Report No.: SZ12050050S01 # SAR TEST REPO Issued to Corporativo Lanix S.A. de C.V. For #### **GSM Phone** Model Name : W30 Trade Name : Lanix Brand Name : Lanix FCC ID : ZC4LX6 Standard : FCC Oet65 Supplement C Jun.2001 47CFR 2.1093 ANSI C95.1-1999 IEEE 1528-2003 MAX SAR : Head: 0.741W/kg Body: 0.609W/kg Test date 2012-5-14 Issue date Certification nellechnology Co., Ltd. Shenzhen MORLA Approved by Date Date nov2.5-18 Wei Yanduan Reg. No. **IEEE 1725** 電訊管理局 BQTF 741109 The report refers only to the sample tested and does not apply to the bulk. This report is issued in confidence to the client and it will be strictly treated as such by the Shenzhen MORLAB Communication Technology Co., Ltd. It may not be reproduced rather in its entirety or in part and it may not be used for adverting. The client to whom the report is issued may, however, show or send it. or a certified copy there of prepared by the Shenzhen MORLAB Telecommunication Co., Ltd to his GPRSer. Supplier or others persons directly concerned. Shenzhen MORLAB Telecommunication Co., Ltd will not, without the consent of the client enter into any discussion of correspondence with any third party concerning the contents of the report. In the event of the improper use of the report, Shenzhen MORLAB Telecommunication Co., Ltd reserves the rights to withdraw it and to adopt any other remedies which may be appropriate. ## **DIRECTORY** | TESTING LABORATORY | 4 | |---|----| | 1.1. Identification of the Responsible Testing Laboratory | 4 | | 1.2. Identification of the Responsible Testing Location. | 4 | | 1.3. Accreditation Certificate | 4 | | 1.4. List of Test Equipments. | 4 | | 2. TECHNICAL INFORMATION | 5 | | 2.1. Identification of Applicant. | 5 | | 2.2. Identification of Manufacturer | 5 | | 2.3. Equipment Under Test (EUT) | 5 | | 2.3.1. Photographs of the EUT | 5 | | 2.3.2. Identification of all used EUT | 5 | | 2.4. Applied Reference Documents. | 6 | | 2.5. Device Category and SAR Limits | 6 | | 2.6. Test Environment/Conditions | 7 | | 3. SPECIFIC ABSORPTION RATE (SAR) | 8 | | 3.1. Introduction. | 8 | | 3.2. SAR Definition | 8 | | 4. SAR MEASUREMENT SETUP | 9 | | 4.1. The Measurement System. | 9 | | 4.2. Probe | 9 | | 4.3. Probe Calibration Process | 11 | | 4.3.1 Dosimetric Assessment Procedure | 11 | | 4.3.2 Free Space Assessment Procedure | 11 | | 4.3.2 Temperature Assessment Procedure. | 11 | | 4.4. Phantom. | 12 | | 4.5. Device Holder | 12 | | 5. TISSUE SIMULATING LIQUIDS | 13 | | 6. UNCERTAINTY ASSESSMENT | 15 | | 6.1. UNCERTAINTY EVALUATION FOR HANDSET SAR TEST | 15 | | 6.2. UNCERTAINTY FOR SYSTEM PERFORMANCE CHECK | 16 | | 7. SAR MEASUREMENT EVALUATION | 18 | | | | | 7.1. System Setup | 18 | |--|----| | 7.2. Validation Results | 19 | | 8. OPERATIONAL CONDITIONS DURING TEST | 20 | | 8.1. Informations on the testing. | 20 | | 8.2. Body-worn Configurations | 21 | | 8.3. Measurement procedure | 21 | | 8.4. Description of interpolation/extrapolation scheme | 22 | | 9. MEASUREMENT OF CONDUCTED PEAK OUTPUT POWER | 23 | | 10. TEST RESULTS LIST | 25 | | 11. MULTIPLE TRANSMITTERS EVALUATION | 27 | | ANNEX A EUT SETUP PHOTOS | 28 | | ANNEX B GRAPH TEST RESULTS | 31 | | | | | | Change History | | | | | | |------------------------------|----------------|--------------|---------------|--|--|--| | Issue Date Reason for change | | | | | | | | | 1.0 | May 18, 2012 | First edition | | | | ## **Testing Laboratory** #### 1.1. Identification of the Responsible Testing Laboratory Company Name: Shenzhen Morlab Communications Technology Co., Ltd. Department: Morlab Laboratory Address: 3/F, Electronic Testing Building, Shahe Road, Nanshan District, Shenzhen, 518055 P. R. China Responsible Test Lab Manager: Mr. Shu Luan Telephone: +86 755 86130268 Facsimile: +86 755 86130218 ### 1.2. Identification of the Responsible Testing Location Name: Shenzhen Morlab Communications Technology Co., Ltd. Morlab Laboratory Address: 3/F, Electronic Testing Building, Shahe Road, Nanshan District, Shenzhen, 518055 P. R. China #### 1.3. Accreditation Certificate Accredited Testing Laboratory: No. CNAS L3572 ### 1.4. List of Test Equipments | No. | Instrument | Туре | Cal. Date | Cal. Due | |-----|-----------------------------------|---|-----------|----------| | 1 | PC | Dell (Pentium IV 2.4GHz,
SN:X10-23533) | (n.a) | (n.a) | | 2 | Network
Emulator | Rohde&Schwarz (CMU200,
SN:105894) | 2011-9-26 | 1year | | 3 | Voltmeter | Keithley (2000, SN:1000572) | 2011-9-24 | 1 year | | 4 | Synthetizer | Rohde&Schwarz (SML_03, SN:101868) | 2011-9-24 | 1 year | | 5 | 5 Amplifier Nucl udes (ALB216, SN | | 2011-9-24 | 1 year | | 6 | Power Meter | Rohde&Schwarz (NRVD, SN:101066) | 2011-9-24 | 1 year | | 7 | Probe | Satimo (SN:SN_3708_EP80) | 2011-9-24 | 1 year | | 8 | Phantom | Satimo (SN:SN_36_08_SAM62) | 2011-9-24 | 1 year | | 9 | Liquid | Satimo (Last Calibration: 2012-5-14) | N/A | N.A | | 10 | Dipole
835MHz | Satimo (SN 36/08 DIPC 99) | 2011-9-24 | 1 year | | 11 | Dipole
1900MHz | Satimo (SN 36/08 DIPF 102) | 2011-9-24 | 1 year | ### 2. Technical Information Note: the following data is based on the information by the applicant. ### 2.1. Identification of Applicant Company Name: CORPORATIVO LANIX S.A. DE C.V. Address: Carretera Internacional Hermosillo-Nogales Km 8.5, Hermosillo Sonora, Mexico #### 2.2. Identification of Manufacturer Company Name: Shenzhen Tinno Mobile Technology Corp. Address: 4/F, H-3 Building, OCT Eastern industrial Park, No.1 XiangShan East Road., Nan Shan District, Shenzhen, P.R. China. ### 2.3. Equipment Under Test (EUT) Model Name: W30 Trade Name: Lanix Brand Name: Lanix Hardware Version: V1.0 Software Version: V04 Frequency Bands: GSM 850MHz / PCS 1900MHz; Bluetooth Modulation Mode: GSM/GPRS: GMSK; BT: GFSK Multislot Class GPRS: Multislot Class 12; EDGE: N/A Antenna type: Fixed Internal Antenna Development Stage: Identical prototype Battery Model: LX6 Battery specification: 1000mAh3.7V #### 2.3.1. Photographs of the EUT Please see for photographs of the EUT. #### 2.3.2. Identification of all used EUT The EUT identity consists of numerical and letter characters, the letter character indicates the test sample, and the following two numerical characters indicate the software version of the test sample. | EUT
Identity | Hardware Version | Software Version | |-----------------|------------------|------------------| | 1# | V1.0 | V04 | ## 2.4. Applied Reference Documents Leading reference documents for testing: | No. | Identity | Document Title | | | | | | | |-----|---------------------|---|--|--|--|--|--|--| | 1 | 47 CFR§2.1O93 | Radiofrequency Radiation Exposure Evaluation: Portable | | | | | | | | | | Devices | | | | | | | | 2 | FCC OET Bulletin | Evaluating Compliance with FCC Guidelines for Human | | | | | | | | | 65 (Edition 97-01), | Exposure to Radiofrequency Electromagnetic Fields | | | | | | | | | Supplement C | | | | | | | | | | (Edition 01-01) | | | | | | | | | 3 | ANSI C95.1-1999 | IEEE Standard for Safety Levels with Respect to Human | | | | | | | | | | Exposure to Radio Frequency Electromagnetic Fields, 3kHz to | | | | | | | | | | 300 GHz | | | | | | | | 4 | IEEE 1528-2003 | Recommended Practice for Determining the Peak | | | | | | | | | | Spatial-Average Specific Absorption Rate(SAR) in the Human | | | | | | | | | | Body Due to Wireless Communications Devices: Experimental | | | | | | | | | | Techniques. | | | | | | | | 5 | KDB 648474 D1 | SAR Evaluation Considerations for Handsets with Multiple | | | | | | | | | | Transmitters and Antennas | | | | | | | ## 2.5. Device Category and SAR Limits This device belongs to portable device category because its radiating structure is allowed to be used within 20 centimeters of the body of the user. Limit for General Population/Uncontrolled exposure should be applied for this device, it is 1.6 W/kg as averaged over any 1 gram of tissue. #### 2.6. Test Environment/Conditions Normal Temperature (NT): 20 ... 25 °C Relative Humidity: 30 ... 75 % Air Pressure: 980 ... 