

SAR Test Report

Product Name	:	GSM Dual Band GPRS Digital
		Mobile Phone
Model No.	:	LX12
FCC ID	:	ZC4LX12

Applicant : Corporativo Lanix S.A. de C.V.

Address : Carretera internacional Hermosillo-Nogale Km.8.5 Hermosillo, Sonora, Mexico

Date of Receipt	:	22/12/2011
Date of Test	:	29/12/2011
Issued Date	:	30/12/2011
Report No.	:	11CS078R-HP-US-P03V01
Report Version	:	V2.1

The test results relate only to the samples tested.

The test report shall not be reproduced except in full without the written approval of QuieTek Corporation.

Test Report Certification

Issued Date: 30/12/2011 Report No.: 11CS078R-HP-US-P03V01

Product Name	:	GSM Dual Band GPRS Digital Mobile Phone			
Applicant	:	Corporativo Lanix S.A. de C.V.			
Address	:	Carretera internacional Hermosillo-Nogale Km.8.5 Hermosillo,			
		Sonora, Mexico			
Manufacturer	:	Shenzhen Konka Telecommunications Technology Co., Ltd.			
Address	:	No.9008 Shennan Road, Overseas Chinese Town, ShenZhen,			
		Guangdong, China			
Model No.	:	LX12			
FCC ID	:	ZC4LX12			
Brand Name	:	LANIX			
EUT Voltage	:	DC 3.7V			
Applicable Standard		FCC Oet65 Supplement C June 2001			
	•	IEEE Std. 1528-2003,47CFR § 2.1093			
Test Result	:	Max. SAR Measurement (1g)			
		Head: 1.160W/kg			
		Body: 0.487W/kg			
Performed Location	:	Suzhou EMC Laboratory			
		No.99 Hongye Rd., Suzhou Industrial Park Loufeng Hi-Tech			
		Development Zone., Suzhou, China			
		TEL: +86-512-6251-5088 / FAX: +86-512-6251-5098			
		FCC Registration Number: 800392			
Documented By	:	Alice Ni			
		(Engineering ADM: Alice Ni)			
Reviewed By	:	Robin Wa			
,		(Engineering Supervisor: Robin Wu)			
Approved By	:	Marlinchen			
		(Engineering Manager: Marlin Chen)			

Laboratory Information

We, **QuieTek Corporation**, are an independent EMC and safety consultancy that was established the whole facility in our laboratories. The test facility has been accredited/accepted(audited or listed) by the following related bodies in compliance with ISO 17025, EN 45001 and specified testing scope:

Taiwan R.O.C.	:	BSMI, NCC, TAF
Germany	:	TUV Rheinland
Norway	:	Nemko, DNV
USA	:	FCC, NVLAP
Japan	:	VCCI

The related certificate for our laboratories about the test site and management system can be downloaded from QuieTek Corporation's Web Site : <u>http://www.quietek.com/tw/ctg/cts/accreditations.htm</u> The address and introduction of QuieTek Corporation's laboratories can be founded in our Web site : <u>http://www.quietek.com/</u>

If you have any comments, Please don't hesitate to contact us. Our contact information is as below:

HsinChu Testing Laboratory :

No.75-2, 3rd Lin, Wangye Keng, Yonghxing Tsuen, Qionglin Shiang, Hsinchu County 307, Taiwan, R.O.C. TEL:+886-3-592-8858 / FAX:+886-3-592-8859 E-Mail : <u>service@quietek.com</u>

LinKou Testing Laboratory :

No. 5-22, Ruei-Shu Valley, Ruei-Ping Tsuen, Lin-Kou Shiang, Taipei, Taiwan, R.O.C. TEL : 886-2-8601-3788 / FAX : 886-2-8601-3789 E-Mail : <u>service@quietek.com</u>

Suzhou (China) Testing Laboratory :

No. 99 Hongye Rd., Suzhou Industrial Park Loufeng Hi-Tech Development Zone., Suzhou, China. TEL: +86-512-6251-5088 / FAX: +86-512-6251-5098 E-Mail: <u>service@quietek.com</u>

TABLE OF CONTENTS

De	scription	Page
1.	General Information	6
1	.1. EUT Description	6
1	.2. Test Procedure	8
1	.3. Test Environment	8
2.	SAR Measurement System	9
2	.1. DASY5 System Description	9
	2.1.1. Applications	10
	2.1.2. Area Scans	
	2.1.3. Zoom Scan (Cube Scan Averaging)	10
	2.1.4. Uncertainty of Inter-/Extrapolation and Averaging	10
2	.2. DASY5 E-Field Probe	11
	2.2.1. Isotropic E-Field Probe Specification	
2	.3. Boundary Detection Unit and Probe Mounting Device	12
2	.4. DATA Acquisition Electronics (DAE) and Measurement Server	12
2	.5. Robot	13
	.6. Light Beam Unit	
2	.7. Device Holder	
2	.8. SAM Twin Phantom	14
3.	Tissue Simulating Liquid	15
3	.1. The composition of the tissue simulating liquid	15
3	.2. Tissue Calibration Result	16
3	.3. Tissue Dielectric Parameters for Head and Body Phantoms	18
4.	SAR Measurement Procedure	19
4	.1. SAR System Validation	19
	4.1.1. Validation Dipoles	19
	4.1.2. Validation Result	20
4	.2. SAR Measurement Procedure	22
5.	SAR Exposure Limits	23
6.	Test Equipment List	24
7.	Measurement Uncertainty	31
8.	Conducted Power Measurement	32

QuieTek

9. Test Results	34
9.1. SAR Test Results Summary	34
Appendix A. SAR System Validation Data	42
Appendix B. SAR measurement Data	48
Appendix C. Test Setup Photographs & EUT Photographs	82
Appendix D. Probe Calibration Data	88
Appendix E. Dipole Calibration Data	99
Appendix F. DAE Calibration Data	126

1. General Information

1.1. EUT Description

Product Name	GSM Dual Band GPRS Digital Mobile Phone		
Model No.	LX12		
IMEI	3558829040000069		
Hardware Version	V1.01		
Software Version	LANIX LX12_TELCEL_SW_01		
Device Category	Portable		
RF Exposure Environment	Uncontrolled		
Antenna Type	Internal		
2G			
Support Band	GSM850/PCS1900		
GPRS Type	Class B		
GPRS Class	Class 12		
Tx Frequency Range	GSM 850: 824~849MHz		
	PCS 1900: 1850~1910MHz		
Rx Frequency Range	GSM 850: 869~894MHz		
	PCS 1900: 1930~1990MHz		
Release Version	R99		
Type of modulation	GMSK for GSM/GPRS		
Antenna Gain	-1.3dBi		
Max. Output Power	GSM850: 32.83 dBm		
(Avg. Burst Power)	PCS1900: 29.43 dBm		
Max. Output Power	GSM850: 32.87 dBm- ERP		
(Radiated)	PCS1900: 30.62 dBm- EIRP		
Bluetooth			
Bluetooth Frequency	2402~2480MHz		
Type of modulation	FHSS		
Data Rate	1Mbps(GFSK), 2Mbps(Pi/4 DQPSK), 3Mbps (8DPSK)		
Antenna Gain	0.67dBi		
Max. Output Power	9.56 dBm		
(Avg. Power)			
Wi-Fi			
Wi-Fi Frequency	2412~2462MHz		
Type of modulation	802.11b: DSSS; 802.11g: OFDM		
Data Rate	802.11b: 1/2/5.5/11 Mbps		

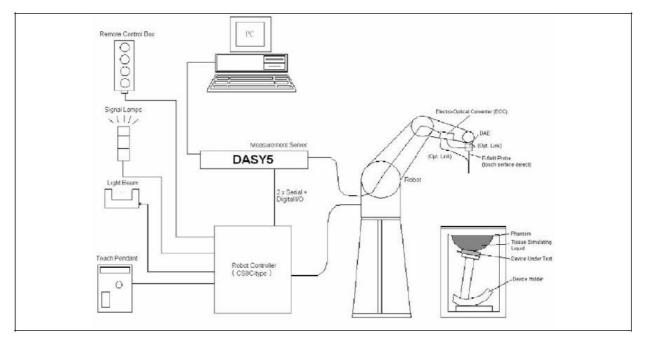
QuieTek

	802.11g: 6/9/12/18/24/36/48/54 Mbps		
Antenna Gain	0.47dBi		
Max. Output Power	11.38 dBm		
(Avg. Power)			
Components			
Battery	Brand name: LANIX		
	Model No. : LX12-BAT		
	Voltage and Capacitance: DC 3.7V 900mAh		
Adapter	Brand name: LANIX		
	Model No. : LX12-C		
	Input: 100-240V~50/60Hz		
	Output: 5.0VDC, 500mA		

1.2. Test Procedure

1	Setup the EUT and simulators as shown on above.
2	Turn on the power of all equipment.
3	EUT communicate with CMU 200, and test them respectively at GSM 850 & PCS1900.

1.3. Test Environment


Ambient conditions in the laboratory:

Items	Required	Actual
Temperature (°C)	18-25	21.5± 2
Humidity (%RH)	30-70	52

2. SAR Measurement System

2.1. DASY5 System Description

The DASY5 system for performing compliance tests consists of the following items:

- A standard high precision 6-axis robot with controller, teach pendant and software.
 An arm extension for accommodating the data acquisition electronics (DAE).
- A data acquisition electronics (DAE) which performs the signal amplification, signal multiplexing, AD-conversion, offset measurements, mechanical surface detection, collision detection, etc. The unit is battery powered with standard or rechargeable batteries. The signal is optically transmitted to the EOC.
- The Electro-optical converter (EOC) performs the conversion from optical to electrical signals for the digital communication to the DAE. To use optical surface detection, a special version of the EOC is required. The EOC signal is transmitted to the measurement server.
- The Light Beam used is for probe alignment. This improves the (absolute) accuracy of the probe positioning.
- > A computer running WinXP and the DASY5 software.
- Remote control and teach pendant as well as additional circuitry for robot safety such as warning lamps, etc.
- The phantom, the device holder and other accessories according to the targeted measurement.

2.1.1. Applications

Predefined procedures and evaluations for automated compliance testing with all worldwide standards, e.g., IEEE 1528, OET 65, IEC 62209-1, IEC 62209-2, EN 50360, EN 50383 and others.

2.1.2. Area Scans

Area scans are defined prior to the measurement process being executed with a user defined variable spacing between each measurement point (integral) allowing low uncertainty measurements to be conducted. Scans defined for FCC applications utilize a 10mm² step integral, with 1mm interpolation used to locate the peak SAR area used for zoom scan assessments.

When an Area Scan has measured all reachable points, it computes the field maxima found in the scanned area, within a range of the global maximum. The range (in dB) is specified in the standards for compliance testing. For example, a 2 dB range is required in IEEE 1528-2003, EN 50361 and IEC 62209 standards, whereby 3 dB is a requirement when compliance is assessed in accordance with the ARIB standard (Japan).

2.1.3. Zoom Scan (Cube Scan Averaging)

Zoom Scans are used to assess the peak spatial SAR values within a cubic averaging volume containing 1 g and 10 g of simulated tissue. A density of 1000 kg/m³ is used to represent the head and body tissue density and not the phantom liquid density, in order to be consistent with the definition of the liquid dielectric properties, i.e. the side length of the 1 g cube is 10mm, with the side length of the 10 g cube 21,5mm.

The zoom scan integer steps can be user defined so as to reduce uncertainty, but normal practice for typical test applications utilize a physical step of 7x7x7 (5mmx5mmx5mm) providing a volume of 30mm in the X & Y axis, and 30mm in the Z axis.

2.1.4. Uncertainty of Inter-/Extrapolation and Averaging

In order to evaluate the uncertainty of the interpolation, extrapolation and averaged SAR calculation algorithms of the Postprocessor, DASY5 allows the generation of measurement grids which are artificially predefined by analytically based test functions. Therefore, the grids of area scans and zoom scans can be filled with uncertainty test data, according to the SAR benchmark functions of IEEE 1528. The three analytical functions shown in equations as below are used to describe the possible range of the expected SAR distributions for the tested handsets. The field gradients are covered by the spatially flat distribution f1, the spatially steep distribution f3 and f2 accounts for H-field cancellation on the phantom/tissue surface.

$$f_1(x, y, z) = Ae^{-\frac{z}{2a}} \cos^2\left(\frac{\pi}{2}\frac{\sqrt{x'^2 + y'^2}}{5a}\right)$$
$$f_2(x, y, z) = Ae^{-\frac{z}{a}}\frac{a^2}{a^2 + x'^2} \left(3 - e^{-\frac{2z}{a}}\right)\cos^2\left(\frac{\pi}{2}\frac{y'}{3a}\right)$$
$$f_3(x, y, z) = A\frac{a^2}{\frac{a^2}{4} + x'^2 + y'^2} \left(e^{-\frac{2z}{a}} + \frac{a^2}{2(a+2z)^2}\right)$$

2.2. DASY5 E-Field Probe

The SAR measurement is conducted with the dosimetric probe manufactured by SPEAG. The probe is specially designed and calibrated for use in liquid with high permittivity. The dosimetric probe has special calibration in liquid at different frequency.

SPEAG conducts the probe calibration in compliance with international and national standards (e.g. IEEE 1528, EN 62209-1, IEC 62209, etc.) under ISO 17025. The calibration data are in Appendix D.

Model	EX3DV4		
Construction	Symmetrical design with triangular core Built-in shielding against static charges PEEK enclosure material (resistant to organic solvents, e.g., DGBE)		
Frequency	10 MHz to 6 GHz Linearity: ± 0.2 dB (30 MHz to 6 GHz)		
Directivity	± 0.3 dB in HSL (rotation around probe axis) ± 0.5 dB in tissue material (rotation normal to probe axis)		
Dynamic Range	10 μW/g to 100 mW/g Linearity: ± 0.2 dB (noise: typically < 1 μW/g)		
Dimensions	Overall length: 330 mm (Tip: 20 mm) Tip diameter: 2.5 mm (Body: 12 mm) Typical distance from probe tip to dipole centers: 1 mm		
Application	High precision dosimetric measurements in any exposure scenar (e.g., very strong gradient fields). Only probe which enable compliance testing for frequencies up to 6 GHz with precision of bette 30%.		

2.2.1. Isotropic E-Field Probe Specification

2.3. Boundary Detection Unit and Probe Mounting Device

The DASY5 probes use a precise connector and an additional holder for the probe, consisting of a plastic tube and a flexible silicon ring to center the probe. The connector at the DAE is flexibly mounted and held in the default position with magnets and springs. Two switching systems in the connector mount detect frontal and lateral probe collisions and trigger the necessary software response.

2.4. DATA Acquisition Electronics (DAE) and Measurement Server

The data acquisition electronics (DAE) consists of a highly sensitive electrometer-grade preamplifier with auto-zeroing, a channel and gain-switching multiplexer, a fast 16 bit AD-converter and a command decoder and control logic unit.

Transmission to the measurement server is accomplished through an optical downlink for data and status information as well as an optical uplink for commands and the clock.

The input impedance of the DAE4 is 200M Ohm; the inputs are symmetrical and floating. Common mode rejection is above 80dB.

The DASY5 measurement server is based on a PC/104 CPU board with a 400MHz intel ULV Celeron, 128MB chipdisk and 128MB RAM. The necessary circuits for communication with the DAE electronics box, as well as the 16 bit AD converter system for optical detection and digital I/O interface are contained on the DASY5 I/O board, which is directly connected to the PC/104 bus of the CPU board.

DASY5

2.5. Robot

The DASY5 system uses the high precision robots TX90 XL type out of the newer series from Stäubli SA (France). For the 6-axis controller DASY5 system, the CS8C robot controller version from Stäubli is used.

The XL robot series have many features that are important for our application:

- High precision (repeatability 0.02 mm)
- High reliability (industrial design)
- Jerk-free straight movements
- Low ELF interference (the closed metallic construction shields against motor control fields)
- 6-axis controller

2.6. Light Beam Unit

The light beam switch allows automatic "tooling" of the probe. During the process, the actual position of the probe tip with respect to the robot arm is measured, as well as the probe length and the horizontal probe offset. The software then corrects all movements, such that the robot coordinates are valid for the probe tip.

The repeatability of this process is better than 0.1 mm. If a position has been taught with an aligned probe, the same position will be reached with another aligned probe within 0.1 mm, even if the other probe has different dimensions. During probe rotations, the probe tip will keep its actual position.

QuieTek

2.7. Device Holder

QuieTek

The DASY5 device holder is designed to cope with different positions given in the standard. It has two scales for the device rotation (with respect to the body axis) and the device inclination (with respect to the line between the ear reference points). The rotation center for both scales is the ear reference point (EPR).

Thus the device needs no repositioning when changing the angles.

The DASY5 device holder has been made out of low-loss POM material having the following dielectric parameters: relative permittivity $\varepsilon r = 3$ and loss tangent $\delta = 0.02$. The amount of dielectric material has been reduced in the closest vicinity of the device, since measurements have suggested that the influence of the clamp on the test results could thus be lowered.

2.8. SAM Twin Phantom

The SAM twin phantom is a fiberglass shell phantom with 2mm shell thickness (except the ear region where shell thickness increases to 6mm). It has three measurement areas:

- Left head
- Right head
- Flat phantom

The bottom plate contains three pair of bolts for locking the device holder. The device holder positions are adjusted to the standard measurement positions in the three sections. A white cover is provided to tap the phantom during off-periods to prevent water evaporation and changes in the liquid parameters. On the phantom top, three reference markers are provided to identify the phantom position with respect to the robot.

3. Tissue Simulating Liquid

3.1. The composition of the tissue simulating liquid

INGREDIENT	835MHz	835MHz	1900MHz	1900MHz	2450MHz	2450MHz
(% Weight)	Head	Body	Head	Body	Head	Body
Water	40.45	52.4	54.90	40.5	46.7	73.2
Salt	1.45	1.40	0.18	0.50	0.00	0.04
Sugar	57.6	45.0	0.00	58.0	0.00	0.00
HEC	0.40	1.00	0.00	0.50	0.00	0.00
Preventol	0.10	0.20	0.00	0.50	0.00	0.00
DGBE	0.00	0.00	44.92	0.00	53.3	26.7

3.2. Tissue Calibration Result

The dielectric parameters of the liquids were verified prior to the SAR evaluation using DASY5 Dielectric Probe Kit and Agilent Vector Network Analyzer E5071C

Head Tissue Simulant Measurement				
Frequency	Dielectric Parameters		Tissue Temp.	
[MHz]	Description	ε _r	σ [s/m]	[°C]
	Reference result	41.50	0.90	N/A
835 MHz	± 5% window	39.43 to 43.58	0.86 to 0.95	IN/A
	29-12-2011	42.27	0.91	21.0
	· · · · ·			

Body Tissue Simulant Measurement				
Frequency	Description	Dielectric Parameters		Tissue Temp.
[MHz]	Description	ε _r	σ [s/m]	[°C]
	Reference result	55.2	0.97	N/A
835 MHz	± 5% window	52.44 to 57.96	0.92 to 1.02	IN/A
	29-12-2011	54.73	0.98	21.0
				•

Head Tissue Simulant Measurement				
Frequency	Jency Description Dielectric Parameters		Tissue Temp.	
[MHz]	Description	ε _r	σ [s/m]	[°C]
	Reference result	40.0	1.40	N/A
1900 MHz	± 5% window	38.00 to 42.00	1.33 to 1.47	
	29-12-2011		1.42	21.0

Body Tissue Simulant Measurement						
Frequency	Dielectric Paramete		Parameters	Tissue Temp.		
[MHz]	Description	ε _r	σ [s/m]	[°C]		
	Reference result	53.3	1.52	N/A		
1900 MHz	± 5% window	50.64 to 55.97	1.44 to 1.60	IN/A		
	29-12-2011	52.45	1.54	21.0		

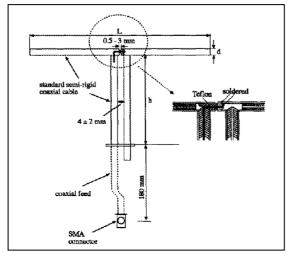
Head Tissue Simulant Measurement					
Frequency	Description	Dielectric Parameters		Tissue Temp.	
[MHz]	Description	ε _r	σ [s/m]	[°C]	
	Reference result	39.2	1.80	N/A	
2450MHz	± 5% window	37.24 to 41.16	1.71 to 1.89	IN/A	
	29-12-2011	38.60	1.84	21.0	
	·		·		

Body Tissue Simulant Measurement				
Frequency	Description	Dielectric Parameters		Tissue Temp.
[MHz]	Description	ε _r	σ [s/m]	[°C]
	Reference result	52.7	1.95	N/A
2450MHz	± 5% window	50.07 to 55.34	1.85 to 2.05	IN/A
	29-12-2011	52.30	2.01	21.0
				•

3.3. Tissue Dielectric Parameters for Head and Body Phantoms

The head tissue dielectric parameters recommended by the IEEE SCC-34/SC-2 in P1528 have been incorporated in the following table. These head parameters are derived from planar layer models simulating the highest expected SAR for the dielectric properties and tissue thickness variations in a human head. Other head and body tissue parameters that have not been specified in P1528 are derived from the tissue dielectric parameters computed from the 4-Cole-Cole equations described in Reference [12] and extrapolated according to the head parameters specified in P1528.

Target Frequency	He	ad	Во	dy
(MHz)	٤r	σ (S/m)	٤r	σ (S/m)
150	52.3	0.76	61.9	0.80
300	45.3	0.87	58.2	0.92
450	43.5	0.87	56.7	0.94
835	41.5	0.90	55.2	0.97
900	41.5	0.97	55.0	1.05
915	41.5	0.98	55.0	1.06
1450	40.5	1.20	54.0	1.30
1610	40.3	1.29	53.8	1.40
1800 – 2000	40.0	1.40	53.3	1.52
2450	39.2	1.80	52.7	1.95
3000	38.5	2.40	52.0	2.73
5800	35.3	5.27	48.2	6.00

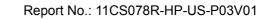

(ϵ_r = relative permittivity, σ = conductivity and ρ = 1000 kg/m³)

4. SAR Measurement Procedure

4.1. SAR System Validation

4.1.1. Validation Dipoles

The dipoles used is based on the IEEE-1528 standard, and is complied with mechanical and electrical specifications in line with the requirements of both IEEE and FCC Supplement C. the table below provides details for the mechanical and electrical specifications for the dipoles.


Frequency	L (mm)	h (mm)	d (mm)
835MHz	161.0	89.8	3.6
1900MHz	68.0	39.5	3.6
2450MHz	51.5	30.4	3.6

4.1.2. Validation Result

Frequency [MHz]	Description	SAR [w/kg] 1g	SAR [w/kg] 10g	Tissue Temp. [°C]
835 MHz	Reference result ± 10% window	9.70 8.73 to 10.67	6.30 5.67 to 6.93	N/A
	29-12-2011	10.04	6.56	21.0
Validation M	(it: D1900V2-SN 5d ²	121		
Frequency [MHz]	Description	SAR [w/kg] 1g	SAR [w/kg] 10g	Tissue Temp [°C]
1900 MHz	Reference result ± 10% window	39.8 35.82 to 43.78	21.1 18.99 to 23.21	N/A
1300 1011 12				
System Per	29-12-2011 R values are normali formance Check at	835MHz &1900MH		21.0
System Per Validation K Frequency	R values are normali formance Check at (it: D835V2-SN 4d0	zed to 1W forward p 835MHz &1900MH 94 SAR [w/kg]	oower. z for Body SAR [w/kg]	Tissue Temp
System Per Validation K	R values are normali formance Check at (it: D835V2-SN 4d09 Description	zed to 1W forward p 835MHz &1900MH 94 SAR [w/kg] 1g	oower. z for Body SAR [w/kg] 10g	
System Per Validation K Frequency	R values are normali formance Check at (it: D835V2-SN 4d0	zed to 1W forward p 835MHz &1900MH 94 SAR [w/kg]	oower. z for Body SAR [w/kg]	Tissue Temp
System Per Validation K Frequency [MHz]	R values are normali formance Check at (it: D835V2-SN 4d09 Description Reference result	zed to 1W forward p 835MHz &1900MH 94 SAR [w/kg] 1g 9.90	oower. z for Body SAR [w/kg] 10g 6.53	Tissue Temp
System Per Validation K Frequency [MHz] 835 MHz	R values are normali formance Check at (it: D835V2-SN 4d09 Description Reference result ± 10% window	zed to 1W forward p 835MHz &1900MH 94 SAR [w/kg] 1g 9.90 8.91 to 10.89 9.68	oower. z for Body SAR [w/kg] 10g 6.53 5.88 to 7.18	Tissue Temp [°C] N/A
System Per Validation K Frequency [MHz] 835 MHz	R values are normali formance Check at (it: D835V2-SN 4d09 Description Reference result ± 10% window 29-12-2011	zed to 1W forward p 835MHz &1900MH 94 SAR [w/kg] 1g 9.90 8.91 to 10.89 9.68	oower. z for Body SAR [w/kg] 10g 6.53 5.88 to 7.18	Tissue Temp [°C] N/A 21.0
System Per Validation K Frequency [MHz] 835 MHz Validation K Frequency	R values are normali formance Check at (it: D835V2-SN 4d09 Description Reference result ± 10% window 29-12-2011 (it: D1900V2-SN 5d	zed to 1W forward p 835MHz &1900MH 94 SAR [w/kg] 1g 9.90 8.91 to 10.89 9.68 121 SAR [w/kg]	oower. z for Body SAR [w/kg] 10g 6.53 5.88 to 7.18 6.24 SAR [w/kg]	Tissue Temp [°C] N/A 21.0 Tissue Temp

System Perfo	System Performance Check at 2450MHz for Head				
Validation Kit	: D2450V2-SN 839				
Frequency [MHz]	Description	SAR [w/kg] 1g	SAR [w/kg] 10g	Tissue Temp. [°C]	
2450 MHz	Reference result ± 10% window	52.3 47.07 to 57.53	24.5 22.05 to 26.95	N/A	
	29-12-2011	52.00	23.16	21.0	
	rmance Check at 2 : D2450V2-SN 839				
Frequency [MHz]	Description	SAR [w/kg] 1g	SAR [w/kg] 10g	Tissue Temp. [°C]	
2450 MHz	Reference result 51.6 24.2 N/A 2450 MHz ± 10% window 46.44 to 56.76 21.78 to 26.62 N/A				
	29-12-2011	50.00	22.88	21.0	
Note: All SAR	values are normalize	ed to 1W forward po	wer.		

