

TEST REPORT

No. I20N00956-BT

for

IDEMIA Identity and Security France

ID Screen

Model Name: MPH-MB003A/MPH-MB003B

with

Hardware Version: V01 (M16N)/ V01 (M16I)/

V01 (M32N)/ V01 (M32I)

Software Version: V01

FCC ID: ZBW-MPHMB003

Issued Date: 2020-07-02

Note:

The test results in this test report relate only to the devices specified in this report. This report shall not be reproduced except in full without the written approval of SAICT.

Test Laboratory:

SAICT, Shenzhen Academy of Information and Communications Technology

Building G, Shenzhen International Innovation Center, No.1006 Shennan Road, Futian District, Shenzhen, Guangdong, P. R. China 518026. Tel:+86(0)755-33322000, Fax:+86(0)755-33322001

Email: yewu@caict.ac.cn. www.saict.ac.cn

CONTENTS

CON	NTE	NTS	2
1.	SUN	MMARY OF TEST REPORT	3
1.	1.	Test Items	3
1.	2.	TEST STANDARDS	3
1.	3.	TEST RESULT	3
1.	4.	TESTING LOCATION	3
1.	5.	PROJECT DATA	3
1.	6.	SIGNATURE	3
2.	CLI	IENT INFORMATION	4
2.	1.	APPLICANT INFORMATION	4
2.	2.	MANUFACTURER INFORMATION	4
3.	EQ	UIPMENT UNDER TEST (EUT) AND ANCILLARY EQUIPMENT (AE)	5
3.	1.	About EUT	5
3.	2.	INTERNAL IDENTIFICATION OF EUT USED DURING THE TEST	5
3.	3.	INTERNAL IDENTIFICATION OF AE USED DURING THE TEST	5
3.	4.	GENERAL DESCRIPTION	6
4.	REI	FERENCE DOCUMENTS	7
4.	1.	DOCUMENTS SUPPLIED BY APPLICANT	7
4.	2.	Reference Documents for testing	7
5.	TES	ST RESULTS	8
5.	1.	TESTING ENVIRONMENT	8
5.	2.	TEST RESULTS	8
5.	3.	STATEMENTS	8
6.	TES	ST EQUIPMENTS UTILIZED	9
7.	LA	BORATORY ENVIRONMENT 1	0
8.	ME	ASUREMENT UNCERTAINTY1	1
ANN	NEX	A: DETAILED TEST RESULTS1	2
A	.0 A1	NTENNA REQUIREMENT	2
		AXIMUM PEAK OUTPUT POWER 1	
		AND EDGES COMPLIANCE	
		ONDUCTED EMISSION	
A	.4 RA	ADIATED EMISSION	7
A	.5 20	DB BANDWIDTH	9
A	.6 TI	ME OF OCCUPANCY (DWELL TIME)	4
		UMBER OF HOPPING CHANNELS	
A	.8 CA	ARRIER FREQUENCY SEPARATION	2
A	.9 A (C Power line Conducted Emission	4

1. Summary of Test Report

1.1. Test Items

Description	ID Screen
Model Name	MPH-MB003A/MPH-MB003B
Applicant's name	IDEMIA Identity and Security France
Manufacturer's Name	IDEMIA Identity and Security France

1.2. Test Standards

FCC Part15-2019; ANSI C63.10-2013

1.3. Test Result

Pass

1.4. Testing Location

Address: Building G, Shenzhen International Innovation Center, No.1006 Shennan Road, Futian District, Shenzhen, Guangdong, P. R. China

1.5. Project data

Testing Start Date:	2020-04-16
Testing End Date:	2020-05-27

1.6. Signature

Lin Zechuang (Prepared this test report)

Tang Weisheng (Reviewed this test report)

Zhang Bojun (Approved this test report)

2. Client Information

2.1. Applicant Information

Company Name:	IDEMIA Identity and Security France			
Address:	IDEMIA Identity and Security France 2 place Samuel de Champlain			
Address.	92400 Courbevoie FRANCE			
Contact Person	Christophe SUEUR			
E-Mail	christophe.sueur@idemia.com			
Telephone:	+33130201434			
Fax:	/			

2.2. Manufacturer Information

Company Name:	IDEMIA Identity and Security France			
Address:	IDEMIA Identity and Security France 2 place Samuel de Champlain			
Address.	92400 Courbevoie FRANCE			
Contact Person	Christophe SUEUR			
E-Mail	christophe.sueur@idemia.com			
Telephone:	+33130201434			
Fax:	/			

