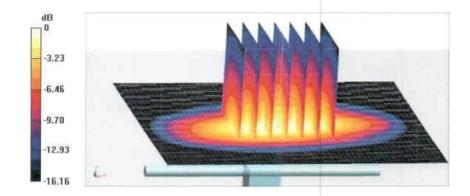


Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2117 E-mail: emf@caict.ac.cn http://www.caict.ac.cn

DASY5 Validation Report for Head TSL Test Laboratory: CTTL, Beijing, China

Date: 2022-08-22


DUT: Dipole 1750 MHz; Type: D1750V2; Serial: D1750V2 - SN: 1152 Communication System: UID 0, CW; Frequency: 1750 MHz; Duty Cycle: 1:1 Medium parameters used: f = 1750 MHz; $\sigma = 1.408$ S/m; $\epsilon_r = 41.28$; $\rho = 1000$ kg/m³ Phantom section: Right Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration:

- Probe: EX3DV4 SN7464; ConvF(8.52, 8.52, 8.52) @ 1750 MHz; Calibrated: 2022-01-26
- · Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1556; Calibrated: 2022-01-12
- Phantom: MFP_V5.1C (20deg probe tilt); Type: QD 000 P51 Cx; Serial: 1062
- DASY52 52.10.4(1535); SEMCAD X 14.6.14(7501)

Dipole Calibration/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

```
Reference Value = 91.44 V/m; Power Drift = -0.05 dB
Peak SAR (extrapolated) = 16.5 W/kg
SAR(1 g) = 9.18 W/kg; SAR(10 g) = 4.94 W/kg
Smallest distance from peaks to all points 3 dB below = 10 mm
Ratio of SAR at M2 to SAR at M1 = 56.3%
Maximum value of SAR (measured) = 14.0 W/kg
```


0 dB = 14.0 W/kg = 11.46 dBW/kg

Certificate No: Z22-60335

Page 5 of 6

Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2117 E-mail: emf@caict.ac.cn http://www.caict.ac.cn

Impedance Measurement Plot for Head TSL

Stat 1.55 Oke	THEW 100 Hz	5800 2,975 GHz 💽
	*	
>1 1.7500000 GHz 47.869 d	-708.39 mD 128.38 pF	
sil smith (Rejx) scale 1		
92.00	2	
-10.00		and the second se
0.020)		
30.00		
20.00		
10.00 51 1.7500000 GH2 -	ALL FRA UN	

Certificate No: Z22-60335

Page 6 of 6

1900MHz Dipole

79 Fax: +86-	trict, Beijing, 100191 10-62304633-2504 w.chinattl.cn	Certificate No:	Z21-60	CNAS	BRATION S L0570
		Certificate No:	Z21-60		
TIFICATE				357	
INICAL					
	and the second second		1		
D1900V2	- SN: 5d088				
		allow to the test of the			
Calibratio	refocedures for	uipole validation kit	S		
October 1	8, 2021				
		ry facility: environr	nent tempe	erature (22±3) [.]	°C and
TE critical for o		ry facility: environr	nent temp	ərature (22±3)	°C and
TE critical for (calibration) Cal Date (Calibra	ted by, Certificate N		erature (22±3) ⁴	
TE critical for (# (6277 2	calibration) Cal Date (Calibra 4-Sep-21 (CTTL,	ted by. Certificate N No.J21X08326)		heduled Calib Sep-22	
TE critical for (# (6277 2 4291 2	calibration) Cal Date (Calibra 4-Sep-21 (CTTL, 4-Sep-21 (CTTL,	ted by, Certificate N No.J21X08326) No.J21X08326)	lo.) Sc	heduled Calib Sep-22 Sep-22	
TE critical for (# (6277 2 4291 2 17517 0	Calibration) Cal Date (Calibra 4-Sep-21 (CTTL, 4-Sep-21 (CTTL, 3-Feb-21(CTTL-	ted by. Certificate N No.J21X08326)	lo.) Sc	heduled Calib Sep-22	
TE critical for (6277 2 4291 2 17517 0 11556 1	Calibration) Cal Date (Calibra 4-Sep-21 (CTTL, 4-Sep-21 (CTTL, 3-Feb-21(CTTL- 5-Jan-21(SPEAC	ted by, Certificate N No.J21X08326) No.J21X08326) SPEAG,No.Z21-600	lo.) So 101) an21)	heduled Calib Sep-22 Sep-22 Feb-22	pration
TE critical for (6277 2 4291 2 17517 0 11556 1 # C	Calibration) Cal Date (Calibra 4-Sep-21 (CTTL, 4-Sep-21 (CTTL, 3-Feb-21(CTTL- 5-Jan-21(SPEAC	ted by, Certificate N No.J21X08326) No.J21X08326) SPEAG,No.Z21-600 S,No.DAE4-1556_Ja ed by, Certificate No	lo.) So 101) an21)	heduled Calib Sep-22 Sep-22 Feb-22 Jan-22	pration
TE critical for (6277 2 4291 2 17517 0 1556 1 # CC (49071430 0	Calibration) Cal Date (Calibra 4-Sep-21 (CTTL, 4-Sep-21 (CTTL, 3-Feb-21(CTTL- 5-Jan-21(SPEAC cal Date (Calibrat	ted by, Certificate N No.J21X08326) No.J21X08326) SPEAG,No.Z21-600 S,No.DAE4-1556_Ja ed by, Certificate No No.J21X00593)	lo.) So 101) an21)	heduled Calib Sep-22 Sep-22 Feb-22 Jan-22 heduled Calibi	pration
TE critical for (6277 2 4291 2 17517 0 1556 1 # CC (49071430 0	Calibration) Cal Date (Calibra 4-Sep-21 (CTTL, 4-Sep-21 (CTTL, 3-Feb-21(CTTL- 5-Jan-21(SPEAC Cal Date (Calibrat 1-Feb-21 (CTTL,	ted by, Certificate N No.J21X08326) No.J21X08326) SPEAG,No.Z21-600 S,No.DAE4-1556_Ja ed by, Certificate No No.J21X00593)	lo.) So 101) an21)	heduled Calib Sep-22 Sep-22 Feb-22 Jan-22 heduled Calibi Jan-22 Jan-22	pration
TE critical for 0 # () 8277 2 4291 2 17517 0 1556 1 # C 749071430 0 746110673 1	Calibration) Cal Date (Calibra 4-Sep-21 (CTTL, 3-Feb-21 (CTTL, 5-Jan-21(SPEAC Cal Date (Calibrat 1-Feb-21 (CTTL, 4-Jan-21 (CTTL,	ted by, Certificate N No.J21X08326) No.J21X08326) SPEAG,No.Z21-600 No.DAE4-1556_Ja ed by, Certificate No No.J21X00593) No.J21X00232)	lo.) So 101) an21)	heduled Calib Sep-22 Sep-22 Feb-22 Jan-22 heduled Calibi	pration
TE critical for o # (6277 2 4291 2 17517 0 1556 1 # C 749071430 0 746110673 1 ame to Jing	Calibration) Cal Date (Calibra 4-Sep-21 (CTTL, 3-Feb-21 (CTTL, 5-Jan-21(SPEAC cal Date (Calibrat 1-Feb-21 (CTTL, 4-Jan-21 (CTTL, Function SAR Test Er	ted by, Certificate N No.J21X08326) No.J21X08326) SPEAG,No.Z21-600 b,No.DAE4-1556_Ja ed by, Certificate No No.J21X00593) No.J21X00232)	lo.) So 101) an21)	heduled Calib Sep-22 Sep-22 Feb-22 Jan-22 heduled Calibi Jan-22 Jan-22	pration
TE critical for of # (6277 2 4291 2 17517 0 1556 1 # C 749071430 0 746110673 1 ame	Calibration) Cal Date (Calibra 4-Sep-21 (CTTL, 4-Sep-21 (CTTL, 3-Feb-21(CTTL, 5-Jan-21(SPEAC Cal Date (Calibrat 1-Feb-21 (CTTL, 4-Jan-21 (CTTL, Function	ted by, Certificate N No.J21X08326) No.J21X08326) SPEAG,No.Z21-600 b,No.DAE4-1556_Ja ed by, Certificate No No.J21X00593) No.J21X00232)	lo.) So 101) an21)	heduled Calib Sep-22 Sep-22 Feb-22 Jan-22 heduled Calibi Jan-22 Jan-22	pration
TE critical for o # (6277 2 4291 2 17517 0 1556 1 # C 749071430 0 746110673 1 ame to Jing	Calibration) Cal Date (Calibra 4-Sep-21 (CTTL, 3-Feb-21 (CTTL, 5-Jan-21(SPEAC cal Date (Calibrat 1-Feb-21 (CTTL, 4-Jan-21 (CTTL, Function SAR Test Er	ted by, Certificate N No.J21X08326) No.J21X08326) SPEAG,No.Z21-600 b, No.DAE4-1556_Ja ed by, Certificate No No.J21X00593) No.J21X00232)	lo.) So 101) an21)	heduled Calib Sep-22 Sep-22 Feb-22 Jan-22 heduled Calibi Jan-22 Jan-22	pration
e	FF-Z11-00 Calibration October 1 ments the tra ments and the tte.	October 18, 2021 ments the traceability to natio ements and the uncertainties w ite.	FF-Z11-003-01 Calibration Procedures for dipole validation kit October 18, 2021 ments the traceability to national standards, while ments and the uncertainties with confidence prob- ite.	FF-Z11-003-01 Calibration Procedures for dipole validation kits October 18, 2021 ments the traceability to national standards, which realize to ments and the uncertainties with confidence probability are gotte.	FF-Z11-003-01 Calibration Procedures for dipole validation kits October 18, 2021 ments the traceability to national standards, which realize the physical u ments and the uncertainties with confidence probability are given on the fo

Certificate No: Z21-60357

Page 1 of 6

Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 E-mail: ettl/a/ehinattl.com http://www.chinattl.cn

<mark>lossary:</mark> TSL ConvF

N/A

	tissue simulating liquid
F	sensitivity in TSL / NORMx,y,z
	not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Measurement procedure for assessment of specific absorption rate of human exposure to radio frequency fields from hand-held and body-mounted wireless communication devices- Part 1: Device used next to the ear (Frequency range of 300MHz to 6GHz)", July 2016
- c) IEC 62209-2, "Procedure to measure the Specific Absorption Rate (SAR) For wireless communication devices used in close proximity to the human body (frequency range of 30MHz to 6GHz)", March 2010
- d) KDB865664, SAR Measurement Requirements for 100 MHz to 6 GHz

Additional Documentation:

e) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end
 of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed
 point exactly below the center marking of the flat phantom section, with the arms oriented
 parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole
 positioned under the liquid filled phantom. The impedance stated is transformed from the
 measurement at the SMA connector to the feed point. The Return Loss ensures low
 reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of Measurement multiplied by the coverage factor k=2, which for a normal distribution Corresponds to a coverage probability of approximately 95%.

Certificate No: Z21-60357

Page 2 of 6

Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 E-mail: cttl@chinattl.com http://www.chinattl.cn

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY52	V52.10.4
Extrapolation	Advanced Extrapolation	
Phantom	Triple Flat Phantom 5.1C	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	1900 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	40.0	1.40 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	39.9 ± 6 %	1.39 mho/m ± 6 %
Head TSL temperature change during test	<1.0 °C		

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	10.0 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	40.2 W/kg ± 18.8 % (k=2)
SAR averaged over 10 cm^3 (10 g) of Head TSL	Condition	
SAR measured	250 mW input power	5.10 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	20.5 W/kg ± 18.7 % (k=2)

Certificate No: Z21-60357

Page 3 of 6

Appendix (Additional assessments outside the scope of CNAS L0570)

Antenna Parameters with Head TSL

Impedance, transformed to feed point	53.7Ω+ 6.80jΩ
Return Loss	- 22.6dB

General Antenna Parameters and Design

Electrical Delay (one direction)	1.110 ns
----------------------------------	----------

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by SPEAG

Certificate No: Z21-60357

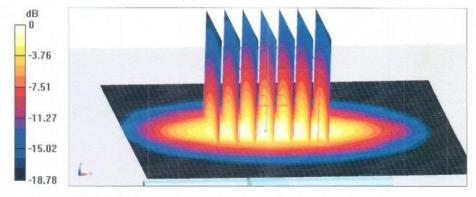
Page 4 of 6

Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 E-mail: ettl@chinattl.com http://www.chinattl.cn

DASY5 Validation Report for Head TSL Test Laboratory: CTTL, Beijing, China

Date: 10.18.2021

DUT: Dipole 1900 MHz; Type: D1900V2; Serial: D1900V2 - SN: 5d088 Communication System: UID 0, CW; Frequency: 1900 MHz; Duty Cycle: 1:1


Medium parameters used: f = 1900 MHz; $\sigma = 1.387 \text{ S/m}$; $\varepsilon_r = 39.88$; $\rho = 1000 \text{ kg/m}^3$ Phantom section: Right Section

DASY5 Configuration:

- Probe: EX3DV4 SN7517; ConvF(7.81, 7.81, 7.81) @ 1900 MHz; Calibrated: 2021-02-03
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1556; Calibrated: 2021-01-15
- Phantom: MFP_V5.1C (20deg probe tilt); Type: QD 000 P51 Cx; Serial: 1062
- Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7501)

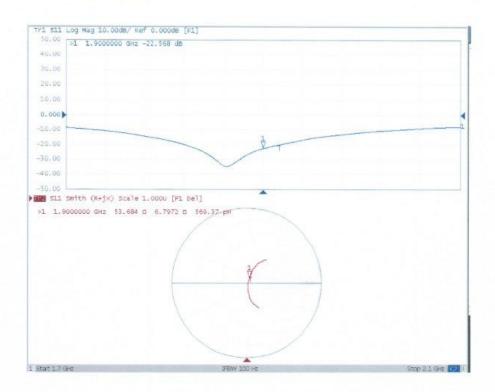
System Performance Check/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 103.6 V/m; Power Drift = 0.00 dB Peak SAR (extrapolated) = 19.2 W/kg SAR(1 g) = 10 W/kg; SAR(10 g) = 5.1 W/kg Smallest distance from peaks to all points 3 dB below = 10 mm Ratio of SAR at M2 to SAR at M1 = 52.1% Maximum value of SAR (measured) = 15.8 W/kg