4.2. SAR Measurement Procedure

The DASY5 calculates SAR using the following equation,

$$SAR = \frac{\sigma |\mathbf{E}|^2}{\rho}$$

 $\boldsymbol{\sigma}:$ represents the simulated tissue conductivity

ρ: represents the tissue density

The EUT is set to transmit at the required power in line with product specification, at each frequency relating to the LOW, MID, and HIGH channel settings.

Pre-scans are made on the device to establish the location for the transmitting antenna, using a large area scan in either air or tissue simulation fluid.

The EUT is placed against the Universal Phantom where the maximum area scan dimensions are larger than the physical size of the resonating antenna. When the scan size is not large enough to cover the peak SAR distribution, it is modified by either extending the area scan size in both the X and Y directions, or the device is shifted within the predefined area.

The area scan is then run to establish the peak SAR location (interpolated resolution set at 1mm²) which is then used to orient the center of the zoom scan. The zoom scan is then executed and the 1g and 10g averages are derived from the zoom scan volume (interpolated resolution set at 1mm³).

5. SAR Exposure Limits

SAR assessments have been made in line with the requirements of IEEE-1528, FCC Supplement C, and comply with ANSI/IEEE C95.1-1992 "Uncontrolled Environments" limits. These limits apply to a location which is deemed as "Uncontrolled Environment" which can be described as a situation where the general public may be exposed to an RF source with no prior knowledge or control over their exposure.

Type Exposure	Uncontrolled
	Environment Limit
Spatial Peak SAR (1g cube tissue for brain or body)	1.60 W/kg
Spatial Average SAR (whole body)	0.08 W/kg
Spatial Peak SAR (10g for hands, feet, ankles and wrist)	4.00 W/kg

Limits for General Population/Uncontrolled Exposure (W/kg)

6. Test Equipment List

Instrument	Manufacturer	Model No.	Serial No.	Cali. Due Date
Stäubli Robot TX60L	Stäubli	TX60L	F10/5C90A1/A/01	only once
Controller	Stäubli	SP1	S-0034	only once
Dipole Validation Kits	Speag	D835V2	4d094	2012.03.15
Dipole Validation Kits	Speag	D1900V2	5d121	2012.03.23
Dipole Validation Kits	Speag	D2450V2	839	2012.03.12
SAM Twin Phantom	Speag	SAM	TP-1561/1562	N/A
Device Holder	Speag	SD 000 H01 HA	N/A	N/A
Data	Speag	DAE4	915	2012.07.26
Acquisition Electronic				
E-Field Probe	Speag	EX3DV4	3661	2012.01.24
SAR Software	Speag	DASY5	V5.2 Build 162	N/A
Power Amplifier	Mini-Circuit	ZVA-183-S+	N657400950	N/A
Directional Coupler	Agilent	778D	20160	N/A
Universal Radio	R&S	CMU 200	117088	2012.04.29
Communication Tester				
Vector Network	Agilent	E5071C	MY48367267	2012.04.10
Signal Generator	Agilent	E4438C	MY49070163	2012.04.23
Power Meter	Anritsu	ML2495A	0905006	2012.01.12
Wide Bandwidth Sensor	Anritsu	MA2411B	0846014	2012.01.12

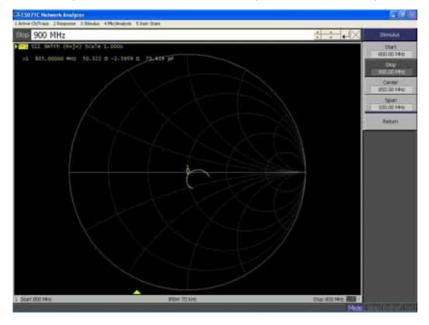
Note: Per KDB 450824 D02 requirements for dipole calibration, QuieTek Lab has adopted two years calibration

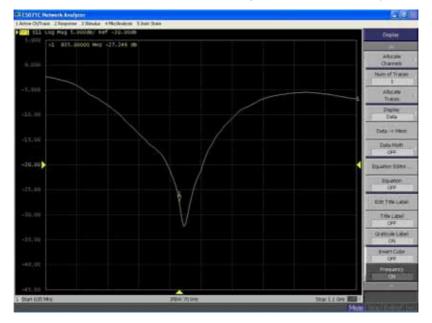
intervals. On annual basis, every measurement dipole has been evaluated and is in compliance with the following criteria:

1. There is no physical damage on the dipole;

2. System validation with specific dipole is within 10% of calibrated value;

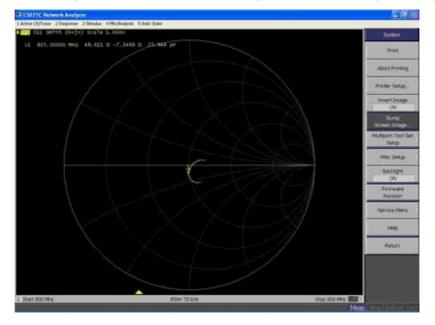
3. Return-loss is within 20% of calibrated measurement (Show below);


4. Impedance is within 5Ω of calibrated measurement (Show below).

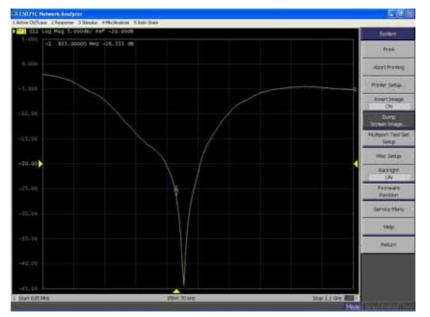

Impedance Plot for D835V2

835 Head

Calibrated impedance: 52.2 Ω ; Measured impedance: 50.322 Ω (within 5 Ω)



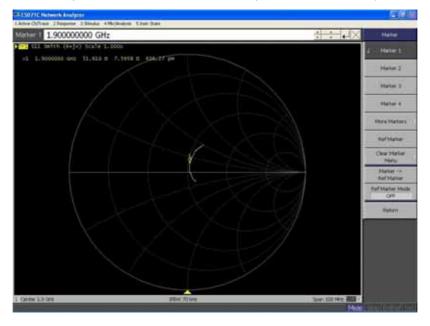
Calibrated return loss: -29.4 dB; Measured impedance: -27.246 dB (within 20%)

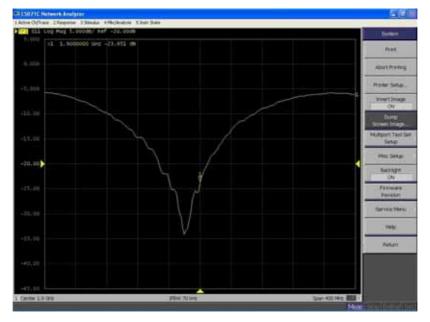


835 Body

Calibrated impedance: 48.0 Ω ; Measured impedance: 48.611 Ω (within 5 Ω)

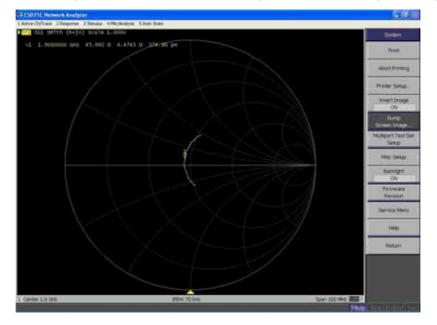
Calibrated return loss: -25.5 dB; Measured impedance: -26.333 dB (within 20%)



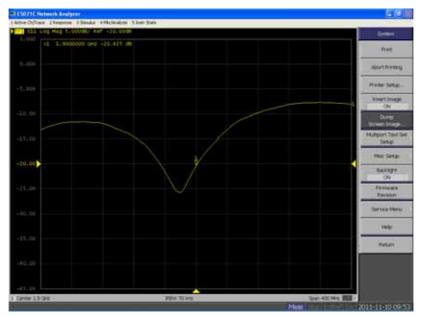

Impedance Plot for D1900V2

1900 Head

Calibrated impedance: 50.6 Ω ; Measured impedance: 51.610 Ω (within 5 Ω)



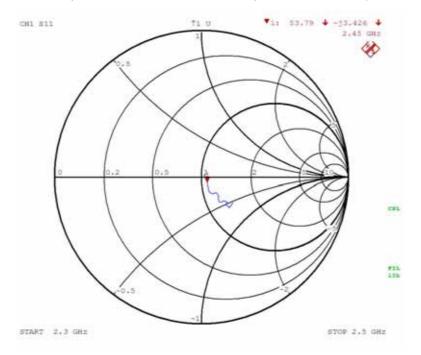
Calibrated return loss: -22.7 dB; Measured impedance: -23.651 dB (within 20%)

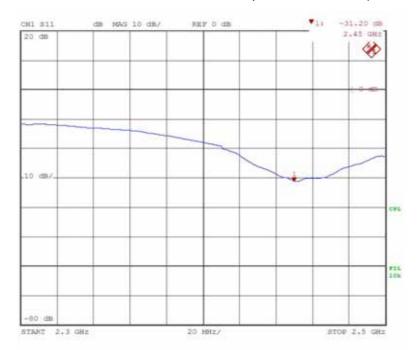


1900 Body

Calibrated impedance: 46.1 Ω ; Measured impedance: 45.692 Ω (within 5 Ω)

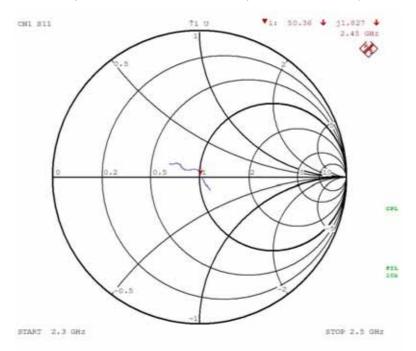
Calibrated return loss: -21.5 dB; Measured impedance: -20.425 dB (within 20%)



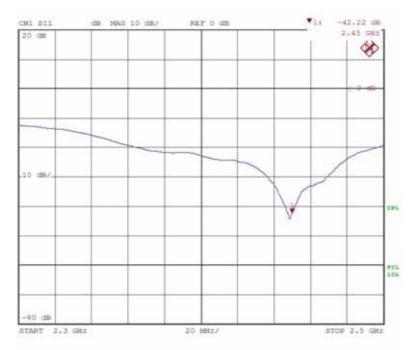

Impedance Plot for D2450V2

2450 Head

Calibrated impedance: 53.5 Ω ; Measured impedance: 53.79 Ω (within 5 Ω)



Calibrated return loss: -29.4 dB; Measured impedance: -31.2 dB (within 20%)



2450 Body

Calibrated impedance: 50 Ω ; Measured impedance: 50.36 Ω (within 5 Ω)

Calibrated return loss: -40.8 dB; Measured impedance: -42.22 dB (within 20%)

7. Measurement Uncertainty

				ertain	•	/ 10		
Measurement uncertainty	1			-	-	-	0.4	()
Error Description	Uncert.	Prob.	Div.	(Ci)	(Ci)	Std.	Std.	(Vi)
	value	Dist.		1g	10g	Unc.	Unc.	Veff
						(1g)	(10g)	
Measurement System		I						1
Probe Calibration	±5.5%	N	1	1	1	±5.5%	±5.5%	∞
Axial Isotropy	±4.7%	R	√3	0.7	0.7	±1.9%	±1.9%	∞
Hemispherical Isotropy	±9.6%	R	√3	0.7	0.7	±3.9%	±3.9%	∞
Boundary Effects	±1.0%	R	√3	1	1	±0.6%	±0.6%	∞
Linearity	±4.7%	R	√3	1	1	±2.7%	±2.7%	∞
System Detection Limits	±1.0%	R	√3	1	1	±0.6%	±0.6%	∞
Readout Electronics	±0.3%	Ν	1	1	1	±0.3%	±0.3%	∞
Response Time	±0.8%	R	√3	1	1	±0.5%	±0.5%	8
Integration Time	±2.6%	R	√3	1	1	±1.5%	±1.5%	∞
RF Ambient Noise	±3.0%	R	√3	1	1	±1.7%	±1.7%	8
RF Ambient Reflections	±3.0%	R	√3	1	1	±1.7%	±1.7%	∞
Probe Positioner	±0.4%	R	√3	1	1	±0.2%	±0.2%	∞
Probe Positioning	±2.9%	R	√3	1	1	±1.7%	±1.7%	∞
Max. SAR Eval.	±1.0%	R	√3	1	1	±0.6%	±0.6%	∞
Test Sample Related		1			1			
Device Positioning	±2.9%	Ν	1	1	1	±2.9%	±2.9%	145
Device Holder	±3.6%	Ν	1	1	1	±3.6%	±3.6%	5
Power Drift	±5.0%	R	√3	1	1	±2.9%	±2.9%	∞
Phantom and Setup		1		•	1			
Phantom Uncertainty	±4.0%	R	√3	1	1	±2.3%	±2.3%	∞
Liquid Conductivity	. 5 00/		-	0.04	0.40	.4.00/	.4.00/	
(target)	±5.0%	R	√3	0.64	0.43	±1.8%	±1.2%	∞
Liquid Conductivity	.0.5%	N		0.04		. 4 . 00/		
(meas.)	±2.5%	N	1	0.64	0.43	±1.6%	±1.1%	∞
Liquid Permittivity	. 5.00/	_	-		0.40	. 4 70/	. 4 . 40/	
(target)	±5.0%	R	√3	0.6	0.49	±1.7%	±1.4%	∞
Liquid Permittivity	10 50/	N		0.0	0.40		14.001	
(meas.)	±2.5%	N	1	0.6	0.49	±1.5%	±1.2%	∞
Combined Std. Uncertainty					±10.7%	±10.5%	387	
Expanded STD Uncertainty				±21.4%	±21.0%			

8. Conducted Power Measurement

Mode	Frequency (MHz)	Avg. Burst Power	Duty Cycle	Frame Power	
		(dBm)	Factor (dB)	(dBm)	
Maximum Power					
	824.2	32.83	-9	23.83	
GSM850	836.4	32.60	-9	23.60	
	848.8	32.53	-9	23.53	
	824.2	32.14	-9	23.14	
GPRS850(1 Slot)	836.4	32.19	-9	23.19	
	848.8	32.41	-9	23.41	
	824.2	32.18	-6	26.18	
GPRS850(2 Slot)	836.4	32.38	-6	26.38	
	848.8	32.61	-6	26.61	
	824.2	30.52	-4.25	26.27	
GPRS850(3 Slot)	836.4	30.76	-4.25	26.51	
	848.8	31.02	-4.25	26.77	
	824.2	29.75	-3	26.75	
GPRS850(4 Slot)	836.4	30.01	-3	27.01	
	848.8	30.24	-3	27.24	
	1850.2	29.25	-9	20.25	
PCS1900	1880.0	29.17	-9	20.17	
	1909.8	29.43	-9	20.43	
	1850.2	29.21	-9	20.21	
GPRS1900(1 Slot)	1880.0	29.05	-9	20.05	
	1909.8	29.32	-9	20.32	
	1850.2	28.20	-6	22.80	
GPRS1900(2 Slot)	1880.0	29.07	-6	23.07	
	1909.8	29.01	-6	23.01	
	1850.2	27.20	-4.25	22.95	
GPRS1900(3 Slot)	1880.0	27.45	-4.25	23.20	
	1909.8	27.41	-4.25	23.16	
	1850.2	26.45	-3	23.45	
GPRS1900(4 Slot)	1880.0	26.71	-3	23.71	
	1909.8	26.65	-3	23.65	

Note : According to KDB941225, the source-based time-averaged output power of GPRS is lower than GSM voice mode, the GPRS mode is optional.

WLAN output power

Test Mode	Data Rate (Mbps)	Channel No.	Frequency (MHz)	Average Power (dBm)
		01	2412	10.52
802.11b	1	06	2437	10.86
		11	2462	11.38
		01	2412	8.43
802.11g	6	06	2437	8.68
		11	2462	9.06

Note : According to the KDB 248227. SAR is not required for 802.11g channels when the maximum average output power is less than 1/4 dB higher than that measured on the corresponding 802.11b channels

Bluetooth output power

Test Mode	Channel No.	Frequency (MHz)	Average Power (dBm)
	00	2402	7.69
1Mbps(GFSK_DH5)	39	2441	8.67
	78	2480	9.56
	00	2402	6.40
2Mbps(Pi/4 DQPSK_DH5)	39	2441	7.52
	78	2480	8.15
	00	2402	5.97
3Mbps(8DPSK_DH5)	39	2441	7.25
	78	2480	8.05

Note : According to the KDB 447498. Bluetooth max output power is 9.56dBm less than Pref (12mw =10.79dBm), standalone SAR is not required.

QuieTek

9. Test Results

9.1. SAR Test Results Summary

9.1.1. Test position and configuration

Head SAR was performed with the device configured in the positions according to IEEE1528, and Body SAR was performed with the device 15mm from the phantom. Body SAR was also performed with the headset attached and without.

9.1.2. Body SAR with Headset

Testing with the headset was performed at the position and channels that resulted in the highest body SAR. This testing was performed with GPRS transmitting with 2/3/4 uplink timeslots. This operation mode represents the maximum SAR situation, when downloading data via GPRS and listening to music by headset. SAR without the headset attached was significantly higher than with the headset, and also was verified several times and confirmed, so the final test data shown were the worst case without headset.

In the Body SAR test result table, body-worn means display of device down, body-front means display of device up.

9.1.3. Operation Mode

This is a multislot class 12 device capable of 4 uplink timeslots. During the head SAR test, the device was transmitting with 1 uplink timeslot; during the body SAR test, it was transmitting with 2/3/4 uplink timeslots. Additionally, this device doesn't support dual transfer mode (DTM).

9.1.4. Co-located SAR

Reference document: KDB 447498 and KDB 648474, KDB 248227. Bluetooth output power is 9.56 dBm less than Pref (12mw =10.79dBm).

- 1, 4.2cm away from GSM antenna,
- 3, 2.8cm away from WLAN antenna.

Therefore, standalone SAR and simultaneous SAR for Bluetooth is not required.

The closest separation between GSM antenna and Wi-Fi antenna is 0.4cm.

Max 1-g S	∑1-g SAR (W/kg)		
WLAN	GSM	2 I-y SAR (W/kg)	
0.028	1.16	1.188	

Body SAR value and the sum of the 1-g SAR for WLAN & GSM.

Max 1-g S	$\sum 1 \alpha S \Delta P (M/ka)$		
WLAN	GSM	Σ 1-g SAR (W/kg)	
0.008	0.282	0.29	

Note: This device just supports simultaneous transmission between Wi-Fi and GSM.

Conclusion:

Simultaneous TransmissionRequire for Simultaneous Transmission SAR with Volume ScansWLAN & GSMNo (The sum of the 1-g SAR is < 1.6 W/kg)</td>

E

9.1.5. Test Result

SAR MEASUREMENT							
Ambient Temperature (°C) : 21.5 ±2Relative Humidity (%): 52							
Liquid Temperature (°C) : 21.0 ±2Depth of Liquid (cm):>15							
Product: GSN	/I Dual Bar	nd GPRS Di	gital Mobi	le Phone			
Test Mode: GS	M850						
Test Position Antenna		Frequ	ency	Frame Power	Power Drift	SAR 1g	Limit
Head	Position	Channel	nel MHz (dBm)	(dBm)	(<±0.2)	(W/kg)	(W/kg)
Left-Cheek	Fixed	128	824.2	23.83	0.019	0.921	1.6
Left-Cheek	Fixed	189	836.4	23.60	-0.012	1.080	1.6
Left-Cheek	Fixed	251	848.8	23.53	0.080	1.160	1.6
Left-Tilted	Fixed	189	836.4	23.60	-0.024	0.678	1.6
Right-Cheek	Fixed	128	824.2	23.83	0.034	0.945	1.6
Right-Cheek	Fixed	189	836.4	23.60	0.006	1.040	1.6
Right-Cheek	Fixed	251	848.8	23.53	-0.026	1.040	1.6
Right-Tilted	Fixed	189	836.4	23.60	0.128	0.621	1.6
Note: when the 1-g SAR is \leq 0.8 W/kg, testing for low and high channel is optional, refer to KDB 941225.							

SAR MEASU	REMENT							
Ambient Temp	erature (°C):21.5 ±2		I	Relative F	lumidity (%): 52	
Liquid Tempera	ature (°C) :	21.0 ±2		I	Depth of L	iquid (cm):	>15	
Product: GSM	Dual Band	GPRS Dig	ital Mobile	e Phone				
Test Mode: GSN	1850			t				1
Test Position Body	Antenna	Frequency		Separation	Frame	Power	SAR 1g	Limit
	Position	Channel	MHz	Distance (mm)	Power (dBm)	Drift (<±0.2)	(W/kg)	(W/kg)
Body-worn	Fixed	128	824.2	15	23.83			1.6
Body-worn	Fixed	189	836.4	15	23.60	0.141	0.282	1.6
Body-worn	Fixed	251	848.8	15	23.53			1.6
Test Mode: GPF	S850 2slot							
Body-worn	Fixed	189	836.4	15	26.38	0.133	0.425	1.6
Test Mode: GPF	S850 3slot							
Body-worn	Fixed	189	836.4	15	26.51	0.121	0.438	1.6
Test Mode: GPF	S850 4slot							
Body-worn	Fixed	128	824.2	15	26.75			1.6
Body-worn	Fixed	189	836.4	15	27.01	0.060	0.487	1.6
Body-worn	Fixed	251	848.8	15	27.24			1.6
Body-front	Fixed	189	836.4	15	27.01	0.056	0.484	1.6
Body-worn (With Headset)	Fixed	189	836.4	15	27.01	0.117	0.474	1.6

SAR MEASU	REMENT						
Ambient Tempe	erature (°C):21.5 ±2		Relativ	e Humidity (%	6): 52	
Liquid Tempera	iture (°C) :	21.0 ±2		Depth	of Liquid (cm)	:>15	
Product: GSM I	Dual Band	GPRS Digit	al Mobile F	Phone			
Test Mode: PCS	1900						_
Test Position	Antenna	Frequency		Frame Power	Power Drift	SAR 1g	Limit
Head	Position	Channel	MHz	(dBm)	(<±0.2)	(W/kg)	(W/kg)
Left-Cheek	Fixed	512	1850.2	20.25			1.6
Left-Cheek	Fixed	661	1880.0	20.17	0.142	0.299	1.6
Left-Cheek	Fixed	810	1909.8	20.43			1.6
Left-Tilted	Fixed	661	1880.0	20.17	0.024	0.354	1.6
Right-Cheek	Fixed	512	1850.2	20.25			1.6
Right-Cheek	Fixed	661	1880.0	20.17	-0.149	0.293	1.6
Right-Cheek	Fixed	810	1909.8	20.43			1.6
Right-Tilted	Fixed	661	1880.0	20.17	-0.045	0.333	1.6

SAR MEASUR	REMENT							
Ambient Tempe	erature (°C)	:21.5 ±2		I	Relative H	lumidity (%): 52	
Liquid Tempera	ture (°C) :	21.0 ±2		I	Depth of L	iquid (cm):	>15	
Product: GSM [Dual Band	GPRS Digi	ital Mobile	Phone				
Test Mode: PCS	900							
Test Position	Antenna	Frequency		Separation	Frame	Power	SAR 1g	Limit
Body	Position	Channel	MHz	Distance (mm)	Power (dBm)	Drift (<±0.2)	(W/kg)	(W/kg)
Body-worn	Fixed	512	1850.2	15	20.25			1.6
Body-worn	Fixed	661	1880.0	15	20.17	-0.067	0.058	1.6
Body-worn	Fixed	810	1909.8	15	20.43			1.6
Test Mode: GPR	S1900 2slot							
Body-worn	Fixed	661	1880.0	15	23.07	-0.102	0.118	1.6
Test Mode: GPR	S1900 3slot							
Body-worn	Fixed	661	1880.0	15	23.20	-0.009	0.176	1.6
Test Mode: GPR	S1900 4slot							
Body-worn	Fixed	512	1850.2	15	23.45			1.6
Body-worn	Fixed	661	1880.0	15	23.71	-0.162	0.234	1.6
Body-worn	Fixed	810	1909.8	15	23.65			1.6
Body-front	Fixed	661	1880.0	15	23.71	-0.147	0.178	1.6
Body-worn (With Headset)	Fixed	661	1880.0	15	23.71	-0.173	0.198	1.6

								——	
SAR MEASURE	MENI								
Ambient Temperat	ure (°C): 21	Relative Humidity (%): 52							
Liquid Temperature	e (°C): 21.0	Depth of Liquid (cm):>15							
Product: GSM Dua	al Band GPF	RS Digital N	/lobile Ph	one					
Test Mode: 802.11b									
Test Position	Antenna	Frequ	ency	Av	erage	Power Drift	SAR 1g	Limit	
Head	Position	Channel	MHz	Power (dBm)		(<±0.2)	(W/kg)	(W/kg)	
Left-Cheek	Fixed	1	2412	10.52				1.6	
Left-Cheek	Fixed	6	2437	10.86				1.6	
Left-Cheek	Fixed	11	2462	11.38		-0.133	0.028	1.6	
Left-Tilted	Fixed	11	2462	11.38		-0.136	0.023	1.6	
Right-Cheek	Fixed	1	2412	1	0.52			1.6	
Right-Cheek	Fixed	6	2437	1	0.86			1.6	
Right-Cheek	Fixed	11	2462	1	1.38	0.078	0.026	1.6	
Right-Tilted	Right-Tilted Fixed 11 2462 11.38 -0.103 0.017 1							1.6	
Note: When the SAF	R procedures	require mu	ltiple chan	nels to	be tested	and the 1-g S	SAR for the	highest	
output channel is less than 0.8 W/kg, where the transmission band corresponding to all channels is \leq									
100 MHz, testing for the other channels is not required, refer to KDB 447498.									