3. Equipment Under Test (EUT) and Ancillary Equipment (AE)

3.1. <u>About EUT</u>	
Description	ID Screen
Model Name	MPH-MB003A/MPH-MB003B
Brand Name	IDEMIA
Frequency Band	2400MHz~2483.5MHz
Type of Modulation	GFSK/ π /4 DQPSK/8DPSK
Number of Channels	79
Antenna Type	Integrated
Antenna Gain	-1.0dBi
Power Supply	3.85V DC by Battery
FCC ID	ZBW-MPHMB003
Condition of EUT as received	No abnormality in appearance

Note: Components list, please refer to documents of the manufacturer; it is also included in the original test record of Shenzhen Academy of Information and Communications Technology.

3.2. Internal Identification of EUT used during the test

EUT ID*	IMEI	HW Version	SW Version	Receive Date
UT07aa	354520110003828	V01 (M16N)	V01	2020-04-21
UT01aa	354520110005740	V01 (M16N)	V01	2020-04-16

*EUT ID: is used to identify the test sample in the lab internally.

3.3. Internal Identification of AE used during the test

AE ID*	Description	AE ID*
AE1	Battery	/
AE2	Charger	Aa01a,Aa02a
AE3	Data Cable	Ca01a,Ca02a Cb01a,Cb02a

AE1

Model	MPH-MB003A(178177093)
Manufacturer	Zhongshan Tianmao Battery Co., Ltd.
Capacity	5000mAh19.25Wh
Nominal Voltage	3.85V
AE2	
Model	S008ACM0500200
Manufacturer	Ten Pao Electronics (Huizhou) Co., Ltd.
AE3	
Model	JWUB1454-M01
Manufacturer	HUIZHOU JUWEI ELECTRONICS CO., LTD

*AE ID: is used to identify the test sample in the lab internally.

3.4. <u>General Description</u>

The Equipment under Test (EUT) is a model of ID Screen with integrated antenna and battery. It consists of normal options: Lithium Battery, Charger and USB Cable.

Manual and specifications of the EUT were provided to fulfil the test.

Samples undergoing test were selected by the client.

4. <u>Reference Documents</u>

4.1. Documents supplied by applicant

EUT feature information is supplied by the applicant or manufacturer, which is the basis of testing.

4.2. Reference Documents for testing

The following documents listed in this section are referred for testing.

Reference	Title	Version
FCC Part 15	FCC CFR 47, Part 15, Subpart C:	2019
	15.205 Restricted bands of operation;	
	15.209 Radiated emission limits, general requirements;	
	15.247 Operation within the bands 902-928MHz,	
	2400–2483.5 MHz, and 5725–5850 MHz	
ANSI C63.10	American National Standard of Procedures for Compliance	2013
	Testing of Unlicensed Wireless Devices	

5. <u>Test Results</u>

5.1. Testing Environment

Normal Temperature: 15~35°C Relative Humidity: 20~75%

5.2. Test Results

No	Test cases Sub-clause Part 15C		Verdict	
0	Antenna Requirement	15.203	Р	
1	Maximum Peak Output Power	15.247 (b)	Р	
2	Band Edges Compliance	15.247 (d)	Р	
3	Conducted Spurious Emission	15.247 (d)) P	
4	Radiated Spurious Emission	15.247,15.205,15.209	Р	
5	Occupied 20dB bandwidth	15.247(a)	1	
6	Time of Occupancy(Dwell Time)	15.247(a)	Р	
7	Number of Hopping Channel	15.247(a)	Р	
8	Carrier Frequency Separation	15.247(a)	Р	
9	AC Power line Conducted Emission	15.107,15.207	Р	

See **ANNEX A** for details.

5.3. Statements

SAICT has evaluated the test cases requested by the applicant/manufacturer as listed in section 5.2 of this report, for the EUT specified in section 3, according to the standards or reference documents listed in section 4.2.