0 dB = 15.8 W/kg = 11.99 dBW/kg

Certificate No: Z21-60357

Page 5 of 6



 Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China

 Tel: +86-10-62304633-2079
 Fax: +86-10-62304633-2504

 F-mail: ettl@chinattl.com
 http://www.chinattl.cn

Impedance Measurement Plot for Head TSL

Certificate No: Z21-60357

Page 6 of 6

2450MHz Dipole

Tel: +86-10-623046 E-mail: ettl d chinat Client SAIC	tl.com http://	*86-10-62304633-2504 www.chinattl.cn Certificate No: Z2	CNAS L0570
Client SAIC	Т	Certificate No: Z2	
UNUT THE			1-60358
CALIBRATION CE	ERTIFICAT	E	
Object	D2450	V2 - SN: 873	
Calibration Procedure(s)			
		-003-01 tion Procedures for dipole validation kits	
•		*	
Calibration date:	Octobe	r 21, 2021	
This calibration Certificate	documents the	traceability to national standards, which rea	lize the physical units of
		the uncertainties with confidence probability	
	action of the land	and another territion with optimological probability i	are given on the tonowing
ages and are part of the ce	ertificate.		
bages and are part of the ce	ertificate.		
		he closed laboratory facility; environment t	emperature (22±3)°C and
		he closed laboratory facility: environment t	emperature (22±3)°C and
All calibrations have been		he closed laboratory facility: environment t	emperature (22±3)°C and
All calibrations have been numidity<70%.	conducted in t		emperature (22±3)°C and
All calibrations have been numidity<70%, Calibration Equipment used	conducted in t	or calibration)	
All calibrations have been numidity<70%. Calibration Equipment used Primary Standards	conducted in t (M&TE critical fo	or calibration) Cal Date (Calibrated by, Certificate No.)	Scheduled Calibration
All calibrations have been numidity<70%. Calibration Equipment used Primary Standards Power Meter NRP2	conducted in t (M&TE critical fo ID # 106277	Cal Date (Calibrated by, Certificate No.) 24-Sep-21 (CTTL, No.J21X08326)	Scheduled Calibration Sep-22
All calibrations have been numidity<70%. Calibration Equipment used Primary Standards Power Meter NRP2 Power sensor NRP8S	conducted in t (M&TE critical fo ID # 106277 104291	Cal Date (Calibrated by, Certificate No.) 24-Sep-21 (CTTL, No.J21X08326) 24-Sep-21 (CTTL, No.J21X08326)	Scheduled Calibration Sep-22 Sep-22
All calibrations have been numidity<70%. Calibration Equipment used Primary Standards Power Meter NRP2 Power sensor NRP8S Reference Probe EX3DV4	conducted in t (M&TE critical fe ID # 106277 104291 SN 7517	Cal Date (Calibrated by, Certificate No.) 24-Sep-21 (CTTL, No.J21X08326) 24-Sep-21 (CTTL, No.J21X08326) 03-Feb-21(CTTL-SPEAG.No.Z21-60001)	Scheduled Calibration Sep-22 Sep-22 Feb-22
All calibrations have been numidity<70%. Calibration Equipment used Primary Standards Power Meter NRP2 Power sensor NRP8S	conducted in t (M&TE critical fo ID # 106277 104291	Cal Date (Calibrated by, Certificate No.) 24-Sep-21 (CTTL, No.J21X08326) 24-Sep-21 (CTTL, No.J21X08326)	Scheduled Calibration Sep-22 Sep-22
All calibrations have been numidity<70%. Calibration Equipment used Primary Standards Power Meter NRP2 Power sensor NRP8S Reference Probe EX3DV4	conducted in t (M&TE critical fe ID # 106277 104291 SN 7517	Cal Date (Calibrated by, Certificate No.) 24-Sep-21 (CTTL, No.J21X08326) 24-Sep-21 (CTTL, No.J21X08326) 03-Feb-21(CTTL-SPEAG.No.Z21-60001)	Scheduled Calibration Sep-22 Sep-22 Feb-22
All calibrations have been numidity<70%. Calibration Equipment used Primary Standards Power Meter NRP2 Power sensor NRP8S Reference Probe EX3DV4 DAE4	conducted in t (M&TE critical fo ID # 106277 104291 SN 7517 SN 1556	Cal Date (Calibrated by, Certificate No.) 24-Sep-21 (CTTL, No.J21X08326) 24-Sep-21 (CTTL, No.J21X08326) 03-Feb-21(CTTL-SPEAG No.Z21-60001) 15-Jan-21(SPEAG No.DAE4-1556_Jan21)	Scheduled Calibration Sep-22 Sep-22 Feb-22 Jan-22
All calibrations have been numidity<70%. Calibration Equipment used Primary Standards Power Meter NRP2 Power sensor NRP8S Reference Probe EX3DV4 DAE4 Secondary Standards	conducted in t (M&TE critical fo ID # 106277 104291 SN 7517 SN 1556 ID #	Cal Date (Calibrated by, Certificate No.) 24-Sep-21 (CTTL, No.J21X08326) 24-Sep-21 (CTTL, No.J21X08326) 03-Feb-21(CTTL-SPEAG,No.Z21-60001) 15-Jan-21(SPEAG,No.DAE4-1556_Jan21) Cal Date (Calibrated by, Certificate No.)	Scheduled Calibration Sep-22 Sep-22 Feb-22 Jan-22 Scheduled Calibration
All calibrations have been numidity<70%. Calibration Equipment used Primary Standards Power Meter NRP2 Power sensor NRP8S Reference Probe EX3DV4 DAE4 Secondary Standards Signal Generator E4438C	conducted in t (M&TE critical fo ID # 106277 104291 SN 7517 SN 1556 ID # MY49071430 MY46110673	Cal Date (Calibrated by, Certificate No.) 24-Sep-21 (CTTL, No.J21X08326) 24-Sep-21 (CTTL, No.J21X08326) 03-Feb-21(CTTL-SPEAG,No.Z21-60001) 15-Jan-21(SPEAG,No.DAE4-1556_Jan21) Cal Date (Calibrated by, Certificate No.) 01-Feb-21 (CTTL, No.J21X00593) 14-Jan-21 (CTTL, No.J21X00232)	Scheduled Calibration Sep-22 Sep-22 Feb-22 Jan-22 Scheduled Calibration Jan-22 Jan-22
All calibrations have been numidity<70%. Calibration Equipment used Primary Standards Power Meter NRP2 Power sensor NRP8S Reference Probe EX3DV4 DAE4 Secondary Standards Signal Generator E4438C	conducted in t (M&TE critical fe 106277 104291 SN 7517 SN 1556 ID # MY49071430 MY46110673 Name	Cal Date (Calibrated by, Certificate No.) 24-Sep-21 (CTTL, No.J21X08326) 24-Sep-21 (CTTL, No.J21X08326) 03-Feb-21 (CTTL-SPEAG,No.Z21-60001) 15-Jan-21 (SPEAG,No.DAE4-1556_Jan21) Cal Date (Calibrated by, Certificate No.) 01-Feb-21 (CTTL, No.J21X00593) 14-Jan-21 (CTTL, No.J21X00232)	Scheduled Calibration Sep-22 Sep-22 Feb-22 Jan-22 Scheduled Calibration Jan-22
All calibrations have been numidity<70%. Calibration Equipment used Primary Standards Power Meter NRP2 Power sensor NRP8S Reference Probe EX3DV4 DAE4 Secondary Standards Signal Generator E4438C NetworkAnalyzer E5071C	conducted in t (M&TE critical fo ID # 106277 104291 SN 7517 SN 1556 ID # MY49071430 MY46110673	Cal Date (Calibrated by, Certificate No.) 24-Sep-21 (CTTL, No.J21X08326) 24-Sep-21 (CTTL, No.J21X08326) 03-Feb-21(CTTL-SPEAG,No.Z21-60001) 15-Jan-21(SPEAG,No.DAE4-1556_Jan21) Cal Date (Calibrated by, Certificate No.) 01-Feb-21 (CTTL, No.J21X00593) 14-Jan-21 (CTTL, No.J21X00232)	Scheduled Calibration Sep-22 Sep-22 Feb-22 Jan-22 Scheduled Calibration Jan-22 Jan-22
All calibrations have been numidity<70%. Calibration Equipment used Primary Standards Power Meter NRP2 Power sensor NRP8S Reference Probe EX3DV4 DAE4 Secondary Standards Signal Generator E4438C NetworkAnalyzer E5071C	conducted in t (M&TE critical fo ID # 106277 104291 SN 7517 SN 1556 ID # MY49071430 MY46110673 Name	Cal Date (Calibrated by, Certificate No.) 24-Sep-21 (CTTL, No.J21X08326) 24-Sep-21 (CTTL, No.J21X08326) 03-Feb-21 (CTTL-SPEAG,No.Z21-60001) 15-Jan-21 (SPEAG,No.DAE4-1556_Jan21) Cal Date (Calibrated by, Certificate No.) 01-Feb-21 (CTTL, No.J21X00593) 14-Jan-21 (CTTL, No.J21X00232)	Scheduled Calibration Sep-22 Sep-22 Feb-22 Jan-22 Scheduled Calibration Jan-22 Jan-22

Certificate No: Z21-60358

Page 1 of 6

Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 E-mail: ettl@chinattl.com http://www.chinattl.cn

Glossary:

TSL	tissue simulating liquid
ConvF	sensitivity in TSL / NORMx,y,z
N/A	not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Measurement procedure for assessment of specific absorption rate of human exposure to radio frequency fields from hand-held and body-mounted wireless communication devices- Part 1: Device used next to the ear (Frequency range of 300MHz to 6GHz)", July 2016
- c) IEC 62209-2, "Procedure to measure the Specific Absorption Rate (SAR) For wireless communication devices used in close proximity to the human body (frequency range of 30MHz to 6GHz)", March 2010
- d) KDB865664, SAR Measurement Requirements for 100 MHz to 6 GHz

Additional Documentation:

e) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of Measurement multiplied by the coverage factor k=2, which for a normal distribution Corresponds to a coverage probability of approximately 95%.

Certificate No: Z21-60358

Page 2 of 6

Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 E-mail: cttl@chinattl.com http://www.chinattl.cn

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY52	V52.10.4
Extrapolation	Advanced Extrapolation	
Phantom	Triple Flat Phantom 5.1C	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	2450 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	39.2	1.80 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	39.5±6%	1.81 mho/m ± 6 %
Head TSL temperature change during test	<1.0 °C		

SAR result with Head TSL

SAR averaged over 1 cm^3 (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	13.3 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	53.2 W/kg ± 18.8 % (k=2)
SAR averaged over 10 cm^3 (10 g) of Head TSL	Condition	
SAR measured	250 mW input power	6.05 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	24.2 W/kg ± 18.7 % (k=2)

Certificate No: Z21-60358

Page 3 of 6

Appendix (Additional assessments outside the scope of CNAS L0570)

Antenna Parameters with Head TSL

Impedance, transformed to feed point	53.6Ω+ 1.26jΩ
Return Loss	- 28.8dB

General Antenna Parameters and Design

Electrical Delay (one direction)	1.066 ns
----------------------------------	----------

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG

Certificate No: Z21-60358

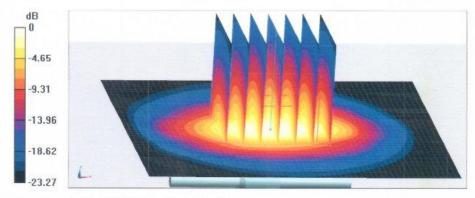
Page 4 of 6

DASY5 Validation Report for Head TSL Test Laboratory: CTTL, Beijing, China

E-mail: ettl@chinattl.com

Date: 10.21.2021

DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN: 873 Communication System: UID 0, CW; Frequency: 2450 MHz; Duty Cycle: 1:1 Medium parameters used: f = 2450 MHz; $\sigma = 1.809$ S/m; $\epsilon_r = 39.51$; $\rho = 1000$ kg/m³ Phantom section: Right Section


http://www.chinattl.cn

DASY5 Configuration:

- Probe: EX3DV4 SN7517; ConvF(7.34, 7.34, 7.34) @ 2450 MHz; Calibrated: 2021-02-03
- · Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1556; Calibrated: 2021-01-15
- Phantom: MFP_V5.1C (20deg probe tilt); Type: QD 000 P51 Cx; Serial: 1062
- Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7501)

Dipole Calibration/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 108.0 V/m; Power Drift = -0.03 dB Peak SAR (extrapolated) = 28.0 W/kg SAR(1 g) = 13.3 W/kg; SAR(10 g) = 6.05 W/kg Smallest distance from peaks to all points 3 dB below = 9.2 mm Ratio of SAR at M2 to SAR at M1 = 46.9% Maximum value of SAR (measured) = 22.6 W/kg

0 dB = 22.6 W/kg = 13.54 dBW/kg

Certificate No: Z21-60358

Page 5 of 6

Impedance Measurement Plot for Head TSL

	>1 2.4500000 GHz ~28.754 dB		
40.00			
30,00			
20,00			
10,00			
0.000)			
-10.00			
-20.00		1000	
-30.00		- È	
-40.00		-	
-10.00			
		()	

