			
Phantom	Flat Plane			
Device Position	Body			
Band	GSM1900			
Channels	Middle			
Signal	GPRS			

B. SAR Measurement Results

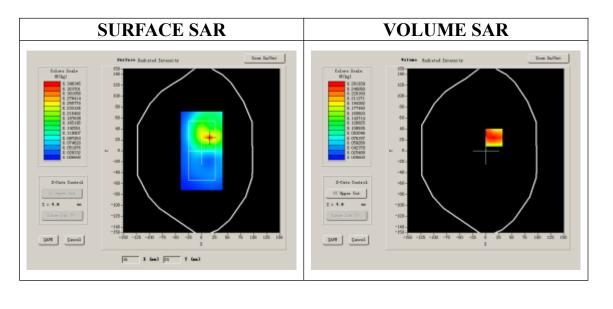
Frequency (MHz)	1880.000000				
Relative permittivity (real part)	54.319082				
Conductivity (S/m)	1.490328				
Power drift(%)	-1.210000				
Ambient Temperature:	22.9°C				
Liquid Temperature:	22.1°C				
ConvF:	40.625,34.773,38.535				
Crest factor:	1:2				



Maximum location: X=-15.00, Y=24.00

SAR 10g (W/Kg)	0.232740
SAR 1g (W/Kg)	0.428004

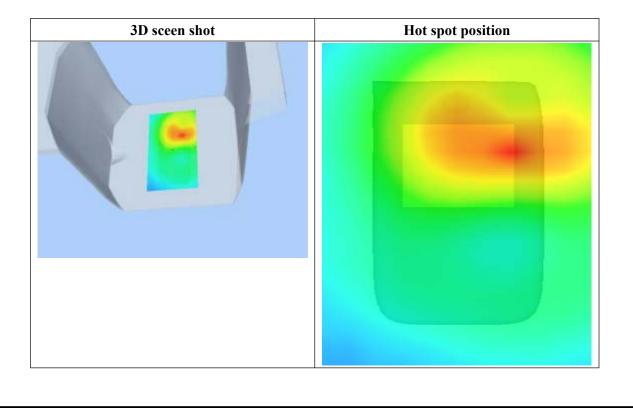
Z (mm)	0.00	4.00	9.00	14.00	19.00	24.00	29.00
SAR	0.0000	0.4459	0.2214	0.1105	0.0557	0.0259	0.0166
(W/Kg)							
	SAF	R, Z Axi	s Scan	(X = -1)	5, Y =	24)	
	0.4-						
	0.4						
	പ്പ 0.3-	$ \rangle$					
	(294/)# 0.2- 10.2-	N					
	g 0.2-						
	5.						
	0.1-		++				
	0.0-	.5 5.0 7.51	0.0 15.0	20.0	25.0 30	.0 35.0	
				(mm)			
				-			


Type: Phone measurement (Complete) Area scan resolution: dx=8mm,dy=8mm Zoom scan resolution: dx=8mm, dy=8mm, dz=5mm Date of measurement: 2013.4.8 Measurement duration: 9 minutes 8 seconds

A. Experimental conditions.

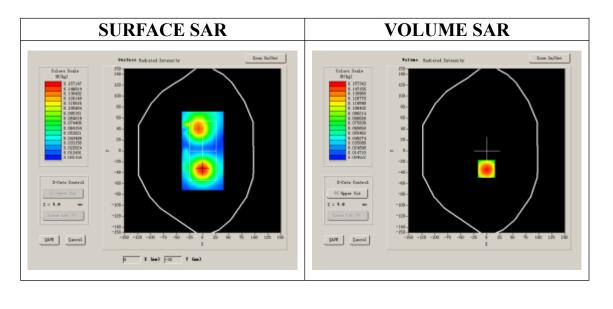
Phantom File	surf_sam_plan.txt			
Phantom	Flat Plane			
Device Position	Body			
Band	GSM1900			
Channels	Middle			
Signal	GPRS			

B. SAR Measurement Results


Frequency (MHz)	1880.000000				
Relative permittivity (real part)	54.319082				
Conductivity (S/m)	1.490328				
Power drift(%)	-0.730000				
Ambient Temperature:	22.9°C				
Liquid Temperature:	22.1°C				
ConvF:	40.625,34.773,38.535				
Crest factor:	1:2				

SAR 10g (W/Kg)	0.163590			
SAR 1g (W/Kg)	0.286963			

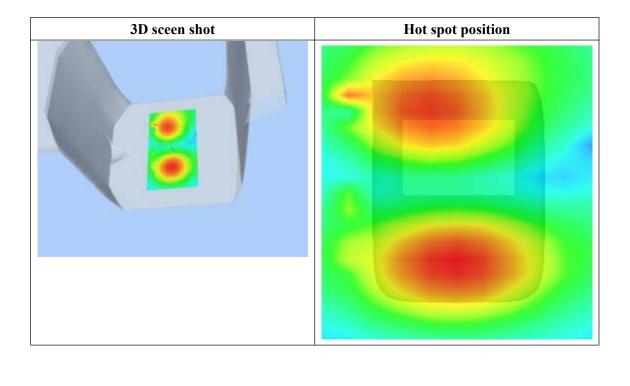
Z (mm)	0.00	4.00	9.00	14.00	19.00	24.00	29.00
SAR (W/Kg)	0.0000	0.2852	0.1798	0.0982	0.0585	0.0356	0.0208
	SA 0. 29	R, Z Ax	is Scan	(X = 16	5, Y = 2	24)	
	0.25-	$ \mathbf{X} $					
	0. 20	+			_		
	() अ ≫ ≫ ≫ 0.15	+ $+$ $+$	\mathbb{N}				
	g 0.10-	+ $+$ $+$	+N				
	0. 05	+ $+$ $+$					
	0.01 - <mark>.</mark> 0.0 :	2.55.07.5	10.0 15.0	0 20.0	25.0 30	.0 35.0	
				Z (mm)			


Type: Phone measurement (Complete) Area scan resolution: dx=8mm,dy=8mm Zoom scan resolution: dx=8mm, dy=8mm, dz=5mm Date of measurement: 2013.4.8 Measurement duration: 9 minutes 9 seconds

A. Experimental conditions.

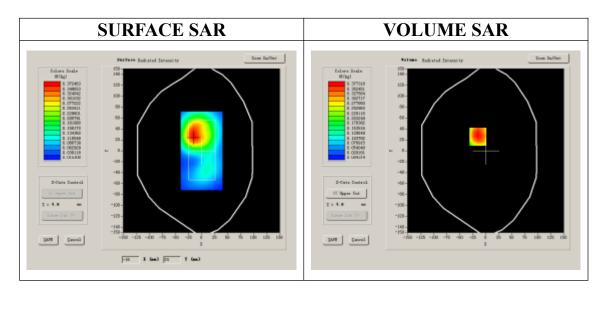
Phantom File	surf_sam_plan.txt			
Phantom	Flat Plane			
Device Position	Body			
Band	GSM1900			
Channels	Middle			
Signal	GPRS			

B. SAR Measurement Result


Frequency (MHz)	1880.00000
Relative permittivity (real part)	54.319082
Conductivity (S/m)	1.490328
Power drift(%)	-0.810000
Ambient Temperature:	22.9°C
Liquid Temperature:	22.1°C
ConvF:	40.625,34.773,38.535
Crest factor:	1:2

SAR 10g (W/Kg)	0.099055		
SAR 1g (W/Kg)	0.165581		

Z (mm)	0.00	4.00	9.00	14.00	19.00	24.00	29.00
SAR (W/Kg)	0.0000	0.1713	0.1045	0.0664	0.0436	0.0261	0.0156
	0. 17 - 0. 14 -	2, Z Axi	s Scan	(X = -1	, Y = -	33)	
-	0. 12						
	0.04-						
	0.0 2	2.55.07.5		0 20.0 Z (mm)	25.0 30	.0 35.0	

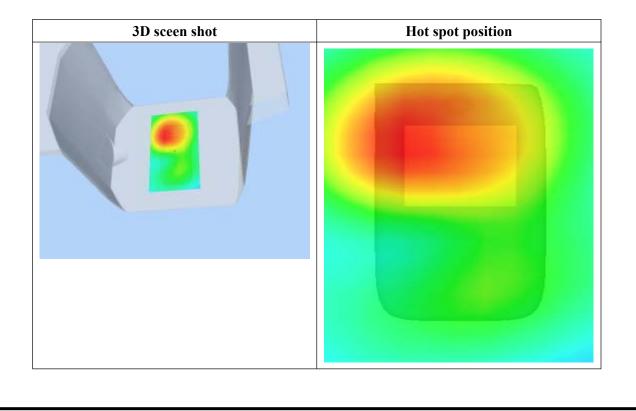

Type: Phone measurement (Complete) Area scan resolution: dx=8mm,dy=8mm Zoom scan resolution: dx=8mm, dy=8mm, dz=5mm Date of measurement: 2013.4.8 Measurement duration: 9 minutes 9 seconds

A. Experimental conditions.

Phantom File	surf_sam_plan.txt			
Phantom	Flat Plane			
Device Position	Body			
Band	GSM1900			
Channels	Middle			
Signal	GPRS			

B. SAR Measurement Results

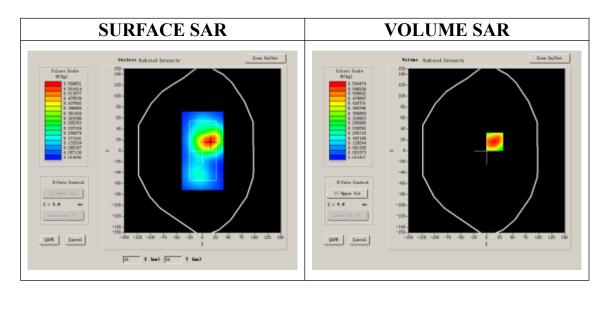
Frequency (MHz)	1880.000000
Relative permittivity (real part)	54.319082
Conductivity (S/m)	1.490328
Power drift(%)	-0.810000
Ambient Temperature:	22.9°C
Liquid Temperature:	22.1°C
ConvF:	40.625,34.773,38.535
Crest factor:	1:2



Maximum location: X=-15.00, Y=26.00

SAR 10g (W/Kg)	0.206241		
SAR 1g (W/Kg)	0.385211		

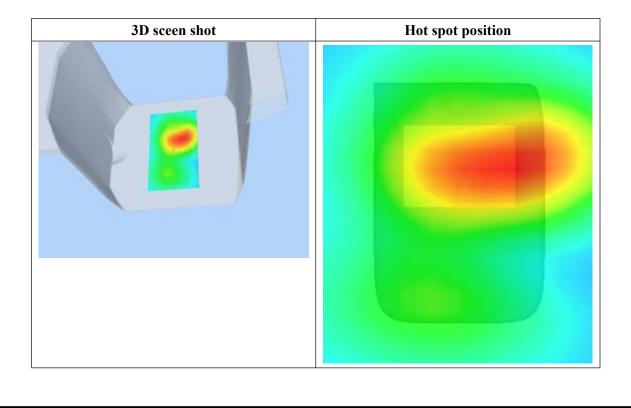
Z (mm)	0.00	4.00	9.00	14.00	19.00	24.00	29.00
SAR (W/Kg)	0.0000	0.4109	0.2025	0.1048	0.0537	0.0288	0.0158
	SAF	R, Z Axi	s Scan	(X = -1	5, ¥ =	26)	
	0. 41 -		+ + +				
	0.35-	+ $+$ $+$					
	0.30-	+					
	ୁିଅ 0.25- ≝ 0.20-	+ $+$					
		<u> </u>					
	🖁 0. 15						
	0.10-		+N				
	0.05-						
	0.01-						
	U. O :	2.55.07.5		0 20.0 Z (mm)	25.0 30	.0 35.0	
				ւ (տայ			


Type: Phone measurement (Complete) Area scan resolution: dx=8mm,dy=8mm Zoom scan resolution: dx=8mm, dy=8mm, dz=5mm Date of measurement: 2013.4.8 Measurement duration: 9 minutes 9 seconds

A. Experimental conditions.

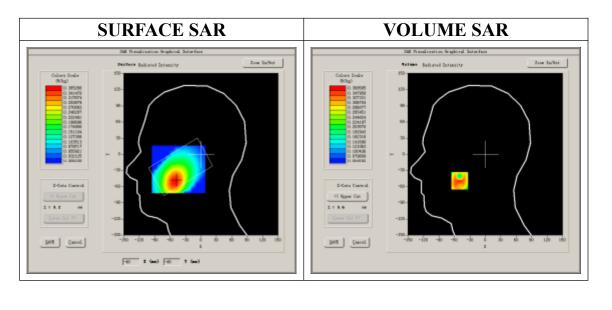
Phantom File	surf_sam_plan.txt			
Phantom	Flat Plane			
Device Position	Body			
Band	GSM1900			
Channels	Low			
Signal	EDGE			

B. SAR Measurement Results


Frequency (MHz)	1850.200000
Relative permittivity (real part)	54.319082
Conductivity (S/m)	1.490328
Power drift(%)	-0.950000
Ambient Temperature:	22.9°C
Liquid Temperature:	22.1°C
ConvF:	40.625,34.773,38.535
Crest factor:	1:2

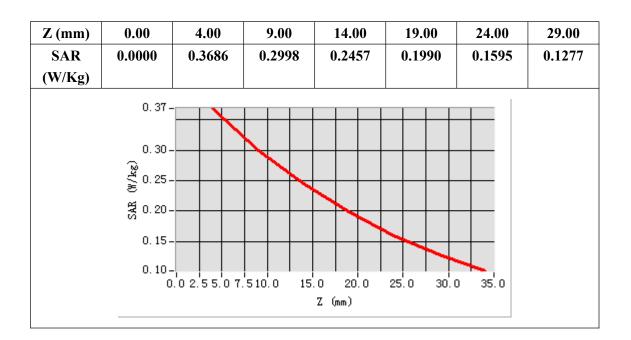
SAR 10g (W/Kg)	0.349839		
SAR 1g (W/Kg)	0.606770		