SAR MEASUR								
Ambient Tempe	Relative Humidity (%): 52							
Liquid Tempera	ture (°C): 2	21.0 ±2	Depth of Liquid (cm):>15					
Product: GSM [Dual Band							
Test Mode: 802.1	1b							
Test Position Body	Antenna Frequency Position Channel MHz		ency MHz	Separation Distance (mm)	Average Power (dBm)	Power Drift (<±0.2)	SAR 1g (W/kg)	Limit (W/kg)
Body-worn	Fixed	1	2412	15	10.52			1.6
Body-worn	Fixed	6	2437	15	10.86			1.6
Body-worn	Fixed	11	2462	15	11.38	-0.161	0.008	1.6
Body-front	Fixed	11	2462	15	11.38	-0.173	0.006	1.6
Body-worn (With Headset)	Fixed	11	2462	15	11.38	-0.183	0.006	1.6
Note: When the SAR procedures require multiple channels to be tested and the 1-g SAR for the highest								
output channel is less than 0.8 W/kg, where the transmission band corresponding to all channels is \leq								
100 MHz, testing for the other channels is not required, refer to KDB 447498.								

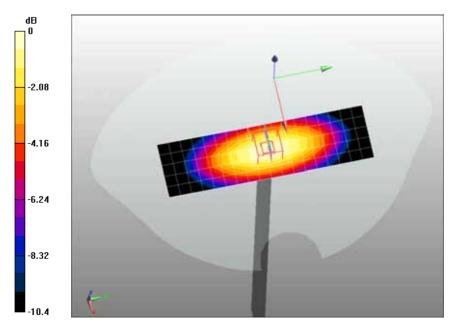
Appendix A. SAR System Validation Data

Date/Time: 29-12-2011

Test Laboratory: QuieTek Lab System Check Head 835MHz **DUT: Dipole 835 MHz D835V2; Type: D835V2** Communication System: CW; Communication System Band: D835 (835.0 MHz); Duty Cycle: 1:1; Frequency: 835 MHz; Medium parameters used: f = 835 MHz; σ = 0.91 mho/m; ϵ r = 42.27; ρ = 1000 kg/m³; Phantom section: Flat Section ; Input Power=250mW Ambient temperature (°C): 21.5, Liquid temperature (°C): 21.0 DASY5 Configuration:

- Probe: EX3DV4 SN3661; ConvF(9.58, 9.58, 9.58); Calibrated: 24/01/2011
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn915; Calibrated: 26/07/2011
- Phantom: SAM2; Type: SAM; Serial: TP1562
- Measurement SW: DASY5, V5.2 Build 162; SEMCAD X Version 14.0 Build 59

Configuration/System Check GSM850 Head/Area Scan (6x19x1): Measurement grid: dx=10mm,


dy=10mm, Maximum value of SAR (measured) = 2.59 mW/g

Configuration/System Check GSM850 Head/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm,

dy=5mm, dz=5mm, Reference Value = 55.7 V/m; Power Drift = -0.078 dB

Peak SAR (extrapolated) = 3.8 W/kg

SAR(1 g) = 2.51 mW/g; SAR(10 g) = 1.64 mW/g Maximum value of SAR (measured) = 2.71 mW/g

0 dB = 2.71mW/g

Test Laboratory: QuieTek Lab

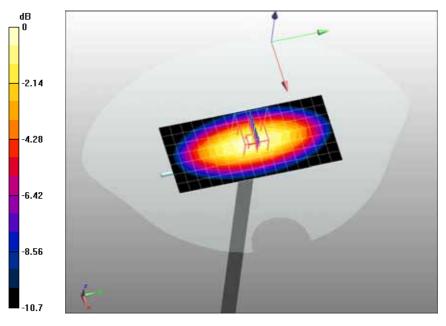
System Check Body 835MHz

DUT: Dipole 835 MHz D835V2; Type: D835V2

Communication System: CW; Communication System Band: D835 (835.0 MHz); Duty Cycle: 1:1; Frequency: 835 MHz; Medium parameters used: f = 835 MHz; σ = 0.98 mho/m; ϵ r = 54.73; ρ = 1000 kg/m³; Phantom section: Flat Section ; Input Power=250mW Ambient temperature (°C): 21.5, Liquid temperature (°C): 21.0 DASY5 Configuration:

- Probe: EX3DV4 SN3661; ConvF(9.58, 9.58, 9.58); Calibrated: 24/01/2011
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn915; Calibrated: 26/07/2011
- Phantom: SAM1; Type: SAM; Serial: TP1561
- Measurement SW: DASY5, V5.2 Build 162; SEMCAD X Version 14.0 Build 59

Configuration/System Check GSM835 Body/Area Scan (8x16x1): Measurement grid: dx=10mm,


dy=10mm, Maximum value of SAR (measured) = 2.49 mW/g

Configuration/System Check GSM835 Body/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm,

dy=5mm, dz=5mm, Reference Value = 52.1 V/m; Power Drift = 0.027 dB

Peak SAR (extrapolated) = 3.68 W/kg

 $^{0 \,} dB = 2.61 mW/g$

Test Laboratory: QuieTek Lab

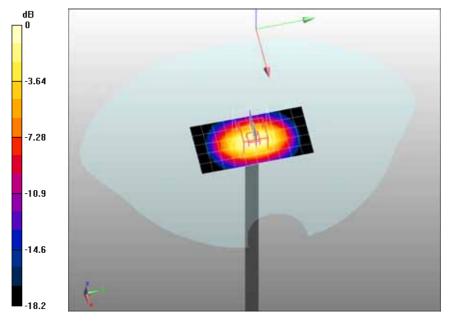
System Check Head 1900MHz

DUT: Dipole 1900 MHz D1900V2; Type: D1900V2

Communication System: CW; Communication System Band: D1900 (1900.0 MHz); Duty Cycle: 1:1; Frequency: 1900 MHz; Medium parameters used: f = 1900 MHz; σ = 1.42 mho/m; ϵ r = 39.27; ρ = 1000 kg/m³; Phantom section: Flat Section ; Input Power=250mW Ambient temperature (°C): 21.5, Liquid temperature (°C): 21.0 DASY5 Configuration:

- Probe: EX3DV4 SN3661; ConvF(8.68, 8.68, 8.68); Calibrated: 24/01/2011
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn915; Calibrated: 26/07/2011
- Phantom: SAM2; Type: SAM; Serial: TP1562
- Measurement SW: DASY5, V5.2 Build 162; SEMCAD X Version 14.0 Build 59

Configuration/System Check PCS1900 Head/Area Scan (6x11x1): Measurement grid: dx=10mm,


dy=10mm

Maximum value of SAR (measured) = 11.1 mW/g

Configuration/System Check PCS1900 Head/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm, Reference Value = 90.8 V/m; Power Drift = -0.099 dB

Peak SAR (extrapolated) = 20 W/kg

SAR(1 g) = 10.5 mW/g; SAR(10 g) = 5.36 mW/g Maximum value of SAR (measured) = 12 mW/g

Test Laboratory: QuieTek Lab

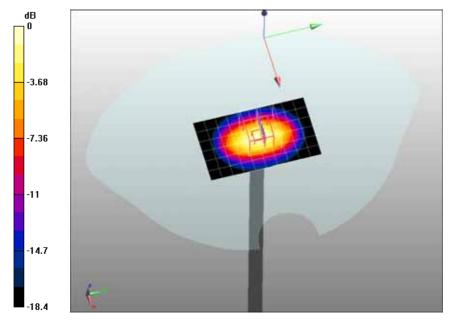
System Check Body 1900MHz

DUT: Dipole 1900 MHz D1900V2; Type: D1900V2

Communication System: CW; Communication System Band: D1900 (1900.0 MHz); Duty Cycle: 1:1; Frequency: 1900 MHz; Medium parameters used: f = 1900 MHz; σ = 1.54 mho/m; ϵ r = 52.45; ρ = 1000 kg/m³; Phantom section: Flat Section ; Input Power=250mW Ambient temperature (°C): 21.5, Liquid temperature (°C): 21.0 DASY5 Configuration:

- Probe: EX3DV4 SN3661; ConvF(7.72, 7.72, 7.72); Calibrated: 24/01/2011
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn915; Calibrated: 26/07/2011
- Phantom: SAM1; Type: SAM; Serial: TP1561
- Measurement SW: DASY5, V5.2 Build 162; SEMCAD X Version 14.0 Build 59

Configuration/System Check PCS1900 Body/Area Scan (7x11x1): Measurement grid: dx=10mm,


dy=10mm

Maximum value of SAR (measured) = 12 mW/g

Configuration/System Check PCS1900 Body/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm, Reference Value = 88.6 V/m; Power Drift = 0.025 dB

Peak SAR (extrapolated) = 19.7 W/kg

SAR(1 g) = 10.6 mW/g; SAR(10 g) = 5.4 mW/g Maximum value of SAR (measured) = 12 mW/g

Test Laboratory: QuieTek Lab

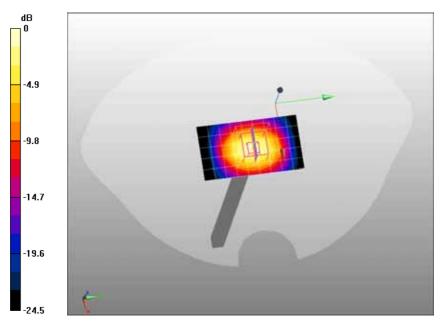
System Check Head 2450MHz

DUT: Dipole 2450 MHz D2450V2; Type: D2450V2

Communication System: CW; Communication System Band: D2450 (2450.0 MHz); Duty Cycle: 1:1; Frequency: 2450 MHz; Medium parameters used: f = 2450 MHz; σ = 1.84 mho/m; ϵ r = 38.6; ρ = 1000 kg/m³; Phantom section: Flat Section ; Input Power=250mW Ambient temperature (°C): 21.5, Liquid temperature (°C): 21.0 DASY5 Configuration:

- Probe: EX3DV4 SN3661; ConvF(7.8, 7.8, 7.8); Calibrated: 24/01/2011
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn915; Calibrated: 26/07/2011
- Phantom: SAM1; Type: SAM; Serial: TP1561
- Measurement SW: DASY5, V5.2 Build 162; SEMCAD X Version 14.0 Build 59

Configuration/Head 2450MHz/Area Scan (6x10x1): Measurement grid: dx=10mm, dy=10mm


Maximum value of SAR (measured) = 13.4 mW/g

Configuration/Head 2450MHz/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm,

dz=5mm, Reference Value = 89.4 V/m; Power Drift = -0.024 dB

Peak SAR (extrapolated) = 28.8 W/kg

SAR(1 g) = 13 mW/g; SAR(10 g) = 5.79 mW/g Maximum value of SAR (measured) = 14.8 mW/g

 $^{0 \,} dB = 14.8 \, mW/g$

Test Laboratory: QuieTek Lab

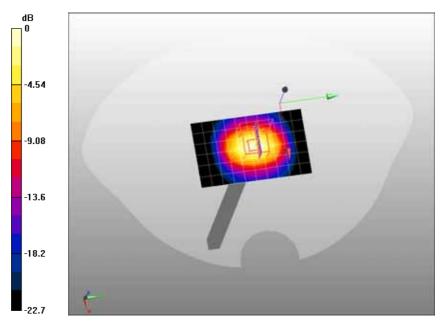
System Check Body 2450MHz

DUT: Dipole 2450 MHz D2450V2; Type: D2450V2

Communication System: CW; Communication System Band: D2450 (2450.0 MHz); Duty Cycle: 1:1; Frequency: 2450 MHz; Medium parameters used: f = 2450 MHz; σ = 2.01 mho/m; ϵ r = 52.3; ρ = 1000 kg/m³; Phantom section: Flat Section ; Input Power=250mW Ambient temperature (°C): 21.5, Liquid temperature (°C): 21.0 DASY5 Configuration:

- Probe: EX3DV4 SN3661; ConvF(7.55, 7.55, 7.55); Calibrated: 24/01/2011
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn915; Calibrated: 26/07/2011
- Phantom: SAM2; Type: SAM; Serial: TP1562
- Measurement SW: DASY5, V5.2 Build 162; SEMCAD X Version 14.0 Build 59

Configuration/Body 2450MHz/Area Scan (7x11x1): Measurement grid: dx=10mm, dy=10mm


Maximum value of SAR (measured) = 14 mW/g

Configuration/Body 2450MHz/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm,

dz=5mm, Reference Value = 84.1 V/m; Power Drift = 0.029 dB

Peak SAR (extrapolated) = 25.6 W/kg

SAR(1 g) = 12.5 mW/g; SAR(10 g) = 5.72 mW/g Maximum value of SAR (measured) = 14.3 mW/g

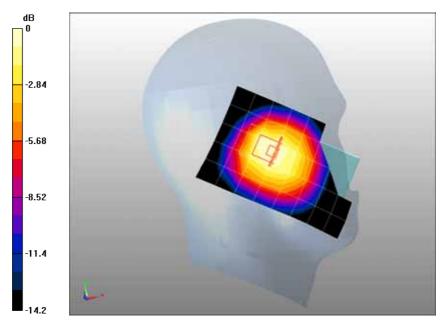
 $^{0 \,} dB = 14.3 mW/g$

Appendix B. SAR measurement Data

Date/Time: 29-12-2011

Test Laboratory: QuieTek Lab GSM850 Low Touch-Left **DUT: GSM Dual Band GPRS Digital Mobile Phone ; Type: LX12** Communication System: Generic GSM; Communication System Band: GSM 850 (824.0 - 849.0 MHz); Duty Cycle: 1:8.3; Frequency: 824.2 MHz; Medium parameters used: f = 824.2 MHz; σ = 0.89 mho/m; ϵ r = 42.4; ρ = 1000 kg/m³ ; Phantom section: Left Section Ambient temperature (°C): 21.5, Liquid temperature (°C): 21.0 DASY5 Configuration:

- Probe: EX3DV4 SN3661; ConvF(9.58, 9.58, 9.58); Calibrated: 24/01/2011
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn915; Calibrated: 26/07/2011
- Phantom: SAM2; Type: SAM; Serial: TP1562
- Measurement SW: DASY5, V5.2 Build 162; SEMCAD X Version 14.0 Build 59


Configuration/GSM850 Low Touch-Left/Area Scan (6x9x1): Measurement grid: dx=20mm, dy=20mm Maximum value of SAR (measured) = 0.929 mW/g

Configuration/GSM850 Low Touch-Left/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm,

dy=8mm, dz=5mm, Reference Value = 27.9 V/m; Power Drift = 0.019 dB

Peak SAR (extrapolated) = 1.48 W/kg

SAR(1 g) = 0.921 mW/g; SAR(10 g) = 0.670 mW/g Maximum value of SAR (measured) = 0.968 mW/g

Test Laboratory: QuieTek Lab

GSM850 Mid Touch-Left

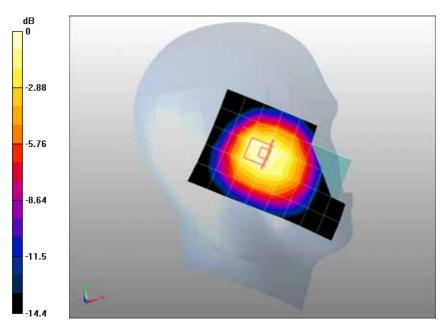
DUT: GSM Dual Band GPRS Digital Mobile Phone ; Type: LX12

Communication System: Generic GSM; Communication System Band: GSM 850 (824.0 - 849.0 MHz); Duty Cycle: 1:8.3; Frequency: 836.4 MHz; Medium parameters used: f = 836.4 MHz; σ = 0.91 mho/m; ϵ r = 42.3; ρ = 1000 kg/m³; Phantom section: Left Section Ambient temperature (°C): 21.5, Liquid temperature (°C): 21.0

DASY5 Configuration:

- Probe: EX3DV4 SN3661; ConvF(9.58, 9.58, 9.58); Calibrated: 24/01/2011
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn915; Calibrated: 26/07/2011
- Phantom: SAM2; Type: SAM; Serial: TP1562
- Measurement SW: DASY5, V5.2 Build 162; SEMCAD X Version 14.0 Build 59

Configuration/GSM850 Mid Touch-Left/Area Scan (6x9x1): Measurement grid: dx=20mm, dy=20mm


Maximum value of SAR (measured) = 1.1 mW/g

Configuration/GSM850 Mid Touch-Left/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm,

dy=8mm, dz=5mm, Reference Value = 30 V/m; Power Drift = -0.012 dB

Peak SAR (extrapolated) = 1.71 W/kg

SAR(1 g) = 1.08 mW/g; SAR(10 g) = 0.787 mW/g Maximum value of SAR (measured) = 1.15 mW/g

 $0 \, dB = 1.15 mW/g$

Test Laboratory: QuieTek Lab

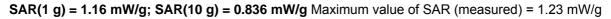
GSM850 High Touch-Left

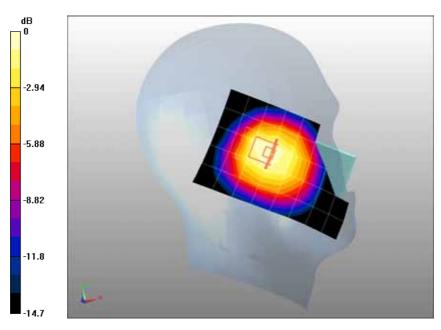
DUT: GSM Dual Band GPRS Digital Mobile Phone ; Type: LX12

Communication System: Generic GSM; Communication System Band: GSM 850 (824.0 - 849.0 MHz); Duty Cycle: 1:8.3; Frequency: 848.8 MHz; Medium parameters used: f = 848.8 MHz; σ = 0.92 mho/m; ϵ r = 42.1; ρ = 1000 kg/m³; Phantom section: Left Section Ambient temperature (°C): 21.5, Liquid temperature (°C): 21.0

DASY5 Configuration:

- Probe: EX3DV4 SN3661; ConvF(9.58, 9.58, 9.58); Calibrated: 24/01/2011
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn915; Calibrated: 26/07/2011
- Phantom: SAM2; Type: SAM; Serial: TP1562
- Measurement SW: DASY5, V5.2 Build 162; SEMCAD X Version 14.0 Build 59

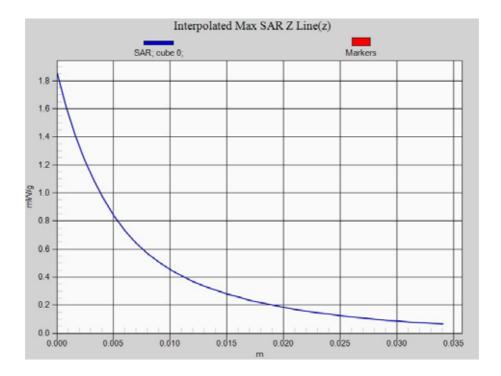

Configuration/GSM850 High Touch-Left/Area Scan (6x9x1): Measurement grid: dx=20mm, dy=20mm


Maximum value of SAR (measured) = 1.18 mW/g

Configuration/GSM850 High Touch-Left/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm,

dy=8mm, dz=5mm, Reference Value = 30.5 V/m; Power Drift = 0.080 dB

Peak SAR (extrapolated) = 1.85 W/kg



 $^{0 \,} dB = 1.23 mW/g$

Z-Axis Plot

Test Laboratory: QuieTek Lab

GSM850 Mid Tilt-Left

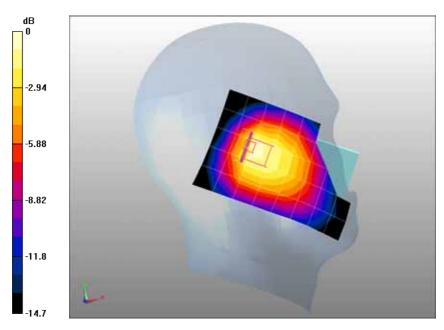
DUT: GSM Dual Band GPRS Digital Mobile Phone ; Type: LX12

Communication System: Generic GSM; Communication System Band: GSM 850 (824.0 - 849.0 MHz); Duty Cycle: 1:8.3; Frequency: 836.4 MHz; Medium parameters used: f = 836.4 MHz; σ = 0.91 mho/m; ϵ r = 42.3; ρ = 1000 kg/m³; Phantom section: Left Section Ambient temperature (°C): 21.5, Liquid temperature (°C): 21.0

DASY5 Configuration:

- Probe: EX3DV4 SN3661; ConvF(9.58, 9.58, 9.58); Calibrated: 24/01/2011
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn915; Calibrated: 26/07/2011
- Phantom: SAM2; Type: SAM; Serial: TP1562
- Measurement SW: DASY5, V5.2 Build 162; SEMCAD X Version 14.0 Build 59

Configuration/GSM850 Mid Tilt-Left/Area Scan (6x9x1): Measurement grid: dx=20mm, dy=20mm


Maximum value of SAR (measured) = 0.621 mW/g

Configuration/GSM850 Mid Tilt-Left/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm,

dz=5mm, Reference Value = 27 V/m; Power Drift = -0.024 dB

Peak SAR (extrapolated) = 1.29 W/kg

SAR(1 g) = 0.678 mW/g; SAR(10 g) = 0.451 mW/g Maximum value of SAR (measured) = 0.733 mW/g

 $0 \, dB = 0.733 mW/g$

Test Laboratory: QuieTek Lab

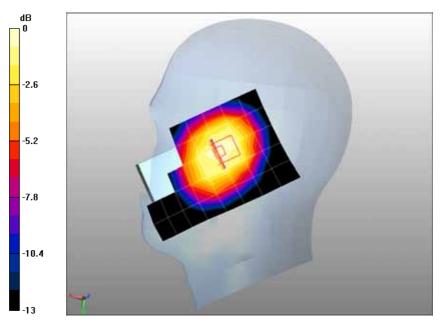
GSM850 Low Touch-Right

DUT: GSM Dual Band GPRS Digital Mobile Phone ; Type: LX12

Communication System: Generic GSM; Communication System Band: GSM 850 (824.0 - 849.0 MHz); Duty Cycle: 1:8.3; Frequency: 824.2 MHz; Medium parameters used: f = 824.2 MHz; σ = 0.89 mho/m; ϵ r = 42.4; ρ = 1000 kg/m³; Phantom section: Right Section Ambient temperature (°C): 21.5, Liquid temperature (°C): 21.0

DASY5 Configuration:

- Probe: EX3DV4 SN3661; ConvF(9.58, 9.58, 9.58); Calibrated: 24/01/2011
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn915; Calibrated: 26/07/2011
- Phantom: SAM2; Type: SAM; Serial: TP1562
- Measurement SW: DASY5, V5.2 Build 162; SEMCAD X Version 14.0 Build 59


Configuration/GSM850 Low Touch-Right/Area Scan (6x9x1): Measurement grid: dx=20mm, dy=20mm Maximum value of SAR (measured) = 0.998 mW/g

Configuration/GSM850 Low Touch-Right/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm,

dy=8mm, dz=5mm, Reference Value = 29.5 V/m; Power Drift = 0.034 dB

Peak SAR (extrapolated) = 1.34 W/kg

SAR(1 g) = 0.945 mW/g; SAR(10 g) = 0.694 mW/g Maximum value of SAR (measured) = 0.988 mW/g

 $^{0 \,} dB = 0.988 mW/g$

Test Laboratory: QuieTek Lab

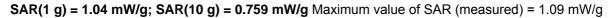
GSM850 Mid Touch-Right

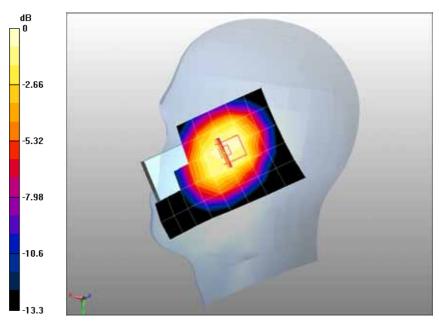
DUT: GSM Dual Band GPRS Digital Mobile Phone ; Type: LX12