Certificate No: Z21-60358

Page 6 of 6

2550MHz Dipole

Engineering AG ghausstrasse 43, 8004 Zurich, S	of witzerland	RAC MEA C S	Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service
credited by the Swiss Accreditation a Swiss Accreditation Service is Itilateral Agreement for the reco	one of the signatories	to the EA sertificates	preditation No.: SCS 0108
ent TMC-SZ (Auden)	DTIFICATE		D2550V2-1010_May21
ALIBRATION CE	RIFICATE		
bject	D2550V2 - SN:10	10	
	QA CAL-05.v11 Calibration Proce	dure for SAR Validation Sources	between 0.7-3 GHz
Calibration date:	May 21, 2021		
The measurements and the uncerta All calibrations have been conducte	linties with confidence p d in the closed laborator	onal standards, which realize the physical un robability are given on the following pages an ry facility: environment temperature (22 ± 3) ²	d are part of the cortilicate.
he measurements and the uncerta III catibrations have been conducte Calibration Equipment used (M&TE	linties with confidence p d in the closed laborator	robability are given on the following pages an ry facility: environment temperature (22 ± 3)*0 Cal Date (Cartificate No.)	d are part of the contilicate. C and humidity < 70%. Scheduled Calibration
he measurements and the uncerta ul calibrations have been conducte Calibration Equipment used (M&TE Primary Standards Power meter NRP	inties with confidence p d in the closed laborator critical for calibration) ID # SN: 104778	Cal Date (Certificate No.) 09-Apr-21 (No. 217-03291/03292)	d are part of the contilicate. C and humidity < 70%. Scheduled Calibration Apr-22
he measurements and the uncerta Il calibrations have been conducte calibration Equipment used (M&TE rimary Standards fower meter NRP Power sensor NRP-291	inties with confidence p d in the closed laborator critical for calibration) ID # SN: 104778 SN: 103244	Cal Date (Cartificate No.) 09-Apr-21 (No. 217-03291/03292) 09-Apr-21 (No. 217-03291/03292)	d are part of the contilicate. C and humidity < 70%. Scheduled Calibration Apr-22 Apr-22
he measurements and the uncerta all calibrations have been conducte Calibration Equipment used (M&TE Primary Standards Power meter NRP Power sensor NRP-291 Power sensor NRP-291	inties with confidence pr d in the closed laborator critical for calibration) ID # SN: 104778 SN: 103244 SN: 103245	Cal Date (Certificate No.) 09-Apr-21 (No. 217-03291) 09-Apr-21 (No. 217-03291) 09-Apr-21 (No. 217-03291)	d are part of the contilicate. C and humidity < 70%. Scheduled Calibration Apr-22 Apr-22 Apr-22
The measurements and the uncertain All catibrations have been conducte Calibration Equipment used (M&TE Primary Standards Power meter NRP Power sensor NRP-291 Power sensor NRP-291 Reference 20 dB Attenuator	inties with confidence pr d in the closed laborator critical for calibration) ID # SN: 104778 SN: 103244 SN: 103245 SN: 103245 SN: 103245	Cal Date (Certificate No.) 09-Apr-21 (No. 217-03291/03292) 09-Apr-21 (No. 217-03291/03292) 09-Apr-21 (No. 217-03291) 09-Apr-21 (No. 217-03292) 09-Apr-21 (No. 217-03343)	d are part of the contilicate. C and humidity < 70%. Scheduled Calibration Apr-22 Apr-22 Apr-22 Apr-22 Apr-22
The measurements and the uncertain All calibrations have been conducte Calibration Equipment used (M&TE Primary Standards Prower sensor NRP-291 Prower sensor NRP-291 Reference 20 dB Attenuator Type-N mismatch combination	inties with confidence pr d in the closed laborator critical for calibration) ID # SN: 104778 SN: 103244 SN: 103245 SN: 103245 SN: BH9394 (20k) SN: 310962 / 06327	Cal Date (Cartificate No.) 09-Apr-21 (No. 217-03291/03292) 09-Apr-21 (No. 217-03291/03292) 09-Apr-21 (No. 217-03291) 09-Apr-21 (No. 217-03292) 09-Apr-21 (No. 217-03343) 09-Apr-21 (No. 217-03344)	d are part of the contilicate. C and humidity < 70%. Scheduled Calibration Apr-22 Apr-22 Apr-22 Apr-22 Apr-22 Apr-22 Apr-22
he measurements and the uncerta All calibrations have been conducte Calibration Equipment used (M&TE Primary Standards Power renter NRP Power sensor NRP-291 Peterence 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4	inties with confidence pr d in the closed laborator critical for calibration) ID # SN: 104778 SN: 103244 SN: 103245 SN: 103245 SN: 103245	Cal Date (Certificate No.) 09-Apr-21 (No. 217-03291/03292) 09-Apr-21 (No. 217-03291/03292) 09-Apr-21 (No. 217-03291) 09-Apr-21 (No. 217-03292) 09-Apr-21 (No. 217-03343)	d are part of the contilicate. C and humidity < 70%. Scheduled Calibration Apr-22 Apr-22 Apr-22 Apr-22
The measurements and the uncerta All calibrations have been conducte Calibration Equipment used (M&TE Primary Standards Power meter NRP Power sensor NRP-291 Power sensor NRP-291 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards	inties with confidence pr d in the closed laborator critical for calibration) ID # SN: 103244 SN: 103244 SN: 103245 SN: 103245 SN: 103245 SN: 103245 SN: 10382 / 06327 SN: 7349 SN: 601 ID #	robability are given on the following pages an ry facility: environment temperature (22 ± 3)*6 Cal Date (Certificate No.) 09-Apr-21 (No. 217-03291/03292) 09-Apr-21 (No. 217-03291) 09-Apr-21 (No. 217-03292) 09-Apr-21 (No. 217-03343) 09-Apr-21 (No. 217-03343) 09-Apr-21 (No. 217-03344) 28-Dec/20 (No. DAE4-601 Nov20) 02-Nov-20 (No. DAE4-601 Nov20) Check Date (in house)	d are part of the contilicate. C and humidity < 70%. Scheduled Calibration Apr-22 Apr-22 Apr-22 Apr-22 Apr-22 Apr-22 Dec-21 Nov-21 Scheduled Check
The measurements and the uncertain All calibrations have been conducter Calibration Equipment used (M&TE Primary Standards Power meter NRP Power sensor NRP-291 Power sensor NRP-291 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards Power meter E4419B	inties with confidence pr d in the closed laborator critical for calibration) ID # SN: 104778 SN: 103244 SN: 103245 SN: 013245 SN: 014027 SN: 310982 / 06327 SN: 310982 / 06327 SN: 601 ID # SN: GB39512475	Cal Date (Certificate No.) 09-Apr-21 (No. 217-03291/03292) 09-Apr-21 (No. 217-03291/03292) 09-Apr-21 (No. 217-03291) 09-Apr-21 (No. 217-03291) 09-Apr-21 (No. 217-03343) 09-Apr-21 (No. 217-03343) 09-Apr-21 (No. 217-03343) 02-Nov-20 (No. DAE4-601, Nov20) Check Date (in house) 30-Oct-14 (in house check Oct-20)	d are part of the contilicate. C and humidity < 70%. Scheduled Calibration Apr-22 Apr-22 Apr-22 Apr-22 Apr-22 Apr-22 Dec-21 Nov-21 Scheduled Check In house check: Oct-22
The measurements and the uncerta All calibrations have been conducte Calibration Equipment used (M&TE Primary Standards Power meter NRP Power sensor NRP-291 Power sensor NRP-291 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards Power meter E4419B Power sensor HP 8481A	inties with confidence p d in the closed laborator critical for calibration) ID # SN: 104778 SN: 103244 SN: 103245 SN: 103245 SN: 103245 SN: 103245 SN: 310982 / 06327 SN: 7349 SN: 601 ID # SN: GB39512475 SN: US37292783	Cal Date (Certificate No.) 09-Apr-21 (No. 217-03291/03292) 09-Apr-21 (No. 217-03291/03292) 09-Apr-21 (No. 217-03291/03292) 09-Apr-21 (No. 217-03292) 09-Apr-21 (No. 217-03343) 09-Apr-21 (No. 217-03344) 28-Dec-20 (No. EX3-7349, Dec20) 02-Nov-20 (No. DAE4-601, Nov20) Check Date (in house) 30-Oct-14 (in house check Oct-20) 07-Oct-15 (in house check Oct-20)	d are part of the contilicate. C and humidity < 70%. Scheduled Calibration Apr-22 Apr-22 Apr-22 Apr-22 Apr-22 Apr-22 Dec-21 Nov-21 Scheduled Check In house check: Oct-22 In house check: Oct-22
The measurements and the uncertain All calibrations have been conducter Calibration Equipment used (M&TE Primary Standards Power sensor NRP-291 Power sensor NRP-291 Power sensor NRP-291 Reference 20 dB Attenuator Fype-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards Power sensor HP 8481A Power sensor HP 8481A	inties with confidence pr d in the closed laborator critical for calibration) ID # SN: 104778 SN: 103244 SN: 103245 SN: 103245 SN: 103245 SN: 310982 / 06327 SN: 7349 SN: 601 ID # SN: GB39512475 SN: US37292783 SN: WY41092317	Cal Date (Cartificate No) 09-Apr-21 (No. 217-03291/03292) 09-Apr-21 (No. 217-03291/03292) 09-Apr-21 (No. 217-03291) 09-Apr-21 (No. 217-03292) 09-Apr-21 (No. 217-03343) 09-Apr-21 (No. 217-03343) 09-Apr-21 (No. 217-03343) 09-Apr-21 (No. 217-03344) 28-Dec-20 (No. EX3-7349 Dec20) 02-Nov-20 (No. DAE4-601 Nov20) Check Date (in house) 30-Oct-14 (in house check Oct-20) 07-Oct-15 (in house check Oct-20) 07-Oct-16 (in house check Oct-20)	d are part of the contilicate. C and humidity < 70%. Scheduled Calibration Apr-22 Apr-22 Apr-22 Apr-22 Apr-22 Dec-21 Nov-21 Scheduled Check In house check: Oct-22 In house check: Oct-22 In house check: Oct-22
The measurements and the uncerta All calibrations have been conducte Calibration Equipment used (M&TE Primary Standards Power sensor NRP-291 Power sensor NRP-291 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards Power meter E4419B Power meter E4419B Power sensor HP 8481A Power sensor HP 8481A RF generator R&S SMT-06	inties with confidence p d in the closed laborator critical for calibration) ID # SN: 104778 SN: 103244 SN: 103245 SN: 103245 SN: 103245 SN: 103245 SN: 310982 / 06327 SN: 7349 SN: 601 ID # SN: GB39512475 SN: US37292783	Cal Date (Certificate No.) 09-Apr-21 (No. 217-03291/03292) 09-Apr-21 (No. 217-03291/03292) 09-Apr-21 (No. 217-03291/03292) 09-Apr-21 (No. 217-03292) 09-Apr-21 (No. 217-03343) 09-Apr-21 (No. 217-03344) 28-Dec-20 (No. EX3-7349, Dec20) 02-Nov-20 (No. DAE4-601, Nov20) Check Date (in house) 30-Oct-14 (in house check Oct-20) 07-Oct-15 (in house check Oct-20)	d are part of the contilicate. C and humidity < 70%. Scheduled Calibration Apr-22 Apr-22 Apr-22 Apr-22 Apr-22 Dec-21 Nov-21 Scheduled Check In house check: Oct-22 In house check: Oct-22
The measurements and the uncerta All calibrations have been conducte Calibration Equipment used (M&TE Primary Standards Power rener NRP Power sensor NRP-291 Reference 20 dB Attenuator Type-N mismatch combination Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards Power sensor HP 8481A Power sensor HP 8481A Power sensor HP 8481A RF generator R&S SMT-06 Network Analyzor Agilant E8358A	inties with confidence pr d in the closed laborator critical for calibration) ID # SN: 104778 SN: 103244 SN: 103244 SN: 103245 SN: 103245 SN: 103245 SN: 103245 SN: 103245 SN: 103245 SN: 103245 SN: 103245 SN: 103245 SN: 601 ID # SN: GB39512475 SN: US37292783 SN: US37292783 SN: US37292783 SN: 100972 SN: US41080477 Name	robability are given on the following pages an ry facility: environment temperature (22 ± 3)*0 Cal Date (Certificate No.) 09-Apr-21 (No. 217-03291/03292) 09-Apr-21 (No. 217-03291) 09-Apr-21 (No. 217-03292) 09-Apr-21 (No. 217-03343) 09-Apr-21 (No. 217-03343) 09-Apr-21 (No. 217-03344) 28-Dec-20 (No. DAE4-601 Nov20) 02-Nov-20 (No. DAE4-601 Nov20) Check Date (in house) 30-Oct-14 (in house check Oct-20) 07-Oct-15 (in house check Oct-20) 07-Oct-15 (in house check Oct-20) 15-Jun-15 (in house check Oct-20) 31-Mar-14 (in house check Oct-20) Function	d are part of the contilicate. C and humidity < 70%. Scheduled Calibration Apr-22 Apr-22 Apr-22 Apr-22 Apr-22 Dec-21 Nov-21 Scheduled Check In house check: Oct-22 In house check: Oct-22
The measurements and the uncerta All catibrations have been conducte Calibration Equipment used (M&TE Primary Standards Power sensor NRP-291 Power sensor NRP-291 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards Power meter E4419B Power meter E4419B Power sensor HP 8481A Power sensor HP 8481A RF generator R&S SMT-06	inties with confidence pr d in the closed laborator critical for calibration) ID # SN: 104778 SN: 103244 SN: 103245 SN: 103245 SN: 310982 / 06327 SN: 310982 / 06327 SN: 7349 SN: 601 ID # SN: GB39512475 SN: US37292783 SN: US37292783 SN: US37292783 SN: 100972 SN: 100972 SN: US41080477	Cal Date (Cartificate No.) 09-Apr-21 (No. 217-03291/03292) 09-Apr-21 (No. 217-03291/03292) 09-Apr-21 (No. 217-03291) 09-Apr-21 (No. 217-03292) 09-Apr-21 (No. 217-03292) 09-Apr-21 (No. 217-03343) 09-Apr-21 (No. 217-03343) 09-Apr-21 (No. 217-03344) 28-Dec/20 (No. EX3-7349, Dec/20) 02-Nov-20 (No. DAE4-601, Nov/20) Check Date (In house check Oct-20) 07-Oct-15 (In house check Oct-20) 07-Oct-15 (In house check Oct-20) 07-Oct-15 (In house check Oct-20) 15-Jun-15 (In house check Oct-20) 31-Mar-14 (In house check Oct-20)	d are part of the contilicate. C and humidity < 70%. Scheduled Calibration Apr-22 Apr-22 Apr-22 Apr-22 Apr-22 Dec-21 Nov-21 Scheduled Check In house check: Oct-22 In house check: Oct-21
The measurements and the uncerta All calibrations have been conducte Calibration Equipment used (M&TE Calibration Equipment used (M&TE Primary Standards Power sensor NRP-291 Power sensor NRP-291 Reference 20 dB Attenuator Type-N mismatch combination Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards Power sensor HP 8481A Power sensor HP 8481A Power sensor HP 8481A RF generator R&S SMT-06 Network Analyzor Agilent E8358A	inties with confidence pr d in the closed laborator critical for calibration) ID # SN: 104778 SN: 103244 SN: 103244 SN: 103245 SN: 103245 SN: 103245 SN: 103245 SN: 103245 SN: 103245 SN: 103245 SN: 103245 SN: 103245 SN: 601 ID # SN: GB39512475 SN: US37292783 SN: US37292783 SN: US37292783 SN: 100972 SN: US41080477 Name	robability are given on the following pages an ry facility: environment temperature (22 ± 3)*0 Cal Date (Certificate No.) 09-Apr-21 (No. 217-03291/03292) 09-Apr-21 (No. 217-03291) 09-Apr-21 (No. 217-03292) 09-Apr-21 (No. 217-03343) 09-Apr-21 (No. 217-03343) 09-Apr-21 (No. 217-03344) 28-Dec-20 (No. DAE4-601 Nov20) 02-Nov-20 (No. DAE4-601 Nov20) Check Date (in house) 30-Oct-14 (in house check Oct-20) 07-Oct-15 (in house check Oct-20) 07-Oct-15 (in house check Oct-20) 15-Jun-15 (in house check Oct-20) 31-Mar-14 (in house check Oct-20) Function	d are part of the contilicate. C and humidity < 70%. Scheduled Calibration Apr-22 Apr-22 Apr-22 Apr-22 Apr-22 Dec-21 Nov-21 Scheduled Check In house check: Oct-22 In house check: Oct-21

Certificate No: D2550V2-1010_May21

Page 1 of 8

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

- Schweizerischer Kalibrierdienst Service suisse d'étalonnage
- Servizio svizzero di taratura Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA utilitateral Agreement for the recognition of calibration certificates

Glossary:

TSL tissue simulating liquid ConvF sensitivity in TSL / NORM x,y,z N/A not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from hand-held and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)", July 2016
- c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010
- d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Additional Documentation:

e) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end
 of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed
 point exactly below the center marking of the flat phantom section, with the arms oriented
 parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole
 positioned under the liquid filled phantom. The impedance stated is transformed from the
 measurement at the SMA connector to the feed point. The Return Loss ensures low
 reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Certificate No: D2550V2-1010_May21

Page 2 of 8

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52.10.4
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	2550 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	39.1	1.91 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) "C	$37.4\pm6~\%$	1.99 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		1000

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	14.4 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	55.9 W/kg ± 17.0 % (k=2)
SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR averaged over 10 cm ³ (10 g) of Head TSL SAR measured	condition 250 mW input power	6.42 W/kg

Body TSL parameters

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	52.6	2.09 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	50.8 ± 6 %	2.16 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		1.000

SAR result with Body TSL

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	13.4 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	52.4 W/kg ± 17.0 % (k=2)
SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR averaged over 10 cm ³ (10 g) of Body TSL SAR measured	condition 250 mW input power	6.04 W/kg

Certificate No: D2550V2-1010_May21

Page 3 of 8

Appendix (Additional assessments outside the scope of SCS 0108)

Antenna Parameters with Head TSL

Impedance, transformed to feed point	52.8 Ω - 3.8 jΩ	
Return Loss	- 26.8 dB	

Antenna Parameters with Body TSL

Impedance, transformed to feed point	49.3 Ω - 1.8 jΩ
Return Loss	- 34,3 dB

General Antenna Parameters and Design

Electrical Delay (one direction)	1,153 ns
Electrical Delay (one direction)	11102110

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG

Gertificate No: D2550V2-1010_May21

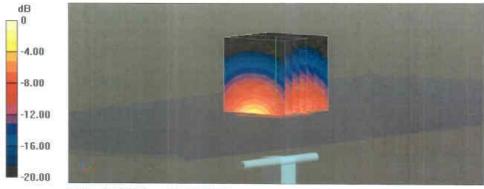
Page 4 of 8

DASY5 Validation Report for Head TSL

Date: 21.05.2021

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 2550 MHz; Type: D2550V2; Serial: D2550V2 - SN:1010


Communication System: UID 0 - CW; Frequency: 2550 MHz Medium parameters used: f = 2550 MHz; σ = 1.99 S/m; ϵ_r = 37.4; ρ = 1000 kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

- Probe: EX3DV4 SN7349; ConvF(7.85, 7.85, 7.85) @ 2550 MHz; Calibrated: 28.12.2020
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 02.11.2020
- Phantom: Flat Phantom 5.0 (front); Type: QD 000 P50 AA; Serial: 1001
- DASY52 52.10.4(1527); SEMCAD X 14.6.14(7483)

Dipole Calibration for Head Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 119.0 V/m; Power Drift = 0.05 dB Peak SAR (extrapolated) = 29.6 W/kg SAR(1 g) = 14.4 W/kg; SAR(10 g) = 6.42 W/kg Smallest distance from peaks to all points 3 dB below = 8.9 mm Ratio of SAR at M2 to SAR at M1 = 48.2% Maximum value of SAR (measured) = 24.3 W/kg

0 dB = 24.3 W/kg = 13.86 dBW/kg

Certificate No: D2550V2-1010_May21

Page 5 of 8

Impedance Measurement Plot for Head TSL

Certificate No: D2550V2-1010_May21

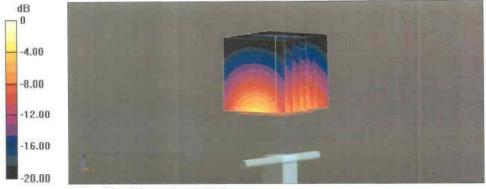
Page 6 of 8

DASY5 Validation Report for Body TSL

Date: 21.05.2021

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 2550 MHz; Type: D2550V2; Serial: D2550V2 - SN:1010