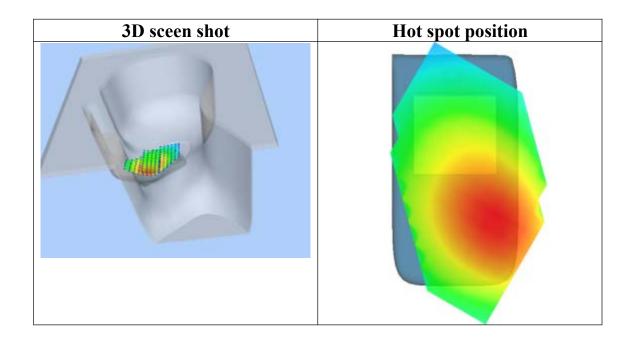
Z (mm)	0.00	4.00	9.00	14.00	19.00	24.00	29.00
SAR (W/Kg)	0.0000	0.6364	0.3758	0.2145	0.1275	0.0715	0.0440
	42	R, ZAx	ig Scan	(X = 1)	5 ∀ = 1	7)	•
	0.6-			(K - 1)	, I – I		
	0.5- <u><u></u><u></u><u></u><u></u>0.4-</u>						
	(22,0.4- 24,)⊛ 0.3- 24,5						
	97 0.2		\square				
	0.1-						
	0.0- 0.0 2	.5 5.0 7.51	0.0 15.0	20.0	25.0 30	.0 35.0	
_			Z	(mm)			


Type: Phone measurement (Complete) Area scan resolution: dx=8mm,dy=8mm Zoom scan resolution: dx=8mm, dy=8mm, dz=5mm Date of measurement: 2013.4.8 Measurement duration: 7 minutes 59 seconds

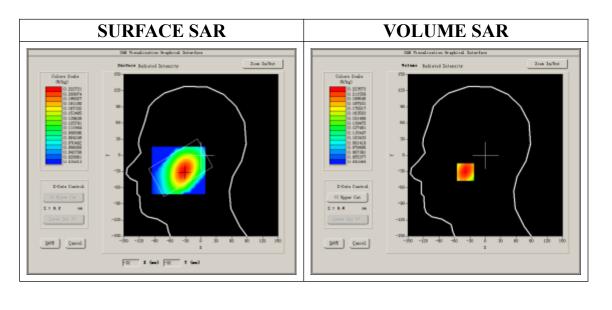
A. Experimental conditions.

Phantom File	sam_direct_droit2_surf8mm.txt
Phantom	Right head
Device Position	Cheek
Band	WCDMA850
Channels	Low
Signal	CDMA


B. SAR Measurement Results

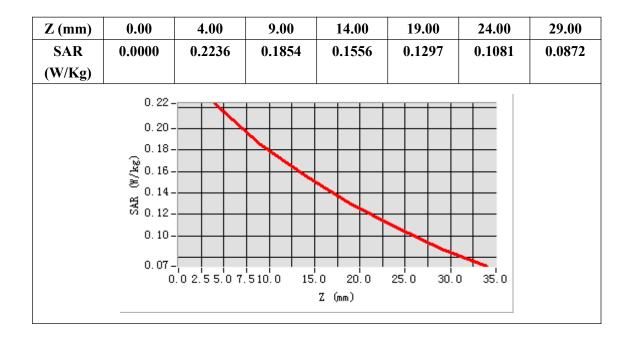

Frequency (MHz)	826.400000
Relative permittivity (real part)	42.532816
Conductivity (S/m)	0.932509
Power drift (%)	-0.320000
Ambient Temperature:	22.9°C
Liquid Temperature:	22.1°C
ConvF:	28.479, 25.214, 27.196
Crest factor:	1:1

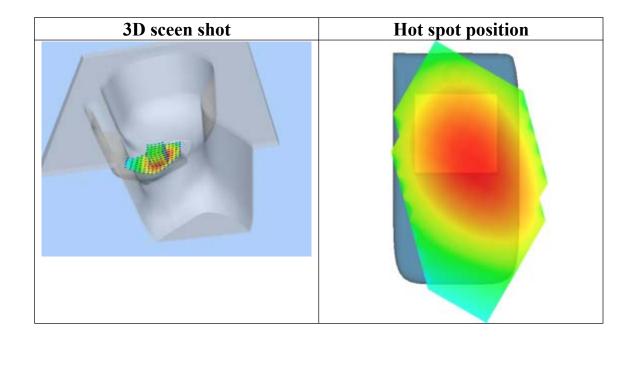
SAR 10g (W/Kg)	0.257541
SAR 1g (W/Kg)	0.341136


Type: Phone measurement (Complete) Area scan resolution: dx=8mm,dy=8mm Zoom scan resolution: dx=8mm, dy=8mm, dz=5mm Date of measurement: 2013.4.8 Measurement duration: 7 minutes 41 seconds

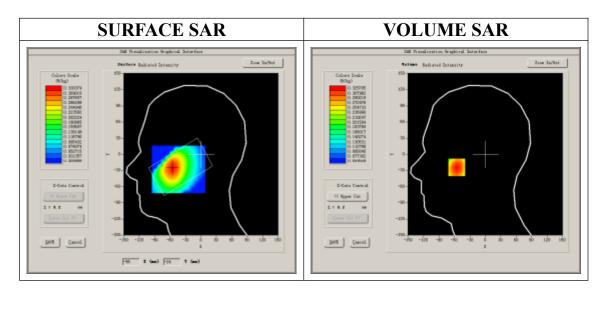
A. Experimental conditions.

Phantom File	sam_direct_droit2_surf8mm.txt
Phantom	Right head
Device Position	Tilt
Band	WCDMA850
Channels	Low
Signal	CDMA


B. SAR Measurement Results

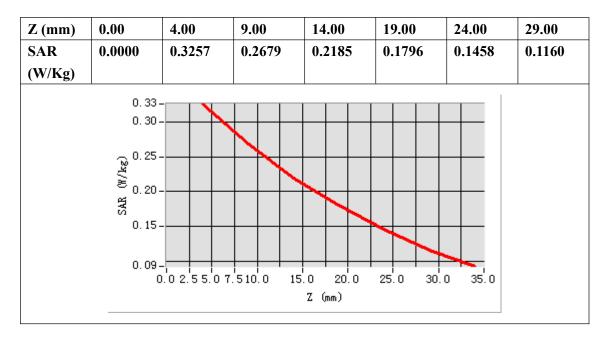

Frequency (MHz)	826.400000
Relative permittivity (real part)	42.532816
Conductivity (S/m)	0.932509
Power drift (%)	-0.120000
Ambient Temperature:	22.9°C
Liquid Temperature:	22.1°C
ConvF:	28.479, 25.214, 27.196
Crest factor:	1:1

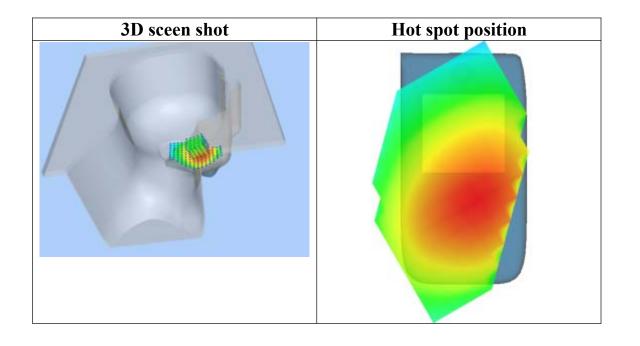
SAR 10g (W/Kg)	0.171370
SAR 1g (W/Kg)	0.218712


Type: Phone measurement (Complete) Area scan resolution: dx=8mm,dy=8mm Zoom scan resolution: dx=8mm, dy=8mm, dz=5mm Date of measurement: 2013.4.8 Measurement duration: 7 minutes 53 seconds

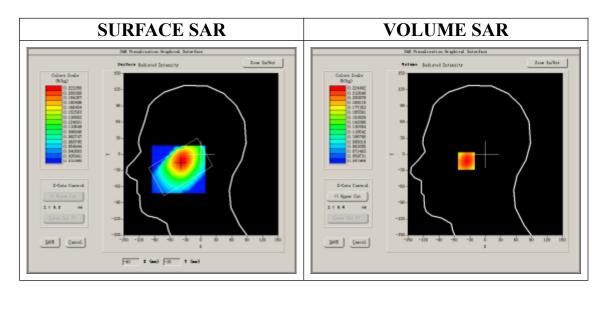
A. Experimental conditions.

Phantom File	sam_direct_droit2_surf8mm.txt
Phantom	Left head
Device Position	Cheek
Band	WCDMA850
Channels	Low
Signal	CDMA


B. SAR Measurement Results

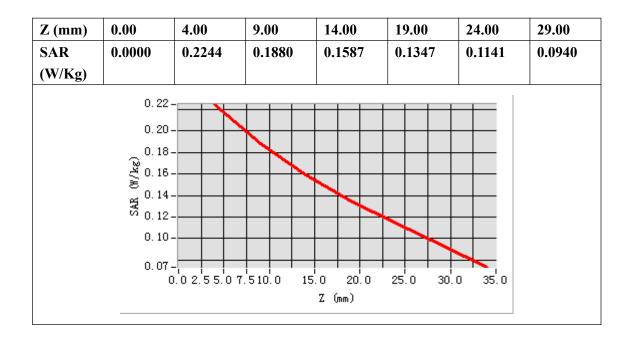

Frequency (MHz)	826.400000
Relative permittivity (real part)	42.532816
Conductivity (S/m)	0.932509
Power drift (%)	-1.000000
Ambient Temperature:	22.9°C
Liquid Temperature:	22.1°C
ConvF:	28.479, 25.214, 27.196
Crest factor:	1:1

SAR 10g (W/Kg)	0.243581
SAR 1g (W/Kg)	0.316001


Type: Phone measurement (Complete) Area scan resolution: dx=8mm,dy=8mm Zoom scan resolution: dx=8mm, dy=8mm, dz=5mm Date of measurement: 2013.4.8 Measurement duration: 7 minutes 40 seconds

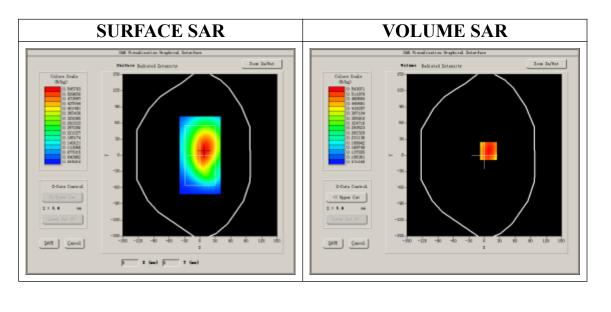
A. Experimental conditions.

Phantom File	sam_direct_droit2_surf8mm.txt
Phantom	Left head
Device Position	Tilt
Band	WCDMA850
Channels	Low
Signal	CDMA


B. SAR Measurement Results

Frequency (MHz)	826.400000
Relative permittivity (real part)	42.532816
Conductivity (S/m)	0.932509
Power drift (%)	-0.410000
Ambient Temperature:	22.9°C
Liquid Temperature:	22.1°C
ConvF:	28.479, 25.214, 27.196
Crest factor:	1:1

SAR 10g (W/Kg)	0.173080
SAR 1g (W/Kg)	0.218813


Type: Phone measurement (Complete) Area scan resolution: dx=8mm,dy=8mm Zoom scan resolution: dx=8mm, dy=8mm, dz=5mm Date of measurement: 2013.4.8 Measurement duration: 9 minutes 15 seconds

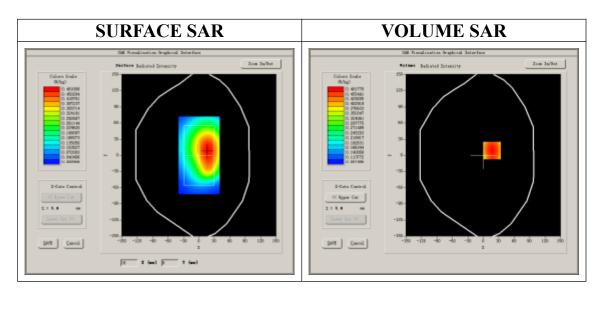
A. Experimental conditions.