Communication System: Generic GSM; Communication System Band: GSM 850 (824.0 - 849.0 MHz); Duty Cycle: 1:8.3; Frequency: 836.4 MHz; Medium parameters used: f = 836.4 MHz; σ = 0.91 mho/m; ϵ r = 42.3; ρ = 1000 kg/m³; Phantom section: Right Section Ambient temperature (°C): 21.5, Liquid temperature (°C): 21.0

DASY5 Configuration:

- Probe: EX3DV4 SN3661; ConvF(9.58, 9.58, 9.58); Calibrated: 24/01/2011
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn915; Calibrated: 26/07/2011
- Phantom: SAM2; Type: SAM; Serial: TP1562
- Measurement SW: DASY5, V5.2 Build 162; SEMCAD X Version 14.0 Build 59


Configuration/GSM850 Mid Touch-Right/Area Scan (6x9x1): Measurement grid: dx=20mm, dy=20mm


Maximum value of SAR (measured) = 1.07 mW/g

Configuration/GSM850 Mid Touch-Right/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm,

dy=8mm, dz=5mm, Reference Value = 30.7 V/m; Power Drift = 0.006 dB

Peak SAR (extrapolated) = 1.51 W/kg

 $^{0 \,} dB = 1.09 \, mW/g$

Test Laboratory: QuieTek Lab

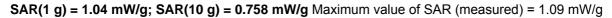
GSM850 High Touch-Right

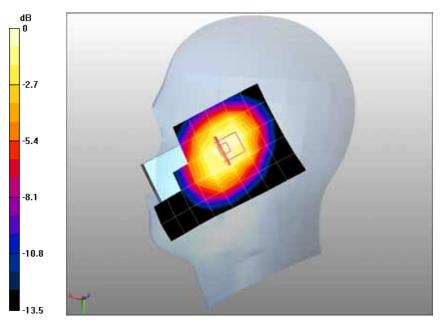
DUT: GSM Dual Band GPRS Digital Mobile Phone ; Type: LX12

Communication System: Generic GSM; Communication System Band: GSM 850 (824.0 - 849.0 MHz); Duty Cycle: 1:8.3; Frequency: 848.8 MHz; Medium parameters used: f = 848.8 MHz; σ = 0.92 mho/m; ϵ r = 42.1; ρ = 1000 kg/m³; Phantom section: Right Section Ambient temperature (°C): 21.5, Liquid temperature (°C): 21.0

DASY5 Configuration:

- Probe: EX3DV4 SN3661; ConvF(9.58, 9.58, 9.58); Calibrated: 24/01/2011
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn915; Calibrated: 26/07/2011
- Phantom: SAM2; Type: SAM; Serial: TP1562
- Measurement SW: DASY5, V5.2 Build 162; SEMCAD X Version 14.0 Build 59


Configuration/GSM850 High Touch-Right/Area Scan (6x9x1): Measurement grid: dx=20mm, dy=20mm


Maximum value of SAR (measured) = 1.07 mW/g

Configuration/GSM850 High Touch-Right/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm,

dy=8mm, dz=5mm, Reference Value = 30.7 V/m; Power Drift = -0.026 dB

Peak SAR (extrapolated) = 1.57 W/kg

 $^{0 \,} dB = 1.09 mW/g$

Test Laboratory: QuieTek Lab

GSM850 Mid Tilt-Right

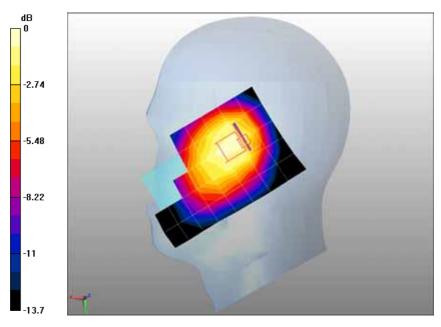
DUT: GSM Dual Band GPRS Digital Mobile Phone ; Type: LX12

Communication System: Generic GSM; Communication System Band: GSM 850 (824.0 - 849.0 MHz); Duty Cycle: 1:8.3; Frequency: 836.4 MHz; Medium parameters used: f = 836.4 MHz; σ = 0.91 mho/m; ϵ r = 42.3; ρ = 1000 kg/m³; Phantom section: Right Section Ambient temperature (°C): 21.5, Liquid temperature (°C): 21.0

DASY5 Configuration:

- Probe: EX3DV4 SN3661; ConvF(9.58, 9.58, 9.58); Calibrated: 24/01/2011
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn915; Calibrated: 26/07/2011
- Phantom: SAM2; Type: SAM; Serial: TP1562
- Measurement SW: DASY5, V5.2 Build 162; SEMCAD X Version 14.0 Build 59

Configuration/GSM850 Mid Tilt-Right/Area Scan (6x9x1): Measurement grid: dx=20mm, dy=20mm


Maximum value of SAR (measured) = 0.634 mW/g

Configuration/GSM850 Mid Tilt-Right/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm,

dy=8mm, dz=5mm, Reference Value = 25.3 V/m; Power Drift = 0.128 dB

Peak SAR (extrapolated) = 1.18 W/kg

SAR(1 g) = 0.621 mW/g; SAR(10 g) = 0.437 mW/g Maximum value of SAR (measured) = 0.649 mW/g

 $^{0 \,} dB = 0.649 mW/g$

Test Laboratory: QuieTek Lab

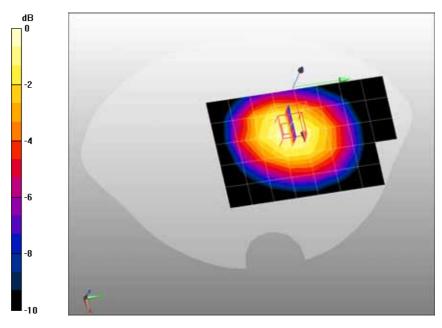
GSM850 Mid Body-Back

DUT: GSM Dual Band GPRS Digital Mobile Phone ; Type: LX12

Communication System: Generic GSM; Communication System Band: GSM 850 (824.0 - 849.0 MHz); Duty Cycle: 1:8.3; Frequency: 836.4 MHz; Medium parameters used: f = 836.4 MHz; σ = 0.98 mho/m; ϵ r = 54.7; ρ = 1000 kg/m³; Phantom section: Flat Section Ambient temperature (°C): 21.5, Liquid temperature (°C): 21.0

DASY5 Configuration:

- Probe: EX3DV4 SN3661; ConvF(9.58, 9.58, 9.58); Calibrated: 24/01/2011
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn915; Calibrated: 26/07/2011
- Phantom: SAM1; Type: SAM; Serial: TP1561
- Measurement SW: DASY5, V5.2 Build 162; SEMCAD X Version 14.0 Build 59


Configuration/GSM850 Mid Body-Back/Area Scan (6x9x1): Measurement grid: dx=20mm, dy=20mm Maximum value of SAR (measured) = 0.281 mW/g

Configuration/GSM850 Mid Body-Back/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm,

dy=8mm, dz=5mm, Reference Value = 11.5 V/m; Power Drift = 0.141 dB

Peak SAR (extrapolated) = 0.384 W/kg

SAR(1 g) = 0.282 mW/g; SAR(10 g) = 0.202 mW/g Maximum value of SAR (measured) = 0.298 mW/g

 $^{0 \,} dB = 0.298 \, mW/g$

Test Laboratory: QuieTek Lab GPRS850 Mid Body-Back(2up) **DUT: GSM Dual Band GPRS Digital Mobile Phone ; Type: LX12** Communication System: GPRS/EGPRS-2 Slot; Communication System Band: GSM850; Duty Cycle: 1:4.2 ; Frequency: 836.4 MHz; Medium parameters used: f = 836.4 MHz; σ = 0.98 mho/m; ϵ r = 54.7; ρ = 1000 kg/m³ ; Phantom section: Flat Section Ambient temperature (°C): 21.5, Liquid temperature (°C): 21.0 DASY5 Configuration:

- Probe: EX3DV4 SN3661; ConvF(9.58, 9.58, 9.58); Calibrated: 24/01/2011
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn915; Calibrated: 26/07/2011
- Phantom: SAM1; Type: SAM; Serial: TP1561
- Measurement SW: DASY5, V5.2 Build 162; SEMCAD X Version 14.0 Build 59

Configuration/GPRS850 Mid Body-Back/Area Scan (6x9x1): Measurement grid: dx=20mm, dy=20mm Maximum value of SAR (measured) = 0.433 mW/g

Configuration/GPRS850 Mid Body-Back/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm,

dy=8mm, dz=5mm, Reference Value = 14.5 V/m; Power Drift = 0.133 dB

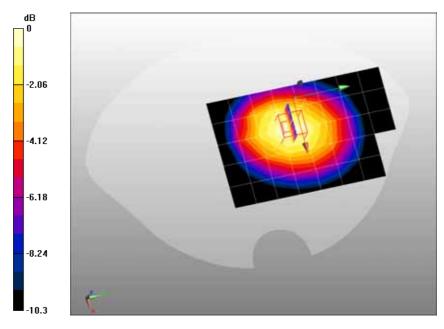
Peak SAR (extrapolated) = 0.583 W/kg

SAR(1 g) = 0.425 mW/g; SAR(10 g) = 0.305 mW/g Maximum value of SAR (measured) = 0.449 mW/g

 $^{0 \,} dB = 0.449 \, mW/g$

Test Laboratory: QuieTek Lab GPRS850 Mid Body-Back(3up) **DUT: GSM Dual Band GPRS Digital Mobile Phone ; Type: LX12** Communication System: GPRS/EGPRS-3 Slot; Communication System Band: GSM 850; Duty Cycle: 1:2.8 ; Frequency: 836.4 MHz; Medium parameters used: f = 836.4 MHz; σ = 0.98 mho/m; ϵ r = 54.7; ρ = 1000 kg/m³ ; Phantom section: Flat Section Ambient temperature (°C): 21.5, Liquid temperature (°C): 21.0 DASY5 Configuration:

- Probe: EX3DV4 SN3661; ConvF(9.58, 9.58, 9.58); Calibrated: 24/01/2011
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn915; Calibrated: 26/07/2011
- Phantom: SAM1; Type: SAM; Serial: TP1561
- Measurement SW: DASY5, V5.2 Build 162; SEMCAD X Version 14.0 Build 59


Configuration/GPRS850 Mid Body-Back/Area Scan (6x9x1): Measurement grid: dx=20mm, dy=20mm Maximum value of SAR (measured) = 0.450 mW/g

Configuration/GPRS850 Mid Body-Back/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm,

dy=8mm, dz=5mm, Reference Value = 14.7 V/m; Power Drift = 0.121 dB

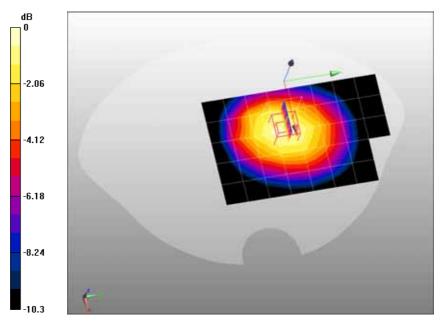
Peak SAR (extrapolated) = 0.600 W/kg

SAR(1 g) = 0.438 mW/g; SAR(10 g) = 0.312 mW/g Maximum value of SAR (measured) = 0.466 mW/g

 $^{0 \,} dB = 0.466 \, mW/g$

Test Laboratory: QuieTek Lab GPRS850 Mid Body-Back(4up) **DUT: GSM Dual Band GPRS Digital Mobile Phone ; Type: LX12** Communication System: GPRS/EGPRS-4 Slot; Communication System Band: GSM 850; Duty Cycle: 1:2.1 ; Frequency: 836.4 MHz; Medium parameters used: f = 836.4 MHz; σ = 0.98 mho/m; ϵ r = 54.7; ρ = 1000 kg/m³ ; Phantom section: Flat Section Ambient temperature (°C): 21.5, Liquid temperature (°C): 21.0 DASY5 Configuration:

- Probe: EX3DV4 SN3661; ConvF(9.58, 9.58, 9.58); Calibrated: 24/01/2011
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn915; Calibrated: 26/07/2011
- Phantom: SAM1; Type: SAM; Serial: TP1561
- Measurement SW: DASY5, V5.2 Build 162; SEMCAD X Version 14.0 Build 59


Configuration/GPRS850 Mid Body-Back/Area Scan (6x9x1): Measurement grid: dx=20mm, dy=20mm Maximum value of SAR (measured) = 0.485 mW/g

Configuration/GPRS850 Mid Body-Back/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm,

dy=8mm, dz=5mm, Reference Value = 15.3 V/m; Power Drift = 0.060 dB

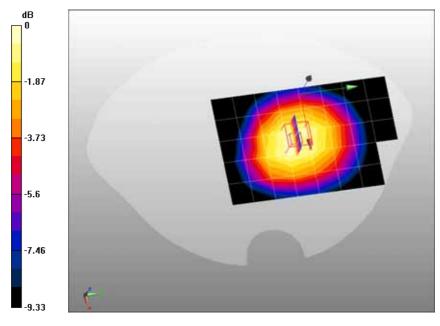
Peak SAR (extrapolated) = 0.662 W/kg

SAR(1 g) = 0.487 mW/g; SAR(10 g) = 0.347 mW/g Maximum value of SAR (measured) = 0.518 mW/g

 $^{0 \,} dB = 0.518 \, mW/g$

Test Laboratory: QuieTek Lab GPRS850 Mid Body-Front(4up) **DUT: GSM Dual Band GPRS Digital Mobile Phone ; Type: LX12** Communication System: GPRS/EGPRS-4 Slot; Communication System Band: GSM 850; Duty Cycle: 1:2.1 ; Frequency: 836.4 MHz; Medium parameters used: f = 836.4 MHz; σ = 0.98 mho/m; ϵ r = 54.7; ρ = 1000 kg/m³ ; Phantom section: Flat Section Ambient temperature (°C): 21.5, Liquid temperature (°C): 21.0 DASY5 Configuration:

- Probe: EX3DV4 SN3661; ConvF(9.58, 9.58, 9.58); Calibrated: 24/01/2011
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn915; Calibrated: 26/07/2011
- Phantom: SAM1; Type: SAM; Serial: TP1561
- Measurement SW: DASY5, V5.2 Build 162; SEMCAD X Version 14.0 Build 59


Configuration/GPRS850 Mid Body-Front/Area Scan (6x9x1): Measurement grid: dx=20mm, dy=20mm Maximum value of SAR (measured) = 0.469 mW/g

Configuration/GPRS850 Mid Body-Front/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm,

dy=8mm, dz=5mm, Reference Value = 15.1 V/m; Power Drift = 0.056 dB

Peak SAR (extrapolated) = 0.624 W/kg

SAR(1 g) = 0.484 mW/g; SAR(10 g) = 0.357 mW/g Maximum value of SAR (measured) = 0.512 mW/g

 $0 \, dB = 0.512 mW/g$

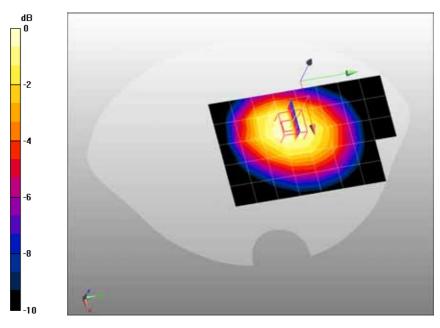
Test Laboratory: QuieTek Lab

GPRS850 Mid Body-Back(4up)(with headset)

DUT: GSM Dual Band GPRS Digital Mobile Phone ; Type: LX12

Communication System: GPRS/EGPRS-4 Slot; Communication System Band: GSM 850; Duty Cycle: 1:2.1 ; Frequency: 836.4 MHz; Medium parameters used: f = 836.4 MHz; σ = 0.98 mho/m; ϵ r = 54.7; ρ = 1000 kg/m³ ; Phantom section: Flat Section Ambient temperature (°C): 21.5, Liquid temperature (°C): 21.0 DASY5 Configuration:

- Probe: EX3DV4 SN3661; ConvF(9.58, 9.58, 9.58); Calibrated: 24/01/2011
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn915; Calibrated: 26/07/2011
- Phantom: SAM1; Type: SAM; Serial: TP1561
- Measurement SW: DASY5, V5.2 Build 162; SEMCAD X Version 14.0 Build 59


Configuration/GPRS850 Mid Body-Back/Area Scan (6x9x1): Measurement grid: dx=20mm, dy=20mm Maximum value of SAR (measured) = 0.510 mW/g

Configuration/GPRS850 Mid Body-Back/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm,

dy=8mm, dz=5mm, Reference Value = 15.1 V/m; Power Drift = 0.117 dB

Peak SAR (extrapolated) = 0.653 W/kg

SAR(1 g) = 0.474 mW/g; SAR(10 g) = 0.339 mW/g Maximum value of SAR (measured) = 0.498 mW/g

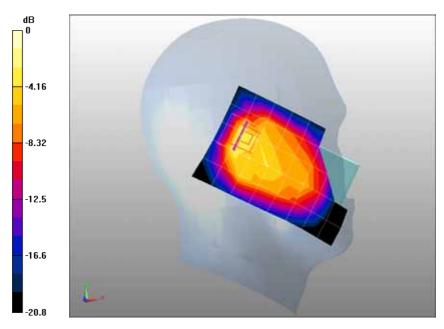
 $^{0 \,} dB = 0.498 \, mW/g$

Test Laboratory: QuieTek Lab

PCS1900 Mid Touch-Left DUT: GSM Dual Band GPRS Digital Mobile Phone ; Type: LX12

Communication System: Generic GSM; Communication System Band: PCS 1900 (1850.0 - 1910.0 MHz); Duty Cycle: 1:8.3; Frequency: 1880 MHz; Medium parameters used: f = 1880 MHz; σ = 1.41 mho/m; ϵ r = 39.4; ρ = 1000 kg/m³; Phantom section: Left Section Ambient temperature (°C): 21.5, Liquid temperature (°C): 21.0 DASY5 Configuration:

- Probe: EX3DV4 SN3661; ConvF(8.68, 8.68, 8.68); Calibrated: 24/01/2011
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn915; Calibrated: 26/07/2011
- Phantom: SAM2; Type: SAM; Serial: TP1562
- Measurement SW: DASY5, V5.2 Build 162; SEMCAD X Version 14.0 Build 59


Configuration/PCS1900 Mid Touch-Left/Area Scan (6x9x1): Measurement grid: dx=20mm, dy=20mm Maximum value of SAR (measured) = 0.174 mW/g

Configuration/PCS1900 Mid Touch-Left/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm,

dy=8mm, dz=5mm, Reference Value = 14.8 V/m; Power Drift = 0.142 dB

Peak SAR (extrapolated) = 0.561 W/kg

SAR(1 g) = 0.299 mW/g; SAR(10 g) = 0.143 mW/g Maximum value of SAR (measured) = 0.322 mW/g

 $^{0 \,} dB = 0.322 mW/g$

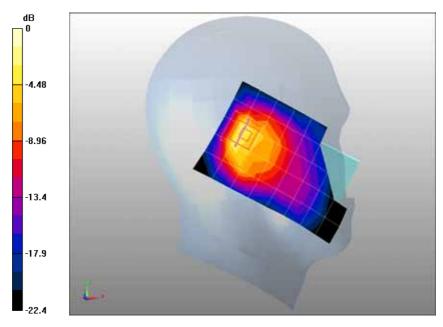
Test Laboratory: QuieTek Lab PCS1900 Mid Tilt-Left

DUT: GSM Dual Band GPRS Digital Mobile Phone ; Type: LX12

Communication System: Generic GSM; Communication System Band: PCS 1900 (1850.0 - 1910.0 MHz); Duty Cycle: 1:8.3; Frequency: 1880 MHz; Medium parameters used: f = 1880 MHz; σ = 1.41 mho/m; ϵ r = 39.4; ρ = 1000 kg/m³; Phantom section: Left Section Ambient temperature (°C): 21.5, Liquid temperature (°C): 21.0 DASY5 Configuration:

- Probe: EX3DV4 SN3661; ConvF(8.68, 8.68, 8.68); Calibrated: 24/01/2011
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn915; Calibrated: 26/07/2011
- Phantom: SAM2; Type: SAM; Serial: TP1562
- Measurement SW: DASY5, V5.2 Build 162; SEMCAD X Version 14.0 Build 59

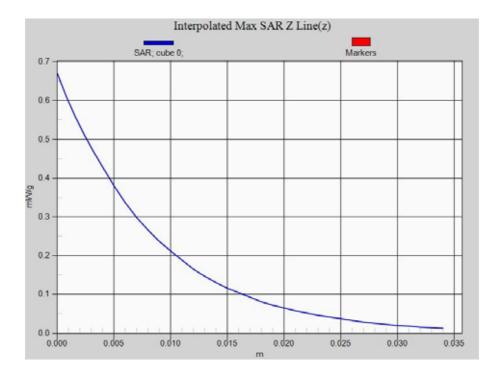
Configuration/PCS1900 Mid Tilt-Left/Area Scan (6x9x1): Measurement grid: dx=20mm, dy=20mm


Maximum value of SAR (measured) = 0.225 mW/g

Configuration/PCS1900 Mid Tilt-Left/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm,

dz=5mm, Reference Value = 16.1 V/m; Power Drift = 0.024 dB

Peak SAR (extrapolated) = 0.670 W/kg


SAR(1 g) = 0.354 mW/g; SAR(10 g) = 0.167 mW/g Maximum value of SAR (measured) = 0.417 mW/g

 $^{0 \,} dB = 0.417 mW/g$

Z-Axis Plot

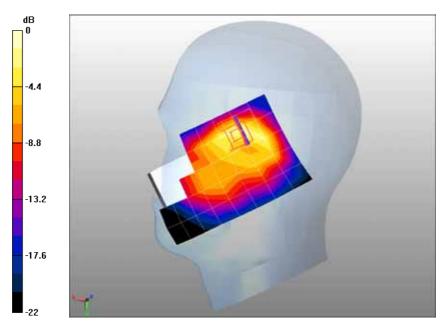
Test Laboratory: QuieTek Lab

PCS1900 Mid Touch-Right

DUT: GSM Dual Band GPRS Digital Mobile Phone ; Type: LX12

Communication System: Generic GSM; Communication System Band: PCS 1900 (1850.0 - 1910.0 MHz); Duty Cycle: 1:8.3; Frequency: 1880 MHz; Medium parameters used: f = 1880 MHz; σ = 1.41 mho/m; ϵ r = 39.4; ρ = 1000 kg/m³; Phantom section: Right Section Ambient temperature (°C): 21.5, Liquid temperature (°C): 21.0 DASY5 Configuration:

- Probe: EX3DV4 SN3661; ConvF(8.68, 8.68, 8.68); Calibrated: 24/01/2011
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn915; Calibrated: 26/07/2011
- Phantom: SAM2; Type: SAM; Serial: TP1562
- Measurement SW: DASY5, V5.2 Build 162; SEMCAD X Version 14.0 Build 59


Configuration/PCS1900 Mid Touch-Right/Area Scan (6x9x1): Measurement grid: dx=20mm, dy=20mm Maximum value of SAR (measured) = 0.282 mW/g

Configuration/PCS1900 Mid Touch-Right/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm,

dy=8mm, dz=5mm, Reference Value = 14 V/m; Power Drift = -0.149 dB

Peak SAR (extrapolated) = 0.603 W/kg

SAR(1 g) = 0.293 mW/g; SAR(10 g) = 0.143 mW/g Maximum value of SAR (measured) = 0.329 mW/g

 $^{0 \,} dB = 0.329 mW/g$

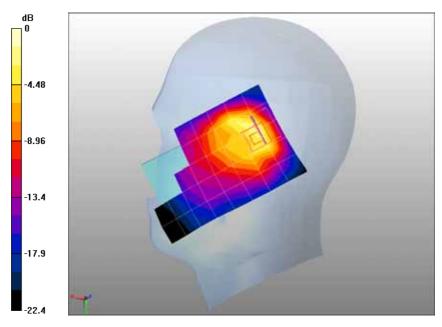
Test Laboratory: QuieTek Lab PCS1900 Mid Tilt-Right

DUT: GSM Dual Band GPRS Digital Mobile Phone ; Type: LX12

Communication System: Generic GSM; Communication System Band: PCS 1900 (1850.0 - 1910.0 MHz); Duty Cycle: 1:8.3; Frequency: 1880 MHz; Medium parameters used: f = 1880 MHz; σ = 1.41 mho/m; ϵ r = 39.4; ρ = 1000 kg/m³; Phantom section: Right Section Ambient temperature (°C): 21.5, Liquid temperature (°C): 21.0 DASY5 Configuration:

- Probe: EX3DV4 SN3661; ConvF(8.68, 8.68, 8.68); Calibrated: 24/01/2011
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn915; Calibrated: 26/07/2011
- Phantom: SAM2; Type: SAM; Serial: TP1562
- Measurement SW: DASY5, V5.2 Build 162; SEMCAD X Version 14.0 Build 59