1020 hPa Test frequency: GSM 850MHz PCS 1900MHz Operation mode: Call established Power Level: GSM 850 MHz Maximum output power(level 5) PCS 1900 MHz Maximum output power(level 0) During SAR test, EUT is in Traffic Mode (Channel Allocated) at Normal Voltage Condition. A communication link is set up with a System Simulator (SS) by air link, and a call is established. The Absolute Radio Frequency Channel Number (ARFCN) is allocated to 125, 190 and 251 respectively in the case of GSM 850 MHz, or to 512, 661 and 810 respectively in the case of PCS 1900 MHz. The EUT is commanded to operate at maximum transmitting power. The EUT shall use its internal transmitter. The antenna(s), battery and accessories shall be those specified by the manufacturer. The EUT battery must be fully charged and checked periodically during the test to ascertain uniform power output. If a wireless link is used, the antenna connected to the output of the base station simulator shall be placed at least 50 cm away from the handset. The signal transmitted by the simulator to the antenna feeding point shall be lower than the output power level of the handset by at least 35 dB. For SAR testing, EUT is in GPRS link mode. In GPRS link mode, its crest factor is 2, because EUT is set in GPRS multi-slot class 12 with 4 uplink slots. ### 3. Specific Absorption Rate (SAR) #### 3.1. Introduction SAR is related to the rate at which energy is absorbed per unit mass in an object exposed to a radio field. The SAR distribution in a biological body is complicated and is usually carried out by experimental techniques or numerical modeling. The standard recommends limits for two tiers of groups, occupational/controlled and general population/uncontrolled, based on a person's awareness and ability to
exercise control over his or her exposure. In general, occupational/controlled exposure limits are higher than the limits for general population/uncontrolled. ### 3.2. SAR Definition The SAR definition is the time derivative (rate) of the incremental energy (dW) absorbed by (dissipated in) an incremental mass (dm) contained in a volume element (dv) of a given density. ρ). The equation description is as below: $$SAR = \frac{d}{dt} \left(\frac{dW}{dm} \right) = \frac{d}{dt} \left(\frac{dW}{\rho dv} \right)$$ SAR is expressed in units of Watts per kilogram (W/kg) SAR measurement can be either related to the temperature elevation in tissue by $$SAR = C \frac{\delta T}{\delta t}$$, where C is the specific head capacity, δ T is the temperature rise and δ t the exposure duration, or related to the electrical field in the tissue by $$SAR = \frac{\sigma |E|^2}{\rho}$$, where σ is the conductivity of the tissue, ρ is the mass density of the tissue and E is the rms electrical field strength. However for evaluating SAR of low power transmitter, electrical field measurement is typically applied. ### 4. SAR Measurement Setup #### 4.1. The Measurement System Comosar is a system that is able to determine the SAR distribution inside a phantom of human being according to different standards. The Comosar system consists of the following items: - Main computer to control all the system - 6 axis robot - Data acquisition system - Miniature E-field probe - Phone holder - Head simulating tissue The following figure shows the system. The EUT under test operating at the maximum power level is placed in the phone holder, under the phantom, which is filled with head simulating liquid. The E-Field probe measures the electric field inside the phantom. The OpenSAR software computes the results to give a SAR value in a 1g or 10g mass. #### 4.2. Probe For the measurements the Specific Dosimetric E-Field Probe SN 37/08 EP80 with following specifications is used - Dynamic range: 0.01-100 W/kg - Tip Diameter: 6.5 mm - Distance between probe tip and sensor center: 2.5mm - Distance between sensor center and the inner phantom surface: 4 mm (repeatability better than +/- 1mm) - Probe linearity: <0.25 dB - Axial Isotropy: <0.25 dB - Spherical Isotropy: <0.25 dB - Calibration range: 835to 2500MHz for head & body simulating liquid. Angle between probe axis (evaluation axis) and suface normal line:1ess than 30° Probe calibration is realized, in compliance with CENELEC EN 62209 and IEEE 1528 std, with CALISAR, Antennessa proprietary calibration system. The calibration is performed with the EN 622091 annexe technique using reference guide at the five frequencies. $$SAR = \frac{4\left(P_{fw} - P_{bw}\right)}{ab\delta} \cos^2\left(\pi \frac{y}{a}\right) e^{-(2z/\delta)}$$ Where: Pfw = Forward Power Pbw = Backward Power a and b = Waveguide dimensions 1 = Skin depth Keithley configuration: Rate = Medium; Filter =ON; RDGS=10; FILTER TYPE =MOVING AVERAGE; RANGE AUTO After each calibration, a SAR measurement is performed on a validation dipole and compared with a NPL calibrated probe, to verify it. The calibration factors, CF(N), for the 3 sensors corresponding to dipole 1, dipole 2 and dipole 3 are: $$CF(N)=SAR(N)/Vlin(N)$$ (N=1,2,3) The linearised output voltage Vlin(N) is obtained from the displayed output voltage V(N) using $$Vlin(N)=V(N)*(1+V(N)/DCP(N))$$ (N=1,2,3) where DCP is the diode compression point in mV. #### 4.3. Probe Calibration Process #### 4.3.1 Dosimetric Assessment Procedure Each E-Probe/Probe Amplifier combination has unique calibration parameters. SATIMO Probe calibration procedure is conducted to determine the proper amplifier settings to enter in the probe parameters. The amplifier settings are determined for a given frequency by subjecting the probe to a known E-field density (1 mW/cm2) using an with CALISAR, Antenna proprietary calibration system. ### 4.3.2 Free Space Assessment Procedure The free space E-field from amplified probe outputs is determined in a test chamber. This calibration can be performed in a TEM cell if the frequency is below 1 GHz and in a waveguide or other methodologies above 1 GHz for free space. For the free space calibration, the probe is placed in the volumetric center of the cavity and at the proper orientation with the field. The probe is rotated 360 degrees until the three channels show the maximum reading. The power density readings equates to 1 mW/cm2. ## 4.3.2 Temperature Assessment Procedure E-field temperature correlation calibration is performed in a flat phantom filled with the appropriate simulated head tissue. The E-field in the medium correlates with the temperature rise in the dielectric medium. For temperature correlation calibration a RF transparent thermistor-based temperature probe is used in conjunction with the E-field probe. Where: $$SAR = C \frac{\Delta T}{\Delta t}$$ $\Delta t = \text{exposure time (30 seconds)},$ C = heat capacity of tissue (brain or muscle), Δ T = temperature increase due to RF exposure. SAR is proportional to $\Delta T/\Delta t$, the initial rate of tissue heating, before thermal diffusion takes place. The electric field in the simulated tissue can be used to estimate SAR by equating the thermally derived SAR to that with the E- field component. $$SAR = \frac{|E|^2 \cdot \sigma}{\sigma}$$ Where: σ = simulated tissue conductivity, ρ = Tissue density (1.25 g/cm3 for brain tissue) #### 4.4. Phantom For the measurements the Specific Anthropomorphic Mannequin (SAM) defined by the IEEE SCC-34/SC2 group is used. The phantom is a polyurethane shell integrated in a wooden table. The thickness of the phantom amounts to 2mm +/- 0.2mm. It enables the dosimetric evaluation of left and right phone usage and includes an additional flat phantom part for the simplified performance check. The phantom set-up includes a cover, which prevents the evaporation of the liquid. #### 4.5. Device Holder The positioning system allows obtaining cheek and tilting position with a very good accuracy. In compliance with CENELEC, the tilt angle uncertainty is lower than 1°. Device holder | System Material | Permittivity | Loss Tangent | |-----------------|--------------|--------------| | Delrin | 3.7 | 0.005 | ## 5. Tissue Simulating Liquids Simulant liquids that are used for testing at frequencies of 850 and 1900MHz . which are made mainly of sugar, salt and water solutions may be left in the phantoms. Approximately 20litres are needed for an upright head compared to about 25 litres for a horizontal bath phantom. The liquid height from the ear reference point (ERP) of the phantom to the liquid top surface is or from the flat phantom to the liquid top surface is 15cm. Following are the recipes for one liter of head and body tissue simulating liquid