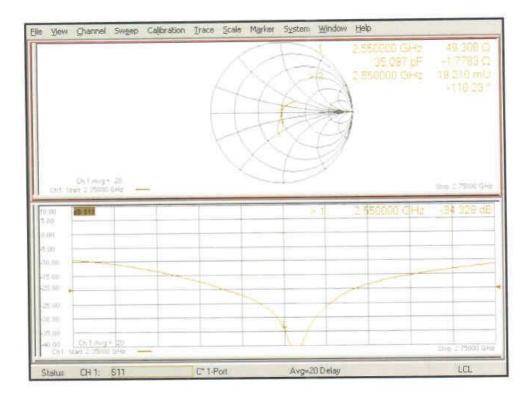

Communication System: UID 0 – CW; Frequency: 2550 MHz Medium parameters used: f = 2550 MHz; $\sigma = 2.16$ S/m; $\epsilon_r = 50.8$; $\rho = 1000$ kg/m³ Phantom section: Flat Section Measurement Standard; DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

- Probe: EX3DV4 SN7349; ConvF(7.98, 7.98, 7.98) @ 2550 MHz; Calibrated: 28.12.2020
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 02.11.2020
- Phantom: Flat Phantom 5.0 (back); Type: QD 000 P50 AA; Serial: 1002
- DASY52 52.10.4(1527); SEMCAD X 14.6.14(7483)

Dipole Calibration for Body Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 110.2 V/m; Power Drift = -0.01 dB Peak SAR (extrapolated) = 26.1 W/kg SAR(1 g) = 13.4 W/kg; SAR(10 g) = 6.04 W/kg Smallest distance from peaks to all points 3 dB below = 8 mm Ratio of SAR at M2 to SAR at M1 = 51.9% Maximum value of SAR (measured) = 22.1 W/kg


0 dB = 22.1 W/kg = 13.44 dBW/kg

Certificate No: D2550V2-1010_May21

Page 7 of 8

Impedance Measurement Plot for Body TSL

Certificate No: D2550V2-1010_May21

Page 8 of 8

5GHz Dipole

E-mail: emf@caict.ac.cn Client SAIC	http://www.caic		2-60336
CALIBRATION C			2-00330
Object	D5GHz	V2 - SN: 1238	
Calibration Procedure(s)			
		-003-01 tion Procedures for dipole validation kits	
	Calibra	tion Procedures for dipole validation kits	
Calibration date:	August	17, 2022	
	ertificate.		
numidity<70%.	conducted in t	he closed laboratory facility: environment to	temperature (22±3)°C and
numidity<70%. Calibration Equipment used Primary Standards	CONDUCTED IN T	Cal Date (Calibrated by, Certificate No.)	temperature (22±3)°C and Scheduled Calibration
numidity<70%. Calibration Equipment used Primary Standards Power Meter NRP2	Conducted in t (M&TE critical for ID # 106277	Cal Date (Calibrated by, Certificate No.) 24-Sep-21 (CTTL, No.J21X08326)	Scheduled Calibration Sep-22
numidity<70%. Calibration Equipment used Primary Standards	Conducted in t (M&TE critical for ID # 106277 104291	Cal Date (Calibrated by, Certificate No.) 24-Sep-21 (CTTL, No.J21X08326) 24-Sep-21 (CTTL, No.J21X08326)	Scheduled Calibration Sep-22 Sep-22
numidity<70%. Calibration Equipment used Primary Standards Power Meter NRP2 Power sensor NRP8S	Conducted in t (M&TE critical for ID # 106277 104291	Cal Date (Calibrated by, Certificate No.) 24-Sep-21 (CTTL, No.J21X08326)	Scheduled Calibration Sep-22
numldity<70%. Calibration Equipment used Primary Standards Power Meter NRP2 Power sensor NRP8S Reference Probe EX3DV4 DAE4	conducted in t (M&TE critical fo ID # 106277 104291 SN 7464 SN 1556	Cal Date (Calibrated by, Certificate No.) 24-Sep-21 (CTTL, No.J21X08326) 24-Sep-21 (CTTL, No.J21X08326) 26-Jan-22(SPEAG,No.EX3-7464_Jan22) 12-Jan-22(CTTL-SPEAG,No.Z22-60007)	Scheduled Calibration Sep-22 Sep-22 Jan-23 Jan-23
numidity<70%. Calibration Equipment used Primary Standards Power Meter NRP2 Power sensor NRP8S Reference Probe EX3DV4	conducted in t (M&TE critical fe ID # 106277 104291 SN 7464	Cal Date (Calibrated by, Certificate No.) 24-Sep-21 (CTTL, No.J21X08326) 24-Sep-21 (CTTL, No.J21X08326) 26-Jan-22(SPEAG,No.EX3-7464_Jan22) 12-Jan-22(CTTL-SPEAG,No.Z22-60007) Cal Date (Calibrated by, Certificate No.)	Scheduled Calibration Sep-22 Sep-22 Jan-23
numidity<70%. Calibration Equipment used Primary Standards Power Meter NRP2 Power sensor NRP8S Reference Probe EX3DV4 DAE4 Secondary Standards	conducted in t (M&TE critical fo ID # 106277 104291 SN 7464 SN 1556 ID # ID # MY49071430	Cal Date (Calibrated by, Certificate No.) 24-Sep-21 (CTTL, No.J21X08326) 24-Sep-21 (CTTL, No.J21X08326) 26-Jan-22(SPEAG,No.EX3-7464_Jan22) 12-Jan-22(CTTL-SPEAG,No.Z22-60007)	Scheduled Calibration Sep-22 Sep-22 Jan-23 Jan-23 Scheduled Calibration
numidity<70%. Calibration Equipment used Primary Standards Power Meter NRP2 Power sensor NRP8S Reference Probe EX3DV4 DAE4 Secondary Standards Signal Generator E4438C	conducted in t (M&TE critical fe 106277 104291 SN 7464 SN 1556 ID # MY49071430 MY46110673	Cal Date (Calibrated by, Certificate No.) 24-Sep-21 (CTTL, No.J21X08326) 24-Sep-21 (CTTL, No.J21X08326) 26-Jan-22(SPEAG,No.EX3-7464_Jan22) 12-Jan-22(CTTL-SPEAG,No.Z22-60007) Cal Date (Calibrated by, Certificate No.) 13-Jan-22 (CTTL, No.J22X00409) 14-Jan-22 (CTTL, No.J22X00406)	Scheduled Calibration Sep-22 Sep-22 Jan-23 Jan-23 Scheduled Calibration Jan-23 Jan-23
aumidity<70%. Calibration Equipment used Primary Standards Power Meter NRP2 Power sensor NRP8S Reference Probe EX3DV4 DAE4 Secondary Standards Signal Generator E4438C Network Analyzer E5071C	conducted in t (M&TE critical fo ID # 106277 104291 SN 7464 SN 1556 ID # ID # MY49071430	Cal Date (Calibrated by, Certificate No.) 24-Sep-21 (CTTL, No.J21X08326) 24-Sep-21 (CTTL, No.J21X08326) 26-Jan-22(SPEAG,No.EX3-7464_Jan22) 12-Jan-22(CTTL-SPEAG,No.Z22-60007) Cal Date (Calibrated by, Certificate No.) 13-Jan-22 (CTTL, No.J22X00409) 14-Jan-22 (CTTL, No.J22X00406) Function	Scheduled Calibration Sep-22 Sep-22 Jan-23 Jan-23 Scheduled Calibration Jan-23
numidity<70%. Calibration Equipment used Primary Standards Power Meter NRP2 Power sensor NRP8S Reference Probe EX3DV4 DAE4 Secondary Standards Signal Generator E4438C Network Analyzer E5071C	conducted in t (M&TE critical fo 1D # 106277 104291 SN 7464 SN 1556 ID # MY49071430 MY46110673 Name Zhao Jing	Cal Date (Calibrated by, Certificate No.) 24-Sep-21 (CTTL, No.J21X08326) 24-Sep-21 (CTTL, No.J21X08326) 26-Jan-22(SPEAG,No.EX3-7464_Jan22) 12-Jan-22(CTTL-SPEAG,No.Z22-60007) Cal Date (Calibrated by, Certificate No.) 13-Jan-22 (CTTL, No.J22X00409) 14-Jan-22 (CTTL, No.J22X00406) Function SAR Test Engineer	Scheduled Calibration Sep-22 Sep-22 Jan-23 Jan-23 Scheduled Calibration Jan-23 Jan-23
humidity<70%. Calibration Equipment used Primary Standards Power Meter NRP2 Power sensor NRP8S Reference Probe EX3DV4 DAE4 Secondary Standards Signal Generator E4438C	conducted in t (M&TE critical fo ID # 106277 104291 SN 7464 SN 1556 ID # MY49071430 MY46110673 Name	Cal Date (Calibrated by, Certificate No.) 24-Sep-21 (CTTL, No.J21X08326) 24-Sep-21 (CTTL, No.J21X08326) 26-Jan-22(SPEAG,No.EX3-7464_Jan22) 12-Jan-22(CTTL-SPEAG,No.Z22-60007) Cal Date (Calibrated by, Certificate No.) 13-Jan-22 (CTTL, No.J22X00409) 14-Jan-22 (CTTL, No.J22X00406) Function	Scheduled Calibration Sep-22 Sep-22 Jan-23 Jan-23 Scheduled Calibration Jan-23 Jan-23

Certificate No: Z22-60336

Page 1 of 8

Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2117 E-mail: emf@caict.ac.en http://www.caic.ac.cn

Glossary:

TSL	tissue simulating liquid
ConvF	sensitivity in TSL / NORMx,y,z
N/A	not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEC/IEEE 62209-1528, "Measurement Procedure for The Assessment of Specific Absorption Rate of Human Exposure to Radio Frequency Fields from Hand-held and Body-mounted Wireless Communication Devices- Part 1528: Human Models, Instrumentation and Procedures (Frequency range of 4 MHz to 10 GHz)", October 2020
- b) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Additional Documentation:

c) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of Measurement multiplied by the coverage factor k=2, which for a normal distribution Corresponds to a coverage probability of approximately 95%.

Certificate No: Z22-60336

Page 2 of 8

Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2117 E-mail: emf@caict.ac.cn http://www.caic.ac.cn

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY52	52.10.4
Extrapolation	Advanced Extrapolation	
Phantom	Triple Flat Phantom 5.1C	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy = 4 mm, dz = 1.4 mm	Graded Ratio = 1.4 (Z direction)
Frequency	5250 MHz ±1 MHz 5600 MHz ±1 MHz 5750 MHz ±1 MHz	

Head TSL parameters at 5250MHz

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	35.9	4.71 mho/m
Measured Head TSL parameters	(22.0 ±0.2) °C	36.3 ±6 %	4.64 mho/m ±6 %
Head TSL temperature change during test	<1.0 °C		2 million (* 1990)

SAR result with Head TSL at 5250MHz

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	100 mW input power	7.95 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	79.7 W/kg ±24.4 % (k=2)
SAR averaged over 10 cm ³ (10 g) of Head TSL	Condition	
SAR measured	100 mW input power	2.27 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	22.8 W/kg ±24.2 % (k=2)

Certificate No: Z22-60336

Page 3 of 8

Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2117 E-mail: emf@caict.ac.cn http://www.caic.ac.cn

g

Head TSL parameters at 5600MHz The follow

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	35.5	5.07 mho/m
Measured Head TSL parameters	(22.0 ±0.2) °C	35.2 ±6 %	5.01 mho/m ±6 %
Head TSL temperature change during test	<1.0 °C		

SAR result with Head TSL at 5600MHz

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	100 mW input power	8.28 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	82.6 W/kg ±24.4 % (k=2)
SAR averaged over 10 cm^3 (10 g) of Head TSL	Condition	
SAR measured	100 mW input power	2.37 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	23.6 W/kg ±24.2 % (k=2)

Head TSL parameters at 5750MHz

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	35.4	5.22 mho/m
Measured Head TSL parameters	(22.0 ±0.2) 'C	35.0 ±6 %	5.18 mho/m ±6 %
Head TSL temperature change during test	<1.0 °C	-	

SAR result with Head TSL at 5750MHz

SAR averaged over 1 cm^3 (1 g) of Head TSL	Condition	
SAR measured	100 mW input power	7.87 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	78.5 W/kg ±24.4 % (k=2)
SAR averaged over 10 cm^3 (10 g) of Head TSL	Condition	
SAR measured	100 mW input power	2.22 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	22.1 W/kg ±24.2 % (k=2)

Certificate No: Z22-60336

Page 4 of 8

Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2117 E-mail: emf@caict.ac.cn http://www.caic.ac.cn

Appendix (Additional assessments outside the scope of CNAS L0570)

Antenna Parameters with Head TSL at 5250MHz

Impedance, transformed to feed point	48.4Ω- 3.36jΩ	
Return Loss	- 28.5dB	

Antenna Parameters with Head TSL at 5600MHz

Impedance, transformed to feed point	50.8Ω+ 2.69jΩ	
Return Loss	- 31.1dB	

Antenna Parameters with Head TSL at 5750MHz

Impedance, transformed to feed point	53.5Ω+ 2.34jΩ	
Return Loss	- 27.9dB	

General Antenna Parameters and Design

Electrical Delay (one direction)	1.098 ns	

After long term use with 100W radiated power, only a slight warming of the dipole near the feed-point can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feed-point may be damaged.

Additional EUT Data Manufactured by SPEAG Certificate No: Z22-60336 Page 5 of 8

Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2117 E-mail: emf@caict.ac.cn http://www.caic.ac.cn

DASY5 Validation Report for Head TSL Test Laboratory: CTTL, Beijing, China

Date: 2022-08-17

DUT: Dipole 5GHz; Type: D5GHzV2; Serial: D5GHzV2 - SN: 1238 Communication System: CW; Frequency: 5250 MHz, Frequency: 5600 MHz, Frequency: 5750 MHz Duty Cycle: 1:1 Medium parameters used: f = 5250 MHz; σ = 4.643 S/m; ϵ_r = 36.34; ρ = 1000 kg/m³ Medium parameters used: f = 5600 MHz; σ = 5.006 S/m; ϵ_r = 35.17; ρ = 1000 kg/m³ Medium parameters used: f = 5750 MHz; σ = 5.18 S/m; ϵ_r = 34.96; ρ = 1000 kg/m³ Phantom section: Right Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007) DASY5 Configuration:

- Probe: EX3DV4 SN7464; ConvF(5.43, 5.43, 5.43) @ 5250 MHz; ConvF(4.91, 4.91, 4.91) @ 5600 MHz; ConvF(4.85, 4.85, 4.85) @ 5750 MHz; Calibrated: 2022-01-26
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1556; Calibrated: 2022-01-12
- Phantom: MFP_V5.1C (20deg probe tilt); Type: QD 000 P51 Cx; Serial: 1062
- DASY52 52.10.4(1535); SEMCAD X 14.6.14(7501)

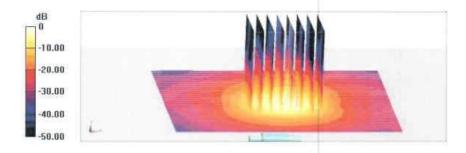
Dipole Calibration /Pin=100mW, d=10mm, f=5250 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 67.66 V/m; Power Drift = -0.08 dB Peak SAR (extrapolated) = 31.9 W/kg SAR(1 g) = 7.95 W/kg; SAR(10 g) = 2.27 W/kg Smallest distance from peaks to all points 3 dB below = 7.2 mm Ratio of SAR at M2 to SAR at M1 = 65.1%