Phantom File	surf_sam_plan.txt
Phantom	Validation plane
Device Position	Body
Band	WCDMA850
Channels	Low
Signal	CDMA

B. SAR Measurement Results

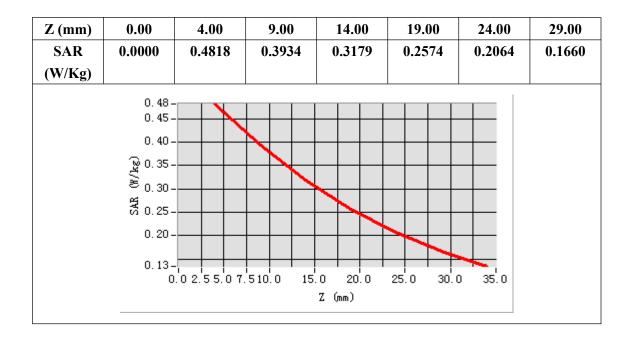

Frequency (MHz)	826.400000
Relative permittivity (real part)	56.120982
Conductivity (S/m)	0.960921
Power drift (%)	-0.130000
Ambient Temperature:	22.9°C
Liquid Temperature:	22.1°C
ConvF:	28.559, 25.681, 27.588
Crest factor:	1:1

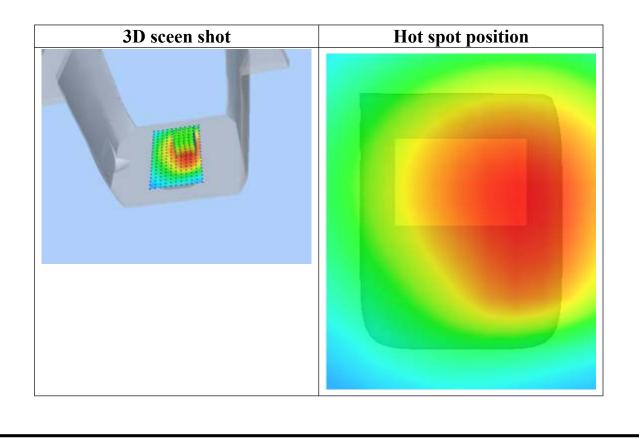
SAR 10g (W/Kg)	0.432925
SAR 1g (W/Kg)	0.566634


Type: Phone measurement (Complete) Area scan resolution: dx=8mm,dy=8mm Zoom scan resolution: dx=8mm, dy=8mm, dz=5mm Date of measurement: 2013.4.8 Measurement duration: 9 minutes 16 seconds

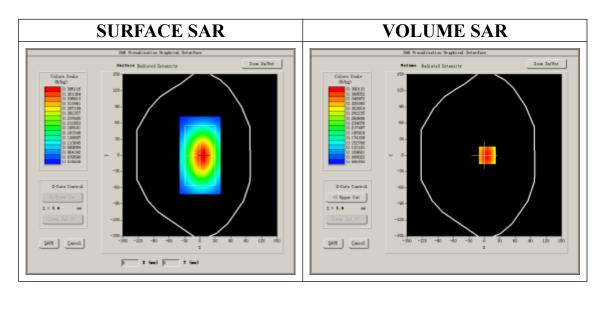
A. Experimental conditions.

Phantom File	surf_sam_plan.txt
Phantom	Validation plane
Device Position	Body
Band	WCDMA850
Channels	Low
Signal	CDMA


B. SAR Measurement Results

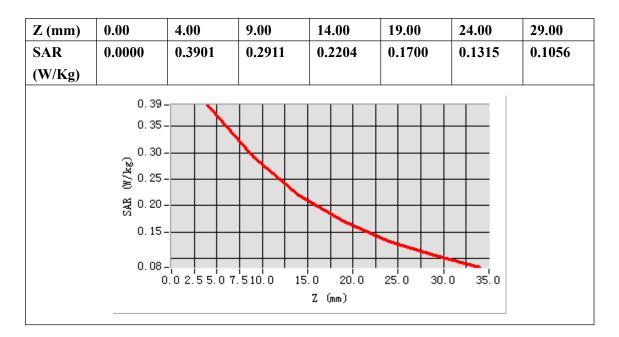

Frequency (MHz)	826.400000
Relative permittivity (real part)	56.120982
Conductivity (S/m)	0.960921
Power drift (%)	-0.430000
Ambient Temperature:	22.9°C
Liquid Temperature:	22.1°C
ConvF:	28.559, 25.681, 27.588
Crest factor:	1:1

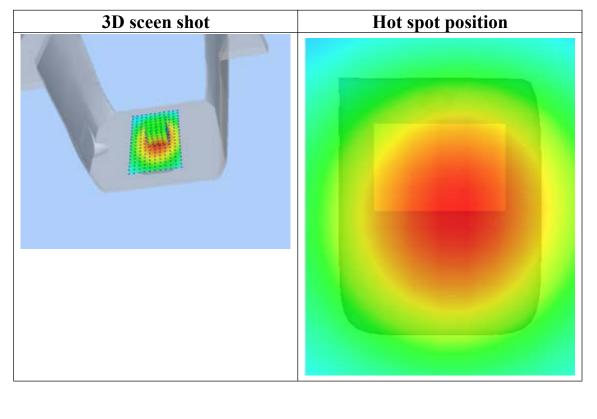
SAR 10g (W/Kg)	0.391456
SAR 1g (W/Kg)	0.503992


Type: Phone measurement (Complete) Area scan resolution: dx=8mm,dy=8mm Zoom scan resolution: dx=8mm, dy=8mm, dz=5mm Date of measurement: 2013.4.8 Measurement duration: 9 minutes 16 seconds

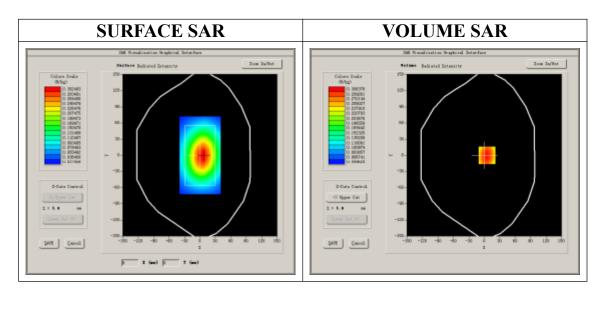
A. Experimental conditions.

Phantom File	surf_sam_plan.txt
Phantom	Validation plane
Device Position	Body
Band	WCDMA850
Channels	Low
Signal	CDMA


B. SAR Measurement Results

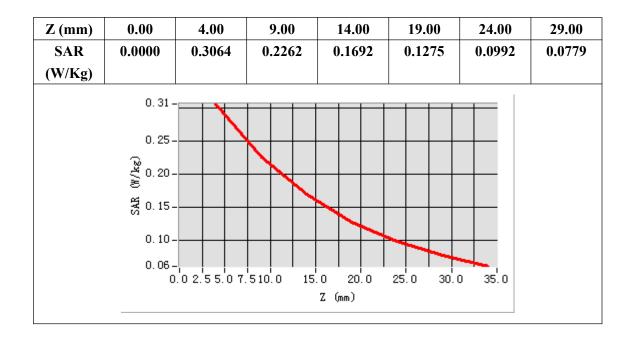

Frequency (MHz)	826.400000
Relative permittivity (real part)	56.120982
Conductivity (S/m)	0.960921
Power drift (%)	-1.080000
Ambient Temperature:	22.9°C
Liquid Temperature:	22.1°C
ConvF:	28.559, 25.681, 27.588
Crest factor:	1:1

SAR 10g (W/Kg)	0.293281
SAR 1g (W/Kg)	0.407160


Type: Phone measurement (Complete) Area scan resolution: dx=8mm,dy=8mm Zoom scan resolution: dx=8mm, dy=8mm, dz=5mm Date of measurement: 2013.4.8 Measurement duration: 9 minutes 16 seconds

A. Experimental conditions.

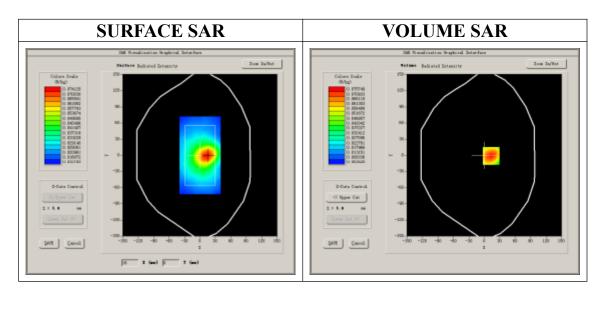
Phantom File	surf_sam_plan.txt
Phantom	Validation plane
Device Position	Body
Band	WCDMA850
Channels	Low
Signal	CDMA


B. SAR Measurement Results

Frequency (MHz)	826.400000
Relative permittivity (real part)	56.120982
Conductivity (S/m)	0.960921
Power drift (%)	-1.160000
Ambient Temperature:	22.9°C
Liquid Temperature:	22.1°C
ConvF:	28.559, 25.681, 27.588
Crest factor:	1:1

SAR 10g (W/Kg)	0.227266
SAR 1g (W/Kg)	0.318190

Type: Phone measurement (Complete) Area scan resolution: dx=8mm,dy=8mm Zoom scan resolution: dx=8mm, dy=8mm, dz=5mm Date of measurement: 2013.4.8 Measurement duration: 9 minutes 16 seconds

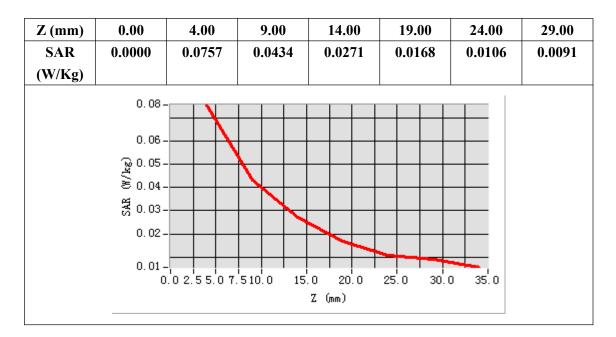

A. Experimental conditions.

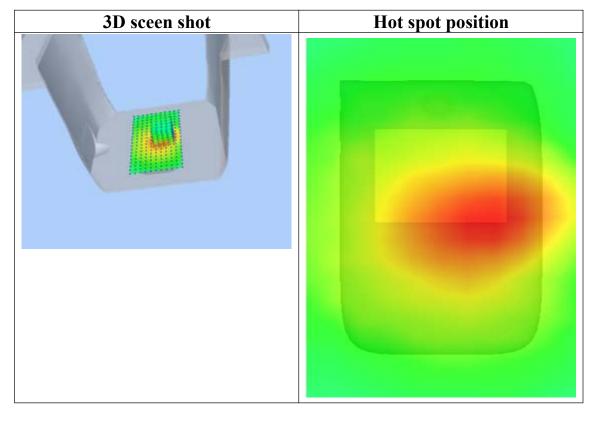
Phantom File	surf_sam_plan.txt
Phantom	Validation plane
Device Position	Body
Band	WCDMA850
Channels	Low
Signal	CDMA

B. SAR Measurement Results

Lower Band SAR (Channel 4132):

Frequency (MHz)	826.400000
Relative permittivity (real part)	56.120982
Conductivity (S/m)	0.960921
Power drift (%)	-0.910000
Ambient Temperature:	22.9°C
Liquid Temperature:	22.1°C
ConvF:	28.559, 25.681, 27.588
Crest factor:	1:1

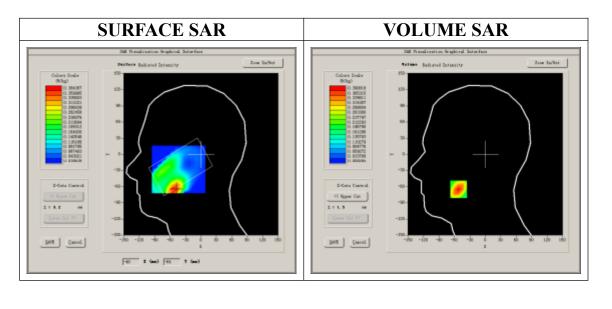




Maximum location: X=14.00, Y=-1.00

SAR 10g (W/Kg)	0.046632
SAR 1g (W/Kg)	0.078113

Z Axis Scan

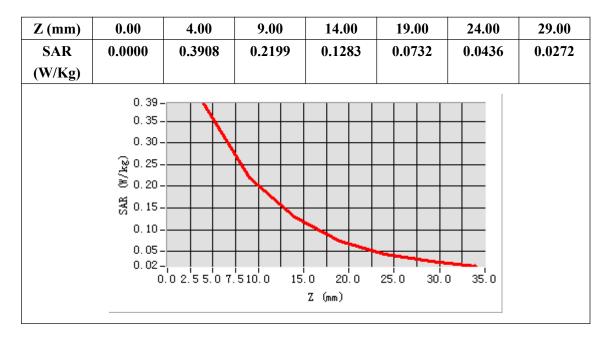

Type: Phone measurement (Complete) Area scan resolution: dx=8mm,dy=8mm Zoom scan resolution: dx=8mm, dy=8mm, dz=5mm Date of measurement: 2013.4.8 Measurement duration: 8 minutes 9 seconds

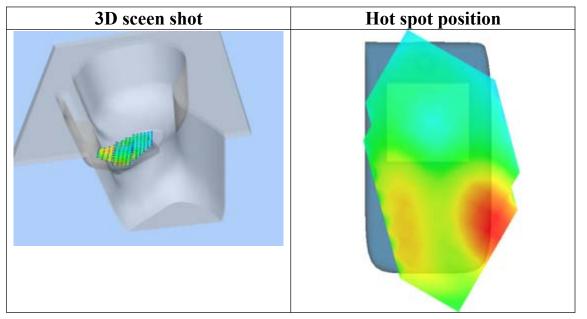
A. Experimental conditions.