for frequency band $835~\mathrm{MHz}$ and $1900~\mathrm{MHz}$. | Ingredients | Frequen | cy Band | Frequen | cy Band | |---------------------|---------|---------|---------|---------| | (% by weight) | 835] | MHz | 1900 | MHz | | Tissue Type | Head | Body | Head | Body | | Water | 41.45 | 52.4 | 54.9 | 40.4 | | Salt(NaCl) | 1.45 | 1.4 | 0.18 | 0.5 | | Sugar | 56.0 | 45.0 | 0.0 | 58.0 | | HEC | 1.0 | 1.0 | 0.0 | 1.0 | | Bactericide | 0.1 | 0.1 | 0.0 | 0.1 | | Triton | 0.0 | 0.0 | 0.0 | 0.0 | | DGBE | 0.0 | 0.0 | 44.92 | 0.0 | | Acticide SPX | 0.0 | 0.0 | 0.0 | 0.0 | | Dielectric Constant | 42.45 | 56.1 | 39.9 | 54.0 | | Conductivity (S/m) | 0.91 | 0.95 | 1.42 | 1.45 | Recipes for Tissue Simulating Liquid The dielectric parameters of the liquids were verified prior to the SAR evaluation using an Agilent 85033E Dielectric Probe Kit and an Agilent Network Analyzer. **Table 1: Dielectric Performance of Head Tissue Simulating Liquid** | Temperature: 22.0~23.8°C, humidity: 54~60%. | | | | | | | | |---|------------------|------------------|----------------------|--|--|--|--| | Frequency | Description | Permittivity ε | Conductivity σ (S/m) | | | | | | 835 MHz | Reference result | 41.5 | 0.90 | | | | | | 833 MITZ | ±5% window | 39.425 to 43.575 | 0.855 to 0.945 | | | | | | 835 MHz | Validation value | 41.675999 | 0.894409 | | | | | | 033 WIIIZ | (May 14) | 41.073777 | 0.074407 | | | | | | 1900 MHz | Reference result | 40 | 1.40 | | | | | | 1900 WIIIZ | ±5% window | 38 to 42 | 1.33 to 1.47 | | | | | | 1900 MHz | Validation value | 38.509998 | 1.436111 | | | | | | 1300 MITZ | (May 14) | 30.309990 | 1.430111 | | | | | For body-worn measurements, the device was tested against flat phantom representing the user body. Under measurement phone was put on in the phone holder. Table 2: Dielectric Performance of Body Tissue Simulating Liquid | Temperature: 22.0~23.8°C, humidity: 54~60%. | | | | | | | | | |---|------------------------------|------------------|----------------------|--|--|--|--|--| | Frequency | Description | Permittivity ε | Conductivity σ (S/m) | | | | | | | 835 MHz | Reference result | 55.2 | 0.97 | | | | | | | 833 MITZ | ±5% window | 52.44 to 57.96 | 0.9215 to 1.0185 | | | | | | | 835 MHz | Validation value (May 14) | | 0.9809033 | | | | | | | 1000 MHz | Reference result | 53.3 | 1.52 | | | | | | | 1900 MHz | ±5% window | 50.635 to 55.965 | 1.444 to 1.596 | | | | | | | 1900 MHz | Validation value
(May 14) | 52.548876 | 1.553978 | | | | | | # **6. Uncertainty Assessment** The following table includes the uncertainty table of the IEEE 1528. The values are determined by Antennessa. ## **6.1. UNCERTAINTY EVALUATION FOR HANDSET SAR TEST** | a | b | С | d | e=f(d,k) | f | g | h= c*f/e | i=
c*g/
e | k | |--|---------|------------|-------------|------------|------------|-------------|----------------|------------------------|---------| | Uncertainty Component | Sec. | Tol (+- %) | Prob. Dist. | Div. | Ci
(1g) | Ci
(10g) | 1g Ui
(+-%)
 10g
Ui
(+-
%) | Vi | | Measurement System | | 1 | · | | | | 1 | | | | Probe calibration | E.2.1 | 4.76 | N | 1 | 1 | 1 | 4.76 | 4.76 | ∞ | | Axial Isotropy | E.2.2 | 2.5 | R | $\sqrt{3}$ | 0.7 | 0.7 | 1.01 | 1.01 | ∞ | | Hemispherical Isotropy | E.2.2 | 4.0 | R | $\sqrt{3}$ | 0.7 | 0.7 | 1.62 | 1.62 | ∞ | | Boundary effect | E.2.3 | 1.0 | R | $\sqrt{3}$ | 1 | 1 | 0.58 | 0.58 | ∞ | | Linearity | E.2.4 | 5.0 | R | $\sqrt{3}$ | 1 | 1 | 2.89 | 2.89 | ∞ | | System detection limits | E.2.5 | 1.0 | R | $\sqrt{3}$ | 1 | 1 | 0.58 | 0.58 | ∞ | | Readout Electronics | E.2.6 | 0.02 | N | 1 | 1 | 1 | 0.02 | 0.02 | ∞ | | Reponse Time | E.2.7 | 3.0 | R | $\sqrt{3}$ | 1 | 1 | 1.73 | 1.73 | ∞ | | Integration Time | E.2.8 | 2.0 | R | $\sqrt{3}$ | 1 | 1 | 1.15 | 1.15 | ∞ | | RF ambient Conditions | E.6.1 | 3.0 | R | $\sqrt{3}$ | 1 | 1 | 1.73 | 1.73 | ∞ | | Probe positioner Mechanical Tolerance | E.6.2 | 2.0 | R | $\sqrt{3}$ | 1 | 1 | 1.15 | 1.15 | ∞ | | Probe positioning with respect to Phantom Shell | E.6.3 | 0.05 | R | $\sqrt{3}$ | 1 | 1 | 0.03 | 0.03 | ∞ | | Extrapolation, interpolation and integration Algoritms for Max. SAR Evaluation | E.5.2 | 5.0 | R | $\sqrt{3}$ | 1 | 1 | 2.89 | 2.89 | & | | Test sample Related | | | | | | | | | | | Test sample positioning | E.4.2.1 | 0.03 | N | 1 | 1 | 1 | 0.03 | 0.03 | N-
1 | | Device Holder Uncertainty | E.4.1.1 | 5.00 | N | 1 | 1 | 1 | 5.00 | 5.00 | N-
1 | | Output power Power drift -
SAR drift measurement | 6.6.2 | 4.04 | R | $\sqrt{3}$ | 1 | 1 | 2.33 | 2.33 | ∞ | | Phantom and Tissue Parameter | ·s | | | | | | | | | | Phantom Uncertainty (Shape and thickness tolerances) | E.3.1 | 0.05 | R | $\sqrt{3}$ | 1 | 1 | 0.03 | 0.03 | 8 | | Liquid conductivity - deviation | E.3.2 | 4.57 | R | $\sqrt{3}$ | 0.64 | 0.43 | 1.69 | 1.13 | ∞ | |---------------------------------|-------|-------|-----|------------|------|------|-------|------|----------| | from target value | | | | | | | | | | | Liquid conductivity - | E.3.3 | 5.00 | N | 1 | 0.64 | 0.43 | 3.20 | 2.15 | M | | measurement uncertainty | | | | | | | | | | | Liquid permittivity - deviation | E.3.2 | 3.69 | R | $\sqrt{3}$ | 0.6 | 0.49 | 1.28 | 1.04 | ∞ | | from target value | | | | | | | | | | | Liquid permittivity - | E.3.3 | 10.00 | N | 1 | 0.6 | 0.49 | 6.00 | 4.90 | M | | measurement uncertainty | | | | | | | | | | | Combined Standard | | | RSS | | | | 11.55 | 10.6 | | | Uncertainty | | | | | | | | 7 | | | Expanded Uncertainty | | | K=2 | | | | 23.11 | 21.3 | | | (95% Confidence interval) | | | | | | | | 3 | | # 6.2. UNCERTAINTY FOR SYSTEM PERFORMANCE CHECK | a | b | С | d | e=f(d,k) | f | g | h= c*f/e | i=
c*g/ | k | |----------------------------------|---------|------|-------|------------|------|-------|----------|------------|----------| | | | | | | | | | e | | | Uncertainty Component | Sec. | Tol | Prob. | Div. | Ci | Ci | 1g Ui | 10g | Vi | | | | (+- | Dist. | | (1g) | (10g) | (+-%) | Ui | | | | | %) | | | | | | (+- | | | | | | | | | | | %) | | | Measurement System | | | | | | | | | | | Probe calibration | E.2.1 | 4.76 | N | 1 | 1 | 1 | 4.76 | 4.76 | ∞ | | Axial Isotropy | E.2.2 | 2.5 | R | $\sqrt{3}$ | 0.7 | 0.7 | 1.01 | 1.01 | ∞ | | Hemispherical Isotropy | E.2.2 | 4.0 | R | $\sqrt{3}$ | 0.7 | 0.7 | 1.62 | 1.62 | ∞ | | Boundary effect | E.2.3 | 1.0 | R | $\sqrt{3}$ | 1 | 1 | 0.58 | 0.58 | ∞ | | Linearity | E.2.4 | 5.0 | R | $\sqrt{3}$ | 1 | 1 | 2.89 | 2.89 | ∞ | | System detection limits | E.2.5 | 1.0 | R | $\sqrt{3}$ | 1 | 1 | 0.58 | 0.58 | ∞ | | Readout Electronics | E.2.6 | 0.02 | N | 1 | 1 | 1 | 0.02 | 0.02 | ∞ | | Reponse Time | E.2.7 | 3.0 | R | $\sqrt{3}$ | 1 | 1 | 1.73 | 1.73 | ∞ | | Integration Time | E.2.8 | 2.0 | R | $\sqrt{3}$ | 1 | 1 | 1.15 | 1.15 | ∞ | | RF ambient Conditions | E.6.1 | 3.0 | R | $\sqrt{3}$ | 1 | 1 | 1.73 | 1.73 | ∞ | | Probe positioner Mechanical | E.6.2 | 2.0 | R | $\sqrt{3}$ | 1 | 1 | 1.15 | 1.15 | ∞ | | Tolerance | | | | | | | | | | | Probe positioning with respect | E.6.3 | 0.05 | R | $\sqrt{3}$ | 1 | 1 | 0.03 | 0.03 | ∞ | | to Phantom Shell | F.5.0 | 5.0 | D | /_ | 1 | 1 | 2.00 | 2.00 | | | Extrapolation, interpolation and | E.5.2 | 5.0 | R | $\sqrt{3}$ | 1 | 1 | 2.89 | 2.89 | ∞ | | integration Algoritms for Max. | | | | | | | | | | | SAR Evaluation | | | | | | | | | | | Dipole | T _ | T | | T /= | | T . | | | 1 | | Dipole axis to liquid Distance | 8,E.4.2 | 1.00 | N | $\sqrt{3}$ | 1 | 1 | 0.58 | 0.58 | ∞ | | Input power and SAR drift measurement $8,6.6.2$ 4.04 R $\sqrt{3}$ 1 1 2.33 2.33 ∞ Phantom and Tissue Parameters Phantom Uncertainty (Shape and thickness tolerances) Liquid conductivity - deviation from target value Liquid conductivity - $E.3.3$ 5.00 N $\sqrt{3}$ 0.64 0.43 1.85 1.24 M measurement uncertainty Liquid permittivity - deviation $E.3.2$ 3.69 R $\sqrt{3}$ 0.6 0.49 1.28 1.04 ∞ from target value Liquid permittivity - $E.3.3$ 10.00 N $\sqrt{3}$ 10.6 $10.$ | | | | | | | | | | | |---|---------------------------------|-------------------------------|-------|-----|------------|------|------|-------|------|----------| | Phantom and Tissue ParametersPhantom Uncertainty (Shape and thickness tolerances)E.3.1 0.05 R $\sqrt{3}$ 11 0.03 0.03 ∞ Liquid conductivity - deviation from target valueE.3.2 4.57 R $\sqrt{3}$ 0.64 0.43 1.69 1.13 ∞ Liquid conductivity - measurement uncertaintyE.3.3 5.00 N $\sqrt{3}$ 0.64 0.43 1.85 1.24 MLiquid permittivity - deviation from target valueE.3.2 3.69 R $\sqrt{3}$ 0.6 0.49 1.28 1.04 ∞ Liquid permittivity -E.3.3 10.00 N $\sqrt{3}$ 0.6 0.49 3.46 2.83 M | Input power and SAR drift | 8,6.6.2 | 4.04 | R | $\sqrt{3}$ | 1 | 1 | 2.33 | 2.33 | ∞ | | Phantom Uncertainty (Shape and thickness tolerances) Liquid conductivity - deviation from target value Liquid conductivity - E.3.2 4.57 R $\sqrt{3}$ 0.64 0.43 1.69 1.13 ∞ 6.64 0.43 1.85 1.24 M 6.65 M $\sqrt{3}$ 0.64 0.49 1.28 1.04 ∞ 6.66 0.49 1.28 1.04 ∞ 6.67 6.67 6.67 6.68 ∞ 6.69