Configuration/PCS1900 Mid Tilt-Right/Area Scan (6x9x1): Measurement grid: dx=20mm, dy=20mm


Maximum value of SAR (measured) = 0.252 mW/g

Configuration/PCS1900 Mid Tilt-Right/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm,

dy=8mm, dz=5mm, Reference Value = 15.6 V/m; Power Drift = -0.045 dB

Peak SAR (extrapolated) = 0.630 W/kg

SAR(1 g) = 0.333 mW/g; SAR(10 g) = 0.161 mW/g Maximum value of SAR (measured) = 0.349 mW/g

 $^{0 \,} dB = 0.349 mW/g$

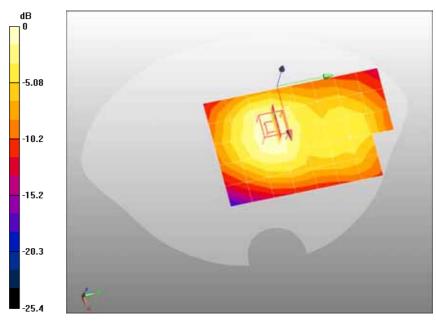
Test Laboratory: QuieTek Lab

PCS1900 Mid Body-Back

DUT: GSM Dual Band GPRS Digital Mobile Phone; Type: LX12

Communication System: Generic GSM; Communication System Band: PCS 1900 (1850.0 - 1910.0 MHz); Duty Cycle: 1:8.3; Frequency: 1880 MHz; Medium parameters used: f = 1880 MHz; σ = 1.51 mho/m; ϵ r = 52.5; ρ = 1000 kg/m³; Phantom section: Flat Section Ambient temperature (°C): 21.5, Liquid temperature (°C): 21.0 DASY5 Configuration:

- Probe: EX3DV4 SN3661; ConvF(7.72, 7.72, 7.72); Calibrated: 24/01/2011
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn915; Calibrated: 26/07/2011
- Phantom: SAM1; Type: SAM; Serial: TP1561
- Measurement SW: DASY5, V5.2 Build 162; SEMCAD X Version 14.0 Build 59


Configuration/PCS1900 Mid Body-Back/Area Scan (6x9x1): Measurement grid: dx=20mm, dy=20mm Maximum value of SAR (measured) = 0.058 mW/g

Configuration/PCS1900 Mid Body-Back/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm,

dy=8mm, dz=5mmm, Reference Value = 4.58 V/m; Power Drift = -0.067 dB

Peak SAR (extrapolated) = 0.095 W/kg

SAR(1 g) = 0.058 mW/g; SAR(10 g) = 0.036 mW/g Maximum value of SAR (measured) = 0.062 mW/g

 $^{0 \,} dB = 0.062 mW/g$

Test Laboratory: QuieTek Lab GPRS1900 Mid Body-Back(2up) DUT: GSM Dual Band GPRS Digital Mobile Phone; Type: LX12

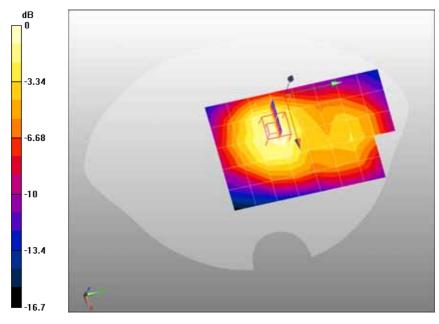
Communication System: GPRS/EGPRS-2 Slot; Communication System Band: PCS1900; Duty Cycle: 1:4.2;

Frequency: 1880 MHz; Medium parameters used: f = 1880 MHz; σ = 1.51 mho/m; ϵ r = 52.5; ρ = 1000 kg/m³; Phantom section: Flat Section

Ambient temperature (°C): 21.5, Liquid temperature (°C): 21.0 DASY5 Configuration:

- Probe: EX3DV4 SN3661; ConvF(7.72, 7.72, 7.72); Calibrated: 24/01/2011
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn915; Calibrated: 26/07/2011
- Phantom: SAM1; Type: SAM; Serial: TP1561
- Measurement SW: DASY5, V5.2 Build 162; SEMCAD X Version 14.0 Build 59

Configuration/GPRS1900 Mid Body-Back/Area Scan (6x9x1): Measurement grid: dx=20mm, dy=20mm


Maximum value of SAR (measured) = 0.118 mW/g

Configuration/GPRS1900 Mid Body-Back/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm,

dy=8mm, dz=5mm, Reference Value = 6.33 V/m; Power Drift = -0.102 dB

Peak SAR (extrapolated) = 0.187 W/kg

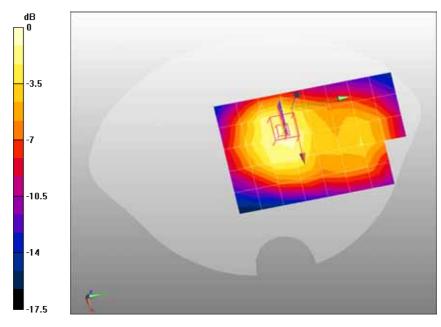
SAR(1 g) = 0.118 mW/g; SAR(10 g) = 0.072 mW/g Maximum value of SAR (measured) = 0.125 mW/g

 $0 \, dB = 0.125 mW/g$

Test Laboratory: QuieTek Lab GPRS1900 Mid Body-Back(3up) **DUT: GSM Dual Band GPRS Digital Mobile Phone; Type: LX12** Communication System: GPRS/EGPRS-3 Slot; Communication System Band: PCS 1900; Duty Cycle: 1:2.8 ; Frequency: 1880 MHz; Medium parameters used: f = 1880 MHz; σ = 1.51 mho/m; ϵ r = 52.5; ρ = 1000 kg/m³ ; Phantom section: Flat Section Ambient temperature (°C): 21.5, Liquid temperature (°C): 21.0 DASY5 Configuration:

- Probe: EX3DV4 SN3661; ConvF(7.72, 7.72, 7.72); Calibrated: 24/01/2011
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn915; Calibrated: 26/07/2011
- Phantom: SAM1; Type: SAM; Serial: TP1561
- Measurement SW: DASY5, V5.2 Build 162; SEMCAD X Version 14.0 Build 59

Configuration/GPRS1900 Mid Body-Back/Area Scan (6x9x1): Measurement grid: dx=20mm, dy=20mm


Maximum value of SAR (measured) = 0.174 mW/g

Configuration/GPRS1900 Mid Body-Back/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm,

dy=8mm, dz=5mm, Reference Value = 7.68 V/m; Power Drift = -0.009 dB

Peak SAR (extrapolated) = 0.282 W/kg

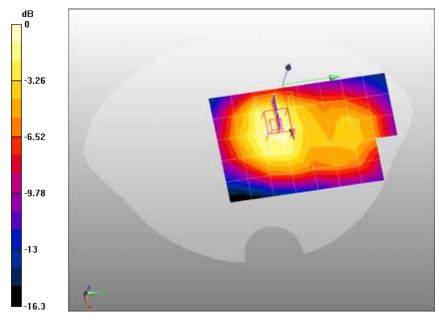
SAR(1 g) = 0.176 mW/g; SAR(10 g) = 0.107 mW/g Maximum value of SAR (measured) = 0.189 mW/g

 $^{0 \,} dB = 0.189 \, mW/g$

Test Laboratory: QuieTek Lab GPRS1900 Mid Body-Back(4up) **DUT: GSM Dual Band GPRS Digital Mobile Phone; Type: LX12** Communication System: GPRS/EGPRS-4 Slot; Communication System Band: PCS 1900; Duty Cycle: 1:2.1; Frequency: 1880 MHz; Medium parameters used: f = 1880 MHz; σ = 1.51 mho/m; ϵ r = 52.5; ρ = 1000 kg/m³; Phantom section: Flat Section Ambient temperature (°C): 21.5, Liquid temperature (°C): 21.0 DASY5 Configuration:

- Probe: EX3DV4 SN3661; ConvF(7.72, 7.72, 7.72); Calibrated: 24/01/2011
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn915; Calibrated: 26/07/2011
- Phantom: SAM1; Type: SAM; Serial: TP1561
- Measurement SW: DASY5, V5.2 Build 162; SEMCAD X Version 14.0 Build 59

Configuration/GPRS1900 Mid Body-Back/Area Scan (6x9x1): Measurement grid: dx=20mm, dy=20mm


Maximum value of SAR (measured) = 0.236 mW/g

Configuration/GPRS1900 Mid Body-Back/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm,

dy=8mm, dz=5mm, Reference Value = 9.12 V/m; Power Drift = -0.162 dB

Peak SAR (extrapolated) = 0.379 W/kg

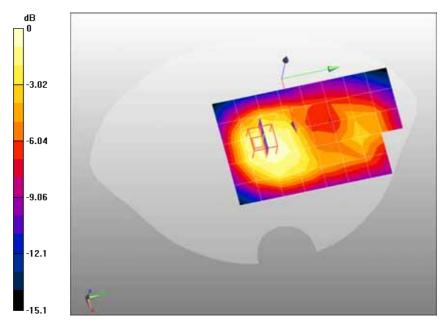
SAR(1 g) = 0.234 mW/g; SAR(10 g) = 0.144 mW/g Maximum value of SAR (measured) = 0.251 mW/g

 $0 \, dB = 0.251 mW/g$

Test Laboratory: QuieTek Lab GPRS1900 Mid Body-Front(4up) **DUT: GSM Dual Band GPRS Digital Mobile Phone; Type: LX12** Communication System: GPRS/EGPRS-4 Slot; Communication System Band: PCS 1900; Duty Cycle: 1:2.1; Frequency: 1880 MHz; Medium parameters used: f = 1880 MHz; σ = 1.51 mho/m; ϵ r = 52.5; ρ = 1000 kg/m³; Phantom section: Flat Section Ambient temperature (°C): 21.5, Liquid temperature (°C): 21.0 DASY5 Configuration:

- Probe: EX3DV4 SN3661; ConvF(7.72, 7.72, 7.72); Calibrated: 24/01/2011
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn915; Calibrated: 26/07/2011
- Phantom: SAM1; Type: SAM; Serial: TP1561
- Measurement SW: DASY5, V5.2 Build 162; SEMCAD X Version 14.0 Build 59

Configuration/GPRS1900 Mid Body-Front/Area Scan (6x9x1): Measurement grid: dx=20mm, dy=20mm


Maximum value of SAR (measured) = 0.174 mW/g

Configuration/GPRS1900 Mid Body-Front/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm,

dy=8mm, dz=5mm, Reference Value = 11.5 V/m; Power Drift = -0.147 dB

Peak SAR (extrapolated) = 0.282 W/kg

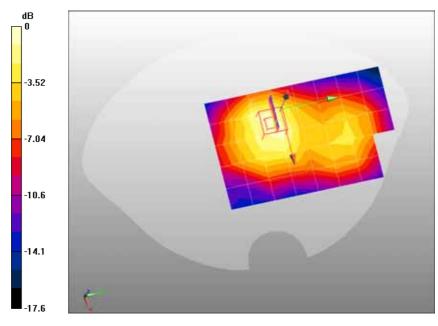
SAR(1 g) = 0.178 mW/g; SAR(10 g) = 0.110 mW/g Maximum value of SAR (measured) = 0.187 mW/g

 $0 \, dB = 0.187 mW/g$

Test Laboratory: QuieTek Lab GPRS1900 Mid Body-Back(4up)(wiht headset) **DUT: GSM Dual Band GPRS Digital Mobile Phone; Type: LX12** Communication System: GPRS/EGPRS-4 Slot; Communication System Band: PCS 1900; Duty Cycle: 1:2.1; Frequency: 1880 MHz; Medium parameters used: f = 1880 MHz; σ = 1.51 mho/m; ϵ r = 52.5; ρ = 1000 kg/m³; Phantom section: Flat Section Ambient temperature (°C): 21.5, Liquid temperature (°C): 21.0 DASY5 Configuration:

- Probe: EX3DV4 SN3661; ConvF(7.72, 7.72, 7.72); Calibrated: 24/01/2011
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn915; Calibrated: 26/07/2011
- Phantom: SAM1; Type: SAM; Serial: TP1561
- Measurement SW: DASY5, V5.2 Build 162; SEMCAD X Version 14.0 Build 59

Configuration/GPRS1900 Mid Body-Back/Area Scan (6x9x1): Measurement grid: dx=20mm, dy=20mm


Maximum value of SAR (measured) = 0.190 mW/g

Configuration/GPRS1900 Mid Body-Back/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm,

dy=8mm, dz=5mm, Reference Value = 7.88 V/m; Power Drift = -0.173 dB

Peak SAR (extrapolated) = 0.324 W/kg

SAR(1 g) = 0.198 mW/g; SAR(10 g) = 0.118 mW/g Maximum value of SAR (measured) = 0.209 mW/g

 $^{0 \,} dB = 0.209 \, mW/g$

Test Laboratory: QuieTek Lab

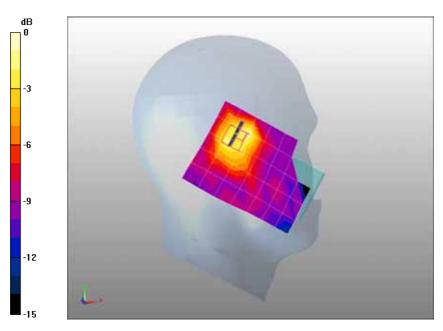
802.11b 2462MHz Touch-Left

DUT: GSM Dual Band GPRS Digital Mobile Phone; Type: LX12

Communication System: Wi-Fi; Communication System Band: 802.11b; Duty Cycle: 1:1; Frequency: 2462 MHz; Medium parameters used: f = 2462 MHz; σ = 1.86 mho/m; ϵ r = 38.6; ρ = 1000 kg/m³; Phantom section: Left Section

Ambient temperature (°C): 21.5, Liquid temperature (°C): 21.0 DASY5 Configuration:

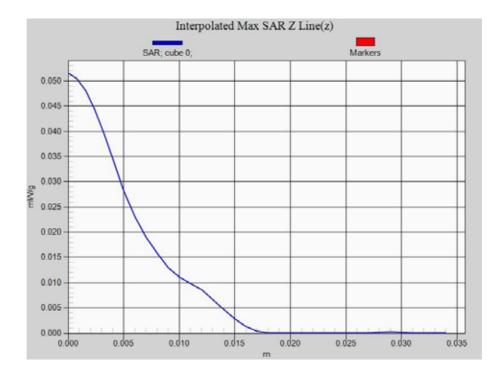
- Probe: EX3DV4 SN3661; ConvF(7.8, 7.8, 7.8); Calibrated: 24/01/2011
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn915; Calibrated: 26/07/2011
- Phantom: SAM1; Type: SAM; Serial: TP1561
- Measurement SW: DASY5, V5.2 Build 162; SEMCAD X Version 14.0 Build 59


Configuration/802.11b High Touch-Left/Area Scan (6x8x1): Measurement grid: dx=20mm, dy=20mm Maximum value of SAR (measured) = 0.029 mW/g

Configuration/802.11b High Touch-Left/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm,

dy=8mm, dz=5mm, Reference Value = 3.66 V/m; Power Drift = -0.133 dB

Peak SAR (extrapolated) = 0.052 W/kg


SAR(1 g) = 0.028 mW/g; SAR(10 g) = 0.012 mW/g Maximum value of SAR (measured) = 0.035 mW/g

 $0 \, dB = 0.035 mW/g$

Z-Axis Plot

Test Laboratory: QuieTek Lab

802.11b 2462MHz Tilt-Left

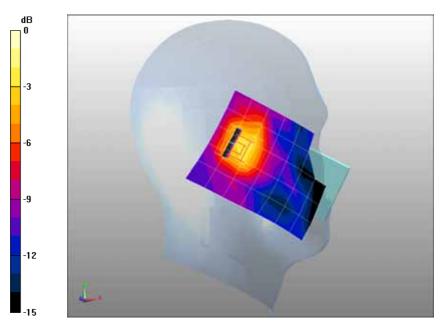
DUT: GSM Dual Band GPRS Digital Mobile Phone; Type: LX12

Communication System: Wi-Fi; Communication System Band: 802.11b; Duty Cycle: 1:1; Frequency: 2462 MHz; Medium parameters used: f = 2462 MHz; σ = 1.86 mho/m; ϵ r = 38.6; ρ = 1000 kg/m³; Phantom section: Left Section

Ambient temperature (°C): 21.5, Liquid temperature (°C): 21.0 DASY5 Configuration:

- Probe: EX3DV4 SN3661; ConvF(7.8, 7.8, 7.8); Calibrated: 24/01/2011
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn915; Calibrated: 26/07/2011
- Phantom: SAM1; Type: SAM; Serial: TP1561
- Measurement SW: DASY5, V5.2 Build 162; SEMCAD X Version 14.0 Build 59

Configuration/802.11b High Tilt-Left/Area Scan (6x8x1): Measurement grid: dx=20mm, dy=20mm


Maximum value of SAR (measured) = 0.014 mW/g

Configuration/802.11b High Tilt-Left/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm,

dz=5mm, Reference Value = 3.88 V/m; Power Drift = -0.136 dB

Peak SAR (extrapolated) = 0.038 W/kg

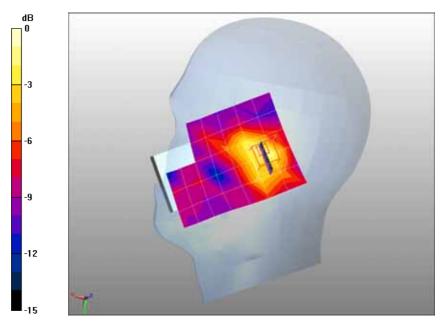
SAR(1 g) = 0.023 mW/g; SAR(10 g) = 0.010 mW/g Maximum value of SAR (measured) = 0.026 mW/g

 $^{0 \,} dB = 0.026 \, mW/g$

Test Laboratory: QuieTek Lab 802.11b 2462MHz Touch-Right **DUT: GSM Dual Band GPRS Digital Mobile Phone; Type: LX12** Communication System: Wi-Fi; Communication System Band: 802.11b; Duty Cycle: 1:1; Frequency: 2462 MHz; Medium parameters used: f = 2462 MHz; σ = 1.86 mho/m; ϵ r = 38.6; ρ = 1000 kg/m³; Phantom section: Right Section

Ambient temperature (°C): 21.5, Liquid temperature (°C): 21.0 DASY5 Configuration:

- Probe: EX3DV4 SN3661; ConvF(7.8, 7.8, 7.8); Calibrated: 24/01/2011
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn915; Calibrated: 26/07/2011
- Phantom: SAM1; Type: SAM; Serial: TP1561
- Measurement SW: DASY5, V5.2 Build 162; SEMCAD X Version 14.0 Build 59


Configuration/802.11b High Touch-Right/Area Scan (6x8x1): Measurement grid: dx=20mm, dy=20mm Maximum value of SAR (measured) = 0.023 mW/g

Configuration/802.11b High Touch-Right/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm,

dy=8mm, dz=5mm, Reference Value = 3.91 V/m; Power Drift = 0.078 dB

Peak SAR (extrapolated) = 0.056 W/kg

SAR(1 g) = 0.026 mW/g; SAR(10 g) = 0.011 mW/g Maximum value of SAR (measured) = 0.030 mW/g

 $^{0 \,} dB = 0.030 \, mW/g$

Test Laboratory: QuieTek Lab

802.11b 2462MHz Tilt-Right

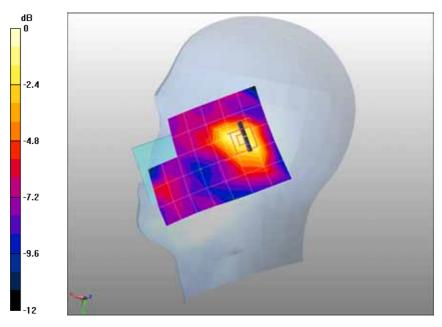
DUT: GSM Dual Band GPRS Digital Mobile Phone; Type: LX12

Communication System: Wi-Fi; Communication System Band: 802.11b; Duty Cycle: 1:1; Frequency: 2462 MHz; Medium parameters used: f = 2462 MHz; σ = 1.86 mho/m; ϵ r = 38.6; ρ = 1000 kg/m³; Phantom section: Right Section

Ambient temperature (°C): 21.5, Liquid temperature (°C): 21.0 DASY5 Configuration:

- Probe: EX3DV4 SN3661; ConvF(7.8, 7.8, 7.8); Calibrated: 24/01/2011
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn915; Calibrated: 26/07/2011
- Phantom: SAM1; Type: SAM; Serial: TP1561
- Measurement SW: DASY5, V5.2 Build 162; SEMCAD X Version 14.0 Build 59

Configuration/802.11b High Tilt-Right/Area Scan (6x8x1): Measurement grid: dx=20mm, dy=20mm


Maximum value of SAR (measured) = 0.020 mW/g

Configuration/802.11b High Tilt-Right/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm,

dy=8mm, dz=5mm, Reference Value = 3.69 V/m; Power Drift = -0.103 dB

Peak SAR (extrapolated) = 0.096 W/kg

SAR(1 g) = 0.017 mW/g; SAR(10 g) = 0.007 mW/g Maximum value of SAR (measured) = 0.021 mW/g

 $^{0 \,} dB = 0.021 mW/g$

Test Laboratory: QuieTek Lab

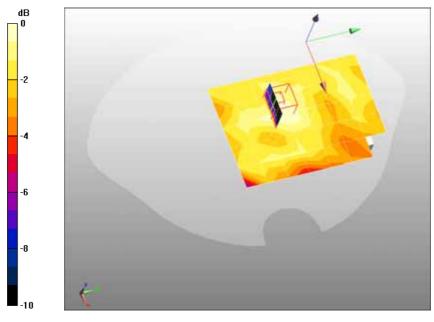
802.11b 2462MHz Body-Back

DUT: GSM Dual Band GPRS Digital Mobile Phone; Type: LX12

Communication System: Wi-Fi; Communication System Band: 802.11b; Duty Cycle: 1:1; Frequency: 2462 MHz; Medium parameters used: f = 2462 MHz; σ = 2.02 mho/m; ϵ r = 52.3; ρ = 1000 kg/m³; Phantom section: Flat Section

Ambient temperature (°C): 21.5, Liquid temperature (°C): 21.0 DASY5 Configuration:

- Probe: EX3DV4 SN3661; ConvF(7.55, 7.55, 7.55); Calibrated: 24/01/2011
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn915; Calibrated: 26/07/2011
- Phantom: SAM2; Type: SAM; Serial: TP1562
- Measurement SW: DASY5, V5.2 Build 162; SEMCAD X Version 14.0 Build 59


Configuration/802.11b High Body-Back/Area Scan (6x8x1): Measurement grid: dx=20mm, dy=20mm Maximum value of SAR (measured) = 0.007 mW/g

Configuration/802.11b High Body-Back/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm,

dy=8mm, dz=5mm, Reference Value = 1.55 V/m; Power Drift = -0.161 dB

Peak SAR (extrapolated) = 0.035 W/kg

SAR(1 g) = 0.008 mW/g; SAR(10 g) = 0.003 mW/g Maximum value of SAR (measured) = 0.007 mW/g

 $^{0 \,} dB = 0.007 \, mW/g$

Test Laboratory: QuieTek Lab

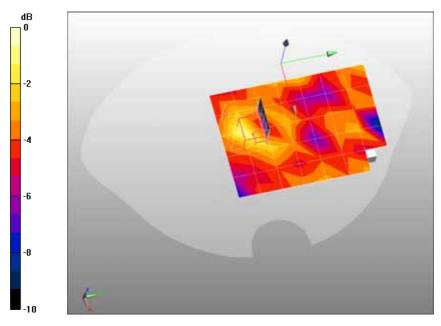
802.11b 2462MHz Body-Front

DUT: GSM Dual Band GPRS Digital Mobile Phone; Type: LX12

Communication System: Wi-Fi; Communication System Band: 802.11b; Duty Cycle: 1:1; Frequency: 2462 MHz; Medium parameters used: f = 2462 MHz; σ = 2.02 mho/m; ϵ r = 52.3; ρ = 1000 kg/m³; Phantom section: Flat Section

Ambient temperature (°C): 21.5, Liquid temperature (°C): 21.0 DASY5 Configuration:

- Probe: EX3DV4 SN3661; ConvF(7.55, 7.55, 7.55); Calibrated: 24/01/2011
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn915; Calibrated: 26/07/2011
- Phantom: SAM2; Type: SAM; Serial: TP1562
- Measurement SW: DASY5, V5.2 Build 162; SEMCAD X Version 14.0 Build 59


Configuration/802.11b High Body-Front/Area Scan (6x8x1): Measurement grid: dx=20mm, dy=20mm Maximum value of SAR (measured) = 0.007 mW/g

Configuration/802.11b High Body-Front/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm,

dy=8mm, dz=5mm, Reference Value = 1.27 V/m; Power Drift = -0.173 dB

Peak SAR (extrapolated) = 0.021 W/kg

SAR(1 g) = 0.006 mW/g; SAR(10 g) = 0.003 mW/g Maximum value of SAR (measured) = 0.008 mW/g