Phantom File	sam_direct_droit2_surf8mm.txt
Phantom	Right head
Device Position	Cheek
Band	WCDMA1900
Channels	High
Signal	CDMA

B. SAR Measurement Results

Frequency (MHz)	1907.600000
Relative permittivity (real part)	41.357921
Conductivity (S/m)	1.403817
Power drift (%)	-0.420000
Ambient Temperature:	22.9°C
Liquid Temperature:	22.1°C
ConvF:	40.136,34.843,38.721
Crest factor:	1:1

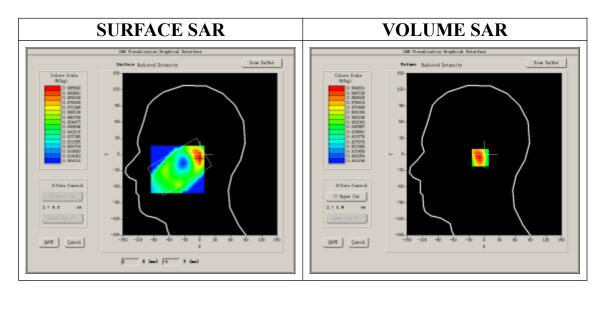




Maximum location: X=9.00, Y=7.00

SAR 10g (W/Kg)	0.201795
SAR 1g (W/Kg)	0.371312

Z Axis Scan

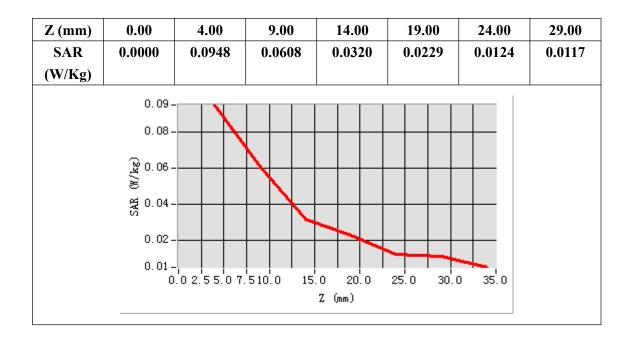

Type: Phone measurement (Complete) Area scan resolution: dx=8mm,dy=8mm Zoom scan resolution: dx=8mm, dy=8mm, dz=5mm Date of measurement: 2013.4.8 Measurement duration: 7 minutes 28 seconds

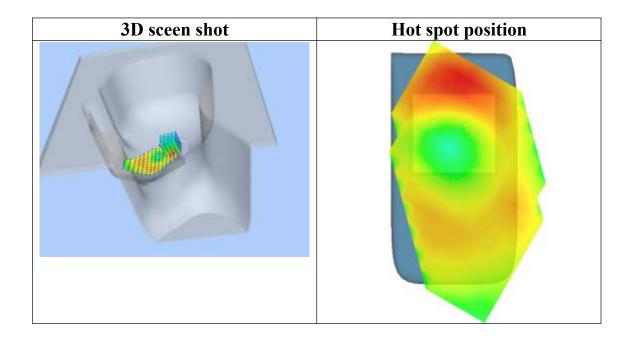
A. Experimental conditions.

Phantom File	sam_direct_droit2_surf8mm.txt
Phantom	Right head
Device Position	Tilt
Band	WCDMA1900
Channels	High
Signal	CDMA

B. SAR Measurement Results

Frequency (MHz)	1907.600000
Relative permittivity (real part)	41.357921
Conductivity (S/m)	1.403817
Power drift (%)	-0.510000
Ambient Temperature:	22.9°C
Liquid Temperature:	22.1°C
ConvF:	40.136,34.843,38.721
Crest factor:	1:1

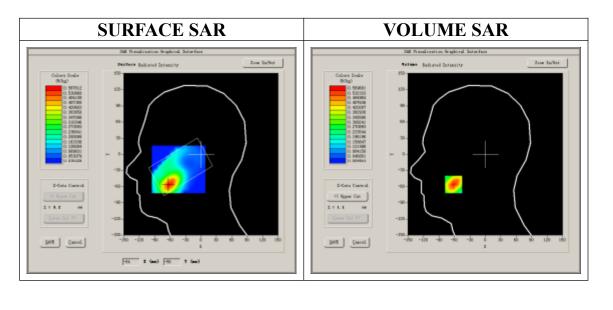




Maximum location: X=9.00, Y=7.00

SAR 10g (W/Kg)	0.051950
SAR 1g (W/Kg)	0.091398

Z Axis Scan

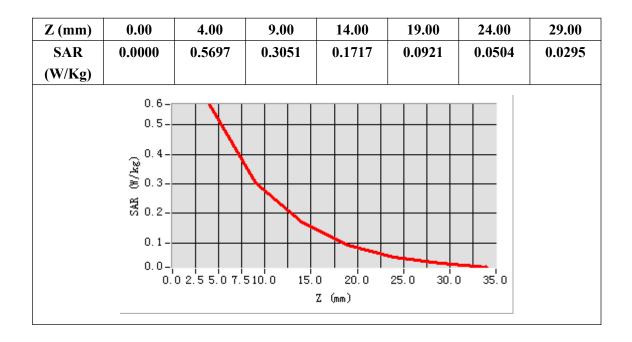

Type: Phone measurement (Complete) Area scan resolution: dx=8mm,dy=8mm Zoom scan resolution: dx=8mm, dy=8mm, dz=5mm Date of measurement: 2013.4.8 Measurement duration: 8 minutes 7 seconds

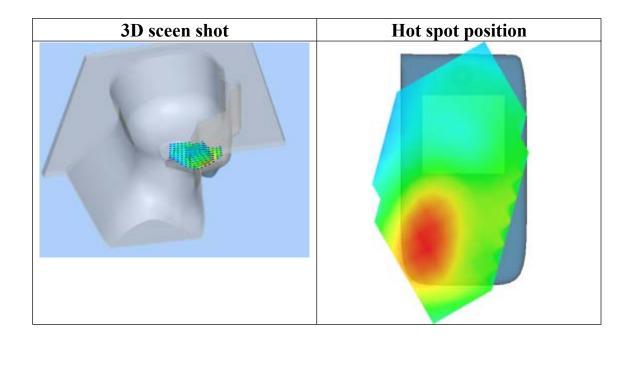
A. Experimental conditions.

Phantom File	sam_direct_droit2_surf8mm.txt
Phantom	Left head
Device Position	Cheek
Band	WCDMA1900
Channels	High
Signal	CDMA

B. SAR Measurement Results

Frequency (MHz)	1907.600000
Relative permittivity (real part)	41.357921
Conductivity (S/m)	1.403817
Power drift (%)	-1.500000
Ambient Temperature:	22.9°C
Liquid Temperature:	22.1°C
ConvF:	40.136,34.843,38.721
Crest factor:	1:1

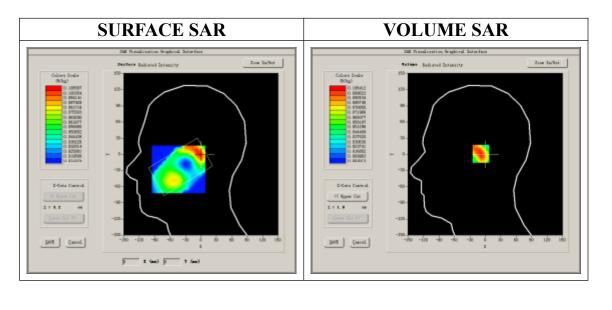




Maximum location: X=9.00, Y=7.00

SAR 10g (W/Kg)	0.285209
SAR 1g (W/Kg)	0.541872

Z Axis Scan

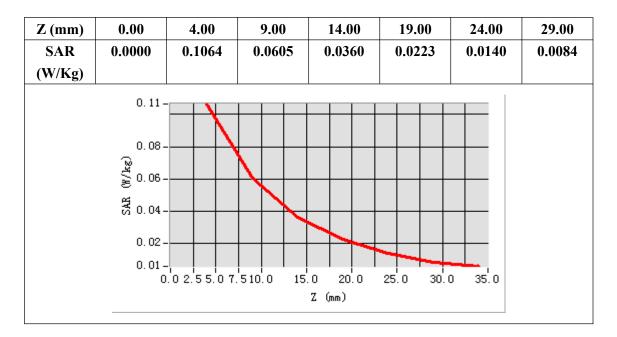

Type: Phone measurement (Complete) Area scan resolution: dx=8mm,dy=8mm Zoom scan resolution: dx=8mm, dy=8mm, dz=5mm Date of measurement: 2013.4.8 Measurement duration: 7 minutes 30 seconds

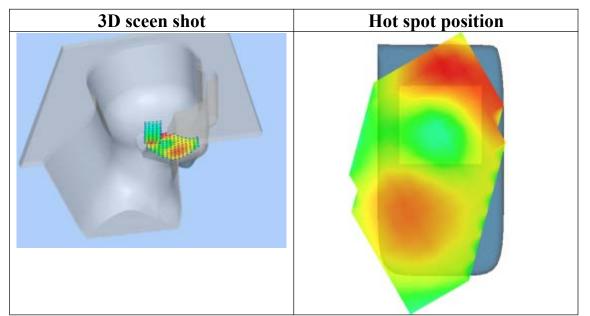
A. Experimental conditions.

Phantom File	sam_direct_droit2_surf8mm.txt
Phantom	Left head
Device Position	Tilt
Band	WCDMA1900
Channels	High
Signal	CDMA

B. SAR Measurement Results

Frequency (MHz)	1907.600000
Relative permittivity (real part)	41.357921
Conductivity (S/m)	1.403817
Power drift (%)	-0.290000
Ambient Temperature:	22.9°C
Liquid Temperature:	22.1°C
ConvF:	40.136,34.843,38.721
Crest factor:	1:1

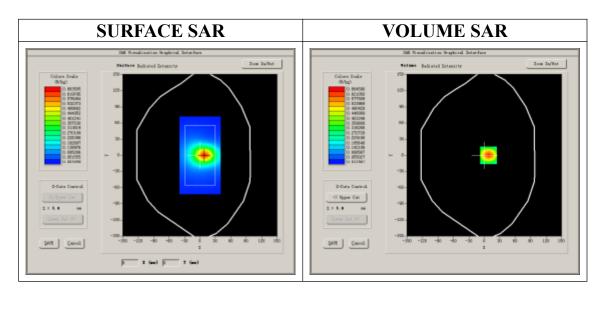




Maximum location: X=9.00, Y=7.00

SAR 10g (W/Kg)	0.057847
SAR 1g (W/Kg)	0.102785

Z Axis Scan

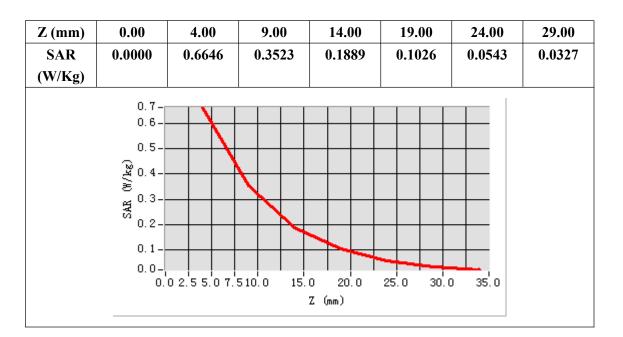

Type: Phone measurement (Complete) Area scan resolution: dx=8mm,dy=8mm Zoom scan resolution: dx=8mm, dy=8mm, dz=5mm Date of measurement: 2013.4.8 Measurement duration: 9 minutes 7 seconds

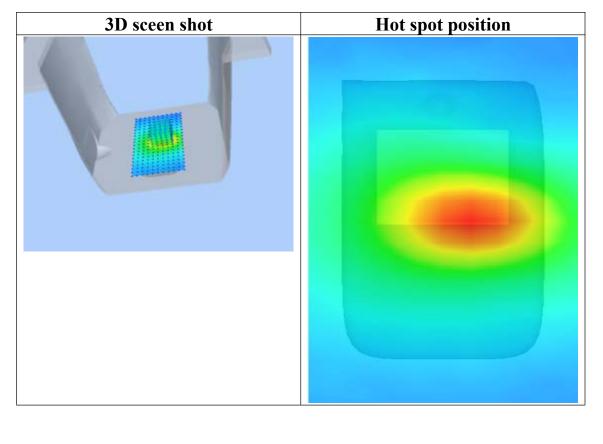
A. Experimental conditions.

Phantom File	surf_sam_plan.txt
Phantom	Validation plane
Device Position	Body
Band	WCDMA1900
Channels	High
Signal	CDMA

B. SAR Measurement Results

Frequency (MHz)	1907.600000
Relative permittivity (real part)	54.319082
Conductivity (S/m)	1.490328
Power drift (%)	-0.130000
Ambient Temperature:	22.9°C
Liquid Temperature:	22.1°C
ConvF:	40.625,34.773,38.535
Crest factor:	1:1

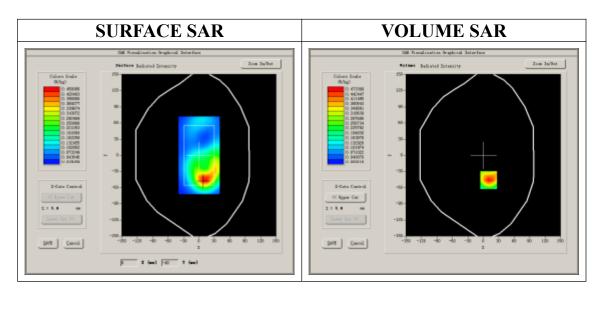




Maximum location: X=14.00, Y=-1.00

SAR 10g (W/Kg)	0.342974
SAR 1g (W/Kg)	0.675334

Z Axis Scan

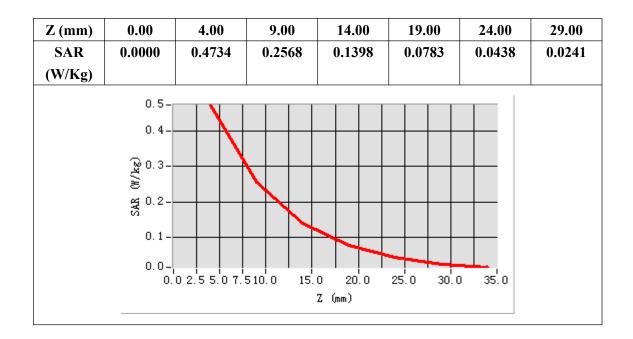

Type: Phone measurement (Complete) Area scan resolution: dx=8mm,dy=8mm Zoom scan resolution: dx=8mm, dy=8mm, dz=5mm Date of measurement: 2013.4.8 Measurement duration: 9 minutes 14 seconds

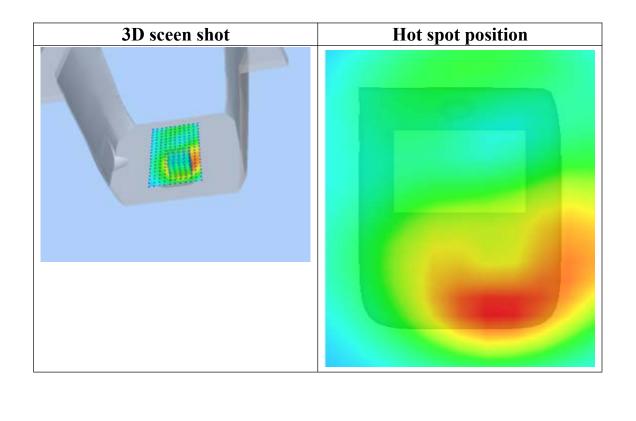
A. Experimental conditions.