6.69 6 | measurement | | | | | | | | | | | and thickness tolerances) Liquid conductivity - deviation from target value Liquid conductivity - E.3.2 5.00 N $\sqrt{3}$ 0.64 0.43 1.69 1.13 ∞ measurement uncertainty Liquid permittivity - deviation from target value Liquid permittivity - deviation E.3.2 3.69 R $\sqrt{3}$ 0.6 0.49 1.28 1.04 ∞ from target value Liquid permittivity - E.3.3 10.00 N $\sqrt{3}$ 0.6 0.49 3.46 2.83 M | Phantom and Tissue Parame | Phantom and Tissue Parameters | | | | | | | | | | Liquid conductivity - deviation
from target valueE.3.2 4.57 R $\sqrt{3}$ 0.64 0.43 1.69 1.13 ∞ Liquid conductivity -
measurement uncertaintyE.3.3 5.00 N $\sqrt{3}$ 0.64 0.43 1.85 1.24 MLiquid permittivity - deviation
from target valueE.3.2 3.69 R $\sqrt{3}$ 0.6 0.49 1.28 1.04 ∞ Liquid permittivity -E.3.3 10.00 N $\sqrt{3}$ 0.6 0.49 3.46 2.83 M | Phantom Uncertainty (Shape | E.3.1 | 0.05 | R | $\sqrt{3}$ | 1 | 1 | 0.03 | 0.03 | ∞ | | from target value Liquid conductivity - measurement uncertainty E.3.2 3.69 R $\sqrt{3}$ 0.64 0.43 0.64 0.43 0.64 0.43 0.64 0.43 0.64 0.49 0.64 0.49 0.64 | and thickness tolerances) | | | | | | | | | | | Liquid conductivity - E.3.3 5.00 N $\sqrt{3}$ 0.64 0.43 1.85 1.24 M measurement uncertainty Liquid permittivity - deviation from target value Liquid permittivity - E.3.3 10.00 N $\sqrt{3}$ 0.6 0.49 1.28 1.04 ∞ | Liquid conductivity - deviation | E.3.2 | 4.57 | R | $\sqrt{3}$ | 0.64 | 0.43 | 1.69 | 1.13 | ∞ | | measurement uncertainty Liquid permittivity - deviation from target value E.3.2 3.69 R $\sqrt{3}$ 0.6 0.49 1.28 1.04 ∞ Liquid permittivity - E.3.3 10.00 N $\sqrt{3}$ 0.6 0.49 3.46 2.83 M | from target value | | | | | | | | | | | Liquid permittivity - deviation from target value E.3.2 3.69 R $\sqrt{3}$ 0.6 0.49 1.28 1.04 ∞ Liquid permittivity - E.3.3 10.00 N $\sqrt{3}$ 0.6 0.49 3.46 2.83 M | Liquid conductivity - | E.3.3 | 5.00 | N | $\sqrt{3}$ | 0.64 | 0.43 | 1.85 | 1.24 | M | | from target value E.3.3 10.00 N $\sqrt{3}$ 0.6 0.49 3.46 2.83 M | measurement uncertainty | | | | | | | | | | | Liquid permittivity - E.3.3 10.00 N $\sqrt{3}$ 0.6 0.49 3.46 2.83 M | Liquid permittivity - deviation | E.3.2 | 3.69 | R | $\sqrt{3}$ | 0.6 | 0.49 | 1.28 | 1.04 | ∞ | | | from target value | | | | | | | | | | | | Liquid permittivity - | E.3.3 | 10.00 | N | $\sqrt{3}$ | 0.6 | 0.49 | 3.46 | 2.83 | M | | measurement uncertainty | measurement uncertainty | | | | | | | | | | | Combined Standard RSS 8.83 8.37 | Combined Standard | | | RSS | | | | 8.83 | 8.37 | | | Uncertainty | Uncertainty | | | | | | | | | | | Expanded Uncertainty K=2 17.66 16.7 | Expanded Uncertainty | | | K=2 | | | | 17.66 | 16.7 | | | (95% Confidence interval) | (95% Confidence interval) | | | | | | | | 3 | | ## 7. SAR Measurement Evaluation ## 7.1. System Setup In the simplified setup for system evaluation, the DUT is replaced by a calibrated dipole and the power source is replaced by a continuous wave which comes from a signal generator at frequency 835 MHz, 1900 MHz and 2450MHz. The calibrated dipole must be placed beneath the flat phantom section of the SAM twin phantom with the correct distance holder. The distance holder should touch the phantom surface with a light pressure at the reference marking and be oriented parallel to the long side of the phantom. #### Equipments: | name | Type and specification | | |---------------------|---------------------------|--| | Signal generator | E4433B | | | Directional coupler | 450MHz-3GHz | | | Amplifier | 3W 502(10-2500MHz) | | | Reference dipole | 835MHz:SN 36/08 DIPC 99 | | | | 1900MHz:SN 36/08 DIPF 102 | | ### System Verification Setup Block Diagram ## 7.2. Validation Results Comparing to the original SAR value provided by SATIMO, the validation data should be within its specification of 10%. | Evaguanav | Description | SAR[W/Kg] 1g | | | |---------------------|------------------|------------------|------------------|--| | Frequency | Description | Head | Body | | | 835 MHz | Reference result | 9.714 | 9.714 | | | 633 MITZ | ±5% window | 8.743 to 10.685 | 8.743 to 10.685 | | | 925 MU ₂ | Validation value | 9.912 | 9.544 | | | 835 MHz | (May 14) | 9.912 | 9.344 | | | 1900 MHz | Reference result | 39.890 | 39.890 | | | 1900 MITZ | ±5% window | 35.901 to 43.879 | 35.901 to 43.879 | | | 1900 MHz | Validation value | 37.820 | 38.960 | | | 1900 MIUZ | (May 14) | 37.820 | 38.900 | | All SAR measurement results are normalized from 250mW to 1W. Note: System checks the specific test data please see page 64~71 ## 8. Operational Conditions During Test ### 8.1. Informations on the testing The mobile phone antenna and battery are those specified by the manufacturer. The battery is fully charged before each measurement. The output power and frequency are controlled using a base station simulator. The mobile phone is set to transmit at its highest output peak power level. The mobile phone is test in the "cheek" and "tilted" positions on the left and right sides of the phantom. The mobile phone is placed with the vertical centre line of the body of the mobile phone and the horizontal line crossing the centre of the earpiece in a plane parallel to the sagittal plane of the phantom. Description of the "cheek" position: The mobile phone is well placed in the reference plane and the earpiece is in contact with the ear. Then the mobile phone is moved until any point on the front side get in contact with the cheek of the phantom or until contact with the ear is lost. #### Description of the "tilted" position: The mobile phone is well placed in the "cheek" position as described above. Then the mobile phone is moved outward away from the month by an angle of 15 degrees or until contact with the ear lost. Remark: Please refer to Appendix B for the test setup photos. ### 8.2. Body-worn Configurations The body-worn configurations shall be tested with the supplied accessories (belt-clips, holsters, etc.) attached to the device in normal use configuration. The depth of the body tissue was 15.1cm. The distance between the back of the device and the bottom of the flat phantom is 1.5cm(taking into account of the IEEE 1528 and the place of the antenna) For body-worn and other configurations a flat phantom shall be used which is comprised of material with electrical properties similar to the corresponding tissues. SAR Measurement Points in Area Scan ### 8.3. Measurement procedure The following steps are used for each test position - Establish a call with the maximum output power with a base station simulator. The connection between the mobile and the base station simulator is established via air interface - Measurement of the local E-field value at a fixed location. This value serves as a reference value for calculating a possible power drift. - Measurement of the SAR distribution with a grid of 8 to 16mm * 8 to 16 mm and a constant distance to the inner surface of the phantom. Since the sensors can not directly measure at the inner phantom surface, the values between the sensors and the inner phantom surface are extrapolated. With these values the area of the maximum SAR is calculated by an interpolation scheme. - Around this point, a cube of 30 * 30 * 30 mm or 32 * 32 * 32 mm is assessed by measuring 5 or 8 * 5 or 8*4 or 5 mm. With these data, the peak spatial-average SAR