 $^{0 \,} dB = 0.008 \, mW/g$

Test Laboratory: QuieTek Lab

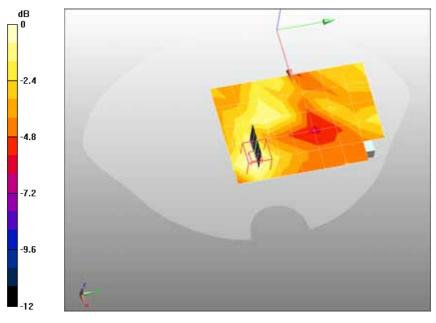
802.11b 2462MHz Body-Back(With headset)

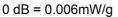
DUT: GSM Dual Band GPRS Digital Mobile Phone; Type: LX12

Communication System: Wi-Fi; Communication System Band: 802.11b; Duty Cycle: 1:1; Frequency: 2462 MHz; Medium parameters used: f = 2462 MHz; σ = 2.02 mho/m; ϵ r = 52.3; ρ = 1000 kg/m³; Phantom section: Flat Section

Ambient temperature (°C): 21.5, Liquid temperature (°C): 21.0 DASY5 Configuration:

- Probe: EX3DV4 SN3661; ConvF(7.55, 7.55, 7.55); Calibrated: 24/01/2011
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn915; Calibrated: 26/07/2011
- Phantom: SAM2; Type: SAM; Serial: TP1562
- Measurement SW: DASY5, V5.2 Build 162; SEMCAD X Version 14.0 Build 59

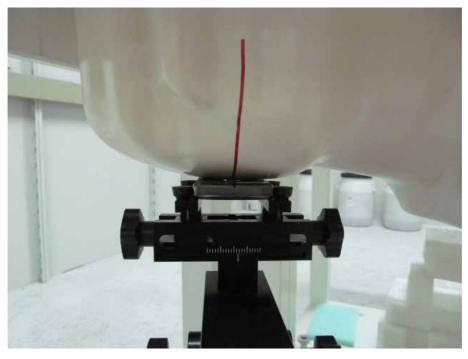

Configuration/802.11b High Body-Back/Area Scan (6x8x1): Measurement grid: dx=20mm, dy=20mm Maximum value of SAR (measured) = 0.006 mW/g


Configuration/802.11b High Body-Back/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm,

dy=8mm, dz=5mm, Reference Value = 1.31 V/m; Power Drift = -0.183 dB

Peak SAR (extrapolated) = 0.026 W/kg

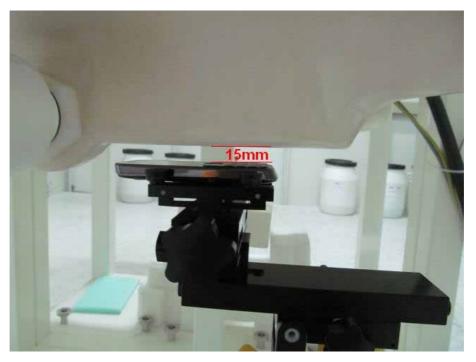
SAR(1 g) = 0.006 mW/g; SAR(10 g) = 0.002 mW/g Maximum value of SAR (measured) = 0.006 mW/g



Test Setup Photographs

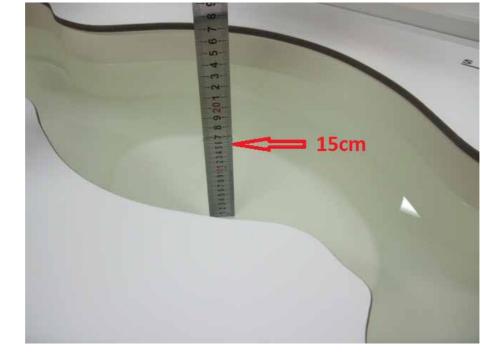
Left-Cheek Touch

Left-Tilt 15°


Right-Cheek Touch

Right-Tilt 15°

Body SAR Back 15mm



Body SAR Front 15mm

Body SAR Back 15mm with Headset

Depth of the liquid in the phantom – Zoom in

Note: The position used in the measurements were according to IEEE 1528 - 2003

EUT Photographs

(1) EUT Photo

(2) EUT Photo

(3) EUT Photo

Appendix D. Probe Calibration Data

eugnaussilasse 40, 0004 2010	ch, Switzerland	BACHERA SHISS S CR TO Z RIARATO S	Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service
Accredited by the Swiss Accredit			No.: SCS 108
Multilateral Agreement for the			
Client Auden		Certificate No	EX3-3661_Jan11
PALIBRATION	Official	E and maintain	
Object	EX3DV4 - SN:3	361	
Calibration procedure(s)		QA CAL-14-v3_ QA CAL-23 v4 an edure for dosimetric E-field probe	
Calibration date:	January 24, 201		
Calibration Equipment used (M&	l		
Primary Standards	ID#	Oal Date (Carliferate Ma)	0.1.1.1.0.1
Power meter E4419B	GB41293874	Cal Date (Certificate No.)	Scheduled Calibration
Power meter E4419B Power sensor E4412A	GB41293874 MY41495277	1-Apr-10 (No. 217-01136)	Apr-11
Power meter E4419B Power sensor E4412A Power sensor E4412A	GB41293874 MY41495277 MY41498087	1-Apr-10 (No. 217-01136) 1-Apr-10 (No. 217-01136)	Apr-11 Apr-11
Power sensor E4412A	MY41495277 MY41498087	1-Apr-10 (No. 217-01136) 1-Apr-10 (No. 217-01136) 1-Apr-10 (No. 217-01136)	Apr-11 Apr-11 Apr-11
Power sensor E4412A Power sensor E4412A	MY41495277	1-Apr-10 (No. 217-01136) 1-Apr-10 (No. 217-01136)	Apr-11 Apr-11
Power sensor E4412A Power sensor E4412A Reference 3 dB Attenuator	MY41495277 MY41498087 SN: S5054 (3c)	1-Apr-10 (No. 217-01136) 1-Apr-10 (No. 217-01136) 1-Apr-10 (No. 217-01136) 30-Mar-10 (No. 217-01159)	Apr-11 Apr-11 Apr-11 Mar-11
Power sensor E4412A Power sensor E4412A Reference 3 dB Attenuator Reference 20 dB Attenuator Reference 30 dB Attenuator Reference Probe ES3DV2	MY41495277 MY41498087 SN: S5054 (3c) SN: S5086 (20b) SN: S5129 (30b) SN: 3013	1-Apr-10 (No. 217-01136) 1-Apr-10 (No. 217-01136) 1-Apr-10 (No. 217-01136) 30-Mar-10 (No. 217-01159) 30-Mar-10 (No. 217-01161)	Apr-11 Apr-11 Apr-11 Mar-11 Mar-11
Power sensor E4412A Power sensor E4412A Reference 3 dB Attenuator Reference 20 dB Attenuator Reference 30 dB Attenuator	MY41495277 MY41498087 SN: S5054 (3c) SN: S5086 (20b) SN: S5129 (30b)	1-Apr-10 (No. 217-01136) 1-Apr-10 (No. 217-01136) 1-Apr-10 (No. 217-01136) 30-Mar-10 (No. 217-01159) 30-Mar-10 (No. 217-01161) 30-Mar-10 (No. 217-01160)	Apr-11 Apr-11 Apr-11 Mar-11 Mar-11 Mar-11
Power sensor E4412A Power sensor E4412A Reference 3 dB Attenuator Reference 20 dB Attenuator Reference 30 dB Attenuator Reference Probe ES3DV2 DAE4	MY41495277 MY41498087 SN: S5054 (3c) SN: S5086 (20b) SN: S5129 (30b) SN: 3013 SN: 660	1-Apr-10 (No. 217-01136) 1-Apr-10 (No. 217-01136) 1-Apr-10 (No. 217-01136) 30-Mar-10 (No. 217-01159) 30-Mar-10 (No. 217-01161) 30-Mar-10 (No. 217-01160) 29-Dec-10 (No. ES3-3013_Dec10) 20-Apr-10 (No. DAE4-660_Apr10)	Apr-11 Apr-11 Mar-11 Mar-11 Mar-11 Dec-11 Apr-11
Power sensor E4412A Power sensor E4412A Reference 3 dB Attenuator Reference 20 dB Attenuator Reference 30 dB Attenuator Reference Probe ES3DV2 DAE4 Secondary Standards	MY41495277 MY41498087 SN: S5054 (3c) SN: S5086 (20b) SN: S5129 (30b) SN: 3013 SN: 660	1-Apr-10 (No. 217-01136) 1-Apr-10 (No. 217-01136) 1-Apr-10 (No. 217-01136) 30-Mar-10 (No. 217-01159) 30-Mar-10 (No. 217-01161) 30-Mar-10 (No. 217-01160) 29-Dec-10 (No. ES3-3013_Dec10) 20-Apr-10 (No. DAE4-660_Apr10) Check Date (in house)	Apr-11 Apr-11 Apr-11 Mar-11 Mar-11 Dec-11 Apr-11 Scheduled Check
Power sensor E4412A Power sensor E4412A Reference 3 dB Attenuator Reference 20 dB Attenuator Reference 30 dB Attenuator Reference Probe ES3DV2 DAE4	MY41495277 MY41498087 SN: S5054 (3c) SN: S5086 (20b) SN: S5129 (30b) SN: 3013 SN: 660	1-Apr-10 (No. 217-01136) 1-Apr-10 (No. 217-01136) 1-Apr-10 (No. 217-01136) 30-Mar-10 (No. 217-01159) 30-Mar-10 (No. 217-01161) 30-Mar-10 (No. 217-01160) 29-Dec-10 (No. ES3-3013_Dec10) 20-Apr-10 (No. DAE4-660_Apr10)	Apr-11 Apr-11 Mar-11 Mar-11 Mar-11 Dec-11 Apr-11
Power sensor E4412A Power sensor E4412A Reference 3 dB Attenuator Reference 20 dB Attenuator Reference 30 dB Attenuator Reference Probe ES3DV2 DAE4 Secondary Standards RF generator HP 8648C Network Analyzer HP 8753E	MY41495277 MY41498087 SN: S5054 (3c) SN: S5086 (20b) SN: S5129 (30b) SN: 3013 SN: 660 ID # US3642U01700 US37390585 Name	1-Apr-10 (No. 217-01136) 1-Apr-10 (No. 217-01136) 1-Apr-10 (No. 217-01136) 30-Mar-10 (No. 217-01159) 30-Mar-10 (No. 217-01161) 30-Mar-10 (No. 217-01160) 29-Dec-10 (No. ES3-3013_Dec10) 20-Apr-10 (No. DAE4-660_Apr10) Check Date (in house) 4-Aug-99 (in house check Oct-09) 18-Oct-01 (in house check Oct-10) Function	Apr-11 Apr-11 Apr-11 Mar-11 Mar-11 Dec-11 Apr-11 Scheduled Check In house check: Oct-11
Power sensor E4412A Power sensor E4412A Reference 3 dB Attenuator Reference 20 dB Attenuator Reference 30 dB Attenuator Reference Probe ES3DV2 DAE4 Secondary Standards RF generator HP 8648C	MY41495277 MY41498067 SN: S5054 (3c) SN: S5086 (20b) SN: S5129 (30b) SN: 3013 SN: 660 ID # US3642U01700 US37390585	1-Apr-10 (No. 217-01136) 1-Apr-10 (No. 217-01136) 1-Apr-10 (No. 217-01136) 30-Mar-10 (No. 217-01159) 30-Mar-10 (No. 217-01161) 30-Mar-10 (No. 217-01160) 29-Dec-10 (No. ES3-3013_Dec10) 20-Apr-10 (No. DAE4-660_Apr10) Check Date (in house) 4-Aug-99 (in house check Oct-09) 18-Oct-01 (in house check Oct-10)	Apr-11 Apr-11 Apr-11 Mar-11 Mar-11 Dec-11 Apr-11 Scheduled Check In house check: Oct-11 In house check: Oct-11
Power sensor E4412A Power sensor E4412A Reference 3 dB Attenuator Reference 20 dB Attenuator Reference 30 dB Attenuator Reference Probe ES3DV2 DAE4 Secondary Standards RF generator HP 8648C Network Analyzer HP 8753E	MY41495277 MY41498087 SN: S5054 (3c) SN: S5086 (20b) SN: S5129 (30b) SN: 3013 SN: 660 ID # US3642U01700 US37390585 Name	1-Apr-10 (No. 217-01136) 1-Apr-10 (No. 217-01136) 1-Apr-10 (No. 217-01136) 30-Mar-10 (No. 217-01159) 30-Mar-10 (No. 217-01161) 30-Mar-10 (No. 217-01160) 29-Dec-10 (No. ES3-3013_Dec10) 20-Apr-10 (No. DAE4-660_Apr10) Check Date (in house) 4-Aug-99 (in house check Oct-09) 18-Oct-01 (in house check Oct-10) Function	Apr-11 Apr-11 Apr-11 Mar-11 Mar-11 Dec-11 Apr-11 Scheduled Check In house check: Oct-11 In house check: Oct-11

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

SNISS CR D ZO REFORMENT

С

S

S Schweizerischer Kalibrierdienst

- Service suisse d'étalonnage
- Servizio svizzero di taratura
- Swiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL	tissue simulating liquid
NORMx,y,z	sensitivity in free space
ConvF	sensitivity in TSL / NORMx,y,z
DCP	diode compression point
CF	crest factor (1/duty_cycle) of the RF signal
A, B, C	modulation dependent linearization parameters
Polarization ϕ	φ rotation around probe axis
Polarization 9	9 rotation around an axis that is in the plane normal to probe axis (at measurement center),
	i.e., 9 = 0 is normal to probe axis

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003
- Techniques", December 2003
 b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005

Methods Applied and Interpretation of Parameters:

- NORMx, y, z: Assessed for E-field polarization θ = 0 (f ≤ 900 MHz in TEM-cell; f > 1800 MHz: R22 waveguide). NORMx, y, z are only intermediate values, i.e., the uncertainties of NORMx, y, z does not effect the E²-field uncertainty inside TSL (see below ConvF).
- NORM(f)x,y,z = NORMx,y,z * frequency_response (see Frequency Response Chart). This linearization is
 implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included
 in the stated uncertainty of ConvF.
- DCPx, y, z: DCP are numerical linearization parameters assessed based on the data of power sweep with CW signal (no uncertainty required). DCP does not depend on frequency nor media.
- Ax,y,z; Bx,y,z; Cx,y,z, VRx,y,z: A, B, C are numerical linearization parameters assessed based on the data of
 power sweep for specific modulation signal. The parameters do not depend on frequency nor media. VR is the
 maximum calibration range expressed in RMS voltage across the diode.
- ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f ≤ 800 MHz) and inside waveguide using analytical field distributions based on power measurements for f > 800 MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx, y, z * ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from ± 50 MHz to ± 100 MHz.
- Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom
 exposed by a patch antenna.
- Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.

Certificate No: EX3-3661_Jan11

Page 2 of 11

January 24, 2011

Probe EX3DV4

| |

SN:3661

Manufactured: Last calibrated: Recalibrated: October 20, 2008 December 30, 2009 January 24, 2011

Calibrated for DASY/EASY Systems

(Note: non-compatible with DASY2 system!)

Certificate No: EX3-3661_Jan11

Page 3 of 11

January 24, 2011

DASY/EASY - Parameters of Probe: EX3DV4 SN:3661

Basic Calibration Parameters

	Sensor X	Sensor Y	Sensor Z	Unc (k=2)
Norm (µV/(V/m)²) ^A	0.47	0.52	0.50	± 10.1%
DCP (mV) ⁸	99.7	99.0	97.2	

Modulation Calibration Parameters

UID	Communication System Name	PAR		A dB	B dBuV	с	VR mV	Unc ^E (k=2)
10000	cw	0.00	x	0.00	0.00	1.00	157.5	± 3.4 %
			Y	0.00	0.00	1.00	151.6	
-			z	0.00	0.00	1.00	156.6	

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

A The uncertainties of NormX, Y,Z do not affect the E-field uncertainty inside TSL (see Pages 5 and 6).

⁸ Numerical linearization parameter: uncertainty not required.

E Uncertainty is determined using the maximum deviation from linear response applying recatangular distribution and is expressed for the square of the field value.

Certificate No: EX3-3661_Jan11

Page 4 of 11

January 24, 2011

DASY/EASY - Parameters of Probe: EX3DV4 SN:3661

Calibration Parameter Determined in Head Tissue Simulating Media

f [MHz]	Validity [MHz] ^C	Permittivity	Conductivity	ConvF X	ConvF Y	ConvF Z	Alpha	Depth Unc (k=2)
750	± 50 / ± 100	41.9 ± 5%	0.89 ± 5%	9.96	9.96	9.96	0.47	0.71 ± 11.0%
835	± 50 / ± 100	41.5 ± 5%	0.90 ± 5%	9.58	9.58	9.58	0.58	0.67 ± 11.0%
1750	± 50 / ± 100	40.1 ± 5%	1.37 ± 5%	9.05	9.05	9.05	0.31	0.97 ± 11.0%
1900	± 50 / ± 100	40.0 ± 5%	1.40 ± 5%	8.68	8.68	8.68	0.40	0.95 ± 11.0%
2000	± 50 / ± 100	40.0 ± 5%	1.40 ± 5%	8.53	8.53	8.53	0.47	0.81 ± 11.0%
2450	± 50 / ± 100	39.2 ± 5%	1.80 ± 5%	7.80	7.80	7.80	0.28	1.13 ± 11.0%
5200	± 50 / ± 100	36.0 ± 5%	4.66 ± 5%	4.88	4.88	4.88	0.40	1.80 ± 13.1%
5300	± 50 / ± 100	35.9 ± 5%	4.76 ± 5%	4.59	4.59	4.59	0.42	1.80 ± 13.1%
5500	± 50 / ± 100	35.6 ± 5%	4.96 ± 5%	4.41	4.41	4.41	0.45	1.80 ± 13.1%
5600	± 50 / ± 100	35.5 ± 5%	5.07 ± 5%	4.17	4.17	4.17	0.50	1.80 ± 13.1%
5800	± 50 / ± 100	35.3 ± 5%	5.27 ± 5%	4.15	4.15	4.15	0.50	1.80 ± 13.1%

^c The validity of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2). The uncertainty is the RSS of the ConvF uncertainty at calibration frequency

and the uncertainty for the indicated frequency band.

Certificate No: EX3-3661_Jan11

Page 5 of 11

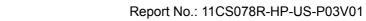
January 24, 2011

t t t t

11

i

DASY/EASY - Parameters of Probe: EX3DV4 SN:3661

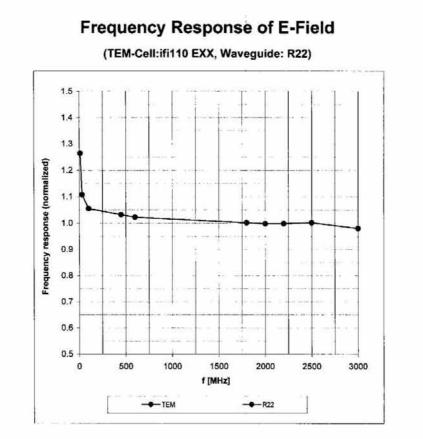

Calibration Parameter Determined in Body Tissue Simulating Media

f [MHz]	Validity [MHz] ^C	Permittivity	Conductivity	ConvF X	ConvF Y	ConvF Z	Alpha	Depth Unc (k=2)
750	± 50 / ± 100	55.5 ± 5%	0.96 ± 5%	9.75	9.75	9.75	0.47	0.79 ± 11.0%
835	± 50 / ± 100	55.2 ± 5%	0.97 ± 5%	9.58	9.58	9.58	0.35	0.89 ± 11.0%
1750	± 50 / ± 100	53.4 ± 5%	1.49 ± 5%	7.95	7.95	7.95	0.64	0.68 ± 11.0%
1900	± 50 / ± 100	53.3 ± 5%	1.52 ± 5%	7.72	7.72	7.72	0.52	0.75 ± 11.0%
2000	± 50 / ± 100	53.3 ± 5%	1.52 ± 5%	7.81	7.81	7.81	0.46	0.80 ± 11.0%
2450	± 50 / ± 100	52.7 ± 5%	1.95 ± 5%	7.55	7.55	7.55	0.66	0.64 ± 11.0%
5200	± 50 / ± 100	49.0 ± 5%	5.30 ± 5%	4.42	4.42	4.42	0.50	1.90 ± 13.1%
5300	± 50 / ± 100	48.9 ± 5%	5.42 ± 5%	4.20	4.20	4.20	0.55	1.90 ± 13.1%
5500	± 50 / ± 100	48.6 ± 5%	5.65 ± 5%	3.88	3.88	3.88	0.55	1.90 ± 13.1%
5600	± 50 / ± 100	48.5 ± 5%	5.77 ± 5%	3.59	3.59	3.59	0.60	1.90 ± 13.1%
5800	± 50 / ± 100	48.2 ± 5%	6.00 ± 5%	3.87	3.87	3.87	0.60	1.90 ± 13.1%

^c The validity of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2). The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band.

Certificate No: EX3-3661_Jan11

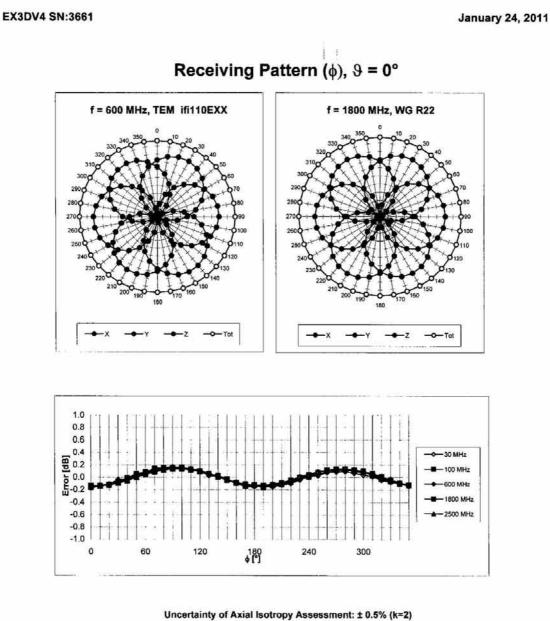
Page 6 of 11



January 24, 2011

ΙĒ

 τ (


Uncertainty of Frequency Response of E-field: ± 6.3% (k=2)

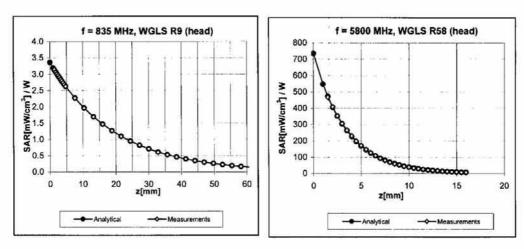
Certificate No: EX3-3661_Jan11

Page 7 of 11

11

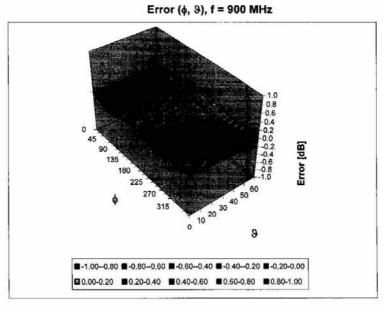
Certificate No: EX3-3661_Jan11

Page 8 of 11


EX3DV4 SN:3661 January 24, 2011 Dynamic Range f(SAR_{head}) (TEM cell, f = 900 MHz) 1.E+06 1.E+05 1.E+04 Sensor Voltage [µV] Sensor Voltage [µV] 1.E+03 1.E+01 1.E+00 0.001 0.01 0.1 10 100 1 SAR [mW/cm³] -X corr -Y - Y corr - Z - Z corr . --x 2.00 1.00 (g) 1.00 Euro -2.00 0.001 0.01 0.1 10 100 1 SAR [mW/cm³] Uncertainty of Linearity Assessment: ± 0.6% (k=2)

Certificate No: EX3-3661_Jan11

Page 9 of 11



January 24, 2011

Conversion Factor Assessment

Deviation from Isotropy in HSL

Uncertainty of Spherical Isotropy Assessment: ± 2.6% (k=2)

Certificate No: EX3-3661_Jan11

Page 10 of 11

EX3DV4 SN:3661

January 24, 2011

1 1

Other Probe Parameters

Sensor Arrangement	Triangular
Connector Angle (°)	Not applicable
Mechanical Surface Detection Mode	enabled
Optical Surface Detection Mode	disabled
Probe Overall Length	337 mm
Probe Body Diameter	10 mm
Tip Length	9 mm
Tip Diameter	2.5 mm
Probe Tip to Sensor X Calibration Point	1 mm
Probe Tip to Sensor Y Calibration Point	1 mm
Probe Tip to Sensor Z Calibration Point	1 mm
Recommended Measurement Distance from Surface	2 mm