Maximum value of SAR (measured) = 18.8 W/kg

Dipole Calibration /Pin=100mW, d=10mm, f=5600 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 68.44 V/m; Power Drift = -0.08 dB Peak SAR (extrapolated) = 35.2 W/kg SAR(1 g) = 8.28 W/kg; SAR(10 g) = 2.37 W/kg Smallest distance from peaks to all points 3 dB below = 7.2 mm Ratio of SAR at M2 to SAR at M1 = 63.5% Maximum value of SAR (measured) = 20.1 W/kg

Certificate No: Z22-60336

Page 6 of 8



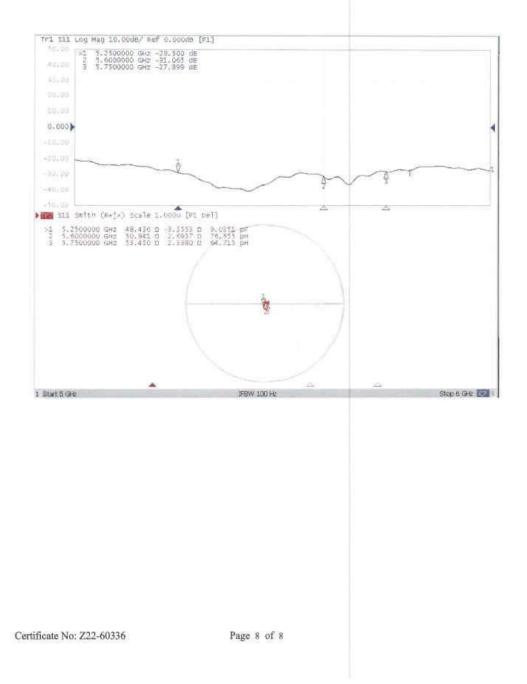
Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2117 E-mail: emf@caict.ac.cn http://www.caic.ac.cn

Dipole Calibration /Pin=100mW, d=10mm, f=5750 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 65.17 V/m; Power Drift = -0.09 dB Peak SAR (extrapolated) = 35.8 W/kg SAR(1 g) = 7.87 W/kg; SAR(10 g) = 2.22 W/kg Smallest distance from peaks to all points 3 dB below = 7.4 mm Ratio of SAR at M2 to SAR at M1 = 61.3% Maximum value of SAR (measured) = 19.4 W/kg

0 dB = 19.4 W/kg = 12.88 dBW/kg

Certificate No: Z22-60336

Page 7 of 8



Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2117 E-mail: emf@caict.ac.en http://www.caic.ac.en

Impedance Measurement Plot for Head TSL

ANNEX J: Extended Calibration SAR Dipole

Referring to KDB865664 D01, if dipoles are verified in return loss (<-20dBm, within 20% of prior calibration), and in impedance (within 5 ohm of prior calibration), the annual calibration is not necessary and the calibration interval can be extended.

			Head			
Date of Measurement	Return-Loss (dB)	Delta (%)	Real Impedance (ohm)	Delta (ohm)	Imaginary Impedance (johm)	Delta (johm)
2021-05-21	-26.8	/	52.8	/	-3.80	/
2022-05-20	-26.3	1.9	53.6	0.8	-3.64	0.16

Justification of Extended Calibration SAR Dipole D2550V2- serial no.1010

The Return-Loss is <-20dB, and within 20% of prior calibration; the impedance is within 5 ohm of prior calibration. Therefore the value result should support extended cabration.

ANNEX K: Proximity sensor Power reduction information

In this section, the following list is used to prepare an inquiry seeking SAR test guidance for proximity sensor power reduction. The procedure in KDB 616217 is applied for SAR testing.

K.1. General Proximity sensor implementation description

This device uses a proximity sensor that uses the SAR antenna to facilitate triggering in typical user interactivity with the device. Due to the operating configurations and exposure conditions required by the device, the proximity sensor is used to indicate when the phone is held close to a user's body exposure condition. It utilizes the proximity sensor to reduce the output power in specific wireless and operating modes to ensure SAR compliance for the following scenarios: To reduce the output power of main antennas during body close to device.

K.2. Antennas and sensor placement details

K2.1. Antenna-to-antenna/user separation distances

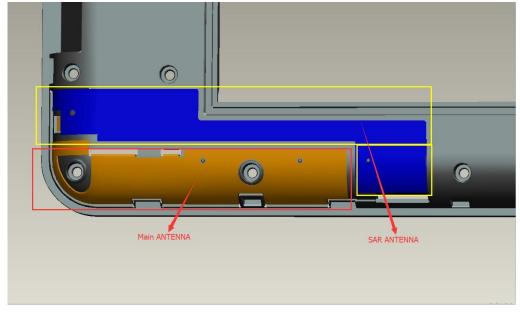


Figure K.1: The location of the antennas and proximity sensor

Note: The Div Antenna and GPS Antenna does not have the transmit function. The proximity sensor and SAR antenna use same metallic electrode, the SAR antenna is separated from the main antenna.

	Antenna/Sensor-to- DUT sides separation distances					
Tx Antenna	Front	Back side	Left	Right	Тор	Bottom
	side	side	side	side	side	side
Main 2G&3G&4G	N/A	15mm	15mm	N/A	N/A	5mm
Antenna	N/A	Tomm	Tomm			Jillin
2.4G WiFi Antenna	N/A	N/A	N/A	N/A	N/A	N/A
Diversity antenna						
and GPS antenna	Only receive signal, so it was not figured out in the following pictures					

K.3. Proximity sensor clarification

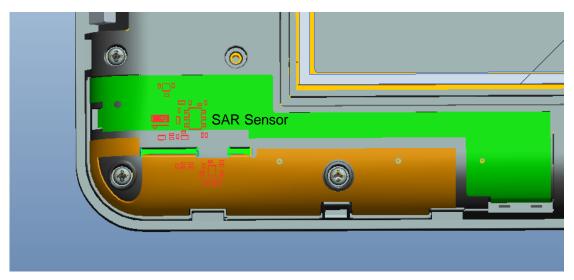


Figure K.2: The picture of the SAR sensor

K.3.1. Description of proximity sensor Techniques

The proximity sensor is triggered by capacitance changes due to objects in the vicinity of the sensing element.

Capacitive proximity sensor share metallic electrode with the SAR antenna testing. The metallic electrode and SAR sensor chip works as a sensor. As is shown in Figure K.2.


The proximity sensor or the power reduction cannot be intentionally or unintentionally turned-off by the user.

The expected capacitance trigger values are programmed in each device for each power back-off stage. Capacitance trigger value is C1. When a certain object or human body approaches the DUT, if the measured capacitance is lower than C1, proximity sensor is not triggered. If the measured capacitance is equal to C1 or higher than C1, the power back-off is triggered.

There is a failure protection gear. If the SAR sensor fail, the detection of the SAR sensor signal is interrupted, it will jump to the failure protection gear to reduce power by a fixed maximum power reduction amplitude to ensure SAR compliance.

K.3.2. Power Reduction operation table

The phone use MTK platform, which have some special NVs for SAR related max power back off, These NVs are used to set a new max power limit based proximity information and call configuration. When human body is in proximity and is detected by sensor, a new max power limit is set using the values stored in the NV. If Base station requests the higher output power above the limit, the power control algorithm inside modem chip will limit the power up to the preset power limit. If base station requests a lower output power less than the limit, the out power is controlled by base station.

K.4. Proximity sensor coverage, distance and angle

Band	Test position	Sensor Trigger Distance range(DUT to Phantom)	Power reduction amount(dB)	Target Power level(dBm)
	Extremity SAR (Bottom/Back/Left)	held by hand 0mm	4	GPRS 1 Txslot:28.5 2 Txslot:27.5 3 Txslot:26 4 Txslot:25 EGPRS 1 Txslot:23.5 2 Txslot:22 3 Txslot:20
GSM850	Top side	ALL	0	4 Txslot:18.5 GPRS 1 Txslot:32.5 2 Txslot:31.5 3 Txslot:30 4 Txslot:29 EGPRS 1 Txslot:27.5 2 Txslot:26 3 Txslot:24 4 Txslot:22.5
	Back side	0 <distance≤15mm< td=""><td>4</td><td>GPRS 1 Txslot:28.5 2 Txslot:27.5 3 Txslot:26 4 Txslot:25 EGPRS 1 Txslot:23.5 2 Txslot:22 3 Txslot:20 4 Txslot:18.5</td></distance≤15mm<>	4	GPRS 1 Txslot:28.5 2 Txslot:27.5 3 Txslot:26 4 Txslot:25 EGPRS 1 Txslot:23.5 2 Txslot:22 3 Txslot:20 4 Txslot:18.5
		15mm <dist< td=""><td>15mm<distance< td=""><td>0</td><td>GPRS 1 Txslot:32.5 2 Txslot:31.5 3 Txslot:30 4 Txslot:29 EGPRS 1 Txslot:27.5</td></distance<></td></dist<>	15mm <distance< td=""><td>0</td><td>GPRS 1 Txslot:32.5 2 Txslot:31.5 3 Txslot:30 4 Txslot:29 EGPRS 1 Txslot:27.5</td></distance<>	0

			l	,
				2 Txslot:26
				3 Txslot:24
				4 Txslot:22.5
				GPRS
				1 Txslot:28.5
				2 Txslot:27.5
				3 Txslot:26
		0 <distance≤15mm< td=""><td rowspan="2">4</td><td>4 Txslot:25</td></distance≤15mm<>	4	4 Txslot:25
				EGPRS
				1 Txslot:23.5
				2 Txslot:22
				3 Txslot:20
	Left side			4 Txslot:18.5
	Lent Side			GPRS
				1 Txslot:32.5
				2 Txslot:31.5
				3 Txslot:30
		15mm <distance< td=""><td>0</td><td>4 Txslot:29</td></distance<>	0	4 Txslot:29
		ISININGUSIANCE	0	EGPRS
				1 Txslot:27.5
				2 Txslot:26
				3 Txslot:24
				4 Txslot:22.5
				GPRS
				1 Txslot:28.5
				2 Txslot:27.5
				3 Txslot:26
		0 <distance≤5mm< td=""><td>4</td><td>4 Txslot:25</td></distance≤5mm<>	4	4 Txslot:25
			4	EGPRS
				1 Txslot:23.5
				2 Txslot:22
				3 Txslot:20
	D. H. J. L			4 Txslot:18.5
	Bottom side			GPRS
				1 Txslot:32.5
				2 Txslot:31.5
				3 Txslot:30
		– " /		4 Txslot:29
		5mm <distance< td=""><td>0</td><td>EGPRS</td></distance<>	0	EGPRS
				1 Txslot:27.5
				2 Txslot:26
				3 Txslot:24
				4 Txslot:22.5
	1		I	

				GPRS
				1 Txslot:32.5
				2 Txslot:32.5
				3 Txslot:30 4 Txslot:29
	Right side	ALL	0	EGPS
				1 Txslot:27.5
				2 Txslot:26
				3 Txslot:24
				4 Txslot:22.5
				GPRS
				1 Txslot:32.5
				2 Txslot:31.5 3 Txslot:30
	Front side	ALL	0	4 Txslot:29 EGPS
				1 Txslot:27.5 2 Txslot:26
				3 Txslot:24
				4 Txslot:22.5
				GPRS
				1 Txslot:23
				2 Txslot:22
				3 Txslot:20.5
	Extremity			4 Txslot:19.5
	SAR(Bottom/Back/Left)	held by hand 0mm	7	EGPS
	Chird Dottom/ Duoiv Long			1 Txslot:19.5
				2 Txslot:18.5
				3 Txslot:16.5
				4 Txslot:15.5
				GPRS
PCS1900				1 Txslot:30
1001000				2 Txslot:29
				3 Txslot:27.5
				4 Txslot:26.5
	Top side	ALL	0	EGPS
				1 Txslot:26.5
				2 Txslot:25.5
				3 Txslot:23.5
				4 Txslot:22.5
				GPRS
	Back side	0 <distance≤15mm< td=""><td>7</td><td>1 Txslot:23</td></distance≤15mm<>	7	1 Txslot:23
				2 Txslot:22
				2173101.22

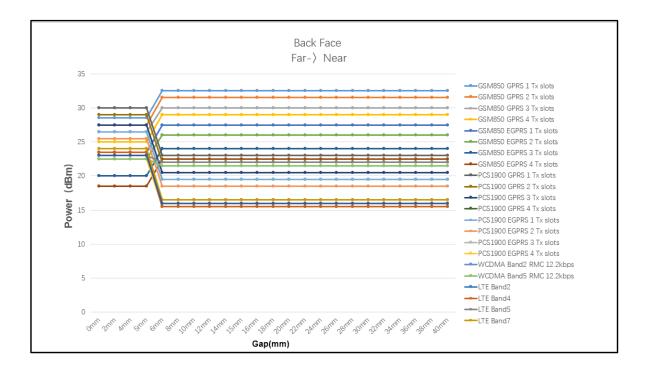
				3 Txslot:20.5
				4 Txslot:19.5
				EGPS
				1 Txslot:19.5
				2 Txslot:18.5
				3 Txslot:16.5
				4 Txslot:15.5
				GPRS
				1 Txslot:30
				2 Txslot:29
				3 Txslot:27.5
		15mm <distance< td=""><td>0</td><td>4 Txslot:26.5</td></distance<>	0	4 Txslot:26.5
		15mm <ustance< td=""><td>0</td><td>EGPS</td></ustance<>	0	EGPS
				1 Txslot:26.5
				2 Txslot:25.5
				3 Txslot:23.5
				4 Txslot:22.5
				GPRS
				1 Txslot:23
		0 <distance≤15mm< td=""><td></td><td>2 Txslot:22</td></distance≤15mm<>		2 Txslot:22
				3 Txslot:20.5
			7	4 Txslot:19.5
			/	EGPS
				1 Txslot:19.5
				2 Txslot:18.5
				3 Txslot:16.5
	Left side			4 Txslot:15.5
	Len side			GPRS
				1 Txslot:30
				2 Txslot:29
				3 Txslot:27.5
		15mm <distance< td=""><td>0</td><td>4 Txslot:26.5</td></distance<>	0	4 Txslot:26.5
		15mm <distance< td=""><td>0</td><td>EGPS</td></distance<>	0	EGPS
				1 Txslot:26.5
				2 Txslot:25.5
				3 Txslot:23.5
				4 Txslot:22.5
				GPRS
				1 Txslot:23
	Dottom oldo	Ordistance/Emm	7	2 Txslot:22
	Bottom side	0 <distance≤5mm< td=""><td>7</td><td>3 Txslot:20.5</td></distance≤5mm<>	7	3 Txslot:20.5
				4 Txslot:19.5
				EGPS
				are 100 of 200

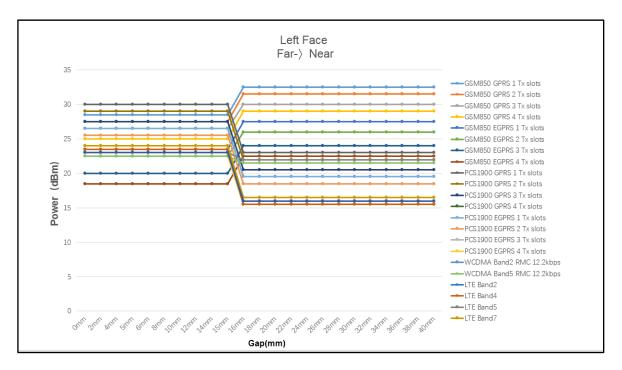
Page 198 of 229

	1		1	1
				1 Txslot:19.5
				2 Txslot:18.5
				3 Txslot:16.5
				4 Txslot:15.5
				GPRS
				1 Txslot:30
				2 Txslot:29
				3 Txslot:27.5
		5mm <distance< td=""><td>0</td><td>4 Txslot:26.5</td></distance<>	0	4 Txslot:26.5
		5mm <distance< td=""><td>0</td><td>EGPS</td></distance<>	0	EGPS
				1 Txslot:26.5
				2 Txslot:25.5
				3 Txslot:23.5
				4 Txslot:22.5
				GPRS
				1 Txslot:30
				2 Txslot:29
				3 Txslot:27.5
	District		<u> </u>	4 Txslot:26.5
	Right side	ALL	0	EGPS
				1 Txslot:26.5
				2 Txslot:25.5
				3 Txslot:23.5
				4 Txslot:22.5
				GPRS
				1 Txslot:30
				2 Txslot:29
				3 Txslot:27.5
				4 Txslot:26.5
	Front side	ALL	0	EGPS
				1 Txslot:26.5
				2 Txslot:25.5
				3 Txslot:23.5
				4 Txslot:22.5
	Extremity SAR(Bottom/Back/Left)	held by hand 0mm	7	16
	Top side	ALL	0	23
		0 <distance≤15mm< td=""><td>7</td><td>16</td></distance≤15mm<>	7	16
WCDMA	Back side	15mm <distance< td=""><td>0</td><td>23</td></distance<>	0	23
B2		0 <distance≤15mm< td=""><td>7</td><td>16</td></distance≤15mm<>	7	16
	Left side	15mm <distance< td=""><td>0</td><td>23</td></distance<>	0	23
		0 <distance≤5mm< td=""><td>7</td><td>16</td></distance≤5mm<>	7	16
	Bottom side	5mm <distance< td=""><td>0</td><td>23</td></distance<>	0	23
		งกากจนเอเลกษะ	U	20

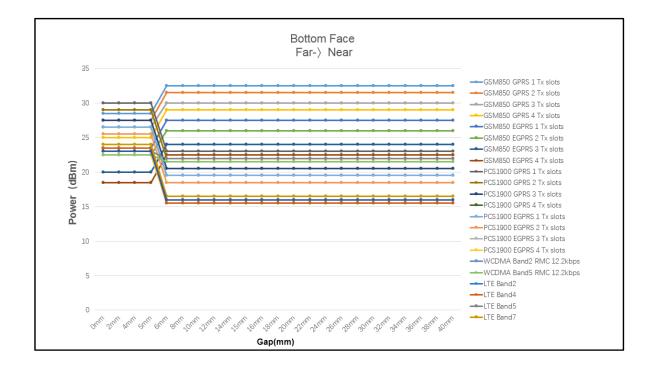
©Copyright. All rights reserved by SAICT.