value can be calculated. ### 8.4. Description of interpolation/extrapolation scheme The local SAR inside the phantom is measured using small dipole sensing elements inside a probe body. The probe tip must not be in contact with the phantom surface in order to minimize measurements errors, but the highest local SAR will occur at the surface of the phantom. An extrapolation is using to determinate this highest local SAR values. The extrapolation is based on a fourth-order least-square polynomial fit of measured data. The local SAR value is then extrapolated from the liquid surface with a 1mm step. The measurements have to be performed over a limited time (due to the duration of the battery) so the step of measurement is high. It could vary between 5 and 8 mm. To obtain an accurate assessment of the maximum SAR averaged over 10 grams and 1 gram requires a very fine resolution in the three dimensional scanned data array. # 9. Measurement Of Conducted Peak output power ## 1. GSM Conducted peak output power | Band | Channel | Frequency
(MHz) | Output Power (dBm) | |------------|---------|--------------------|--------------------| | GSM
850 | 128 | 824.2 | 33.78 | | | 190 | 836.6 | 34.22 | | | 251 | 848.8 | 34.31 | | PCS | 512 | 1850.2 | 30.56 | | 1900 | 661 | 1880.0 | 30.03 | | 1900 | 810 | 1909.8 | 29.80 | ## 2. GPRS Mode Conducted peak output power | Dond | Channal | Frequency | | Output Po | wer(dBm) | | |-------------|---------|-----------|--------|-----------|----------|--------| | Band | Channel | (MHz) | Slot 1 | Slot 2 | Slot 3 | Slot 4 | | CCM | 128 | 824.2 | 33.69 | 33.52 | 33.45 | 33.60 | | GSM
850 | 190 | 836.6 | 33.76 | 34.13 | 33.87 | 34.10 | | 830 | 251 | 848.8 | 33.63 | 33.50 | 33.41 | 34.22 | | DCC | 512 | 1850.2 | 30.25 | 30.48 | 30.16 | 30.10 | | PCS
1900 | 661 | 1880.0 | 29.71 | 29.82 | 29.83 | 29.96 | | 1900 | 810 | 1909.8 | 29.01 | 29.07 | 29.08 | 29.10 | ## GPRS Time-based Average Power | Band | Channel | Frequency | | Output Po | wer(dBm) | | |------------|---------|-----------|--------|-----------|----------|--------| | Build | Chamier | (MHz) | Slot 1 | Slot 2 | Slot 3 | Slot 4 | | CCM | 128 | 824.2 | 24.69 | 27.5 | 29.19 | 30.59 | | GSM
850 | 190 | 836.6 | 24.76 | 28.11 | 29.61 | 31.09 | | 830 | 251 | 848.8 | 24.63 | 27.48 | 29.15 | 31.21 | | DCC | 512 | 1850.2 | 21.25 | 24.46 | 25.9 | 27.09 | | PCS | 661 | 1880.0 | 20.71 | 23.8 | 25.57 | 26.95 | | 1900 | 810 | 1909.8 | 20.01 | 23.05 | 24.82 | 26.09 | # 3.Bluetooth peak output power | Band | Channel | Frequency (MHz) | Output
Power(dBm)
GFSK | |------|---------|-----------------|------------------------------| | ВТ | 0 | 2402 | 7.341 | | | 38 | 2441 | 5.740 | | | 79 | 2480 | 7.115 | ### **10.Test Results List** Summary of Measurement Results (GSM 850MHz Band) | Temperature: 21.0~23.8°C, humidity: 54~60%. | | | | | | | |---|-------|-------------|---------|-------------|---------|--------| | | | | Device | | | | | Phanto | m | Device Test | Test | SAR(W/K | Scaling | Scaled | | Configura | tions | Positions | channel | g), 1g Peak | Factor | SAR | | | | | | | | | | Right Si | ide | Cheek | | 0.741 | | 0.774 | | Of Hea | ıd | Ear | | 0.370 | | 0.387 | | Left Sic | de | Cheek | | 0.734 | | 0.767 | | Of Hea | ıd | Ear | | 0.428 | 1.045 | 0.447 | | D - 1 | GSM | Back upward | 251 | 0.461 | | 0.482 | | Body | USM | Face Upward | | 0.344 | | 0.359 | | (15mm | CDDC | Back upward | | 0.609 | 1.067 | 0.650 | | Separation) | GPRS | Face Upward | | 0.308 | 1.067 | 0.329 | #### Note: 1.The SAR test shall be performed at the high, middle and low frequency channels of each operating mode, when the SAR of highest power channel of each configurations is less than 0.8 W/kg, refer to KDB 648474, testing for the other channels is not required. Summary of Measurement Results (GSM 1900MHz Band) | Temperature: 21.0~23.8°C, humidity: 54~60%. | | | | | | | |---|-------|-------------|---------|-------------|---------|--------| | | | | Device | | | | | Phanto | m | Device Test | Test | SAR(W/K | Scaling | Scaled | | Configura | tions | Positions | channel | g), 1g Peak | Factor | SAR | | | | | | | | | | Right Si | de | Cheek | | 0.222 | | 0.229 | | Of Hea | ıd | Ear | | 0.094 | | 0.097 | | Left Sic | de | Cheek | | 0.465 | | 0.480 | | Of Hea | ıd | Ear | 512 | 0.153 | 1.033 | 0.158 | | Dode | GSM | Back upward | | 0.201 | | 0.208 | | Body
(15mm | USM | Face Upward | | 0.180 | | 0.186 | | Separation) | GPRS | Back upward | | 0.414 | 1.096 | 0.454 | | Separation) | Urks | Face Upward | | 0.197 | 1.090 | 0.216 | #### Note: 1.The SAR test shall be performed at the high, middle and low frequency channels of each operating mode, when the SAR of highest power channel of each configurations is less than 0.8 W/kg, refer to KDB 648474, testing for the other channels is not required. ## Scaled SAR calculation | Band | Tune-up power tolerance | SAR test channel | Scaling | | |-----------|--------------------------------|------------------|---------|--| | Dallu | (dBm) | Power (dBm) | Factor | | | GSM 850 | $PCL = 5$, $PWR = 34 \pm 0.5$ | 34.31 | 1.045 | | | GPRS 850 | Max output power <34.5 | 34.22 | 1.067 | | | PCS 1900 | $PCL = 0$, $PWR = 30 \pm 0.7$ | 30.56 | 1.033 | | | GPRS 1900 | Max output power <30.5 | 30.10 | 1.096 | | ## 11. Multiple Transmitters Evaluation The are three transmitters build in EUT, As follwing: #### **Stand-alone SAR** The BT Max. Peak output power is 5.42 mW $(7.341 \text{dBm}) \leq \text{Pref} \{ \text{Pref} = \frac{1}{2} * 60 / \text{f}(\text{GHz}) \}$, and the distance between BT antenna and main antenna is 5.9 cm > 2.5 cm, standalone SAR evaluation is not required for Bluetooth antenna . #### Simultaneous SAR | Test Position | GSM&WCDMA
SAR _{Max} (W/Kg) | Bluetooth
SAR(W/Kg) | ∑1-gSARMax
(W/Kg)
BT&Main Ant | |---------------|--|------------------------|-------------------------------------| | Head SAR | 0.741 | 0 | 0.741 | | Body SAR | 0.609 | 0 | 0.609 | Simultaneous Transmission SAR evaluation is not required for BT and GSM, because the sum of 1g SAR $_{Max}$ is 1.036W/Kg < 1.6W/Kg for BT and GSM. # **Annex A EUT Setup Photos** 1 EUT Left Head Touch Cheek Position 2 EUT Left Head Tilt15 Position 3 EUT Right Head Touch Cheek Position 4 EUT Right Head Tilt15 Position ## 5 Side Position Liquid Level Photo # **Annex B Graph Test Results** | BAND | <u>PARAMETERS</u> | | | | | |-----------------|---|--|--|--|--| | | Measurement 1: Right Head with Cheek device position on High | | | | | | | Channel in GSM mode | | | | | | | Measurement 2: Right Head with Tilt device position on High | | | | | | | Channel in GSM mode | | | | | | | Measurement 3: Left Head with Cheek device position on High | | | | | | | Channel in GSM mode | | | | | | | Measurement 4: Left Head with Tilt device position on High | | | | | | CCMOEN | Channel in GSM mode | | | | | | <u>GSM850</u> | Measurement 5: Validation Plane with Body device position on | | | | | | | High Channel in GSM mode | | | | | | | Measurement 6: Validation Plane with Body device position on | | | | | | | High Channel in GSM mode | | | | | | | Measurement 7: Validation Plane with Body device position on | | | | | | | High Channel in GPRS mode | | | | | | | Measurement 8: Validation Plane with Body device position on | | | | | | | High Channel in GPRS mode | | | | | | | Measurement 13: Right Head with Cheek device position on Low | | | | | | | Channel in GSM mode | | | | | | | Measurement 14: Right Head with Tilt device position on Low | | | | | | | Channel in GSM mode | | | | | | | Measurement 15: Left Head with Cheek device position on Low | | | | | | | Channel in GSM mode | | | | | | | Measurement 16: Left Head with Tilt device position on Low | | | | | | GSM1900 | Channel in GSM mode | | | | | | <u>GSW11900</u> | Measurement 17: Validation Plane with Body device position on | | | | | | | Low Channel in GSM mode | | | | | | | Measurement 18: Validation Plane with Body device position on | | | | | | | Low Channel in GSM mode | | | | | | | Measurement 19: Validation Plane with Body device position on | | | | | | | Low Channel in GPRS mode | | | | | | | Measurement 20: Validation Plane with Body device position on | | | | | | | Low Channel in GPRS mode | | | | | # **MEASUREMENT 1** Type: Phone measurement (Complete) Area scan resolution: dx=8mm,dy=8mm Zoom scan resolution: dx=8mm, dy=8mm, dz=5mm Date of measurement: 14/5/2012 Measurement duration: 7 minutes 49 seconds # A. Experimental conditions. | Phantom File | sam_direct_droit2_surf8mm.txt | | | |------------------------|-------------------------------|--|--| | Phantom | Right head | | | | Device Position | Cheek | | | | Band | GSM850 | | | | Channels | High | | | | Signal | GSM | | | ## **B. SAR Measurement Results** Higher Band SAR (Channel 251): | <u> </u> | | |-----------------------------------|---------------------| | Frequency (MHz) | 848.800000 | | Relative permittivity (real part) | 40.669998 | | Relative permittivity | 19.120001 | | Conductivity (S/m) | 0.888655 | | Power drift(%) | -1.630000 | | Ambient Temperature: | 22.8°C | | Liquid Temperature: | 22.6°C | | ConvF: | 28.479,25.214,27.19 | | Crest factor: | 1:8 | # **Maximum location: X=-26.00, Y=-17.00** | SAR 10g (W/Kg) | 0.517596 | |----------------|----------| | SAR 1g (W/Kg) | 0.741154 | # Z Axis Scan | Z (mm) | 0.00 | 4.00 | 9.00 | 14.00 | 19.00 | 24.00 | 29.00 | |--------|--------|--------|--------|--------|--------|--------|--------| | SAR | 0.0000 | 0.7599 | 0.5748 | 0.4066 | 0.3096 | 0.2111 | 0.1515 | | (W/Kg) | | | | | | | | # **MEASUREMENT 2** Type: Phone measurement (Complete) Area scan resolution: dx=8mm,dy=8mm Zoom scan resolution: dx=8mm, dy=8mm, dz=5mm Date of measurement: 14/5/2012 Measurement duration: 7 minutes 33 seconds # A. Experimental