Phantom File	surf_sam_plan.txt
Phantom	Validation plane
Device Position	Body
Band	WCDMA1900
Channels	High
Signal	CDMA

B. SAR Measurement Results

Frequency (MHz)	1907.600000
Relative permittivity (real part)	54.319082
Conductivity (S/m)	1.490328
Power drift (%)	-0.250000
Ambient Temperature:	22.9°C
Liquid Temperature:	22.1°C
ConvF:	40.625,34.773,38.535
Crest factor:	1:1

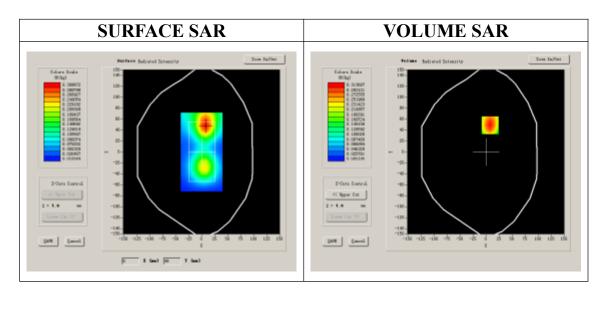




Maximum location: X=14.00, Y=-1.00

SAR 10g (W/Kg)	0.260672
SAR 1g (W/Kg)	0.489027

Z Axis Scan

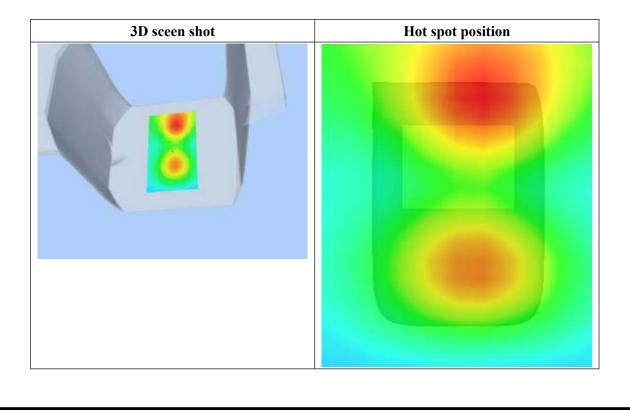

Type: Phone measurement (Complete) Area scan resolution: dx=8mm,dy=8mm Zoom scan resolution: dx=8mm, dy=8mm, dz=5mm Date of measurement: 2013.4.8 Measurement duration: 9 minutes 14 seconds

A. Experimental conditions.

Phantom File	surf_sam_plan.txt
Phantom	Validation plane
Device Position	Body
Band	WCDMA1900
Channels	High
Signal	CDMA

B. SAR Measurement Results

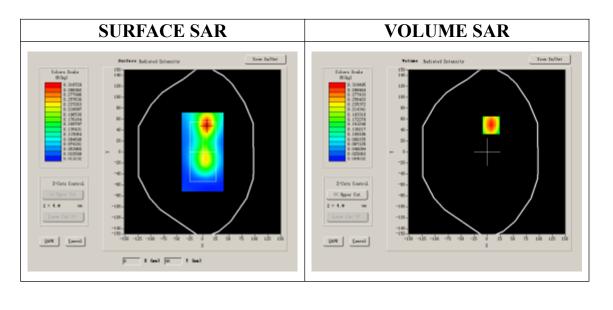
Frequency (MHz)	1907.600000
Relative permittivity (real part)	54.319082
Conductivity (S/m)	1.490328
Power drift (%)	-0.290000
Ambient Temperature:	22.9°C
Liquid Temperature:	22.1°C
ConvF:	40.625,34.773,38.535
Crest factor:	1:1



Maximum location: X=8.00, Y=49.00

SAR 10g (W/Kg)	0.171971
SAR 1g (W/Kg)	0.305885

Z (mm)	0.00	4.00	9.00	14.00	19.00	24.00	29.00
SAR	0.0000	0.3210	0.1757	0.0941	0.0525	0.0303	0.0163
(W/Kg)							
	SE	AR, Z Ax	is Scan	$(\mathbf{X} = 8)$, Y = 4	9)	
	0.32-						
		+					
	0.25-	+ + + + +					
	ୁ ହି 0.20	+					
	(³² 4 0.20 (³² 4/)∭ 0.15 NY 0.15						
	SAR						
	0.10-	+					
	0.05	+ $+$ $+$					
	0.01-						
	0.03	2.'5 5.'0 7.'5			25.0 30	.0 35.0	
				: (mm)			

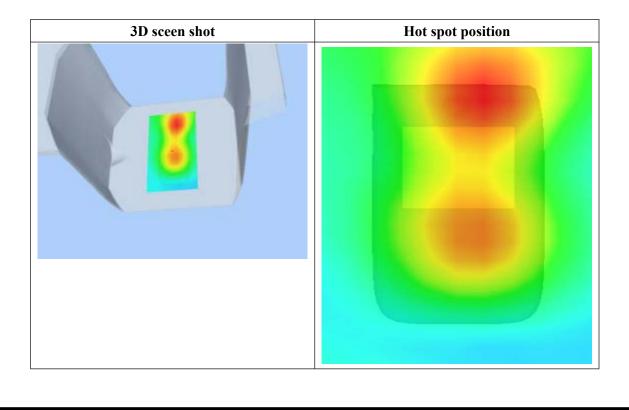

Type: Phone measurement (Complete) Area scan resolution: dx=8mm,dy=8mm Zoom scan resolution: dx=8mm, dy=8mm, dz=5mm Date of measurement: 2013.4.8 Measurement duration: 9 minutes 14 seconds

A. Experimental conditions.

Phantom File	surf_sam_plan.txt			
Phantom	Validation plane			
Device Position	Body			
Band	WCDMA1900			
Channels	High			
Signal	CDMA			

B. SAR Measurement Results

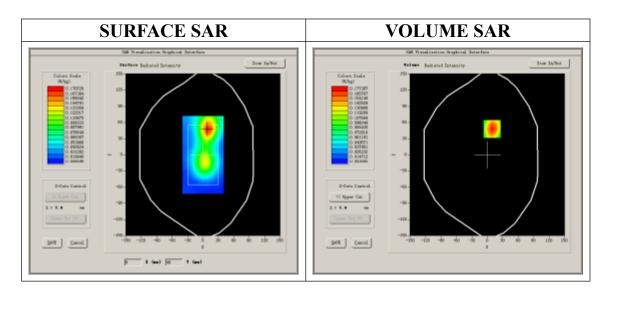
Frequency (MHz)	1907.600000			
Relative permittivity (real part)	54.319082			
Conductivity (S/m)	1.490328			
Power drift (%)	-0.920000			
Ambient Temperature:	22.9°C			
Liquid Temperature:	22.1°C			
ConvF:	40.625,34.773,38.535			
Crest factor:	1:1			



Maximum location: X=8.00, Y=49.00

SAR 10g (W/Kg)	0.168037
SAR 1g (W/Kg)	0.310155

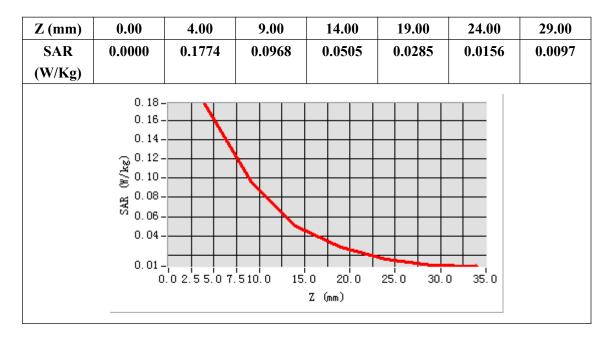
$\frac{Z(mm)}{SAD}$	0.00	4.00	9.00	14.00	19.00	24.00	29.00
SAR (W/Kg)	0.0000	0.3269	0.1669	0.0901	0.0467	0.0260	0.0145
	s	AR, ZAM	is Scan	(X = 8	. ¥ = 4	9)	
	0.33-	,			,		
	0.30-	+ $+$ $+$					
	0.25-	+ N					
	ي لا 0.20	$++\lambda$					
	(²² 4, 0.20 24, ∞ 24, ∞ 20, 20	<u> </u>	\mathbf{X}				
	o. 10						
	0.05-	+ $+$ $+$			_		
	0.01-						
	0.0:	2.55.07.5) 20.0 ໃ(ກກ)	25.0 30	.0 35.0	

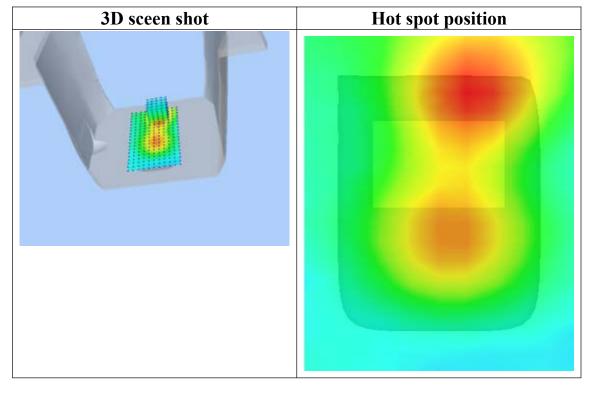

Type: Phone measurement (Complete) Area scan resolution: dx=8mm,dy=8mm Zoom scan resolution: dx=8mm, dy=8mm, dz=5mm Date of measurement: 2013.4.8 Measurement duration: 9 minutes 14 seconds

A. Experimental conditions.

Phantom File	surf_sam_plan.txt		
Phantom	Validation plane		
Device Position	Body		
Band	WCDMA1900		
Channels	High		
Signal	CDMA		

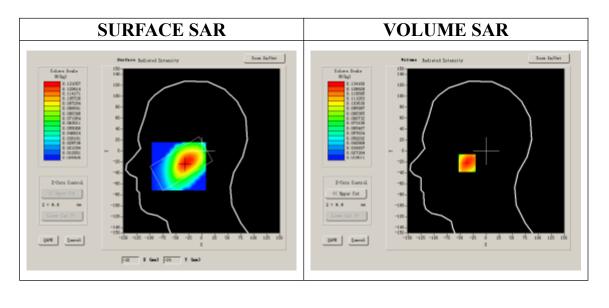
B. SAR Measurement Results


Frequency (MHz)	1907.600000		
Relative permittivity (real part)	54.319082		
Conductivity (S/m)	1.490328		
Power drift (%)	-0.930000		
Ambient Temperature:	22.9°C		
Liquid Temperature:	22.1°C		
ConvF:	40.625,34.773,38.535		
Crest factor:	1:1		



Maximum location: X=14.00, Y=-1.00

SAR 10g (W/Kg)	0.099362		
SAR 1g (W/Kg)	0.184365		

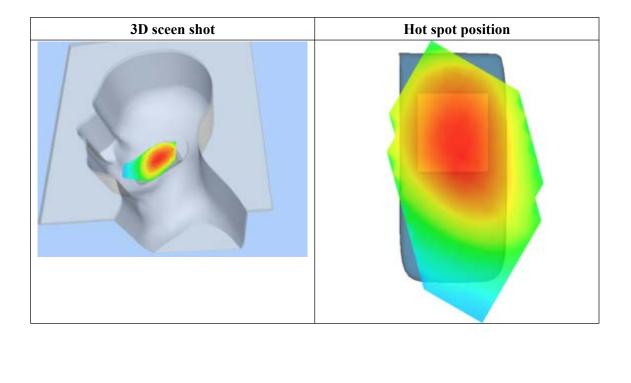

Type: Phone measurement (Complete) Area scan resolution: dx=8mm,dy=8mm Zoom scan resolution: dx=5mm, dy=5mm, dz=5mm Date of measurement: 2013.4.8 Measurement duration: 8 minutes 17 seconds

A. Experimental conditions.

Phantom File	surf_sam_plan.txt		
Phantom	Right head		
Device Position	Cheek		
Band	802.11B		
Channels	High		
Signal	DSSS		

B. SAR Measurement Results

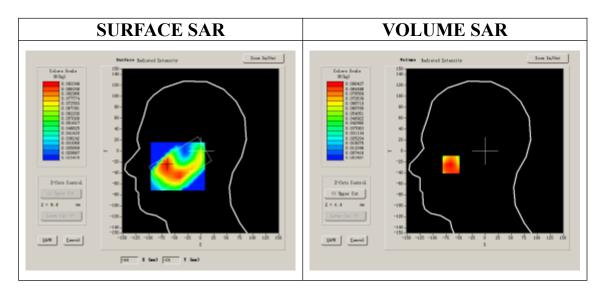
Frequency (MHz)	2462.000000		
Relative permittivity (real part)	40.3287921		
Conductivity (S/m)	1.780123		
Power drift (%)	-0.800000		
Ambient Temperature:	22.9°C		
Liquid Temperature:	22.1°C		
ConvF:	39.563,33.614,37.677		
Crest factor:	1:1		