	Right side	ALL	0	23
	Front side	ALL	0	23
	Extremity SAR(Bottom/Back/Left)	held by hand 0mm	1	21.5
	Top side	ALL	0	22.5
		0 <distance≤15mm< td=""><td>1</td><td>21.5</td></distance≤15mm<>	1	21.5
	Back side	15mm <distance< td=""><td>0</td><td>22.5</td></distance<>	0	22.5
WCDMA		0 <distance≤15mm< td=""><td>1</td><td>21.5</td></distance≤15mm<>	1	21.5
B5	Left side	15mm <distance< td=""><td>0</td><td>22.5</td></distance<>	0	22.5
		0 <distance≤5mm< td=""><td>1</td><td>21.5</td></distance≤5mm<>	1	21.5
	Bottom side	5mm <distance< td=""><td>0</td><td>22.5</td></distance<>	0	22.5
	Right side	ALL	0	22.5
	Front side	ALL	0	22.5
	Extremity SAR(Bottom/Back/Left)	held by hand 0mm	7.5	15.5
	Top side	ALL	0	23
		0 <distance≤15mm< td=""><td>7.5</td><td>15.5</td></distance≤15mm<>	7.5	15.5
	Back side	15mm <distance< td=""><td>0</td><td>23</td></distance<>	0	23
LTE B2		0 <distance≤15mm< td=""><td>7.5</td><td>15.5</td></distance≤15mm<>	7.5	15.5
	Left side	15mm <distance< td=""><td>0</td><td>23</td></distance<>	0	23
		0 <distance≤5mm< td=""><td>7.5</td><td>15.5</td></distance≤5mm<>	7.5	15.5
_	Bottom side	5mm <distance< td=""><td>0</td><td>23</td></distance<>	0	23
	Right side	ALL	0	23
	Front side	ALL	0	23
	Extremity SAR(Bottom/Back/Left)	held by hand 0mm	7.5	15.5
	Top side	ALL	0	23
		0 <distance≤15mm< td=""><td>7.5</td><td>15.5</td></distance≤15mm<>	7.5	15.5
	Back side	15mm <distance< td=""><td>0</td><td>23</td></distance<>	0	23
LTE B4		0 <distance≤15mm< td=""><td>7.5</td><td>15.5</td></distance≤15mm<>	7.5	15.5
	Left side	15mm <distance< td=""><td>0</td><td>23</td></distance<>	0	23
	Dettern si lu	0 <distance≤5mm< td=""><td>7.5</td><td>15.5</td></distance≤5mm<>	7.5	15.5
	Bottom side	5mm <distance< td=""><td>0</td><td>23</td></distance<>	0	23
	Right side	ALL	0	23
	Front side	ALL	0	23
	Extremity SAR(Bottom/Back/Left)	held by hand 0mm	1	22
	Top side	ALL	0	23
		0 <distance≤15mm< td=""><td>1</td><td>22</td></distance≤15mm<>	1	22
LTE B5	Back side	15mm <distance< td=""><td>0</td><td>23</td></distance<>	0	23
		0 <distance≤15mm< td=""><td>1</td><td>22</td></distance≤15mm<>	1	22
	Left side	15mm <distance< td=""><td>0</td><td>23</td></distance<>	0	23
	Bottom side	0 <distance≤5mm< td=""><td>1</td><td>22</td></distance≤5mm<>	1	22

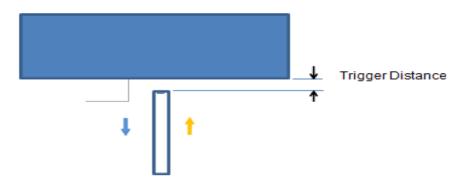

©Copyright. All rights reserved by SAICT.



		E	<u>^</u>	
		5mm <distance< td=""><td>0</td><td>23</td></distance<>	0	23
	Right side	ALL	0	23
	Front side	ALL	0	23
	Extremity	hold by hand Omm	7.5	16.5
	SAR(Bottom/Back/Left)	held by hand 0mm	7.5	10.5
	Top side	ALL	0	24
	Back side	0 <distance≤15mm< td=""><td>7.5</td><td>16.5</td></distance≤15mm<>	7.5	16.5
	Dack Side	15mm <distance< td=""><td>0</td><td>24</td></distance<>	0	24
LTE B7	Left side	0 <distance≤15mm< td=""><td>7.5</td><td>16.5</td></distance≤15mm<>	7.5	16.5
	Leit side	15mm <distance< td=""><td>0</td><td>24</td></distance<>	0	24
	Dottom side	0 <distance≤5mm< td=""><td>7.5</td><td>16.5</td></distance≤5mm<>	7.5	16.5
	Bottom side	5mm <distance< td=""><td>0</td><td>24</td></distance<>	0	24
	Right side	ALL	0	24
	Front side	ALL	0	24
	Extremity		-	40
	SAR(Bottom/Back/Left)	held by hand 0mm	7	16
	Top side	ALL	0	23
	Back side	0 <distance≤15mm< td=""><td>7</td><td>16</td></distance≤15mm<>	7	16
		15mm <distance< td=""><td>0</td><td>23</td></distance<>	0	23
LTE B38	Left side	0 <distance≤15mm< td=""><td>7</td><td>16</td></distance≤15mm<>	7	16
		15mm <distance< td=""><td>0</td><td>23</td></distance<>	0	23
	Bottom side	0 <distance≤5mm< td=""><td>7</td><td>16</td></distance≤5mm<>	7	16
		5mm <distance< td=""><td>0</td><td>23</td></distance<>	0	23
	Right side	ALL	0	23
	Front side	ALL	0	23



No.I22N01644-SAR



K.4.1. Procedures for determining proximity sensor triggering distances (Per KDB616217§6.2)

Per FCC KDB 616217 D04v01, the device was tested by the test lab to determine the proximity sensor triggering distances for the back side and each top side of the device. To ensure all production units are compliant, the smallest separation distance determined by the sensor triggering minus 1 mm, must be used as the test separation distance for SAR testing. These SAR tests are included in addition to the SAR tests for the device touching the SAR phantom with reduced power.

Picture: Proximity sensor triggering distances assessment (Back)

Liquid	Trigger dista side	nce – bottom	Trigger dista side	nce –back	Trigger distance –left side		
Type(MHz)	Moving toward phantom	Moving toward phantom	Moving from phantom	Moving from phantom	Moving toward phantom	Moving from phantom	
835	5mm 5mm		15mm 15mm		15mm	15mm	
1750	5mm	5mm	15mm	15mm	15mm	15mm	
1900	5mm	5mm	15mm	15mm	15mm	15mm	
2550	5mm	5mm	15mm	15mm	15mm	15mm	

Table: Summary of Trigger Distances

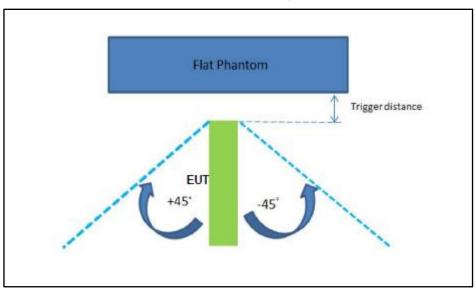
Note:

1) For Bottom side, based on the most conservative measured triggering distance of N mm, additional SAR test is required at (N-1) mm.

2) For Back side, based on the most conservative measured triggering distance of N mm, additional SAR test is required at (N-1) mm.

3) For Left side, based on the most conservative measured triggering distance of N mm, additional SAR test is required at (N-1) mm.

The proximity sensor is not triggered, when approaching from other sides (Front, Right, and TOP). Therefore, the proximity sensor coverage is not evaluated on these orientations.


K.4.2. Procedures for determining antenna and proximity sensor coverage (Per KDB616217 §6.3)

The proximity sensor and SAR antenna use same metallic electrode, so there is no spatial offset.

K.4.3. Procedures for determining device tilt angle influences to proximity sensor triggering (Per KDB616217 §6.4)

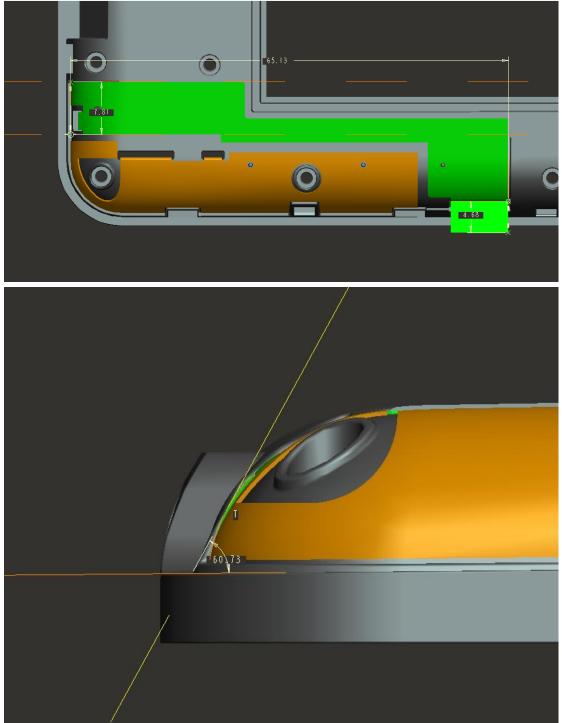
Per FCC KDB 616217 D04v01, the DUT was positioned directly below the flat phantom at the minimum measured trigger distance with each applicable top parallel to the base of the flat phantom for each band.

The EUT was rotated about each applicable top for angles up to $+/-45^{\circ}$. If the output power increased during the rotation the DUT was moved 1mm toward the phantom and the rotation repeated. This procedure was repeated until the power remained reduced for all angles up to $+/-45^{\circ}$.

Picture: Proximity sensor tilt angle assessment

Table: Summary of Phone Tilt Angle Influence to	Proximity Sensor Triggering
---	-----------------------------

	Minimum	Minimum trigger	Powe	r Redu	ction St	atus							
Band(MH	trigger	distance at which											
	distance Per	power reduction	-45°	-35°	-25°	-15°	-5°	0°	5°	15°	25°	35°	45°
z)	KDB616217§	was maintained	-45	-35	-25	-15	-5	0	5	15	25	35	40
	6.2	over ±45°											
835	5mm	5mm	on	on	on	on	on	on	on	on	on	on	on
1750	5mm	5mm	on	on	on	on	on	on	on	on	on	on	on
1900	5mm	5mm	on	on	on	on	on	on	on	on	on	on	on
2550	5mm	5mm	on	on	on	on	on	on	on	on	on	on	on


K.4.4. Summary SAR test Plan for Proximity sensor power reduction

For Body SAR compliance, the device uses proximity sensor power reduction for some frequency bands of Main antenna and test positions. To ensure all production units are compliant, the smallest separation distance determined by the sensor triggering and sensor coverage for normal and tilt positions for each applicable side and top triggering conditions, minus 1 mm, is used as the test separation distance for SAR testing. These SAR tests are included in addition to the SAR tests for the device touching the SAR phantom with reduced power.

K.5. The distance between antenna and Curved Face

SAR antenna: X: 65.13mm Y: 7.81mm α: 60.73°

ANNEX L: Sensor Triggering Data Summary

Per FCC KDB Publication 616217 D04, this device was tested by the manufacturer to determine the proximity sensor triggering distances for all applicable sides and edges of the device. The measured output power at distances within \pm 5 mm of the triggering points (or until touching the phantom) is included for back side and each applicable edge per Step i) in Section 6.2 of the KDB. The technical descriptions in the filing contain the complete set of triggering data required by Section 6 of FCC KDB Publication 616217 D04.

To ensure all production units are compliant, it is necessary to test SAR at a distance 1 mm less than the smallest distance between the device and SAR phantom with the device at the maximum output power (without power reduction). These SAR tests are included in addition to the SAR tests for the device touching the SAR phantom (at the reduced output power level).

We tested the power and got the different proximity sensor triggering distances for rear, left and bottom side. The manufacturer has declared 15mm is the most conservative triggering distance for main antenna with rear side, 15mm distance for left side and 5mm distance for bottom side.

The operational description contains information explaining how this device remains compliant in the event of a sensor malfunction.

Main Antenna

Rear Side

Moving device toward the phantom:

Distance(mm)	20	19	18	17	16	15	14	13	12	11	10
Main Antenna	/	/	/	/	/	20.97	20.98	20.99	21.00	20.98	21.01
Moving device a	away fro	om the p	hantom	:							

Distance(mm)	20	19	18	17	16	15	14	13	12	11	10
Main Antenna	23.94	24.00	23.99	23.98	23.96	/	/	/	/	/	/

Based on the most conservative measured triggering distance of 15 mm, additional SAR measurements were required at 14 mm from the Rear side for the above modes.

Left Side

Moving device toward the phantom:

Distance(mm)	20	19	18	17	16	15	14	13	12	11	10
Main Antenna	/	/	/	/	/	20.95	20.99	21.00	21.01	20.98	21.00

Moving device away from the phantom:

Distance(mm)	20	19	18	17	16	15	14	13	12	11	10
Main Antenna	23.96	24.00	23.97	23.98	23.95	/	/	/	/	/	/

Based on the most conservative measured triggering distance of 15 mm, additional SAR measurements were required at 14 mm from the left side for the above modes.

Bottom Side

Moving device toward the phantom:

Distance(mm)	10	9	8	7	6	5	4	3	2	1	0
Main Antenna	/	/	/	/	/	20.99	20.96	21.00	20.98	20.95	20.99
Moving device away from the phantom:											
Distance(mm)	10	9	8	7	6	5	4	3	2	1	0
Main Antenna	24.00	20.96	23.97	23.99	24.00	/	/	/	/	/	/

Based on the most conservative measured triggering distance of 5 mm, additional SAR

measurements were required at 4 mm from the bottom side for the above modes.

ANNEX M: Spot Check Test

As the test lab for MPH-MB003A from IDEMIA Identity and Security France, we, Shenzhen Academy of Information and Communications Technology, declare on our sole responsibility that, according to "Justification Letter" provided by applicant, only the Spot check test should be performed. The test results are as below.