conditions. | Phantom File | sam_direct_droit2_surf8mm.txt | | | |------------------------|-------------------------------|--|--| | Phantom | Right head | | | | Device Position | Tilt | | | | Band | GSM850 | | | | Channels | High | | | | Signal | GSM | | | ## **B. SAR Measurement Results** Higher Band SAR (Channel 251): | <u> </u> | | |-----------------------------------|---------------------| | Frequency (MHz) | 848.800000 | | Relative permittivity (real part) | 40.669998 | | Relative permittivity | 19.120001 | | Conductivity (S/m) | 0.888655 | | Power drift(%) | -0.510000 | | Ambient Temperature: | 22.8°C | | Liquid Temperature: | 22.6°C | | ConvF: | 28.479,25.214,27.19 | | Crest factor: | 1:8 | # **Maximum location: X=-35.00, Y=-18.00** | SAR 10g (W/Kg) | 0.260904 | |----------------|----------| | SAR 1g (W/Kg) | 0.370332 | ## Z Axis Scan | Z (mm) | 0.00 | 4.00 | 9.00 | 14.00 | 19.00 | 24.00 | 29.00 | |--------|--------|--------|--------|--------|--------|--------|--------| | SAR | 0.0000 | 0.3852 | 0.2847 | 0.2106 | 0.1626 | 0.1206 | 0.0967 | | (W/Kg) | | | | | | | | # **MEASUREMENT 3** Type: Phone measurement (Complete) Area scan resolution: dx=8mm,dy=8mm Zoom scan resolution: dx=8mm, dy=8mm, dz=5mm Date of measurement: 14/5/2012 Measurement duration: 7 minutes 47 seconds # A. Experimental conditions. | Phantom File | sam_direct_droit2_surf8mm.txt | |------------------------|-------------------------------| | Phantom | Left head | | Device Position | Cheek | | Band | GSM850 | | Channels | High | | Signal | GSM | ## **B. SAR Measurement Results** Higher Band SAR (Channel 251): | <u> </u> | | |-----------------------------------|---------------------| | Frequency (MHz) | 848.800000 | | Relative permittivity (real part) | 40.669998 | | Relative permittivity | 19.120001 | | Conductivity (S/m) | 0.888655 | | Power drift(%) | -3.130000 | | Ambient Temperature: | 22.8°C | | Liquid Temperature: | 22.6°C | | ConvF: | 28.479,25.214,27.19 | | Crest factor: | 1:8 | ### **Maximum location: X=-33.00, Y=-15.00** | SAR 10g (W/Kg) | 0.514113 | |----------------|----------| | SAR 1g (W/Kg) | 0.733830 | | Z (mm) | 0.00 | 4.00 | 9.00 | 14.00 | 19.00 | 24.00 | 29.00 | |--------|--------|--------|--------|--------|--------|--------|--------| | SAR | 0.0000 | 0.7574 | 0.5582 | 0.4217 | 0.3023 | 0.2256 | 0.1525 | | (W/Kg) | | | | | | | | Type: Phone measurement (Complete) Area scan resolution: dx=8mm,dy=8mm Zoom scan resolution: dx=8mm, dy=8mm, dz=5mm Date of measurement: 14/5/2012 Measurement duration: 7 minutes 33 seconds ### A. Experimental conditions. | Phantom File | sam_direct_droit2_surf8mm.txt | | | |------------------------|-------------------------------|--|--| | Phantom | Left head | | | | Device Position | Tilt | | | | Band | GSM850 | | | | Channels | High | | | | Signal | GSM | | | ### **B. SAR Measurement Results** Higher Band SAR (Channel 251): | <u> </u> | | |-----------------------------------|---------------------| | Frequency (MHz) | 848.800000 | | Relative permittivity (real part) | 40.669998 | | Relative permittivity | 19.120001 | | Conductivity (S/m) | 0.888655 | | Power drift(%) | -1.170000 | | Ambient Temperature: | 22.8°C | | Liquid Temperature: | 22.6°C | | ConvF: | 28.479,25.214,27.19 | | Crest factor: | 1:8 | ### **Maximum location: X=-33.00, Y=-17.00** | SAR 10g (W/Kg) | 0.301213 | |----------------|----------| | SAR 1g (W/Kg) | 0.427623 | | Z (mm) | 0.00 | 4.00 | 9.00 | 14.00 | 19.00 | 24.00 | 29.00 | |--------|--------|--------|--------|--------|--------|--------|--------| | SAR | 0.0000 | 0.4402 | 0.3176 | 0.2456 | 0.1818 | 0.1438 | 0.1093 | | (W/Kg) | | | | | | | | Type: Phone measurement (Complete) Area scan resolution: dx=8mm,dy=8mm Zoom scan resolution: dx=8mm, dy=8mm, dz=5mm Date of measurement: 14/5/2012 Measurement duration: 9 minutes 11 seconds ### A. Experimental conditions. | Phantom File | surf_sam_plan.txt | | | |------------------------|-------------------|--|--| | Phantom | Validation plane | | | | Device Position | Body | | | | Band | GSM850 | | | | Channels | High | | | | Signal | GSM | | | ### **B. SAR Measurement Results** Higher Band SAR (Channel 251): | <u> </u> | | |-----------------------------------|----------------------| | Frequency (MHz) | 848.800000 | | Relative permittivity (real part) | 55.709999 | | Relative permittivity | 21.709999 | | Conductivity (S/m) | 1.009033 | | Power drift(%) | -1.680000 | | Ambient Temperature: | 22.8°C | | Liquid Temperature: | 22.6°C | | ConvF: | 28.559,25.681,27.588 | | Crest factor: | 1:8 | ### Maximum location: X=-7.00, Y=10.00 | SAR 10g (W/Kg) | 0.250638 | |----------------|----------| | SAR 1g (W/Kg) | 0.461141 | | Z (mm) | 0.00 | 4.00 | 9.00 | 14.00 | 19.00 | 24.00 | 29.00 | |--------|--------|--------|--------|--------|--------|--------|--------| | SAR | 0.0000 | 0.4791 | 0.2380 | 0.1197 | 0.0600 | 0.0294 | 0.0169 | | (W/Kg) | | | | | | | | Type: Phone measurement (Complete) Area scan resolution: dx=8mm,dy=8mm Zoom scan resolution: dx=8mm, dy=8mm, dz=5mm Date of measurement: 14/5/2012 Measurement duration: 9 minutes 10 seconds ### A. Experimental conditions. | Phantom File | surf_sam_plan.txt | | | |------------------------|-------------------|--|--| | Phantom | Validation plane | | | | Device Position | Body | | | | Band | GSM850 | | | | Channels | High | | | | Signal | GSM | | | ### **B. SAR Measurement Results** Higher Band SAR (Channel 251): | Frequency (MHz) | 848.800000 | |-----------------------------------|----------------------| | Relative permittivity (real part) | 55.709999 | | Relative permittivity | 21.709999 | | Conductivity (S/m) | 1.009033 | | Power drift(%) | 680000 | | Ambient Temperature: | 22.8°C | | Liquid Temperature: | 22.6°C | | ConvF: | 28.559,25.681,27.588 | | Crest factor: | 1:8 | ### Maximum location: X=5.00, Y=-16.00 | SAR 10g (W/Kg) | 0.238610 | |----------------|----------| | SAR 1g (W/Kg) | 0.343773 | | Z (mm) | 0.00 | 4.00 | 9.00 | 14.00 | 19.00 | 24.00 | 29.00 | |--------|--------|--------|--------|--------|--------|--------|--------| | SAR | 0.0000 | 0.3446 | 0.2495 | 0.1804 | 0.1409 | 0.0988 | 0.0805 | | (W/Kg) | | | | | | | | Type: Phone measurement (Complete) Area scan resolution: dx=8mm,dy=8mm Zoom scan resolution: dx=8mm, dy=8mm, dz=5mm Date of measurement: 14/5/2012 Measurement duration: 9 minutes 5 seconds ### A. Experimental conditions. | Phantom File | surf_sam_plan.txt | | | |------------------------|-------------------|--|--| | Phantom | Validation plane | | | | Device Position | Body | | | | Band | GSM850 | | | | Channels | High | | | | Signal | GPRS | | | ### **B. SAR Measurement Results** Higher Band SAR (Channel 251): | Frequency (MHz) | 848.800000 | |-----------------------------------|----------------------| | Relative permittivity (real part) | 55.709999 | | Relative permittivity | 21.709999 | | Conductivity (S/m) | 1.009033 | | Power drift(%) | -2.470000 | | Ambient Temperature: | 22.8°C | | Liquid Temperature: | 22.6°C | | ConvF: | 28.559,25.681,27.588 | | Crest factor: | 1:2 | ### Maximum location: X=8.00, Y=-9.00 | SAR 10g (W/Kg) | 0.426249 | |----------------|----------| | SAR 1g (W/Kg) | 0.609406 | | Z (mm) | 0.00 | 4.00 | 