Maximum location: X=-31.00, Y=-22.00

SAR 10g (W/Kg)	0.099599
SAR 1g (W/Kg)	0.128967

Z (mm) SAR (W/Kg)	0.00 0.0000	4.00 0.1342	9.00 0.1110	14.00 0.0907	19.00 0.0737	24.00 0.0600	29.00 0.0485
	0. 13 - 0. 12 - 0. 10 - 0. 08 - 0. 06 - 0. 04 -	, Z Axis		(X = -31	L, Y = -		
			2	Z (mm)			

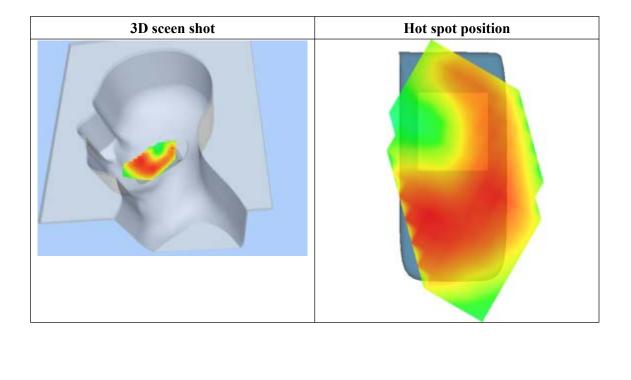

Type: Phone measurement (Complete) Area scan resolution: dx=8mm,dy=8mm Zoom scan resolution: dx=5mm, dy=5mm, dz=5mm Date of measurement: 2013.4.8 Measurement duration: 8 minutes 15 seconds

A. Experimental conditions.

Phantom File	surf_sam_plan.txt			
Phantom	Right head			
Device Position	Tilt 802.11B High DSSS			
Band				
Channels				
Signal				

B. SAR Measurement Results

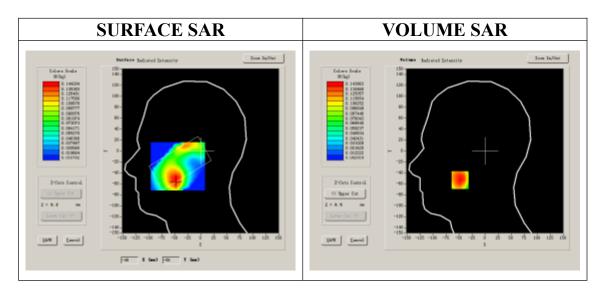
Frequency (MHz)	2462.000000
Relative permittivity (real part)	40.3287921
Conductivity (S/m)	1.780123
Power drift (%)	-0.310000
Ambient Temperature:	22.9°C
Liquid Temperature:	22.1°C
ConvF:	39.563,33.614,37.677
Crest factor:	1:1



Maximum location: X=-65.00, Y=-25.00

SAR 10g (W/Kg)	0.052300		
SAR 1g (W/Kg)	0.085785		

Z (mm)	0.00	4.00	9.00	14.00	19.00	24.00	29.00
SAR	0.0000	0.0904	0.0524	0.0327	0.0205	0.0120	0.0069
(W/Kg)							
	SAR	, Z Axis	s Scan	(X = -65)	5, Y = -	-25)	
	0.09						
	0.08-						
	0.00-						
	≂.0.06-						
	(2) 0.06- 						
	⊂ ⊯ 0.04-						
	g 0.04						
	0.02-						
	0.01-	2.55.07.5	10.0 15.0	20.0	25.0 30	.0 35.0	
	0.01			Z (mm)	23.0 00		


Type: Phone measurement (Complete) Area scan resolution: dx=8mm,dy=8mm Zoom scan resolution: dx=5mm, dy=5mm, dz=5mm Date of measurement: 2013.4.8 Measurement duration: 8 minutes 17 seconds

A. Experimental conditions.

Phantom File	surf_sam_plan.txt				
Phantom	Left head				
Device Position	Cheek				
Band	802.11B High				
Channels					
Signal	DSSS				

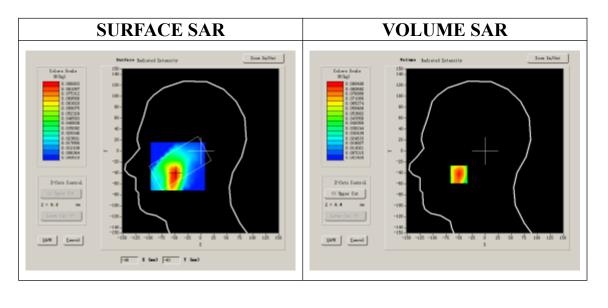
B. SAR Measurement Results

Frequency (MHz)	2462.000000			
Relative permittivity (real part)	40.3287921			
Conductivity (S/m)	1.780123			
Power drift (%)	-1.600000			
Ambient Temperature:	22.9°C			
Liquid Temperature:	22.1°C			
ConvF:	39.563,33.614,37.677			
Crest factor:	1:1			

Maximum location: X=-48.00, Y=-53.00

SAR 10g (W/Kg)	0.083754		
SAR 1g (W/Kg)	0.138513		

								0.0133
	, Z Ax	is Sca	n ()	K = -	48, Y	= -	-53)	
). 10 -			_					
). 08 – –		\mathbf{N}			+			
). 06					+			
). 04	+ $+$ $+$				+ +			
). 02 -). 01 -							•••••	
0.02	2.55.07.	510.0			25.0	30	.0 35.0	
). 08). 06). 04). 02). 01	0. 12 - 0. 10 - 0. 08 - 0. 06 - 0. 04 - 0. 02 - 0. 01 -	0. 12 - 0. 10 - 0. 08 - 0. 06 - 0. 04 - 0. 02 - 0. 01 -	0. 12 - 0. 10 - 0. 08 - 0. 06 - 0. 04 - 0. 02 - 0. 02 - 0. 01 - 0. 0 2. 5 5. 0 7. 5 10. 0 15. 0	0. 12 - 0. 10 - 0. 08 - 0. 06 - 0. 04 - 0. 02 - 0. 01 -	0. 12 - 0. 10 - 0. 08 - 0. 08 - 0. 06 - 0. 06 - 0. 04 - 0. 02 - 0. 01 - 0. 02 - <td< td=""><td>0. 12 - 0. 10 - 0. 08 - 0. 06 - 0. 04 - 0. 02 - 0. 02 - 0. 02 - 0. 02 - 0. 02 - 0. 02 - 0. 00 - 0.</td><td>0. 12 - 0. 10 - 0. 08 - 0. 06 - 0. 04 - 0. 02 - 0. 02 - 0. 02 - 0. 02 - 0. 02 - 0. 0 2. 5 5. 0 7. 510. 0 15. 0 20. 0 25. 0 30. 0 35. 0</td></td<>	0. 12 - 0. 10 - 0. 08 - 0. 06 - 0. 04 - 0. 02 - 0. 02 - 0. 02 - 0. 02 - 0. 02 - 0. 02 - 0. 00 - 0.	0. 12 - 0. 10 - 0. 08 - 0. 06 - 0. 04 - 0. 02 - 0. 02 - 0. 02 - 0. 02 - 0. 02 - 0. 0 2. 5 5. 0 7. 510. 0 15. 0 20. 0 25. 0 30. 0 35. 0

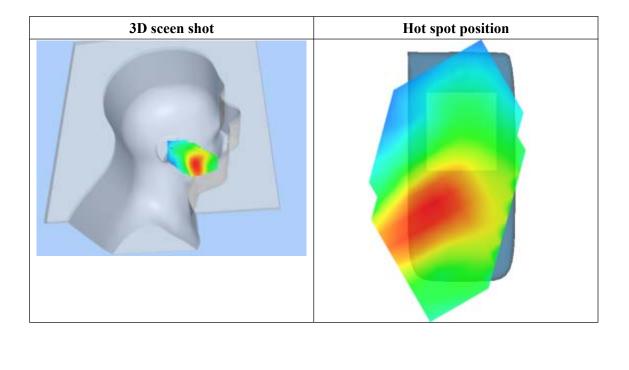

Type: Phone measurement (Complete) Area scan resolution: dx=8mm,dy=8mm Zoom scan resolution: dx=5mm, dy=5mm, dz=5mm Date of measurement: 2013.4.8 Measurement duration: 8 minutes 17 seconds

A. Experimental conditions.

Phantom File	surf_sam_plan.txt			
Phantom	Left head			
Device Position	Tilt 802.11B High			
Band				
Channels				
Signal	DSSS			

B. SAR Measurement Results

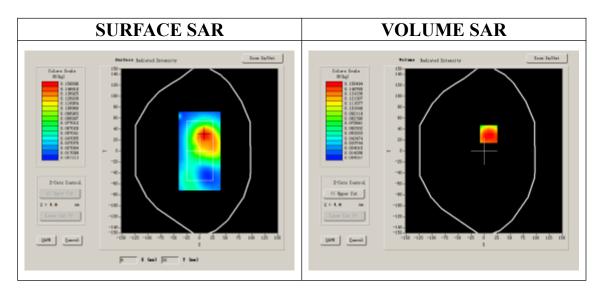
Frequency (MHz)	2462.000000
Relative permittivity (real part)	40.3287921
Conductivity (S/m)	1.780123
Power drift (%)	-0.910000
Ambient Temperature:	22.9°C
Liquid Temperature:	22.1°C
ConvF:	39.563,33.614,37.677
Crest factor:	1:1



Maximum location: X=-50.00, Y=-43.00

SAR 10g (W/Kg)	0.048852		
SAR 1g (W/Kg)	0.084107		

Z (mm) SAR (W/Kg)	0.00	4.00 0.0885	9.00 0.0518	14.00 0.0321	19.00 0.0176	24.00 0.0116	29.00 0.0064
	SAR	, Z Axis	s Scan	(X = -50	D, Y = -	-43)	
	0.09-						
	(290.06- (297/))) 10.04-						
	0.04- 0.02-						
	0.00-	2.55.07.5	10.0 15.0	20.0	25.0 30	.0 35.0	
_				(mm)			

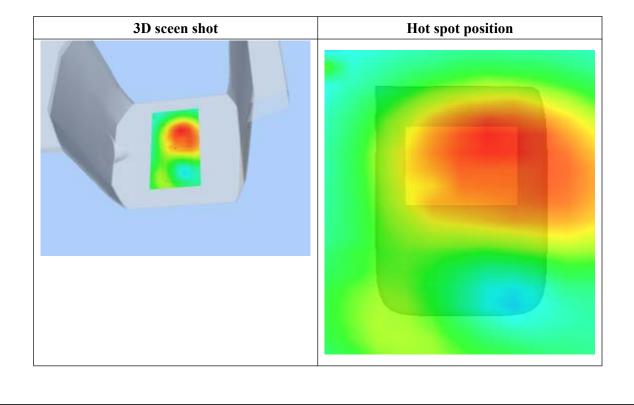

Type: Phone measurement (Complete) Area scan resolution: dx=8mm,dy=8mm Zoom scan resolution: dx=5mm, dy=5mm, dz=5mm Date of measurement: 2013.4.8 Measurement duration: 9 minutes 10 seconds

A. Experimental conditions.

Phantom File	surf_sam_plan.txt
Phantom	Validation plane
Device Position	Body
Band	802.11B
Channels	High
Signal	DSSS

B. SAR Measurement Results

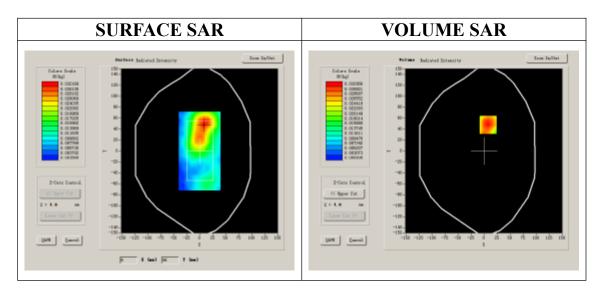
Frequency (MHz)	2462.000000
Relative permittivity (real part)	52.629031
Conductivity (S/m)	1.855902
Power drift (%)	-1.330000
Ambient Temperature:	22.9°C
Liquid Temperature:	22.1°C
ConvF:	39.772,33.946,37.835
Crest factor:	1:1



Maximum location: X=9.00, Y=31.00

SAR 10g (W/Kg)	0.096040		
SAR 1g (W/Kg)	0.159985		

Z (mm) SAR (W/Kg)	0.00 0.0000	4.00 0.1638	9.00 0.1020	14.00 0.0598	19.00 0.0362	24.00 0.0224	29.00 0.0133
	0.16- 0.14- 0.12- 0.12- 0.10- 0.08- 0.08- 0.04- 0.02-	AR, Z AS	ris Scan	(X = 9)	, Y = 3	1)	
	0.01-	2.55.07.5	10.0 15.0	20.0	25.0 30	.0 35.0	