M.1. Internal Identification of EUT used during the spot check test

EUT ID*	IMEI	HW Version	SW Version	Receipt Date
UT02aa	354520110403341	V01 (M32N)	V01	2022-08-23
UT05aa	354520110403648	V01 (M32N)	V01	2022-08-23

M.2. Measurement results

GSM 850 SAR Values

	Freque	uency			Conducted	Max.	SA	SAR(1g) (W/kg)		
Ch.		Test	Position	Power	tune-up	Spot check data		Original		
	Ch.	MHz	1631	FUSICION	(dBm)	Power	Measured	Reported	data	
					(ubiii)	(dBm)	SAR	SAR	uala	
1	90	836.6	Body	Rear	24.98	26.0	0.784	0.99	1.08	

GSM 1900 SAR Values

	Frequenc Ch. M	uency			Conducted	Max.	SAR(1g) (W/kg)		
			Tost	Position	Power	tune-up	Spot che	eck data	Original
		MHz	1631	FUSICION	(dBm)	Power	Measured	Reported	data
			(dBill)		(dBm)	SAR	SAR	uala	
	512	1850.2	Body	Rear	19.64	20.5	0.866	1.06	0.92

WCDMA Band 2 SAR Values

Freq	uency			Conducted	Max.	SA	R(1g) (W/kg	I)
Ch.		Tost	Position	Power	tune-up	Spot che	eck data	Original
	MHz	1631	FUSITION	(dBm)	Power	Measured	Reported	data
				(ubiii)	(dBm)	SAR	SAR	uala
9262	1852.4	Body	Rear	23.55	24.0	0.864	0.96	1.25

WCDMA Band 5 SAR Values

	Ch. M	uency			Conducted	Max.	SAR(1g) (W/kg)		
			Tost	Position	Power	tune-up	Spot che	eck data	Original
		MHz	1631	FUSITION	(dBm)	Power	Measured	Reported	data
					(ubiii)	(dBm)	SAR	SAR	uala
	4132	826.4	Body	Rear	22.03	22.5	0.904	1.01	1.15

LTE Band 2 SAR Values

Frec	uency			Conducted	Max.	SAR(1g) (W/kg)		
Ch.		Toot	Position	Power	tune-up	Spot check data		Original
	MHz	Test	FUSILION	(dBm)	Power	Measured	Reported	data
		(UD		(ubiii)	(dBm)	SAR	SAR	uala
18700	1860.0	Body	Rear	23.73	24.0	1.050	1.12	1.12

LTE Band 4 SAR Values

Freq	Frequency			Conducted	Max.	SA	R(1g) (W/kg	I)
Ch.		Tost	Position	Power	tune-up	Spot che	eck data	Original
	MHz	1631	FUSITION	(dBm)	Power	Measured	Reported	data
				(ubiii)	(dBm)	SAR	SAR	uala
20300	1745.0	Body	Rear	23.51	24.0	0.916	1.03	1.21

LTE Band 5 SAR Values

Freq	uency			Conducted	Max.	SA	R(1g) (W/kg	1)
Ch.		Test	Position	Power	tune-up	Spot che	eck data	Original
	MHz	1631	FUSILION	(dBm)	Power	Measured	Reported	data
				(ubiii)	(dBm)	SAR	SAR	uala
20450	829.0	Body	Rear	22.25	23.0	0.749	0.89	1.30

LTE Band 7 SAR Values

Frequency				Conducted	Max.	SA	R(1g) (W/kg	I)
Ch.		Teet	Position	Power	tune-up	Spot che	eck data	Original
	MHz	1631	FUSITION	(dBm)	Power	Measured	Reported	data
				(ubiii)	(dBm)	SAR	SAR	uala
21350	2560.0	Body	Left	15.93	16.5	0.672	0.77	1.24

LTE Band 38 SAR Values

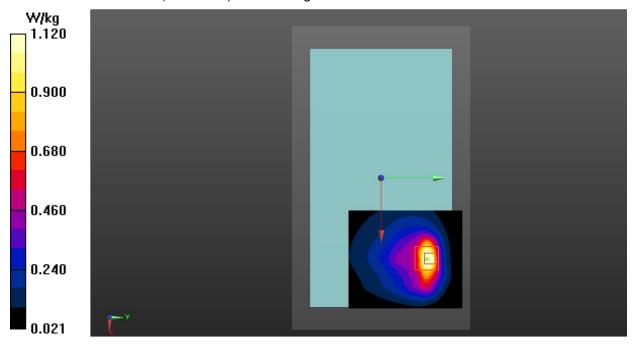
Freq	uency			Conducted	Max.	SA	R(1g) (W/kg)
Ch.		Toot	Position	Power	tune-up	Spot che	eck data	Original
	MHz	1651	FUSILION	(dBm)	Power	Measured	Reported	- Original data
				(ubiii)	(dBm)	SAR	SAR	uala
37850	2580.0	Body	Left	17.39	18.0	0.489	0.56	0.91

Bluetooth SAR Values

	Frequency Ch. MHz	uency			Conducted	Max.	SAR(1g) (W/kg)		
			Test Position		_	tune-up	Spot che	eck data	Original
		MHz	1651	FUSILION	Power (dBm)	Power	Measured	Reported	data
				(ubiii)	(dBm)	SAR	SAR	Uala	
	39	2441.0	Body	Rear	9.71	10.0	0.023	0.03	0.02

WLAN 5GHz SAR Values

	Frequency				Conducted	Max.	SAR(1g) (W/kg)		
	Ch.	MHz	Test Position		Power (dBm)	tune-up Power (dBm)	Spot check data		Original
							Measured	Reported	data
							SAR	SAR	
	149	5745.0	Body	Right	11.63	12.5	0.229	0.28	0.70


M.3. Graph Results for Spot Check

GSM850 Body

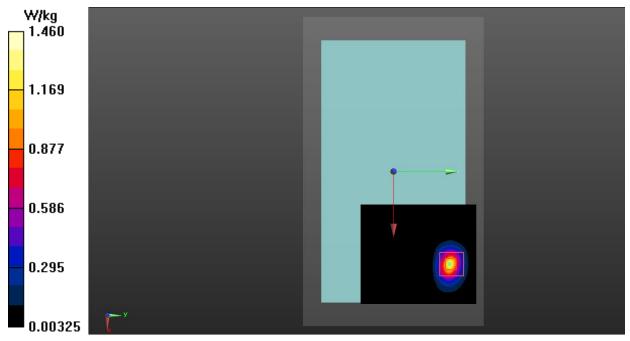
Date: 2022-9-17 Electronics: DAE4 Sn1527 Medium: Head 835MHz Medium parameters used (interpolated): f = 836.6 MHz; σ = 0.879 S/m; ϵ_r = 42.245; ρ = 1000 kg/m³ Communication System: UID 0, GPRS 4Txslot (0) Frequency: 836.6 MHz Duty Cycle: 1:2 Probe: EX3DV4 - SN7621 ConvF (11.12, 11.12, 11.12)

Rear Side Middle/Area Scan (61x71x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 1.37 W/kg

Rear Side Middle/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 5.411 V/m; Power Drift = 0.18 dB Peak SAR (extrapolated) = 1.66 W/kg SAR(1 g) = 0.784 W/kg; SAR(10 g) = 0.407 W/kg Maximum value of SAR (measured) = 1.12 W/kg

GSM1900 Body

Date: 2022-9-19 Electronics: DAE4 Sn1527 Medium: Head 1900MHz Medium parameters used (interpolated): f = 1850.2 MHz; σ = 1.371 S/m; ϵ_r = 39.723; ρ = 1000 kg/m³ Communication System: UID 0, GPRS 4Txslot (0) Frequency: 1850.2 MHz Duty Cycle: 1:2 Probe: EX3DV4 - SN7621 ConvF (8.90, 8.90, 8.90)


Rear Side Low/Area Scan (61x71x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 1.30 W/kg

Rear Side Low/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 0.8590 V/m; Power Drift = -0.04 dB

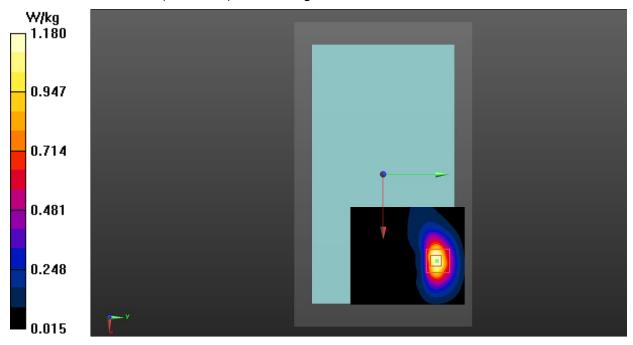
Peak SAR (extrapolated) = 1.93 W/kg

SAR(1 g) = 0.866 W/kg; SAR(10 g) = 0.353 W/kg

Maximum value of SAR (measured) = 1.46 W/kg

WCDMA Band 2 Body

Date: 2022-9-19 Electronics: DAE4 Sn1527 Medium: Head 1900MHz Medium parameters used (interpolated): f = 1852.4 MHz; σ = 1.373 S/m; ϵ_r = 39.715; ρ = 1000 kg/m³ Communication System: UID 0, WCDMA (0) Frequency: 1852.4 MHz Duty Cycle: 1:1 Probe: EX3DV4 - SN7621 ConvF (8.90, 8.90, 8.90)

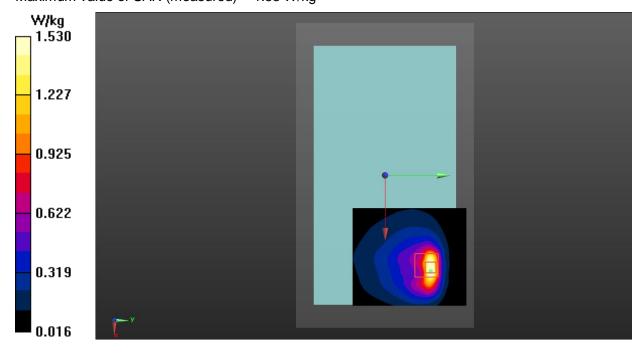

Rear Side Low/Area Scan (61x71x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 1.26 W/kg

Rear Side Low/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 4.228 V/m; Power Drift = 0.08 dB

Peak SAR (extrapolated) = 1.47 W/kg

SAR(1 g) = 0.864 W/kg; SAR(10 g) = 0.461 W/kg

Maximum value of SAR (measured) = 1.18 W/kg

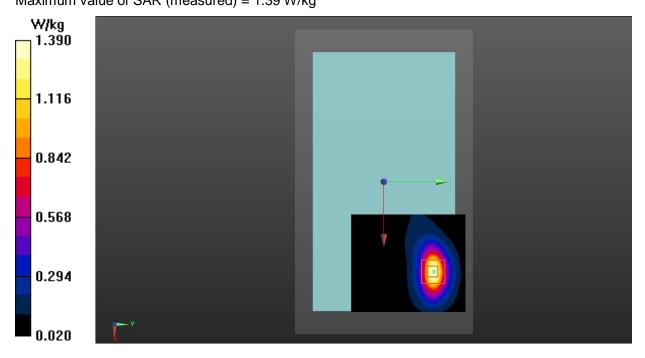


WCDMA Band 5 Body

Date: 2022-9-17 Electronics: DAE4 Sn1527 Medium: Head 835MHz Medium parameters used (interpolated): f = 826.4 MHz; σ = 0.87 S/m; ϵ_r = 42.367; ρ = 1000 kg/m³ Communication System: UID 0, WCDMA (0) Frequency: 826.4 MHz Duty Cycle: 1:1 Probe: EX3DV4 - SN7621 ConvF (11.12, 11.12, 11.12)

Rear Side Low/Area Scan (61x71x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 1.66 W/kg

Rear Side Low/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 5.046 V/m; Power Drift = -0.01 dB Peak SAR (extrapolated) = 2.08 W/kg SAR(1 g) = 0.904 W/kg; SAR(10 g) = 0.460 W/kg Maximum value of SAR (measured) = 1.53 W/kg

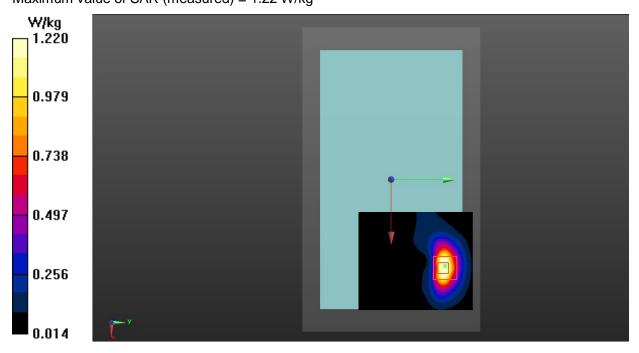

LTE Band 2 Body

Date: 2022-9-19 Electronics: DAE4 Sn1527 Medium: Head 1900MHz Medium parameters used: f = 1860 MHz; σ = 1.38 S/m; ϵ_r = 39.685; ρ = 1000 kg/m³ Communication System: UID 0, LTE_FDD (0) Frequency: 1860 MHz Duty Cycle: 1:1 Probe: EX3DV4 - SN7621 ConvF (8.90, 8.90, 8.90)

Rear Side Low 1RB50/Area Scan (61x71x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 1.43 W/kg

Rear Side Low 1RB50/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 4.776 V/m; Power Drift = -0.14 dB Peak SAR (extrapolated) = 1.80 W/kg SAR(1 g) = 1.05 W/kg; SAR(10 g) = 0.548 W/kg Maximum value of SAR (measured) = 1.39 W/kg


LTE Band 4 Body

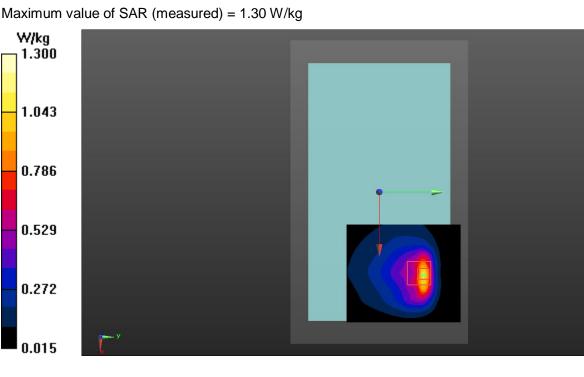
Date: 2022-9-19 Electronics: DAE4 Sn1527 Medium: Head 1750MHz Medium parameters used: f = 1745 MHz; σ = 1.357 S/m; ϵ_r = 40.593; ρ = 1000 kg/m³ Communication System: UID 0, LTE_FDD (0) Frequency: 1745 MHz Duty Cycle: 1:1 Probe: EX3DV4 - SN7621 ConvF (9.22, 9.22, 9.22)

Rear Side High 1RB50/Area Scan (61x71x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 1.38 W/kg

Rear Side High 1RB50/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 3.428 V/m; Power Drift = -0.01 dB Peak SAR (extrapolated) = 1.57 W/kg SAR(1 g) = 0.916 W/kg; SAR(10 g) = 0.485 W/kg Maximum value of SAR (measured) = 1.22 W/kg

LTE Band 5 Body

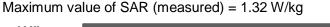

Date: 2022-9-17 Electronics: DAE4 Sn1527 Medium: Head 1750MHz

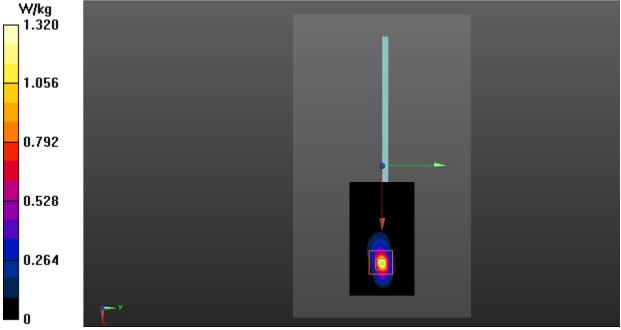
Medium parameters used (interpolated): f = 829 MHz; σ = 0.873 S/m; ϵ_r = 42.336; ρ = 1000 kg/m³ Communication System: UID 0, LTE_FDD (0) Frequency: 829 MHz Duty Cycle: 1:1 Probe: EX3DV4 - SN7621 ConvF (11.12, 11.12, 11.12)