9.00 | 14.00 | 19.00 | 24.00 | 29.00 | |--------|--------|--------|--------|--------|--------|--------|--------| | SAR | 0.0000 | 0.6288 | 0.4689 | 0.3356 | 0.2357 | 0.1898 | 0.1226 | | (W/Kg) | | | | | | | | Type: Phone measurement (Complete) Area scan resolution: dx=8mm,dy=8mm Zoom scan resolution: dx=8mm, dy=8mm, dz=5mm Date of measurement: 14/5/2012 Measurement duration: 9 minutes 5 seconds ### A. Experimental conditions. | Phantom File | surf_sam_plan.txt | | | |------------------------|-------------------|--|--| | Phantom | Validation plane | | | | Device Position | Body | | | | Band | GSM850 | | | | Channels | High | | | | Signal | GPRS | | | ### **B. SAR Measurement Results** Higher Band SAR (Channel 251): | or a write print (enwirer = e 1). | | |------------------------------------|----------------------| | Frequency (MHz) | 848.800000 | | Relative permittivity (real part) | 55.709999 | | Relative permittivity | 21.709999 | | Conductivity (S/m) | 1.009033 | | Power drift(%) | -2.470000 | | Ambient Temperature: | 22.8°C | | Liquid Temperature: | 22.6°C | | ConvF: | 28.559,25.681,27.588 | | Crest factor: | 1:2 | Maximum location: X=7.00, Y=-7.00 | SAR 10g (W/Kg) | 0.221937 | |----------------|----------| | SAR 1g (W/Kg) | 0.307879 | | Z (mm) | 0.00 | 4.00 | 9.00 | 14.00 | 19.00 | 24.00 | 29.00 | |--------|--------|--------|--------|--------|--------|--------|--------| | SAR | 0.0000 | 0.3177 | 0.2357 | 0.1778 | 0.1337 | 0.0984 | 0.0746 | | (W/Kg) | | | | | | | | Type: Phone measurement (Complete) Area scan resolution: dx=8mm,dy=8mm Zoom scan resolution: dx=8mm, dy=8mm, dz=5mm Date of measurement: 14/5/2012 Measurement duration: 8 minutes 33 seconds ### A. Experimental conditions. | Phantom File | sam_direct_droit2_surf8mm.txt | |------------------------|-------------------------------| | Phantom | Right head | | Device Position | Cheek | | Band | GSM1900 | | Channels | Low | | Signal | GSM | ### **B. SAR Measurement Results** | T B WITCH ST III (CITWINIOT C 12): | | |-------------------------------------|----------------------| | Frequency (MHz) | 1850.200000 | | Relative permittivity (real part) | 38.509998 | | Relative permittivity | 13.750000 | | Conductivity (S/m) | 1.436111 | | Power drift(%) | -0.140000 | | Ambient Temperature: | 22.8°C | | Liquid Temperature: | 22.6°C | | ConvF: | 40.136,34.843,38.721 | | Crest factor: | 1:8 | ### **Maximum location: X=-64.00, Y=-24.00** | SAR 10g (W/Kg) | 0.117961 | |----------------|----------| | SAR 1g (W/Kg) | 0.221887 | | Z (mm) | 0.00 | 4.00 | 9.00 | 14.00 | 19.00 | 24.00 | 29.00 | |--------|--------|--------|--------|--------|--------|--------|--------| | SAR | 0.0000 | 0.2270 | 0.1054 | 0.0594 | 0.0311 | 0.0135 | 0.0066 | | (W/Kg) | | | | | |
| | Type: Phone measurement (Complete) Area scan resolution: dx=8mm,dy=8mm Zoom scan resolution: dx=8mm, dy=8mm, dz=5mm Date of measurement: 14/5/2012 Measurement duration: 8 minutes 33 seconds ### A. Experimental conditions. | Phantom File | sam_direct_droit2_surf8mm.txt | | | | |------------------------|-------------------------------|--|--|--| | Phantom | Right head | | | | | Device Position | Tilt | | | | | Band | GSM1900 | | | | | Channels | Low | | | | | Signal | GSM | | | | ### **B. SAR Measurement Results** | Frequency (MHz) | 1850.200000 | |-----------------------------------|----------------------| | Relative permittivity (real part) | 38.509998 | | Relative permittivity | 13.750000 | | Conductivity (S/m) | 1.436111 | | Power drift(%) | -1.100000 | | Ambient Temperature: | 22.8°C | | Liquid Temperature: | 22.6°C | | ConvF: | 40.136,34.843,38.721 | | Crest factor: | 1:8 | ### Maximum location: X=-6.00, Y=-8.00 | SAR 10g (W/Kg) | 0.048541 | |----------------|----------| | SAR 1g (W/Kg) | 0.093796 | | Z (mm) | 0.00 | 4.00 | 9.00 | 14.00 | 19.00 | 24.00 | 29.00 | |--------|--------|--------|--------|--------|--------|--------|--------| | SAR | 0.0000 | 0.1011 | 0.0524 | 0.0291 | 0.0136 | 0.0114 | 0.0032 | | (W/Kg) | | | | | | | | Type: Phone measurement (Complete) Area scan resolution: dx=8mm,dy=8mm Zoom scan resolution: dx=8mm, dy=8mm, dz=5mm Date of measurement: 14/5/2012 Measurement duration: 7 minutes 57 seconds ### A. Experimental conditions. | Phantom File | sam_direct_droit2_surf8mm.txt | | | | |------------------------|-------------------------------|--|--|--| | Phantom | Left head | | | | | Device Position | Cheek | | | | | Band | GSM1900 | | | | | Channels | Low | | | | | Signal | GSM | | | | ### **B.** SAR Measurement Results | 1 2 with 21 lit (Cilwillion C 12). | | |-------------------------------------|----------------------| | Frequency (MHz) | 1850.200000 | | Relative permittivity (real part) | 38.509998 | | Relative permittivity | 13.750000 | | Conductivity (S/m) | 1.436111 | | Power drift(%) | -0.720000 | | Ambient Temperature: | 22.6°C | | Liquid Temperature: | 22.7°C | | ConvF: | 40.136,34.843,38.721 | | Crest factor: | 1:8 | ### **Maximum location: X=-55.00, Y=-49.00** | SAR 10g (W/Kg) | 0.238224 | |----------------|----------| | SAR 1g (W/Kg) | 0.465024 | | Z (mm) | 0.00 | 4.00 | 9.00 | 14.00 | 19.00 | 24.00 | 29.00 | |--------|--------|--------|--------|--------|--------|--------|--------| | SAR | 0.0000 | 0.4794 | 0.2363 | 0.1107 | 0.0513 | 0.0284 | 0.0158 | | (W/Kg) | | | | | | | | Type: Phone measurement (Complete) Area scan resolution: dx=8mm,dy=8mm Zoom scan resolution: dx=8mm, dy=8mm, dz=5mm Date of measurement: 14/5/2012 Measurement duration: 7 minutes 18 seconds ### A. Experimental conditions. | Phantom File | sam_direct_droit2_surf8mm.txt | | | | |------------------------|-------------------------------|--|--|--| | Phantom | Left head | | | | | Device Position | Tilt | | | | | Band | GSM1900 | | | | | Channels | Low | | | | | Signal | GSM | | | | ## **B. SAR Measurement Results** | Frequency (MHz) | 1850.200000 | |-----------------------------------|----------------------| | Relative permittivity (real part) | 38.509998 | | Relative permittivity | 13.750000 | | Conductivity (S/m) | 1.436111 | | Power drift(%) | -0.330000 | | Ambient Temperature: | 22.6°C | | Liquid Temperature: | 22.7°C | | ConvF: | 40.136,34.843,38.721 | | Crest factor: | 1:8 | | SURFACE SAR | VOLUME SAR | ## Maximum location: X=-15.00, Y=9.00 | SAR 10g (W/Kg) | 0.077982 | |----------------|----------| | SAR 1g (W/Kg) | 0.153351 | | Z (mm) | 0.00 | 4.00 | 9.00 | 14.00 | 19.00 | 24.00 | 29.00 | |--------|--------|--------|--------|--------|--------|--------|--------| | SAR | 0.0000 | 0.1626 | 0.0809 | 0.0371 | 0.0186 | 0.0104 | 0.0056 | | (W/Kg) | | | | | | | | Type: Phone measurement (Complete) Area scan resolution: dx=8mm,dy=8mm Zoom scan resolution: dx=8mm, dy=8mm, dz=5mm Date of measurement: 14/5/2012 Measurement duration: 9 minutes 8 seconds ### A. Experimental conditions. | Phantom File | surf_sam_plan.txt | | | |------------------------|-------------------|--|--| | Phantom | Validation plane | | | | Device Position | Body | | | | Band | GSM1900 | | | | Channels | Low | | | | Signal | GSM | | | ### **B. SAR Measurement Results** | Frequency (MHz) | 1850.200000 | |-----------------------------------|----------------------| | Relative permittivity (real part) | 52.540001 | | Relative permittivity | 14.070000 | | Conductivity (S/m) | 1.469533 | | Power drift(%) | -0.270000 | | Ambient Temperature: | 22.6°C | | Liquid Temperature: | 22.7°C | | ConvF: | 40.625,34.773,38.535 | | Crest factor: | 1:8 | ### Maximum location: X=-9.00, Y=35.00 | SAR 10g (W/Kg) | 0.106155 | |----------------|----------| | SAR 1g (W/Kg) | 0.200705 | | Z (mm) | 0.00 | 4.00 | 9.00 | 14.00 | 19.00 | 24.00 | 29.00 | |--------|--------|--------|--------|--------|--------|--------|--------| | SAR | 0.0000 | 0.2075 | 0.0977 | 0.0480 | 0.0215 | 0.0153 | 0.0064 | | (W/Kg) | | | | | | | | Type: Phone measurement (Complete) Area scan resolution: dx=8mm,dy=8mm Zoom scan resolution: dx=8mm, dy=8mm, dz=5mm Date of measurement: 14/5/2012 Measurement duration: 9 minutes 9 seconds ### A. Experimental conditions. | Phantom File | surf_sam_plan.txt | | | | |------------------------|-------------------|--|--|--| | Phantom | Validation plane | | | | | Device Position | Body | | | | | Band | GSM1900 | | | | | Channels | Low | | | | | Signal | GSM | | | | ### **B. SAR