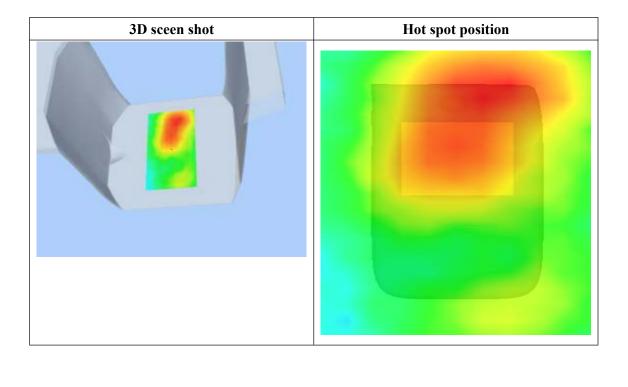

Type: Phone measurement (Complete) Area scan resolution: dx=8mm,dy=8mm Zoom scan resolution: dx=5mm, dy=5mm, dz=5mm Date of measurement: 2013.4.8 Measurement duration: 9 minutes 10 seconds

A. Experimental conditions.

Phantom File	surf_sam_plan.txt
Phantom	Validation plane
Device Position	Body
Band	802.11B
Channels	High
Signal	DSSS

B. SAR Measurement Results

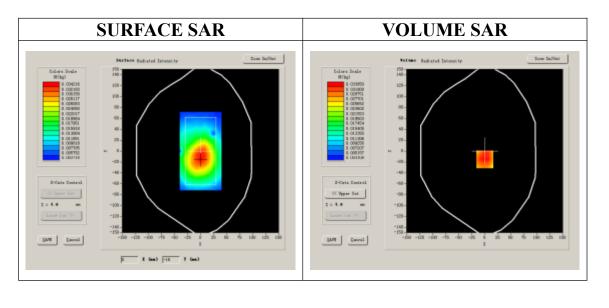
Frequency (MHz)	2462.000000
Relative permittivity (real part)	52.629031
Conductivity (S/m)	1.855902
Power drift (%)	-1.490000
Ambient Temperature:	22.9°C
Liquid Temperature:	22.1°C
ConvF:	39.772,33.946,37.835
Crest factor:	1:1



Maximum location: X=8.00, Y=48.00

SAR 10g (W/Kg)	0.018635
SAR 1g (W/Kg)	0.032743

Z (mm)	0.00	4.00	9.00	14.00	19.00	24.00	29.00
SAR	0.0000	0.0337	0.0188	0.0104	0.0076	0.0024	0.0016
(W/Kg)							
	SI	AR, Z Ax	is Scan	$(\mathbf{X} = 8)$, $\mathbf{Y} = 4$	8)	
	0. 034 -						
	0.030-	+ + +					
	0.025-						
	() ≪ € 0.020						
	2 0.020 B						
	. 0. 015						
	0.010						
	0.005						
	0.002-					╺╼┿╼╸╷	
	0.0	2.5 5.0 7.5			25.0 30	.0 35.0	
				Z (mm)			

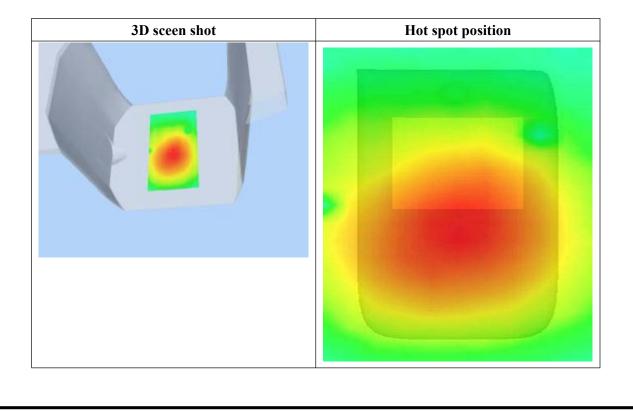

Type: Phone measurement (Complete) Area scan resolution: dx=8mm,dy=8mm Zoom scan resolution: dx=5mm, dy=5mm, dz=5mm Date of measurement: 2013.4.8 Measurement duration: 9 minutes 10 seconds

A. Experimental conditions.

Phantom File	surf_sam_plan.txt
Phantom	Validation plane
Device Position	Body
Band	802.11B
Channels	High
Signal	DSSS

B. SAR Measurement Results

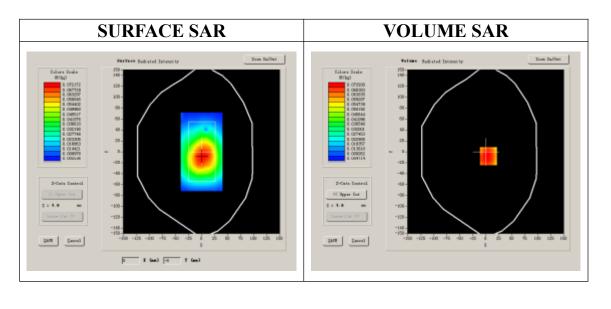
Frequency (MHz)	2462.000000
Relative permittivity (real part)	52.629031
Conductivity (S/m)	1.855902
Power drift (%)	-2.110000
Ambient Temperature:	22.9°C
Liquid Temperature:	22.1°C
ConvF:	39.772,33.946,37.835
Crest factor:	1:1



Maximum location: X=0.00, Y=-15.00

SAR 10g (W/Kg)	0.024740
SAR 1g (W/Kg)	0.035394

Z (mm) SAR (W/Kg)	0.00 0.0000	4.00 0.0372	9.00 0.0283	14.00 0.0209	19.00 0.0142	24.00 0.0105	29.00 0.0083
	0. 037 - 0. 030 - 27 0. 025 - 27 0. 020 -	R, Z Ax:	is Scan	(X = 0,	Y = -1	5)	
	0.010	2.5 5.0 7.5		0 20.0 Z (mm)	25.0 30	.0 35.0	

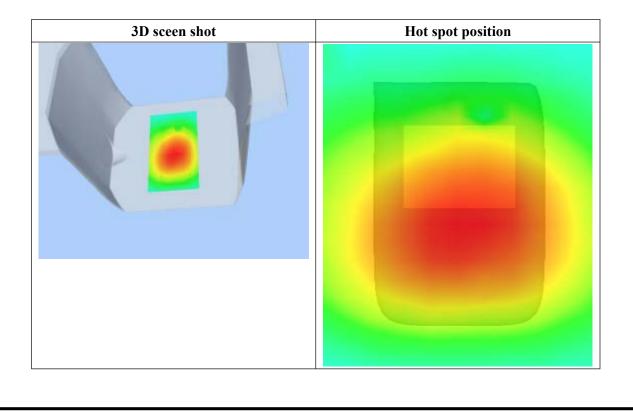

Type: Phone measurement (Complete) Area scan resolution: dx=8mm,dy=8mm Zoom scan resolution: dx=5mm, dy=5mm, dz=5mm Date of measurement: 2013.4.8 Measurement duration: 9 minutes 10 seconds

A. Experimental conditions.

Phantom File	surf_sam_plan.txt Validation plane Body 802.11B			
Phantom				
Device Position				
Band				
Channels	High			
Signal	DSSS			

B. SAR Measurement Results

Frequency (MHz)	2462.000000 52.629031			
Relative permittivity (real part)				
Conductivity (S/m)	1.855902			
Power drift (%)	-2.010000			
Ambient Temperature:	22.9°C			
Liquid Temperature:	22.1°C			
ConvF:	39.772,33.946,37.835			
Crest factor:	1:1			

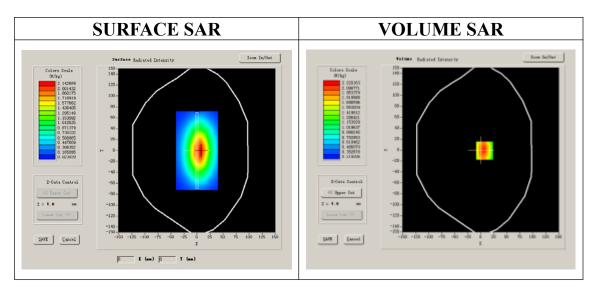


Maximum location: X=5.00, Y=-8.00

SAR 10g (W/Kg)	0.059902		
SAR 1g (W/Kg)	0.080876		

Z (mm) 0.00 SAR 0.0000		0.0(50	14.00	19.00	24.00	29.00
0.0000	0.0799	0.0670	0.0523	0.0433	0.0352	0.0269
82	R Z Av	is Scan	(X = 5	Y = -	8)	
	u, D 112	ib bean		, I		
0.06-						
0.05		++				
0.04						
0.03-						
0.02-						
0.02	2.33.01.5			20.0 30	.0 35.0	
	SA 0. 08 - 0. 07 - 0. 06 - 0. 05 - 0. 04 - 0. 03 - 0. 02 -	SAR, Z Ax 0.08- 0.07- 0.06- 0.05- 0.04- 0.03- 0.02-	SAR, Z Axis Scan	SAR, Z Axis Scan (X = 5 0.08- 0.07- 0.06- 0.05- 0.04- 0.03- 0.02-	SAR, Z Axis Scan ($X = 5$, $Y = -$ 0.08- 0.07- 0.06- 0.05- 0.04- 0.03- 0.02- 0.02-55.07.510.0 15.0 20.0 25.0 30	SAR, Z Axis Scan $(X = 5, Y = -8)$ 0.08- 0.07- 0.06- 0.05- 0.04- 0.04- 0.03- 0.02- 0.02-55.07.510.0 15.0 20.0 25.0 30.0 35.0

System Performance Check Data(Head)

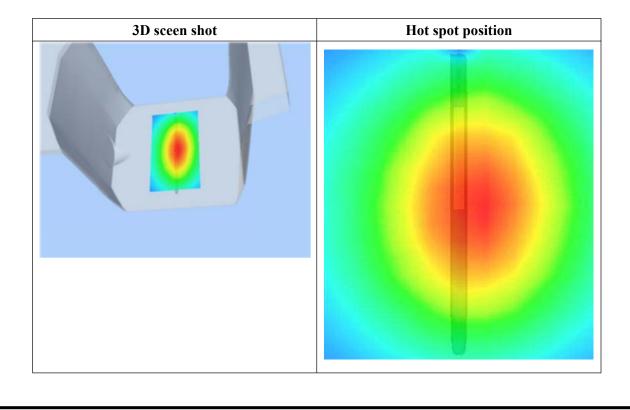

Type: Phone measurement (Complete) Area scan resolution: dx=8mm,dy=8mm Zoom scan resolution: dx=8mm, dy=8mm, dz=5mm Date of measurement: 2013.4.8 Measurement duration: 13 minutes 27 seconds

A. Experimental conditions.

Phantom File	surf_sam_plan.txt		
Phantom	Flat Plane		
Device Position			
Band	835MHz		
Channels			
Signal	CW		

B. SAR Measurement Results

Frequency (MHz)	835.000000
Relative permittivity (real part)	42.532816
Conductivity (S/m)	0.932509
Power drift (%)	-0.310000
Ambient Temperature:	22.9°C
Liquid Temperature:	22.1°C
ConvF:	28.479,25.214,27.196
Crest factor:	1:1

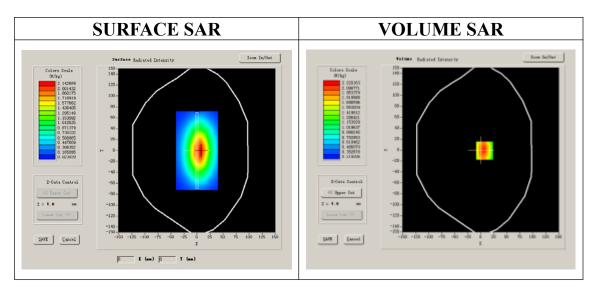


Maximum location: X=7.00, Y=-1.00

SAR 10g (W/Kg)	1.539476
SAR 1g (W/Kg)	2.406832

	4.00	9.00	14.00	19.00	24.00	29.00
0.0000	2.5209	1.6629	1.1437	0.8075	0.5889	0.4143
Si	AR. 7. Ax	is Scan	(X = 7	Y = -	1)	
2.5-						
2.0						
ີ່ຜູ້ ຊີ 1.5-						
a l						
			$\uparrow \downarrow \downarrow$			
0.3-	.5 5.0 7.51	0.0 15.0	20.0	25.0 30	.0 35.0	
		Z	(mm)			
	2.5- 2.0- 2.0- 1.5- 1.0-	SAR, Z Ax 2.5- 2.0- 1.5- 1.0- 0.3-	SAR, Z Axis Scan	SAR, Z Axis Scan (X = 7, 2.5- 2.0- 1.5- 1.0- 0.3-	SAR, Z Axis Scan (X = 7, Y = $-$ 2.5- 2.0- 1.5- 1.0- 0.3- 0.0 2.5 5.0 7.5 10.0 15.0 20.0 25.0 30	SAR, Z Axis Scan $(X = 7, Y = -1)$ 2.5- 2.0- 1.5- 1.0- 0.3- 0.0 2.5 5.0 7.5 10.0 15.0 20.0 25.0 30.0 35.0

System Performance Check Data(Body)

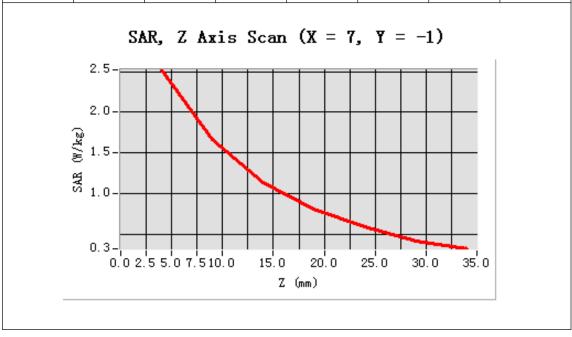

Type: Phone measurement (Complete) Area scan resolution: dx=8mm,dy=8mm Zoom scan resolution: dx=8mm, dy=8mm, dz=5mm Date of measurement: 2013.4.8 Measurement duration: 13 minutes 27 seconds

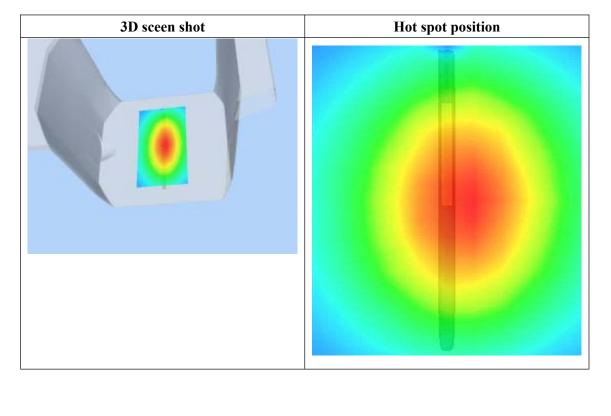
A. Experimental conditions.