Certificate No: EX3-3661_Jan11

Page 11 of 11

Appendix E. Dipole Calibration Data

March 15, 2010	Certificate No	e D835V2-4d094_Mar10
0835V2 - SN: 4d A CAL-05.v7 Calibration proces farch 15, 2010 the traceability to nation	094 dure for dipole validation kits	
A CAL-05.v7 calibration proces March 15, 2010 the traceability to nation	dure for dipole validation kits	
alibration proces farch 15, 2010 the traceability to nation		
the traceability to nati	onal standards, which realize the physical un	
	onal standards, which realize the physical un	
D#	Cal Date (Certificate No.)	Scheduled Calibration
GB37480704	06-Oct-09 (No. 217-01086)	Oct-10
		Oct-10 Mar-10
장님은 방법이 위험을 위한다. 또 좋는 것	이 집사님 바다 같은 화면에게 많은 지지만 못 안 없는 것을 했다.	Mar-10
SN: 3205	26-Jun-09 (No. ES3-3205, Jun09)	Jun-10
SN: 601	02-Mar-10 (No. DAE4-601_Mar10)	Mar-11
ID #	Check Date (in house)	Scheduled Check
MY41092317	18-Oct-02 (in house check Oct-09)	In house check: Oct-11
100005	4-Aug-99 (in house check Oct-09)	In house check: Oct-11
US37390585 S4206	18-Oct-01 (in house check Oct-09)	In house check: Oct-10
Name	Sumation	Circulture
		Signature
Guide mey	Laboratory (echinolar)	N. Hilv
		V
	GB37400704 US37292783 SN: 5086 (20g) SN: 5047.2 / 06327 SN: 3205 SN: 601 D # MY41092317 100005	D # Cal Date (Certilicate No.) 3B37480704 06-Oct-09 (No. 217-01086) JJS37292783 06-Oct-09 (No. 217-01086) JSS7592783 06-Oct-09 (No. 217-01025) SN: 5086 (20g) 31-Mar-09 (No. 217-01025) SN: 5047.2 / 05327 31-Mar-09 (No. 217-01029) SN: 3205 26-Jun-09 (No. ES3-3205_Jun09) SN: 601 02-Mar-10 (No. DAE4-601_Mar10) D # Check Date (in house) MY41092317 18-Oct-02 (in house check Oct-09) 100005 4-Aug-99 (in house check Oct-09) US37390585 S4206 18-Oct-01 (in house check Oct-09) Name Function

Calibration Laboratory of

Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

CP CP ZO

S Schweizerischer Kalibrierdienst C Service suisse d'étalonnage Servizio svizzero di taratura

S Swiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL	tissue simulating liquid
ConvF	sensitivity in TSL / NORM x,y,z
N/A	not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003
- b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005
- c) Federal Communications Commission Office of Engineering & Technology (FCC OET), "Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields; Additional Information for Evaluating Compliance of Mobile and Portable Devices with FCC Limits for Human Exposure to Radiofrequency Emissions", Supplement C (Edition 01-01) to Bulletin 65

Additional Documentation:

d) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- *Measurement Conditions:* Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed
 point exactly below the center marking of the flat phantom section, with the arms oriented
 parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- *Electrical Delay:* One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

Certificate No: D835V2-4d094_Mar10

Page 2 of 9

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V5.2
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom V4.9	
Distance Dipole Center - TSL	15 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	835 MHz ± 1 MHz	

Head TSL parameters The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	41.5	0.90 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	42.9 ± 6 %	0.91 mho/m ± 6 %
Head TSL temperature during test	(21.5 ± 0.2) °C	() <u>-1-125</u> -9	

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	2.43 mW / g
SAR normalized	normalized to 1W	9.72 mW / g
SAR for nominal Head TSL parameters	normalized to 1W	9.70 mW /g ± 17.0 % (k=2)
SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR averaged over 10 cm ³ (10 g) of Head TSL SAR measured	condition 250 mW input power	1.58 mW / g
		1.58 mW / g 6.32 mW / g

Certificate No: D835V2-4d094_Mar10

Page 3 of 9

Body TSL parameters The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	55.2	0.97 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	55.3 ± 6 %	1.01 mho/m ± 6 %
Body TSL temperature during test	(21.3 ± 0.2) °C		

SAR result with Body TSL

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	2.55 mW / g
SAR normalized	normalized to 1W	10.2 mW / g
SAR for nominal Body TSL parameters	normalized to 1W	9.90 mW / g ± 17.0 % (k=2)
SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
	condition 250 mW input power	1.67 mW / g
SAR averaged over 10 cm ³ (10 g) of Body TSL SAR measured SAR normalized		1.67 mW / g 6.68 mW / g

Certificate No: D835V2-4d094_Mar10

Page 4 of 9

Appendix

Antenna Parameters with Head TSL

Impedance, transformed to feed point	52.2 Ω - 2.7 jΩ	
Return Loss	- 29.4 dB	

Antenna Parameters with Body TSL

Impedance, transformed to feed point	48.0 Ω - 4.8 jΩ	
Return Loss	- 25.5 dB	

General Antenna Parameters and Design

Electrical Delay (one direction)	1.388 ns
----------------------------------	----------

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG
Manufactured on	September 15, 2009

Certificate No: D835V2-4d094_Mar10

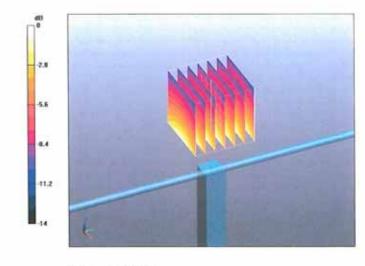
Page 5 of 9

DASY5 Validation Report for Head TSL

Date/Time: 08.03.2010 10:52:27

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 835 MHz; Type: D835V2; Serial: D835V2 - SN:4d094

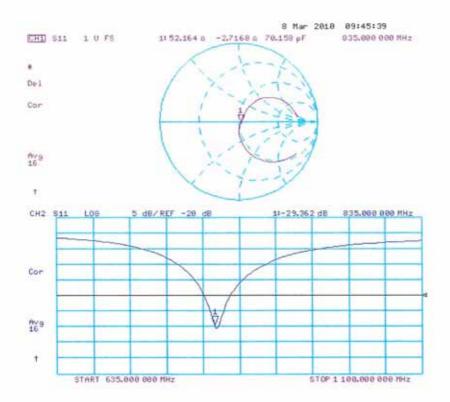

Communication System: CW; Frequency: 835 MHz; Duty Cycle: 1:1 Medium: HSL900 Medium parameters used: f = 835 MHz; σ = 0.91 mho/m; ϵ_r = 42.7; ρ = 1000 kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration:

- Probe: ES3DV3 SN3205; ConvF(6.04, 6.04, 6.04); Calibrated: 26.06.2009
- · Sensor-Surface: 3mm (Mechanical Surface Detection)
- · Electronics: DAE4 Sn601; Calibrated: 02.03.2010
- · Phantom: Flat Phantom 4.9L; Type: QD000P49AA; Serial: 1001
- Measurement SW: DASY5, V5.2 Build 157; SEMCAD X Version 14.0 Build 57

Pin=250 mW /d=15mm, dist=3.0mm (ES-Probe)/Zoom Scan (7x7x7) /Cube 0: Measurement

grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 57.3 V/m; Power Drift = 0.00297 dB Peak SAR (extrapolated) = 3.65 W/kg SAR(1 g) = 2.43 mW/g; SAR(10 g) = 1.58 mW/g Maximum value of SAR (measured) = 2.84 mW/g



Certificate No: D835V2-4d094_Mar10

Page 6 of 9

Impedance Measurement Plot for Head TSL

Certificate No: D835V2-4d094_Mar10

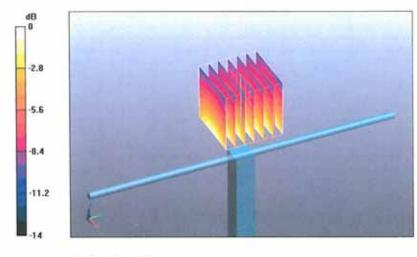
Page 7 of 9

DASY5 Validation Report for Body

Date/Time: 15.03.2010 11:52:53

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 835 MHz; Type: D835V2; Serial: D835V2 - SN:4d094

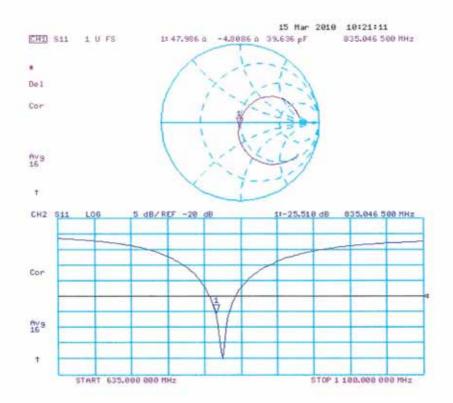

Communication System: CW; Frequency: 835 MHz; Duty Cycle: 1:1 Medium: MSL900 Medium parameters used: f = 835 MHz; σ = 1.01 mho/m; ϵ_r = 55.3; ρ = 1000 kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration:

- Probe: ES3DV3 SN3205; ConvF(5.97, 5.97, 5.97); Calibrated: 26.06.2009
- Sensor-Surface: 3mm (Mechanical Surface Detection)
- · Electronics: DAE4 Sn601; Calibrated: 02.03.2010
- · Phantom: Flat Phantom 4.9L; Type: QD000P49AA; Serial: 1001
- Measurement SW: DASY5, V5.2 Build 157; SEMCAD X Version 14.0 Build 57

Pin250 mW /d=15mm, dist=3.0mm (ES-Probe)/Zoom Scan (7x7x7) /Cube 0: Measurement

grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 55.9 V/m; Power Drift = -0.00975 dB Peak SAR (extrapolated) = 3.77 W/kg SAR(1 g) = 2.55 mW/g; SAR(10 g) = 1.67 mW/g Maximum value of SAR (measured) = 2.98 mW/g


 $0 \, dB = 2.98 \, mW/g$

Certificate No: D835V2-4d094_Mar10

Page 8 of 9

Impedance Measurement Plot for Body TSL

Certificate No: D835V2-4d094_Mar10

Page 9 of 9

Calibration Laboratory of

Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

GNISS C Z C Service Service S Swiss C

S Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura S Swiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Client Quietek (Auden)

Certificate No: D1900V2-5d121_Mar10

Object	D1900V2 - SN: 5	d121	
Calibration procedure(s)	QA CAL-05.v7 Calibration proce	dure for dipole validation kits	
Calibration date:	March 23, 2010		
The measurements and the unce	rtainties with confidence p	ional standards, which realize the physical un robability are given on the following pages ar ry facility: environment temperature (22 ± 3)°	nd are part of the certificate.
Calibration Equipment used (M&)	TE critical for calibration)		
2019-0.1403-0.1414-0.121 4 0- 4 .02210-0.12120-0.4 4 .0201		Cal Date (Cartificate No.)	Scheduled Calibration
Primary Standards	TE critical for calibration)	Cal Date (Certificate No.) 06-Oct-09 (No. 217-01086)	Scheduled Calibration
rimary Standards ower meter EPM-442A	ID#	06-Oct-09 (No. 217-01086)	Oct-10
rimary Standards ower meter EPM-442A ower sensor HP 8481A	ID # GB37480704 US37292783	06-Oct-09 (No. 217-01086) 06-Oct-09 (No. 217-01086)	Oct-10 Oct-10
rimary Standards ower meter EPM-442A ower sensor HP 8481A teference 20 dB Attenuator	ID # GB37480704 US37292783 SN: 5086 (20g)	06-Oct-09 (No. 217-01086) 06-Oct-09 (No. 217-01086) 31-Mar-09 (No. 217-01025)	Oct-10 Oct-10 Mar-10
Primary Standards Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator ype-N mismatch combination	ID # GB37480704 US37292783	06-Oct-09 (No. 217-01086) 06-Oct-09 (No. 217-01086) 31-Mar-09 (No. 217-01025) 31-Mar-09 (No. 217-01029)	Oct-10 Oct-10 Mar-10 Mar-10
Primary Standards Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ES3DV3	ID # GB37480704 US37292783 SN: 5086 (20g) SN: 5047.2 / 06327	06-Oct-09 (No. 217-01086) 06-Oct-09 (No. 217-01086) 31-Mar-09 (No. 217-01025)	Oct-10 Oct-10 Mar-10
Primary Standards Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ES3DV3 DAE4	ID # GB37480704 US37292783 SN: 5086 (20g) SN: 5047.2 / 06327 SN: 3205	06-Oct-09 (No. 217-01086) 06-Oct-09 (No. 217-01086) 31-Mar-09 (No. 217-01025) 31-Mar-09 (No. 217-01029) 26-Jun-09 (No. ES3-3205_Jun09)	Oct-10 Oct-10 Mar-10 Mar-10 Jun-10
Primary Standards Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ES3DV3 DAE4 Secondary Standards	ID # GB37480704 US37292783 SN: 5086 (20g) SN: 5047.2 / 06327 SN: 3205 SN: 601	06-Oct-09 (No. 217-01086) 06-Oct-09 (No. 217-01086) 31-Mar-09 (No. 217-01025) 31-Mar-09 (No. 217-01029) 26-Jun-09 (No. ES3-3205_Jun09) 02-Mar-10 (No. DAE4-601_Mar10)	Oct-10 Oct-10 Mar-10 Mar-10 Jun-10 Mar-11
Primary Standards Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ES3DV3 DAE4 Secondary Standards Power sensor HP 6481A	ID # GB37480704 US37292783 SN: 5086 (20g) SN: 5047.2 / 06327 SN: 3205 SN: 601 ID #	06-Oct-09 (No. 217-01086) 06-Oct-09 (No. 217-01086) 31-Mar-09 (No. 217-01025) 31-Mar-09 (No. 217-01029) 26-Jun-09 (No. ES3-3205_Jun09) 02-Mar-10 (No. DAE4-601_Mar10) Check Date (in house)	Oct-10 Oct-10 Mar-10 Mar-10 Jun-10 Mar-11 Scheduled Check
Primary Standards Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ES3DV3 DAE4 Secondary Standards Power sensor HP 8481A RF generator R&S SMT-06	ID # GB37480704 US37292783 SN: 5086 (20g) SN: 5047.2 / 06327 SN: 3205 SN: 601 ID # MY41092317	06-Oct-09 (No. 217-01086) 06-Oct-09 (No. 217-01086) 31-Mar-09 (No. 217-01025) 31-Mar-09 (No. 217-01029) 26-Jun-09 (No. ES3-3205_Jun09) 02-Mar-10 (No. DAE4-601_Mar10) Check Date (in house) 18-Oct-02 (in house check Oct-09)	Oct-10 Oct-10 Mar-10 Jun-10 Mar-11 Scheduled Check In house check; Oct-11
Calibration Equipment used (M&T Primary Standards Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ES3DV3 DAE4 Secondary Standards Power sensor HP 8481A RF generator R&S SMT-06 Network Analyzer HP 8753E	ID # GB37480704 US37292783 SN: 5086 (20g) SN: 5047.2 / 06327 SN: 3205 SN: 601 ID # MY41092317 100005	06-Oct-09 (No. 217-01086) 06-Oct-09 (No. 217-01086) 31-Mar-09 (No. 217-01025) 31-Mar-09 (No. 217-01029) 26-Jun-09 (No. ES3-3205_Jun09) 02-Mar-10 (No. DAE4-601_Mar10) Check Date (in house) 18-Oct-02 (in house check Oct-09) 4-Aug-99 (in house check Oct-09) 18-Oct-01 (in house check Oct-09)	Oct-10 Oct-10 Mar-10 Jun-10 Mar-11 Scheduled Check In house check: Oct-11 In house check: Oct-11 In house check: Oct-10
Primary Standards Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ES3DV3 DAE4 Secondary Standards Power sensor HP 8481A RF generator R&S SMT-06	ID # GB37480704 US37292783 SN: 5086 (20g) SN: 5047.2 / 06327 SN: 3205 SN: 601 ID # MY41092317 100005 US37390585 S4206	06-Oct-09 (No. 217-01086) 06-Oct-09 (No. 217-01086) 31-Mar-09 (No. 217-01025) 31-Mar-09 (No. 217-01029) 26-Jun-09 (No. ES3-3205_Jun09) 02-Mar-10 (No. DAE4-601_Mar10) Check Date (in house) 18-Oct-02 (in house check Oct-09) 4-Aug-99 (in house check Oct-09)	Oct-10 Oct-10 Mar-10 Jun-10 Mar-11 Scheduled Check In house check: Oct-11 In house check: Oct-11 In house check: Oct-10 Signature
Primary Standards Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ES3DV3 DAE4 Secondary Standards Power sensor HP 8481A RF generator R&S SMT-06 Network Analyzer HP 8753E	ID # GB37480704 US37292783 SN: 5086 (20g) SN: 5047.2 / 06327 SN: 3205 SN: 601 ID # MY41092317 100005 US37390585 S4206 Name	06-Oct-09 (No. 217-01086) 06-Oct-09 (No. 217-01086) 31-Mar-09 (No. 217-01025) 31-Mar-09 (No. 217-01029) 26-Jun-09 (No. ES3-3205_Jun09) 02-Mar-10 (No. DAE4-601_Mar10) Check Date (in house) 18-Oct-02 (in house check Oct-09) 4-Aug-99 (in house check Oct-09) 18-Oct-01 (in house check Oct-09) 18-Oct-01 (in house check Oct-09) Function	Oct-10 Oct-10 Mar-10 Jun-10 Mar-11 Scheduled Check In house check: Oct-11 In house check: Oct-11 In house check: Oct-10

Calibration Laboratory of

Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

SWISS CR Z Z R BRAT S Schweizerischer Kallbrierdienst C Service suisse d'étalonnage Servizio svizzero di taratura

S Swiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL	tissue simulating liquid
ConvF	sensitivity in TSL / NORM x,y,z
N/A	not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003
- b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005
- c) Federal Communications Commission Office of Engineering & Technology (FCC OET), "Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields; Additional Information for Evaluating Compliance of Mobile and Portable Devices with FCC Limits for Human Exposure to Radiofrequency Emissions", Supplement C (Edition 01-01) to Bulletin 65

Additional Documentation:

d) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- *Measurement Conditions:* Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed
 point exactly below the center marking of the flat phantom section, with the arms oriented
 parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole
 positioned under the liquid filled phantom. The impedance stated is transformed from the
 measurement at the SMA connector to the feed point. The Return Loss ensures low
 reflected power. No uncertainty required.
- *Electrical Delay:* One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

Certificate No: D1900V2-5d121_Mar10

Page 2 of 9

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V5.2
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom V5.0	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	1900 MHz ± 1 MHz	

Head TSL parameters The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	40.0	1.40 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	41.1 ± 6 %	1.45 mho/m ± 6 %
Head TSL temperature during test	(21.5 ± 0.2) °C	<u>- 199</u> 7	

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	10.1 mW / g
SAR normalized	normalized to 1W	40.4 mW / g
SAR for nominal Head TSL parameters	normalized to 1W	39.8 mW /g ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	250 mW input power	5.30 mW / g
SAR normalized	normalized to 1W	21.2 mW / g
SAR for nominal Head TSL parameters	normalized to 1W	21.1 mW /g ± 16.5 % (k=2)

Certificate No: D1900V2-5d121_Mar10

Page 3 of 9

Body TSL parameters The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	53.3	1.52 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	54.9 ± 6 %	1.58 mho/m ± 6 %
Body TSL temperature during test	(21.5 ± 0.2) °C	<u> 1995 - 20</u> 6	1 - <u>1</u> - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -

SAR result with Body TSL

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	10.5 mW / g
SAR normalized	normalized to 1W	42.0 mW / g
SAR for nominal Body TSL parameters	normalized to 1W	41.4 mW / g ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	250 mW input power	5.60 mW / g
SAR normalized	normalized to 1W	22.4 mW / g
SAR for nominal Body TSL parameters	normalized to 1W	22.3 mW / g ± 16.5 % (k=2)

Certificate No: D1900V2-5d121_Mar10

Page 4 of 9

Appendix

Antenna Parameters with Head TSL

Impedance, transformed to feed point	50.6 Ω + 7.4 jΩ	
Return Loss	- 22.7 dB	

Antenna Parameters with Body TSL

Impedance, transformed to feed point	46.1 Ω + 7.1 jΩ	
Return Loss	- 21.5 dB	

General Antenna Parameters and Design

Electrical Delay (one direction)	1.205 ns	
----------------------------------	----------	--

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG
Manufactured on	August 25, 2009

Certificate No: D1900V2-5d121_Mar10

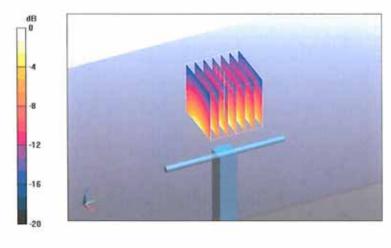
Page 5 of 9

DASY5 Validation Report for Head TSL

Date/Time: 23.03.2010 12:23:06

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 1900 MHz; Type: D1900V2; Serial: D1900V2 - SN:5d121

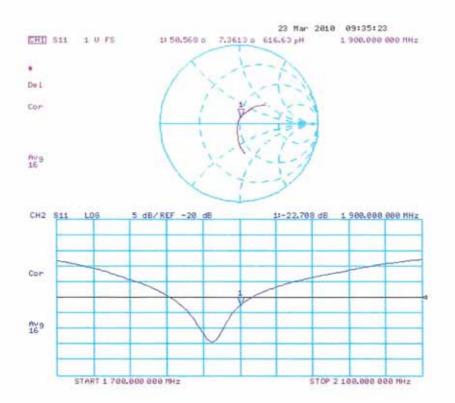

Communication System: CW; Frequency: 1900 MHz; Duty Cycle: 1:1 Medium: HSL U11 BB Medium parameters used: f = 1900 MHz; σ = 1.45 mho/m; ϵ_r = 41.2; ρ = 1000 kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration:

- Probe: ES3DV3 SN3205; ConvF(5.09, 5.09, 5.09); Calibrated: 26.06.2009
- Sensor-Surface: 3mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 02.03.2010
- · Phantom: Flat Phantom 5.0 (front); Type: QD000P50AA; Serial: 1001
- Measurement SW: DASY5, V5.2 Build 157; SEMCAD X Version 14.0 Build 57

Pin=250 mW /d=10mm, dist=3.0mm (ES-Probe)/Zoom Scan (7x7x7) /Cube 0: Measurement

grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 97.6 V/m; Power Drift = 0.00658 dB Peak SAR (extrapolated) = 18.5 W/kg SAR(1 g) = 10.1 mW/g; SAR(10 g) = 5.3 mW/g Maximum value of SAR (measured) = 12.8 mW/g


0 dB = 12.8 mW/g

Certificate No: D1900V2-5d121_Mar10

Page 6 of 9

Impedance Measurement Plot for Head TSL

Certificate No: D1900V2-5d121_Mar10

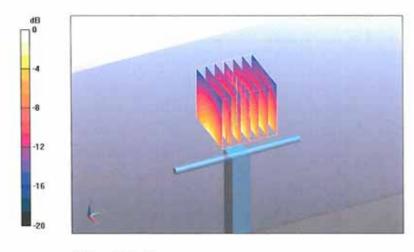
Page 7 of 9

DASY5 Validation Report for Body

Date/Time: 17.03.2010 13:29:09

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 1900 MHz; Type: D1900V2; Serial: D1900V2 - SN:5d121

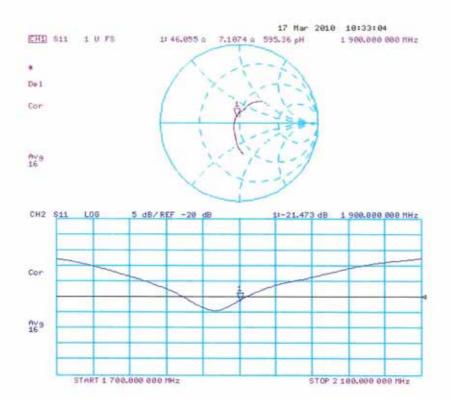

Communication System: CW; Frequency: 1900 MHz; Duty Cycle: 1:1 Medium: MSL U11 BB Medium parameters used: f = 1900 MHz; σ = 1.58 mho/m; ϵ_r = 55; ρ = 1000 kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration:

- Probe: ES3DV3 SN3205; ConvF(4.59, 4.59, 4.59); Calibrated: 26.06.2009
- Sensor-Surface: 3mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 02.03.2010
- · Phantom: Flat Phantom 5.0 (back); Type: QD000P50AA; Serial: 1002
- Measurement SW: DASY5, V5.2 Build 157; SEMCAD X Version 14.0 Build 57

Pin250 mW /d=10mm, dist=3.0mm (ES-Probe)/Zoom Scan (7x7x7) /Cube 0: Measurement

grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 97 V/m; Power Drift = 0.00345 dB Peak SAR (extrapolated) = 17.6 W/kg SAR(1 g) = 10.5 mW/g; SAR(10 g) = 5.6 mW/g Maximum value of SAR (measured) = 13.3 mW/g