Rear Side Low 1RB24/Area Scan (61x71x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 1.07 W/kg

Rear Side Low 1RB24/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 5.590 V/m; Power Drift = -0.04 dB Peak SAR (extrapolated) = 1.77 W/kg SAR(1 g) = 0.749 W/kg; SAR(10 g) = 0.378 W/kg


LTE Band 7 Body

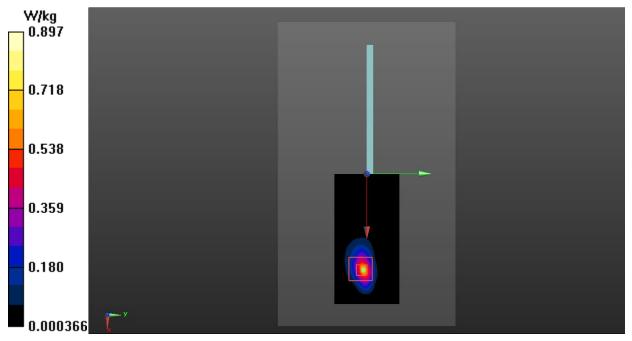

Date: 2022-9-20 Electronics: DAE4 Sn1527 Medium: Head 2550MHz Medium parameters used: f = 2560 MHz; σ = 1.949 S/m; ϵ_r = 37.912; ρ = 1000 kg/m³ Communication System: UID 0, LTE_FDD (0) Frequency: 2560 MHz Duty Cycle: 1:1 Probe: EX3DV4 - SN7621 ConvF (7.93, 7.93, 7.93)

Left Side High 1RB50/Area Scan (111x61x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm Maximum value of SAR (interpolated) = 1.32 W/kg

Left Side High 1RB50/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 1.507 V/m; Power Drift = 0.02 dB Peak SAR (extrapolated) = 1.79 W/kg SAR(1 g) = 0.672 W/kg; SAR(10 g) = 0.235 W/kg

LTE Band 38 Body

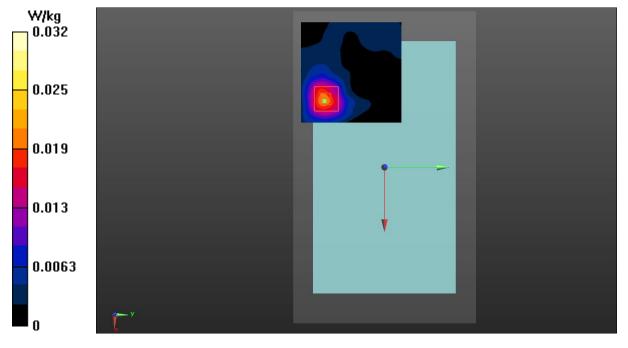

Date: 2022-9-20 Electronics: DAE4 Sn1527 Medium: Head 2550MHz Medium parameters used: f = 2580 MHz; σ = 1.972 S/m; ϵ_r = 37.846; ρ = 1000 kg/m³ Communication System: UID 0, LTE_TDD (0) Frequency: 2580 MHz Duty Cycle: 1:1.58 Probe: EX3DV4 - SN7621 ConvF (7.93, 7.93, 7.93)

Left Side Low 50RB0/Area Scan (121x61x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm Maximum value of SAR (interpolated) = 0.652 W/kg

Left Side Low 50RB0/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 1.613 V/m; Power Drift = -0.02 dB Peak SAR (extrapolated) = 1.30 W/kg SAR(1 g) = 0.489 W/kg; SAR(10 g) = 0.171 W/kg

Maximum value of SAR (measured) = 0.897 W/kg


Bluetooth Body

Date: 2022-10-18 Electronics: DAE4 Sn1527 Medium: Head 2450MHz Medium parameters used (interpo Communication System: UID 0. E

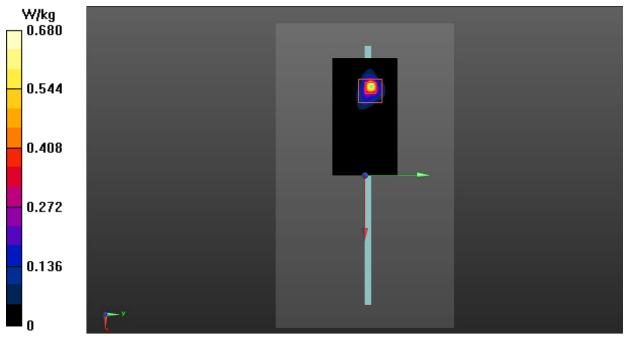
Medium parameters used (interpolated): f = 2441 MHz; σ = 1.833 S/m; ϵ_r = 38.154; ρ = 1000 kg/m³ Communication System: UID 0, BT (0) Frequency: 2441 MHz Duty Cycle: 1:1 Probe: EX3DV4 - SN7621 ConvF (8.17, 8.17, 8.17)

Rear Side CH.39/Area Scan (91x91x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm Maximum value of SAR (interpolated) = 0.0264 W/kg

Rear Side CH.39/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 4.343 V/m; Power Drift = 0.07 dB Peak SAR (extrapolated) = 0.0630 W/kg SAR(1 g) = 0.023 W/kg; SAR(10 g) = 0.007 W/kg Maximum value of SAR (measured) = 0.0315 W/kg

WLAN 5GHz Body

Date: 2022-10-14 Electronics: DAE4 Sn786 Medium: Head 5750MHz

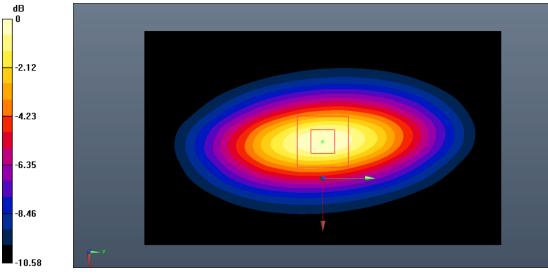

Medium parameters used (interpolated): f = 5745 MHz; σ = 5.099 S/m; ϵ_r = 36.296; ρ = 1000 kg/m³ Communication System: UID 0, WiFi (0) Frequency: 5745 MHz Duty Cycle: 1:1 Probe: EX3DV4 - SN7621 ConvF (5.40, 5.40, 5.40)

Right Side CH.149/Area Scan (111x61x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm Maximum value of SAR (interpolated) = 0.666 W/kg

Right Side CH.149/Zoom Scan (8x8x21)/Cube 0: Measurement grid: dx=4mm, dy=4mm,

dz=1.4mm Reference Value = 1.007 V/m; Power Drift = 0.09 dB Peak SAR (extrapolated) = 1.06 W/kg SAR(1 g) = 0.229 W/kg; SAR(10 g) = 0.049 W/kg

Maximum value of SAR (measured) = 0.680 W/kg


M.4. System Verification Results for Spot Check

835MHz

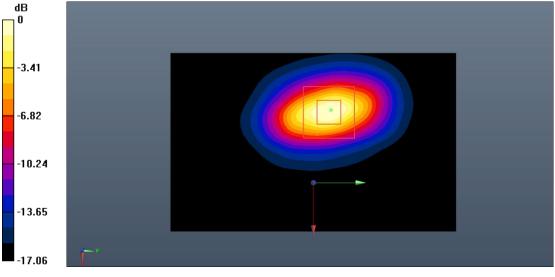
Date: 2022-9-17 Electronics: DAE4 Sn1527 Medium: Head 835MHz Medium parameters used: f = 835 MHz; σ = 0.878 S/m; ϵ r = 42.264; ρ = 1000 kg/m³ Communication System: CW_TMC Frequency: 835 MHz Duty Cycle: 1:1 Probe: EX3DV4 - SN7621 ConvF (11.12, 11.12, 11.12)

System Validation/Area Scan (91x161x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm Reference Value = 64.567 V/m; Power Drift = -0.11 dB SAR(1 g) = 2.48 W/kg; SAR(10 g) = 1.57 W/kg Maximum value of SAR (interpolated) = 3.29 W/kg

System Validation /Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 64.567 V/m; Power Drift = -0.11 dB Peak SAR (extrapolated) = 3.78 W/kg SAR(1 g) = 2.34 W/kg; SAR(10 g) = 1.55 W/kg Maximum value of SAR (measured) = 3.25 W/kg

0 dB = 3.25 W/kg = 5.12 dB W/kg

1750MHz Date: 2022-9-19 Electronics: DAE4 Sn1527 Medium: Head 1750MHz Medium parameters used: f = 1750 MHz; σ = 1.361 S/m; ϵ_r = 40.573; ρ = 1000 kg/m³ Communication System: CW_TMC Frequency: 1750 MHz Duty Cycle: 1:1 Probe: EX3DV4 - SN7621 ConvF (9.22, 9.22, 9.22)


System Validation/Area Scan (81x121x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm Reference Value = 78.415 V/m; Power Drift = -0.06 dB SAR(1 g) = 8.96 W/kg; SAR(10 g) = 4.88 W/kg Maximum value of SAR (interpolated) = 10.9 W/kg

System Validation/Zoom Scan (7x7x7)/Cube0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 78.415 V/m; Power Drift = -0.06 dB

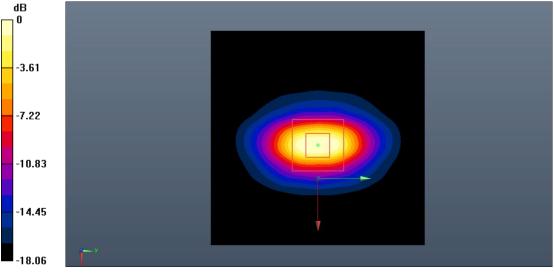
Peak SAR (extrapolated) = 21.1 W/kg

SAR(1 g) = 8.75 W/kg; SAR(10 g) = 4.81 W/kg

Maximum value of SAR (measured) = 10.6 W/kg

0 dB = 10.6 W/kg = 10.25 dB W/kg

1900MHz Date: 2022-9-19 Electronics: DAE4 Sn1527 Medium: Head 1900MHz Medium parameters used: f = 1900 MHz; σ = 1.415 S/m; ϵ_r = 39.529; ρ = 1000 kg/m³ Communication System: CW_TMC Frequency: 1900 MHz Duty Cycle: 1:1 Probe: EX3DV4 - SN7621 ConvF (8.90, 8.90, 8.90)


System Validation/Area Scan (91x91x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm Reference Value = 83.974 V/m; Power Drift = 0.13 dB SAR(1 g) = 10.1 W/kg; SAR(10 g) = 5.11 W/kg Maximum value of SAR (interpolated) = 12.1 W/kg

System Validation/Zoom Scan (7x7x7)/Cube0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 83.974 V/m; Power Drift = 0.13 dB

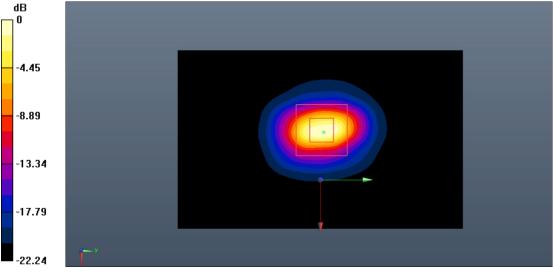
Peak SAR (extrapolated) = 25.8 W/kg

SAR(1 g) = 10.4 W/kg; SAR(10 g) = 5.20 W/kg

Maximum value of SAR (measured) = 12.3 W/kg

0 dB = 12.3 W/kg = 10.90 dB W/kg

2450MHz Date: 2022-10-18 Electronics: DAE4 Sn1527 Medium: Head 2450MHz Medium parameters used: f = 2450 MHz; σ = 1.844 S/m; ϵ_r = 38.124; ρ = 1000 kg/m³ Communication System: CW_TMC Frequency: 2450 MHz Duty Cycle: 1:1 Probe: EX3DV4 - SN7621 ConvF (8.17, 8.17, 8.17)


System Validation/Area Scan (81x121x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm Reference Value = 93.055 V/m; Power Drift = 0.02 dB SAR(1 g) = 13.6 W/kg; SAR(10 g) = 6.12 W/kg Maximum value of SAR (interpolated) = 15.6 W/kg

System Validation/Zoom Scan (7x7x7)/Cube0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 93.055 V/m; Power Drift = 0.02 dB

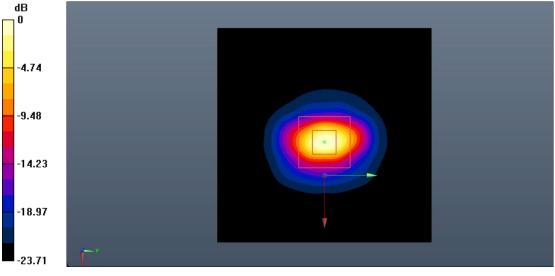
Peak SAR (extrapolated) = 36.4 W/kg

SAR(1 g) = 13.8 W/kg; SAR(10 g) = 6.19 W/kg

Maximum value of SAR (measured) = 15.8 W/kg

0 dB = 15.8 W/kg = 11.99 dB W/kg

2550MHz Date: 2022-9-20 Electronics: DAE4 Sn1527 Medium: Head 2550MHz Medium parameters used: f = 2550 MHz; σ = 1.937 S/m; ϵ_r = 37.945; ρ = 1000 kg/m³ Communication System: CW_TMC Frequency: 2550 MHz Duty Cycle: 1:1 Probe: EX3DV4 - SN7621 ConvF (8.17, 8.17, 8.17)


System Validation/Area Scan (91x91x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm Reference Value = 95.123 V/m; Power Drift = 0.10 dB SAR(1 g) = 14.0 W/kg; SAR(10 g) = 6.26 W/kg Maximum value of SAR (interpolated) = 15.9 W/kg

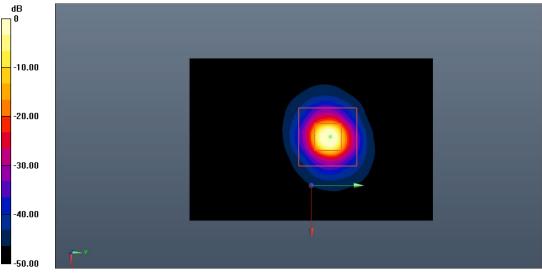
System Validation/Zoom Scan (7x7x7)/Cube0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 95.123 V/m; Power Drift = 0.10 dB

Peak SAR (extrapolated) = 36.6 W/kg

SAR(1 g) = 14.3 W/kg; SAR(10 g) = 6.38 W/kg

Maximum value of SAR (measured) = 16.2 W/kg

0 dB = 16.2 W/kg = 12.10 dB W/kg



5750MHz Date: 2022-10-14 Electronics: DAE4 Sn1527 Medium: Head 5750MHz Medium parameters used: f = 5750 MHz; σ = 5.106 S/m; $ε_r$ = 36.282; ρ = 1000 kg/m³ Communication System: CW_TMC Frequency: 5750 MHz Duty Cycle: 1:1 Probe: EX3DV4 - SN7621 ConvF (5.40, 5.40, 5.40)

System Validation/Area Scan (61x91x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm Reference Value = 64.049 V/m; Power Drift = -0.08 dB SAR(1 g) = 7.68 W/kg; SAR(10 g) = 2.19 W/kg Maximum value of SAR (interpolated) = 9.88 W/kg

System Validation/Zoom Scan (8x8x21)/Cube0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 64.049 V/m; Power Drift = -0.08 dB Peak SAR (extrapolated) = 24.1 W/kg SAR(1 g) = 7.51 W/kg; SAR(10 g) = 2.15 W/kg Maximum value of SAR (measured) = 9.83 W/kg

0 dB = 9.83 W/kg = 9.93 dB W/kg

END OF REPORT