Phantom File	surf_sam_plan.txt
Phantom	Flat Plane
Device Position	
Band	835MHz
Channels	
Signal	CW

B. SAR Measurement Results

Frequency (MHz)	835.000000
Relative permittivity (real part)	56.120982
Conductivity (S/m)	0.960921
Power drift (%)	-1.700000
Ambient Temperature:	22.9°C
Liquid Temperature:	22.1°C
ConvF:	28.559,25.681,27.588
Crest factor:	1:1



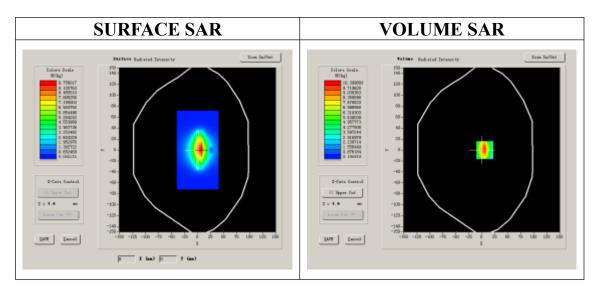

Maximum location: X=7.00, Y=-1.00

SAR 10g (W/Kg)	1.497122
SAR 1g (W/Kg)	2.361423

Z Axis Scan

Z (mm)	0.00	4.00	9.00	14.00	19.00	24.00	29.00
SAR	0.0000	2.5209	1.6629	1.1437	0.8075	0.5889	0.4143
(W/Kg)							

System Performance Check Data(Head)

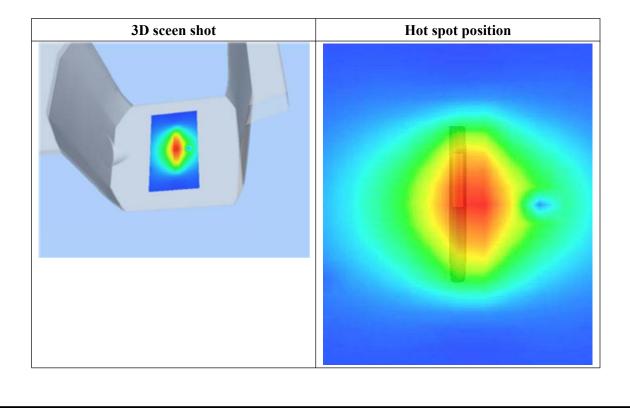

Type: Phone measurement (Complete) Area scan resolution: dx=8mm,dy=8mm Zoom scan resolution: dx=8mm, dy=8mm, dz=5mm Date of measurement: 2013.4.8 Measurement duration: 13 minutes 27 seconds

A. Experimental conditions.

Phantom File	surf_sam_plan.txt		
Phantom	Flat Plane		
Device Position			
Band	1900MHz		
Channels			
Signal	CW		

B. SAR Measurement Results

Frequency (MHz)	1900.000000
Relative permittivity (real part)	41.357921
Conductivity (S/m)	1.403817
Power drift (%)	-0.290000
Ambient Temperature:	22.9°C
Liquid Temperature:	22.1°C
ConvF:	40.136,34.843,38.721
Crest factor:	1:1

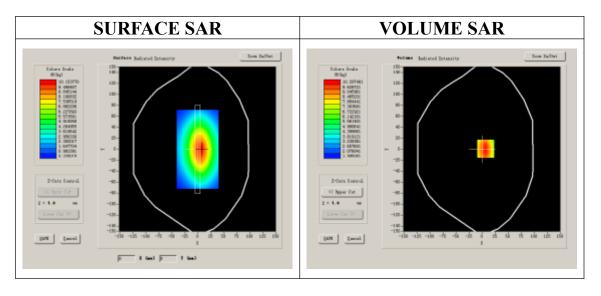


Maximum location: X=6.00, Y=0.00

SAR 10g (W/Kg)	6.145210		
SAR 1g (W/Kg)	9.682543		

Z (mm) SAR (W/Kg)	0.00 0.0000	4.00 10.6419	9.00 6.0043	14.00 3.7297	19.00 2.2606	24.00 1.5119	29.00 0.9792
	10.64 - 8.00 - % 6.00 - % 4.00 - 2.00 - 0.64 -	AR, Z A:	10.0 15.		5, Y = 0		

System Performance Check Data(Body)

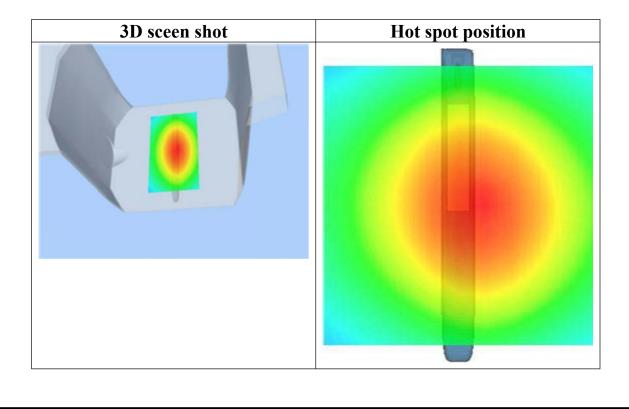

Type: Phone measurement (Complete) Area scan resolution: dx=8mm,dy=8mm Zoom scan resolution: dx=8mm, dy=8mm, dz=5mm Date of measurement: 2013.4.8 Measurement duration: 13 minutes 26 seconds

A. Experimental conditions.

Phantom File	surf_sam_plan.txt
Phantom	Flat Plane
Device Position	
Band	1900MHz
Channels	
Signal	CW

B. SAR Measurement Results

Frequency (MHz)	1900.000000
Relative permittivity (real part)	54.319082
Conductivity (S/m)	1.490328
Power drift (%)	-0.520000
Ambient Temperature:	22.9°C
Liquid Temperature:	22.1°C
ConvF:	40.625,34.773,38.535
Crest factor:	1:1

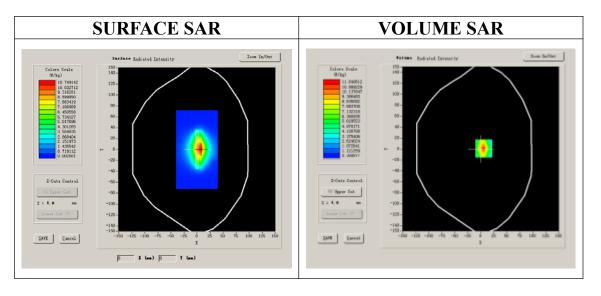


Maximum location: X=7.00, Y=1.00

SAR 10g (W/Kg)	6.628519
SAR 1g (W/Kg)	9.805012

Z (mm)		0.00		4.0	0		9.(00		14.0	0		19.0	0	2	24.00	29.00
SAR	().0000	1	0.20	075		7.39	96	1	5.465	54	4	.11()1	3	.1286	2.4128
(W/Kg)																	
		S	AR,	, 1	ΖI	Axi	s	Sca	n	(X	= 1	7,	Y	= 1	.)		
	:	10.21 -	_				_										
		9.00-															
		8.00-			1												
	ŝ	7.00-															
	(W/kg)	6.00															
	SAR	5.00							_								
	0	4.00															
		3.00-															
		1.88-												-			
		0.0	2.5	5.1	07.	510	.0	15.	0	20	0	25	. 0	30	.0	35.0	
									Ζ (mm)							
_																	1

System Performance Check Data(Head)

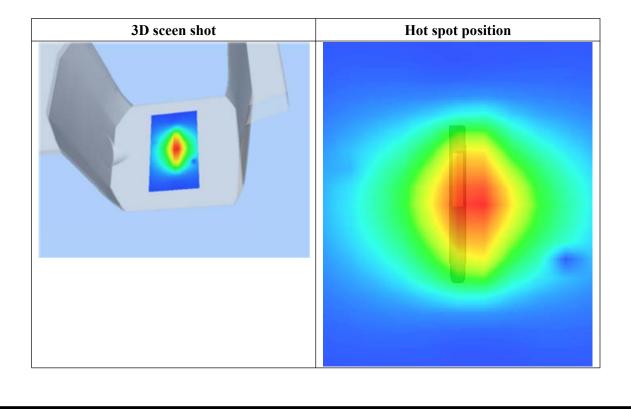

Type: Phone measurement (Complete) Area scan resolution: dx=8mm,dy=8mm Zoom scan resolution: dx=5mm, dy=5mm, dz=5mm Date of measurement: 2013.4.8 Measurement duration: 13 minutes 27 seconds

A. Experimental conditions.

Phantom File	surf_sam_plan.txt
Phantom	Validation plane
Device Position	
Band	2450MHz
Channels	
Signal	CW

B. SAR Measurement Results

Frequency (MHz)	2450.000000
Relative permittivity (real part)	40.3287921
Conductivity (S/m)	1.780123
Power Drift (%)	-0.720000
Ambient Temperature:	22.9°C
Liquid Temperature:	22.1°C
ConvF:	39.563,33.614,37.677
Crest factor:	1:1

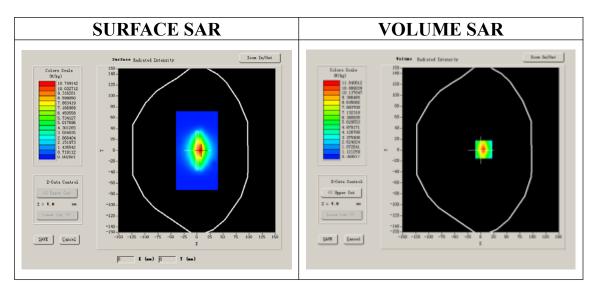


Maximum location: X=6.00, Y=1.00

SAR 10g (W/Kg)	7.638478
SAR 1g (W/Kg)	12.051492

Z (mm)	0.00	4.00	9.00	14.00	19.00	24.00	29.00
SAR	0.0000	11.9115	6.2096	3.8187	2.4504	1.5036	1.0219
(W/Kg)							
	-			(、	
	S	AR, Z A	ris Scar	$\mathbf{x} = 0$	5, Y = 1	.)	
	11.91-						
	10.00						
	୍ଲୁ 8.00-– ୟୁ						
	(29, 8.00 27/№ 6.00 2785 4.00		\mathbf{V}				
	4.00						
	2.00						
	0.66-	2.55.07.5	10.0 15.	0 20.0	25.0 30	.0 35.0	
	0.0			Z (mm)	25.0 00		
_							

System Performance Check Data(Body)

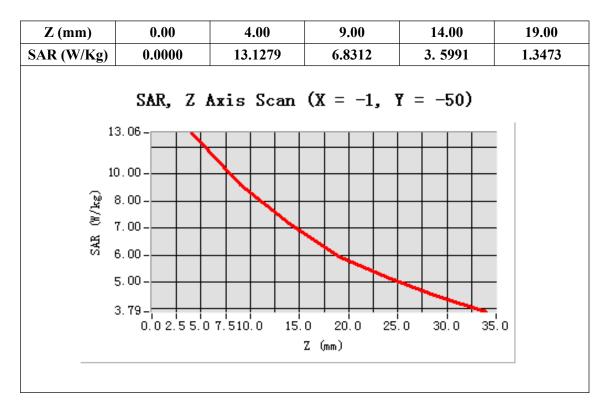

Type: Phone measurement (Complete) Area scan resolution: dx=8mm,dy=8mm Zoom scan resolution: dx=5mm, dy=5mm, dz=5mm Date of measurement: 2013.4.8 Measurement duration: 13 minutes 27 seconds

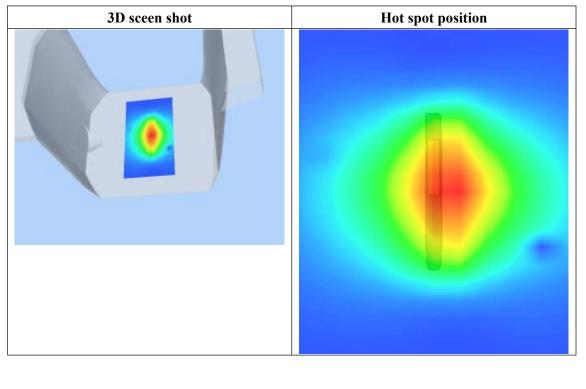
A. Experimental conditions.

Phantom File	surf_sam_plan.txt
Phantom	Validation plane
Device Position	
Band	2450MHz
Channels	
Signal	CW

B. SAR Measurement Results

Frequency (MHz)	2450.000000
Relative permittivity (real part)	52.629031
Conductivity (S/m)	1.855902
Power Drift (%)	-1.170000
Ambient Temperature:	22.9°C
Liquid Temperature:	22.1°C
ConvF:	39.772,33.946,37.835
Crest factor:	1:1





Maximum location: X=-1.00, Y=-50.00

SAR 10g (W/Kg)	7.156773
SAR 1g (W/Kg)	12.803461

Z Axis Scan