Certificate No: D1900V2-5d121_Mar10

Page 8 of 9

Impedance Measurement Plot for Body TSL

Certificate No: D1900V2-5d121_Mar10

Page 9 of 9

Engineering AG aughausstrasse 43, 8004 Zurich	n, Switzerland	Hac MRA	Servizio svizzero di taratura
ccredited by the Swiss Accreditat he Swiss Accreditation Service fultilateral Agreement for the re	is one of the signatories	to the EA	No.: SCS 108
lient Quietek (Auden	Ŷ		: D2450V2-839_Mar10
CALIBRATION C	D2450V2 - SN: 8		
Calibration procedure(s)	QA CAL-05.v7 Calibration proces	dure for dipole validation kits	
Calibration date:	March 12, 2010		
The measurements and the unce	rtainties with confidence p	onal standards, which realize the physical un robability are given on the following pages ar	nd are part of the certificate.
The measurements and the unce	rtainties with confidence protection of the closed laborator		nd are part of the certificate.
The measurements and the uncer All calibrations have been conduc Calibration Equipment used (M&T	rtainties with confidence protection of the closed laborator	robability are given on the following pages ar	nd are part of the certificate.
The measurements and the uncer All calibrations have been conduc Calibration Equipment used (M&T Primary Standards Power meter EPM-442A	rtainties with confidence protected in the closed laborator FE critical for calibration) ID # GB37480704	Cal Date (Certificate No.) 06-Oct-09 (No. 217-01086)	nd are part of the certificate. C and humidity < 70%. Scheduled Calibration Oct-10
The measurements and the unce All calibrations have been conduc Calibration Equipment used (M&T Primary Standards Power meter EPM-442A Power sensor HP 8481A	rtainties with confidence provide the closed laborator TE critical for calibration) ID # GB37480704 US37292783	Cal Date (Certificate No.) 06-Oct-09 (No. 217-01086)	nd are part of the certificate. C and humidity < 70%. Scheduled Calibration Oct-10 Oct-10
The measurements and the uncer All calibrations have been conduc Calibration Equipment used (M&T Primary Standards Power standards Power sensor HP 8481A Reference 20 dB Attenuator	rtainties with confidence p ted in the closed laborator FE critical for calibration) ID # GB37480704 US37292783 SN: 5086 (20g)	Cal Date (Certificate No.) 06-Oct-09 (No. 217-01086) 06-Oct-09 (No. 217-01086) 31-Mar-09 (No. 217-01025)	nd are part of the certificate. C and humidity < 70%. Scheduled Calibration Oct-10 Oct-10 Mar-10
The measurements and the uncer All calibrations have been conduc Calibration Equipment used (M&T Primary Standards Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination	rtainties with confidence p ted in the closed laborator FE critical for calibration) ID # GB37480704 US37292783 SN: 5086 (20g) SN: 5047.2 / 06327	Cal Date (Certificate No.) 06-Oct-09 (No. 217-01086) 06-Oct-09 (No. 217-01086) 31-Mar-09 (No. 217-01025) 31-Mar-09 (No. 217-01029)	nd are part of the certificate. C and humidity < 70%. Scheduled Calibration Oct-10 Oct-10 Mar-10 Mar-10
The measurements and the uncer All calibrations have been conduc Calibration Equipment used (M&T Primary Standards Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ES3DV3	rtainties with confidence p ted in the closed laborator FE critical for calibration) ID # GB37480704 US37292783 SN: 5086 (20g)	Cal Date (Certificate No.) 06-Oct-09 (No. 217-01086) 06-Oct-09 (No. 217-01086) 31-Mar-09 (No. 217-01025)	nd are part of the certificate. C and humidity < 70%. Scheduled Calibration Oct-10 Oct-10 Mar-10
The measurements and the uncer All calibrations have been conduc Calibration Equipment used (M&T Primary Standards Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ES3DV3 DAE4	tainties with confidence provided in the closed laborator TE critical for calibration) ID # GB37480704 US37292783 SN: 5086 (20g) SN: 5047.2 / 06327 SN: 3205 SN: 601	Cal Date (Certificate No.) 06-Oct-09 (No. 217-01086) 06-Oct-09 (No. 217-01086) 06-Oct-09 (No. 217-01086) 31-Mar-09 (No. 217-01025) 31-Mar-09 (No. 217-01029) 26-Jun-09 (No. ES3-3205_Jun09) 02-Mar-10 (No. DAE4-601_Mar10)	nd are part of the certificate. C and humidity < 70%. Scheduled Calibration Oct-10 Oct-10 Mar-10 Jun-10 Mar-11
The measurements and the uncer All calibrations have been conduc Calibration Equipment used (M&T Primary Standards Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ES3DV3 DAE4 Secondary Standards	tainties with confidence provided in the closed laborator TE critical for calibration) ID # GB37480704 US37292783 SN: 5086 (20g) SN: 5047.2 / 06327 SN: 3205 SN: 601 ID #	Cal Date (Certificate No.) 06-Oct-09 (No. 217-01086) 06-Oct-09 (No. 217-01086) 06-Oct-09 (No. 217-01086) 31-Mar-09 (No. 217-01029) 26-Jun-09 (No. 217-01029) 26-Jun-09 (No. E33-3205_Jun09) 02-Mar-10 (No. DAE4-601_Mar10) Check Date (in house)	nd are part of the certificate. C and humidity < 70%. Scheduled Calibration Oct-10 Oct-10 Mar-10 Jun-10 Jun-10 Mar-11 Scheduled Check
The measurements and the uncer All calibrations have been conduc Calibration Equipment used (M&T Primary Standards Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ES3DV3 DAE4 Secondary Standards Power sensor HP 8481A	tainties with confidence provided in the closed laborator TE critical for calibration) ID # GB37480704 US37292783 SN: 5086 (20g) SN: 5047.2 / 06327 SN: 3205 SN: 601 ID # MY41092317	Cal Date (Certificate No.) 06-Oct-09 (No. 217-01086) 06-Oct-09 (No. 217-01086) 06-Oct-09 (No. 217-01086) 03-Oct-09 (No. 217-01025) 31-Mar-09 (No. 217-01025) 31-Mar-09 (No. 217-01029) 26-Jun-09 (No. 217-01029) 02-Mar-10 (No. DAE4-601_Mar10) Check Date (in house) 18-Oct-02 (in house check Oct-09)	nd are part of the certificate. C and humidity < 70%. Scheduled Calibration Oct-10 Oct-10 Mar-10 Mar-10 Jun-10 Mar-11 Scheduled Check In house check: Oct-11
The measurements and the uncer All calibrations have been conduc Calibration Equipment used (M&T Primary Standards Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ES3DV3 DAE4	tainties with confidence provided in the closed laborator TE critical for calibration) ID # GB37480704 US37292783 SN: 5086 (20g) SN: 5047.2 / 06327 SN: 3205 SN: 601 ID #	Cal Date (Certificate No.) 06-Oct-09 (No. 217-01086) 06-Oct-09 (No. 217-01086) 06-Oct-09 (No. 217-01086) 31-Mar-09 (No. 217-01029) 26-Jun-09 (No. 217-01029) 26-Jun-09 (No. E33-3205_Jun09) 02-Mar-10 (No. DAE4-601_Mar10) Check Date (in house)	nd are part of the certificate. C and humidity < 70%. Scheduled Calibration Oct-10 Oct-10 Mar-10 Jun-10 Jun-10 Mar-11 Scheduled Check
The measurements and the uncer All calibrations have been conduc Calibration Equipment used (M&T Primary Standards Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ES3DV3 DAE4 Secondary Standards Power sensor HP 8481A RF generator R&S SMT-06	rtainties with confidence pro- sted in the closed laborator FE critical for calibration) ID # GB37480704 US37292783 SN: 5086 (20g) SN: 5047.2 / 06327 SN: 3205 SN: 601 ID # MY41092317 100005 US37390585 S4206	Cal Date (Certificate No.) 06-Oct-09 (No. 217-01086) 06-Oct-09 (No. 217-01086) 06-Oct-09 (No. 217-01086) 31-Mar-09 (No. 217-01025) 31-Mar-09 (No. 217-01029) 26-Jun-09 (No. ES3-3205_Jun09) 02-Mar-10 (No. DAE4-601_Mar10) Check Date (in house) 18-Oct-02 (in house check Oct-09) 4-Aug-99 (in house check Oct-09) 18-Oct-01 (in house check Oct-09)	nd are part of the certificate. C and humidity < 70%. Scheduled Calibration Oct-10 Oct-10 Mar-10 Jun-10 Mar-11 Scheduled Check In house check: Oct-11 In house check: Oct-11 In house check: Oct-10
The measurements and the uncer All calibrations have been conduc Calibration Equipment used (M&T Primary Standards Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ES3DV3 DAE4 Secondary Standards Power sensor HP 8481A RF generator R&S SMT-06	rtainties with confidence pro- ted in the closed laborator FE critical for calibration) ID # GB37480704 US37292783 SN: 5086 (20g) SN: 5047.2 / 06327 SN: 3205 SN: 601 ID # MY41092317 100005	Cal Date (Certificate No.) 06-Oct-09 (No. 217-01086) 06-Oct-09 (No. 217-01086) 03-Oct-09 (No. 217-01086) 31-Mar-09 (No. 217-01025) 31-Mar-09 (No. 217-01025) 31-Mar-09 (No. 217-01029) 26-Jun-09 (No. DAE4-601_Mar10) Check Date (in house) 18-Oct-02 (in house check Oct-09) 4-Aug-99 (in house check Oct-09)	nd are part of the certificate. C and humidity < 70%. Scheduled Calibration Oct-10 Oct-10 Mar-10 Mar-10 Jun-10 Mar-11 Scheduled Check In house check: Oct-11 In house check: Oct-11

Certificate No: D2450V2-839_Mar10

Page 1 of 9

Calibration Laboratory of

Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

SWISS C Z Z Proprio Schweizerischer Kalibrierdienst Service suisse d'étalonnage

- C Service suisse d'étaionnage Servizio svizzero di taratura
- S Swiss Calibration Service

Accreditation No.: SCS 108

S

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL	tissue simulating liquid
ConvF	sensitivity in TSL / NORM x,y,z
N/A	not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003
- b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005
- c) Federal Communications Commission Office of Engineering & Technology (FCC OET), "Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields; Additional Information for Evaluating Compliance of Mobile and Portable Devices with FCC Limits for Human Exposure to Radiofrequency Emissions", Supplement C (Edition 01-01) to Bulletin 65

Additional Documentation:

d) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed
 point exactly below the center marking of the flat phantom section, with the arms oriented
 parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- *Electrical Delay:* One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- · SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

Certificate No: D2450V2-839_Mar10

Page 2 of 9

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V5.2
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom V4.9	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	2450 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	39.2	1.80 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	40.4 ± 6 %	1.80 mho/m ± 6 %
Head TSL temperature during test	(21.0 ± 0.2) °C	12082	10000

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	13.0 mW / g
SAR normalized	normalized to 1W	52.0 mW / g
SAR for nominal Head TSL parameters	normalized to 1W	52.3 mW /g ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	250 mW input power	6.11 mW / g
SAR normalized	normalized to 1W	24.4 mW / g
SAR for nominal Head TSL parameters	normalized to 1W	24.5 mW /g ± 16.5 % (k=2)

Certificate No: D2450V2-839_Mar10

Page 3 of 9

Body TSL parameters The following parameters and calculations were applied.

2.077	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	52.7	1.95 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	54.4 ± 6 %	2.00 mho/m ± 6 %
Body TSL temperature during test	(21.0 ± 0.2) °C		2 - 12 13 P

SAR result with Body TSL

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	13.0 mW / g
SAR normalized	normalized to 1W	52.0 mW / g
SAR for nominal Body TSL parameters	normalized to 1W	51.6 mW / g ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	250 mW input power	6.06 mW / g
SAR normalized	normalized to 1W	24.2 mW / g
SAR for nominal Body TSL parameters	normalized to 1W	24.2 mW / g ± 16.5 % (k=2)

Certificate No: D2450V2-839_Mar10

Page 4 of 9

Appendix

Antenna Parameters with Head TSL

Impedance, transformed to feed point	53.5 Ω - 0.6 jΩ	
Return Loss	- 29.4 dB	

Antenna Parameters with Body TSL

Impedance, transformed to feed point	50.0 Ω + 0.9 jΩ	
Return Loss	- 40.8 dB	

General Antenna Parameters and Design

Electrical Delay (one direction)	1.134 ns
----------------------------------	----------

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG	
Manufactured on	July 20, 2009	

Certificate No: D2450V2-839_Mar10

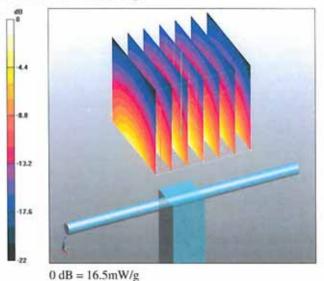
Page 5 of 9

DASY5 Validation Report for Head TSL

Date/Time: 12.03.2010 13:24:52

Test Laboratory: SPEAG, Zurich, Switzerland

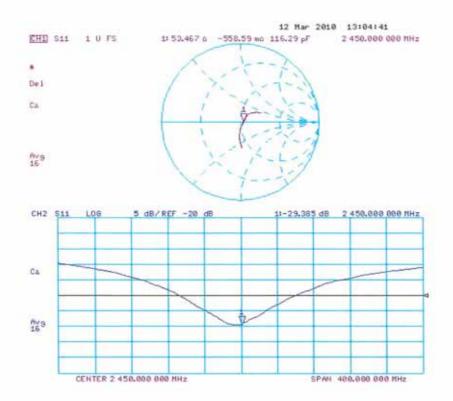
DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN:839


Communication System: CW; Frequency: 2450 MHz; Duty Cycle: 1:1 Medium: HSL U11 BB Medium parameters used: f = 2450 MHz; σ = 1.81 mho/m; ε_r = 40.5; ρ = 1000 kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration:

- Probe: ES3DV3 SN3205; ConvF(4.53, 4.53, 4.53); Calibrated: 26.06.2009
- · Sensor-Surface: 3mm (Mechanical Surface Detection)
- · Electronics: DAE4 Sn601; Calibrated: 02.03.2010
- · Phantom: Flat Phantom 5.0 (front); Type: QD000P50AA; Serial: 1001
- Measurement SW: DASY5, V5.2 Build 157; SEMCAD X Version 14.0 Build 57

Head/d=10mm, Pin=250 mW, dist=3.0mm (ES-Probe)/Zoom Scan (7x7x7) (7x7x7)/Cube 0:


Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 99.1 V/m; Power Drift = 0.060 dB Peak SAR (extrapolated) = 26.5 W/kg SAR(1 g) = 13 mW/g; SAR(10 g) = 6.11 mW/g Maximum value of SAR (measured) = 16.5 mW/g

Certificate No: D2450V2-839_Mar10

Page 6 of 9

Impedance Measurement Plot for Head TSL

Certificate No: D2450V2-839_Mar10

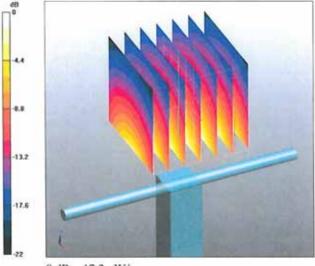
Page 7 of 9

DASY5 Validation Report for Body

Date/Time: 12.03.2010 15:25:35

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN:839

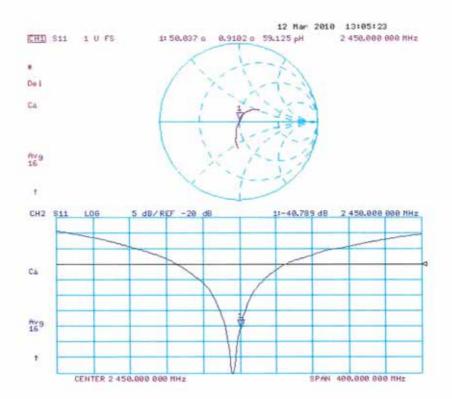

Communication System: CW; Frequency: 2450 MHz; Duty Cycle: 1:1 Medium: MSL U10 BB Medium parameters used: f = 2450 MHz; σ = 2.01 mho/m; ϵ_r = 54.5; ρ = 1000 kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration:

- Probe: ES3DV3 SN3205; ConvF(4.31, 4.31, 4.31); Calibrated: 26.06.2009
- · Sensor-Surface: 3mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 02.03.2010
- Phantom: Flat Phantom 5.0 (back); Type: QD000P50AA; Serial: 1002
- Measurement SW: DASY5, V5.2 Build 157; SEMCAD X Version 14.0 Build 57

Body/d=10mm, Pin250 mW, dist=3.0mm (ES-Probe)/Zoom Scan (7x7x7) (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 94.9 V/m; Power Drift = -0.0047 dB Peak SAR (extrapolated) = 27.1 W/kg SAR(1 g) = 13 mW/g; SAR(10 g) = 6.06 mW/g Maximum value of SAR (measured) = 17.2 mW/g



 $0 \, dB = 17.2 \, mW/g$

Certificate No: D2450V2-839_Mar10

Page 8 of 9

Impedance Measurement Plot for Body TSL

Certificate No: D2450V2-839_Mar10

Page 9 of 9

Appendix F. DAE Calibration Data

Calibration procedure(s) GA Calibration procedure(s) GA Calibration date: July This calibration certificate documents the The measurements and the uncertainties All calibrations have been conducted in the Calibration Equipment used (M&TE criticated the conducted in the Calibration Equipment used (M&TE criticated the criteated the criticated the criticated the cr	of the signatories on of calibration TIFICATE E4 - SD 000 E CAL-06, v23 bration proce 26, 2011 traceability to nativity to n	a to the EA certificates 04 BK - SN: 915 dure for the data acquis onal standards, which realize the robability are given on the followin	physical units of m ng pages and are p	E4:915_JUI11 S: (DAE)
CALIBRATION CER Object DAte Calibration procedure(s) Calibration procedure(s) Calibration date: July This calibration date: July This calibration certificate documents the The measurements and the uncertainties All calibrations have been conducted in the Calibration Equipment used (M&TE criticate Primary Standards ID # Keithley Multimeter Type 2001 SN: Secondary Standards ID #	E4 - SD 000 E CAL-06.v23 bration proce 26, 2011 traceability to natio with confidence procession of the second sec	04 BK - SN: 915 dure for the data acquis onal standards, which realize the robability are given on the followin	tion electronic	s (DAË) eesurements (SI).
Object DAte Calibration procedure(s) GA Calibration procedure(s) GA Calibration date: July This calibration certificate documents the The measurements and the uncertainties All calibrations have been conducted in the Calibration Equipment used (M&TE criticated in the Calibration Equipment used in the Calibration Equipment used (M&TE criticated in the Calibration Equipment used (M&TE criticated in the Calibration Equipment used in the Calibration Equipment used in the Calibration Equipment used (matched in the Calibration Equipment used (matched in the Calibration Equipment used in the Calibration Equipment used in the Calibratin Equipment used in the Calibration Equipment	E4 - SD 000 E CAL-06.v23 bration proce 26, 2011 traceability to natio with confidence procession of the second sec	004 BK - SN: 915 dure for the data acquis	physical units of m ng pages and are p	reasurements (SI).
Calibration date: July This calibration certificate documents the The measurements and the uncertainties All calibrations have been conducted in th Calibration Equipment used (M&TE critica Primary Standards ID # Keithley Multimeter Type 2001 SN: Secondary Standards ID #	26, 2011 traceability to natio with confidence pro-	onal standards, which realize the robability are given on the following	physical units of m ng pages and are p	reasurements (SI).
This calibration certificate documents the The measurements and the uncertainties All calibrations have been conducted in th Calibration Equipment used (M&TE critica <u>Primary Standards ID #</u> Keithley Multimeter Type 2001 SN: Secondary Standards ID #	traceability to natio with confidence pi ne closed laborator	onal standards, which realize the obability are given on the followir	ng pages and are p	
The measurements and the uncertainties All calibrations have been conducted in th Calibration Equipment used (M&TE critica Primary Standards ID # Keithley Multimeter Type 2001 SN: Secondary Standards ID #	with confidence pr	obability are given on the following	ng pages and are p	
Keithley Multimeter Type 2001 SN: Secondary Standards ID #		Cal Date (Certificate No.)		Scheduled Calibration
	0810278	28-Sep-10 (No:10376)		Sep-11
		Check Date (in house)		Scheduled Check
Calibrator Box V1.1		08-Jun-11 (in house check)		In house check: Jun-12
Narr Calibrated by: And	ne RecQuerte	Function Technician	an a	Signature
Approved by:	an tanàna amin'ny fisiana	性状的情况的思想是自己的思想的问题。		
	Somholt	R&D Director	\mathcal{A}	Darmin
	Somholt	P&D Director	A NV	Issued: July 26, 2011

Certificate No: DAE4-915_Jul11

Page 1 of 5

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura S Swiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary

DAE Connector angle data acquisition electronics information used in DASY system to align probe sensor X to the robot coordinate system.

Methods Applied and Interpretation of Parameters

- DC Voltage Measurement: Calibration Factor assessed for use in DASY system by comparison with a calibrated instrument traceable to national standards. The figure given corresponds to the full scale range of the voltmeter in the respective range.
- Connector angle: The angle of the connector is assessed measuring the angle mechanically by a tool inserted. Uncertainty is not required.
- The following parameters as documented in the Appendix contain technical information as a
 result from the performance test and require no uncertainty.
 - DC Voltage Measurement Linearity: Verification of the Linearity at +10% and -10% of the nominal calibration voltage. Influence of offset voltage is included in this measurement.
 - Common mode sensitivity: Influence of a positive or negative common mode voltage on the differential measurement.
 - Channel separation: Influence of a voltage on the neighbor channels not subject to an input voltage.
 - AD Converter Values with inputs shorted: Values on the internal AD converter corresponding to zero input voltage
 - Input Offset Measurement. Output voltage and statistical results over a large number of zero voltage measurements.
 - Input Offset Current: Typical value for information; Maximum channel input offset current, not considering the input resistance.
 - Input resistance: Typical value for information: DAE input resistance at the connector, during internal auto-zeroing and during measurement.
 - Low Battery Alarm Voltage: Typical value for information. Below this voltage, a battery alarm signal is generated.
 - Power consumption: Typical value for information. Supply currents in various operating modes.

Certificate No: DAE4-915_Jul11

Page 2 of 5

DC Voltage Measurement

High Range:	1LSB =	6.1µV,	full range =	-100+300 mV
Low Range:	1LSB =	61nV ,	full range =	-1+3mV

Calibration Factors	X	γ	Z
High Range	404.285 ± 0.1% (k=2)	404.391 ± 0.1% (k=2)	404.754 ± 0.1% (k=2)
Low Range	3.97635 ± 0.7% (k=2)	4.00755 ± 0.7% (k=2)	3.98639 ± 0.7% (k=2)

Connector Angle

O	440.00.1.4.0
Connector Angle to be used in DASY system	116.0°±1°

Certificate No: DAE4-915_Jul11

Page 3 of 5

Appendix

1. DC Voltage Linearity

High Range	Reading (µV)	Difference (µV)	Error (%)
Channel X + Input	200000.4	-0.64	-0.00
Channel X + Input	20001.45	1.55	0.01
Channel X - Input	-19997.34	2.36	-0.01
Channel Y + Input	199995.7	-0.78	-0.00
Channel Y + Input	19998.85	-1.15	-0.01
Channel Y - Input	-19999.50	0.20	-0.00
Channel Z + Input	199994.5	-1.17	-0.00
Channel Z + Input	19999.11	-0.79	-0.00
Channel Z - Input	-19999.13	0.37	-0.00

Low Range	Reading (µV)	Difference (µV)	Error (%)
Channel X + Input	1999.6	-0.27	-0.01
Channel X + Input	200.22	0.52	0.26
Channel X - Input	-199.22	0.78	-0.39
Channel Y + Input	1999.9	-0.17	-0.01
Channel Y + Input	199.72	-0.28	-0.14
Channel Y - Input	-200.18	-0.28	0.14
Channel Z + Input	1999.9	0.05	0.00
Channel Z + Input	199.87	-0.13	-0.07
Channel Z - Input	-200.28	-0.38	0.19

2. Common mode sensitivity DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

	Common mode Input Voltage (mV)	High Range Average Reading (μV)	Low Range Average Reading (µV)
Channel X	200	-15.44	-17.05
	- 200	18.73	17.12
Channel Y	200	-5.83	-6.14
	- 200	5.34	4.60
Channel Z	200	-0.97	-1.09
	- 200	-0.24	-0.53

3. Channel separation

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

	Input Voltage (mV)	Channel X (μV)	Channel Y (µV)	Channel Z (µV)
Channel X	200	5. 2 7	3.91	0.10
Channel Y	200	2.17	-	5.26
Channel Z	200	0.57	-0.09	

Certificate No: DAE4-915_Jul11

4. AD-Converter Values with inputs shorted

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

	High Range (LSB)	Low Range (LSB)
Channel X	16140	15733
Channel Y	15996	15679
Channel Z	15882	15699

5. Input Offset Measurement

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec Input $10M\Omega$

	Average (µV)	min. Offset (μV)	max. Offset (μV)	Std. Deviation (µV)
Channel X	0.08	-0.73	2.01	0.38
Channel Y	-1.66	-4.46	-0.38	0.45
Channel Z	0.49	-0.80	1.79	0.32

6. Input Offset Current

Nominal Input circuitry offset current on all channels: <25fA

7. Input Resistance (Typical values for information)

	Zeroing (kOhm)	Measuring (MOhm)
Channel X	200	200
Channel Y	200	200
Channel Z	200	200

8. Low Battery Alarm Voltage (Typical values for information)

Typical values	Alarm Level (VDC)	
Supply (+ Vcc)	+7.9	
Supply (- Vcc)	-7.6	

9. Power Consumption (Typical values for information)

Typical values	Switched off (mA)	Stand by (mA)	Transmitting (mA)
Supply (+ Vcc)	+0.01	+6	+14
Supply (- Vcc)	-0.01	-8	-9