Measurement Results** | Frequency (MHz) | 1850.200000 | |-----------------------------------|----------------------| | Relative permittivity (real part) | 52.540001 | | Relative permittivity | 14.070000 | | Conductivity (S/m) | 1.469533 | | Power drift(%) | -1.300000 | | Ambient Temperature: | 22.6°C | | Liquid Temperature: | 22.7°C | | ConvF: | 40.625,34.773,38.535 | | Crest factor: | 1:8 | ### Maximum location: X=14.00, Y=33.00 | SAR 10g (W/Kg) | 0.097032 | | |----------------|----------|--| | SAR 1g (W/Kg) | 0.179561 | | | Z (mm) | 0.00 | 4.00 | 9.00 | 14.00 | 19.00 | 24.00 | 29.00 | |--------|--------|--------|--------|--------|--------|--------|--------| | SAR | 0.0000 | 0.1822 | 0.0954 | 0.0410 | 0.0190 | 0.0091 | 0.0060 | | (W/Kg) | | | | | | | | Type: Phone measurement (Complete) Area scan resolution: dx=8mm,dy=8mm Zoom scan resolution: dx=8mm, dy=8mm, dz=5mm Date of measurement: 14/5/2012 Measurement duration: 9 minutes 7 seconds ### A. Experimental conditions. | Phantom File | surf_sam_plan.txt | | | |------------------------|-------------------|--|--| | Phantom | Validation plane | | | | Device Position | Body | | | | Band | GSM1900 | | | | Channels | Low | | | | Signal | GPRS | | | ### **B. SAR Measurement Results** | Frequency (MHz) | 1850.200000 | |-----------------------------------|----------------------| | Relative permittivity (real part) | 52.540001 | | Relative permittivity | 14.070000 | | Conductivity (S/m) | 1.469533 | | Power drift(%) | 0.250000 | | Ambient Temperature: | 22.6°C | | Liquid Temperature: | 22.7°C | | ConvF: | 40.625,34.773,38.535 | | Crest factor: | 1:2 | ### **Maximum location: X=-10.00, Y=-42.00** | SAR 10g (W/Kg) | 0.207593 | |----------------|----------| | SAR 1g (W/Kg) | 0.414042 | | Z (mm) | 0.00 | 4.00 | 9.00 | 14.00 | 19.00 | 24.00 | 29.00 | |--------|--------|--------|--------|--------|--------|--------|--------| | SAR | 0.0000 | 0.4289 | 0.1793 | 0.0731 | 0.0419 | 0.0187 | 0.0156 | | (W/Kg) | | | | | | | | Type: Phone measurement (Complete) Area scan resolution: dx=8mm,dy=8mm Zoom scan resolution: dx=8mm, dy=8mm, dz=5mm Date of measurement: 14/5/2012 Measurement duration: 9 minutes 11 seconds ### A. Experimental conditions. | Phantom File | surf_sam_plan.txt | | | |------------------------|-------------------|--|--| | Phantom | Validation plane | | | | Device Position | Body | | | | Band | GSM1900 | | | | Channels | Low | | | | Signal | GPRS | | | ### **B. SAR Measurement Results** | Frequency (MHz) | 1850.200000 | |-----------------------------------|----------------------| | Relative permittivity (real part) | 52.540001 | | Relative permittivity | 14.070000 | | Conductivity (S/m) | 1.469533 | | Power drift(%) | -0.680000 | | Ambient Temperature: | 22.6°C | | Liquid Temperature: | 22.7°C | | ConvF: | 40.625,34.773,38.535 | | Crest factor: | 1:2 | ### **Maximum location: X=17.00, Y=-48.00** | SAR 10g (W/Kg) | 0.101690 | |----------------|----------| | SAR 1g (W/Kg) | 0.196944 | | Z (mm) | 0.00 | 4.00 | 9.00 | 14.00 | 19.00 | 24.00 | 29.00 | |--------|--------|--------|--------|--------|--------|--------|--------| | SAR | 0.0000 | 0.1832 | 0.0862 | 0.0520 | 0.0169 | 0.0087 | 0.0107 | | (W/Kg) | | | | | | | | ## **System Performance Check Data(Head)** Type: Phone measurement (Complete) Area scan resolution: dx=8mm,dy=8mm Zoom scan resolution: dx=8mm, dy=8mm, dz=5mm Date of measurement: 14/5/2012 Measurement duration: 13 minutes 27 seconds ### A. Experimental conditions. | Phantom File | surf_sam_plan.txt | | | | |------------------------|-------------------|--|--|--| | Phantom | Validation plane | | | | | Device Position | | | | | | Band | 835MHz | | | | | Channels | | | | | | Signal | CW | | | | ## **B. SAR Measurement Results** ### Band SAR | Frequency (MHz) | 835.000000 | |-----------------------------------|----------------------| | Relative permittivity (real part) | 41.675999 | | Relative permittivity | 15.070000 | | Conductivity (S/m) | 0.894409 | | Power drift (%) | -0.050000 | | Ambient Temperature: | 22.4°C | | Liquid Temperature: | 21.5°C | | ConvF: | 28.479,25.214,27.196 | | Crest factor: | 1:1 | ### Maximum location: X=5.00, Y=1.00 | SAR 10g (W/Kg) | 1.685732 | |----------------|----------| | SAR 1g (W/Kg) | 2.478462 | ### Z Axis Scan | Z (mm) | 0.00 | 4.00 | 9.00 | 14.00 | 19.00 | |------------|--------|--------|--------|--------|--------| | SAR (W/Kg) | 0.0000 | 2.4754 |
1.2251 | 0.5257 | 0.2114 | ### SAR, Z Axis Scan (X = 5, Y = 1) # **System Performance Check Data(Body)** Type: Phone measurement (Complete) Area scan resolution: dx=8mm,dy=8mm Zoom scan resolution: dx=8mm, dy=8mm, dz=5mm Date of measurement: 14/5/2012 Measurement duration: 13 minutes 27 seconds ### A. Experimental conditions. | Phantom File | surf_sam_plan.txt | | | | |------------------------|-------------------|--|--|--| | Phantom | Validation plane | | | | | Device Position | | | | | | Band | 835MHz | | | | | Channels | | | | | | Signal | CW | | | | #### **B. SAR Measurement Results** ### Band SAR | Frequency (MHz) | 835.000000 | |-----------------------------------|----------------------| | Relative permittivity (real part) | 55.709999 | | Relative permittivity | 21.709999 | | Conductivity (S/m) | 0.9809033 | | Power drift (%) | -0.170000 | | Ambient Temperature: | 22.4°C | | Liquid Temperature: | 21.5°C | | ConvF: | 28.559,25.681,27.588 | | Crest factor: | 1:1 | ### Maximum location: X=7.00, Y=-1.00 | SAR 10g (W/Kg) | 1.539476 | | | |----------------|----------|--|--| | SAR 1g (W/Kg) | 2.385979 | | | | Z (mm) | 0.00 | 4.00 | 9.00 | 14.00 | 19.00 | 24.00 | 29.00 | |--------|--------|--------|--------|--------|--------|--------|--------| | SAR | 0.0000 | 2.5209 | 1.6629 | 1.1437 | 0.8075 | 0.5889 | 0.4143 | | (W/Kg) | | | | | | | | # **System Performance Check Data(Head)** Type: Phone measurement (Complete) Area scan resolution: dx=8mm,dy=8mm Zoom scan resolution: dx=8mm, dy=8mm, dz=5mm Date of measurement: 14/5/2012 Measurement duration: 13 minutes 27 seconds ### A. Experimental conditions. | Phantom File | surf_sam_plan.txt | | | | |------------------------|-------------------|--|--|--| | Phantom | Validation plane | | | | | Device Position | | | | | | Band | 1900MHz | | | | | Channels | | | | | | Signal | CW | | | | ## **B. SAR Measurement Results** ### Band SAR | Frequency (MHz) | 1900.000000 | |-----------------------------------|----------------------| | Relative permittivity (real part) | 38.509998 | | Relative permittivity | 15.070000 | | Conductivity (S/m) | 1.436111 | | Power drift (%) | -0.140000 | | Ambient Temperature: | 22.3°C | | Liquid Temperature: | 22.6°C | | ConvF: | 40.136,34.843,38.721 | | Crest factor: | 1:1 | ### **Maximum location: X=-1.00, Y=-50.00** | SAR 10g (W/Kg) | 4.884149 | | | |----------------|----------|--|--| | SAR 1g (W/Kg) | 9.454628 | | | | Z (mm) | 0.00 | 4.00 | 9.00 | 14.00 | 19.00 | |------------|--------|--------|--------|--------|--------| | SAR (W/Kg) | 0.0000 | 9.4148 | 7.3955 | 6.3646 | 4.3955 | # **System Performance Check Data(Body)** Type: Phone measurement (Complete) Area scan resolution: dx=8mm,dy=8mm Zoom scan resolution: dx=8mm, dy=8mm, dz=5mm Date of measurement: 14/5/2012 Measurement duration: 13 minutes 26 seconds ### A. Experimental conditions. | Phantom File | surf_sam_plan.txt | | | | |------------------------|-------------------|--|--|--| | Phantom | Validation plane | | | | | Device Position | | | | | | Band | 1900MHz | | | | | Channels | | | | | | Signal | CW | | | | #### **B. SAR Measurement Results** ### Band SAR | Frequency (MHz) | 1900.000000 | |-----------------------------------|----------------------| | Relative permittivity (real part) | 52.548876 | | Relative permittivity | 14.070000 | | Conductivity (S/m) | 1.553978 | | Power drift (%) | -0.030000 | | Ambient Temperature: | 22.3°C | | Liquid Temperature: | 22.6°C | | ConvF: | 40.625,34.773,38.535 | | Crest factor: | 1:1 | ### Maximum location: X=3.00, Y=1.00 | SAR 10g (W/Kg) | 4.981611 | |----------------|----------| | SAR 1g (W/Kg) | 9.740177 | | Z (mm) | 0.00 | 4.00 | 9.00 | 14.00 | 19.00 | 24.00 | 29.00 | |--------|--------|---------|--------|--------|--------|--------|--------| | SAR | 0.0000 | 10.0621 | 5.6445 | 3.6226 | 2.1642 | 1.4521 | 0.9078 | | (W/Kg) | | | | | | | |