6. Test Equipments Utilized

Conducted test system

No.	Equipment	Model	Serial Number	Manufacturer	Calibration Due date	Calibration Period
1	Vector Signal Analyzer	FSV40	100903	Rohde & Schwarz	2021-01-15	1 year
2	Bluetooth Tester	CBT32	100584	Rohde & Schwarz	2021-01-01	1 year
3	Test Receiver	ESCI	100701	Rohde & Schwarz	2020-08-10	1 year
4	LISN	ENV216	102067	Rohde & Schwarz	2020-07-17	1 year

Radiated emission test system

NO.	Equipment	Equipment Model Serial Manufacturer		Manufacturor	Calibration	Calibration
NO.	Equipment	Woder	Number	Manufacturer	Due date	Period
1	Loop Antenna	HLA6120	35779	TESEQ	2022-04-25	3 years
2	BiLog Antenna	3142E	00224831	ETS-Lindgren	2021-05-17	3 years
3	Horn Antenna	3117	00066577	ETS-Lindgren	2022-04-02	3 years
4	Test Receiver	ESR7	101676	Rohde & Schwarz	2020-11-27	1 year
5	Spectrum	FSV40	101192	Rohde & Schwarz	2021-01-14	1 voor
5	Analyser	F3V40	101192	Ronde & Schwarz	2021-01-14	1 year
6	Chamber	FACT3-2.0	1285	ETS-Lindgren	2021-07-19	2 years
7	Antenna	QSH-SL-18-	17013	O por	2023-01-06	2 1/00/00
	Antenna	26-S-20	17013	3 Q-par	2023-01-00	3 years
8	Antenna	QSH-SL-18-	15979	15070 O par	2023-01-06	3 years
Ø	Antenna	40-K-SG	19919	Q-par		

Test software

No.	Equipment	Manufacturer	Version
1	TechMgr Software	CAICT	2.1.1
2	EMC32	Rohde & Schwarz	8.53.0
3	EMC32	Rohde & Schwarz	10.01.00

EUT is engineering software provided by the customer to control the transmitting signal. The EUT was programmed to be in continuously transmitting mode.

Anechoic chamber

Fully anechoic chamber by ETS-Lindgren

7. Laboratory Environment

Semi-anechoic chambe

Temperature	Min. = 15 °C, Max. = 35 °C		
Relative humidity	Min. = 20 %, Max. = 75 %		
Shielding effectiveness	0.014MHz-1MHz> 60 dB; 1MHz-18000MHz>90 dB		
Electrical insulation	> 2MΩ		
Ground system resistance	<4 Ω		
Normalised site attenuation (NSA)	$< \pm 4$ dB, 3 m distance, from 30 to 1000 MHz		

Shielded room

Temperature	Min. = 15 °C, Max. = 35 °C
Relative humidity	Min. = 20 %, Max. = 75 %
Shielding effectiveness	0.014MHz-1MHz> 60 dB; 1MHz-1000MHz>90 dB
Electrical insulation	> 2MΩ
Ground system resistance	<4 Ω

Fully-anechoic chamber

Temperature	Min. = 15 °C, Max. = 35 °C	
Relative humidity	Min. = 20 %, Max. = 75 %	
Shielding effectiveness	0.014MHz-1MHz> 60 dB; 1MHz-18000MHz>90 dB	
Electrical insulation	> 2MΩ	
Ground system resistance	<4 Ω	
Voltage Standing Wave Ratio (VSWR)	\leq 6 dB, from 1 to 18 GHz, 3 m distance	
Uniformity of field strength	Between 0 and 6 dB, from 80 to 6000 MHz	

8. <u>Measurement Uncertainty</u>

Test Name	Uncertainty (<i>k</i> =2)		
1. RF Output Power - Conducted	1.32dB		
2. Time of Occupancy - Conducted	0.58ms		
3. Occupied channel bandwidth - Conducted	66H	lz	
	30MHz≪f≪1GHz	1.41dB	
4 Transmitter Sourious Emission Conducted	1GHz≪f≪7GHz	1.92dB	
4 Transmitter Spurious Emission - Conducted	7GHz≪f≪13GHz	2.31dB	
	13GHz≪f≪26GHz	2.61dB	
	9kHz≪f≪30MHz	1.70dB	
5 Tronomittor Spurious Emission Redicted	30MHz≪f≪1GHz	4.90dB	
5. Transmitter Spurious Emission - Radiated	1GHz≪f≪18GHz	4.60dB	
	18GHz≪f≪40GHz	4.10dB	
6. AC Power line Conducted Emission	150kHz≪f≪30MHz	3.00dB	

ANNEX A: Detailed Test Results

A.0 Antenna requirement

Measurement Limit:

Standard	Requirement
FCC CRF Part 15.203	An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited. This requirement does not apply to carrier current devices or to devices operated under the provisions of §15.211, §15.213, §15.217, §15.219, or §15.221. Further, this requirement does not apply to intentional radiators that must be professionally installed, such as perimeter protection systems and some field disturbance sensors, or to other intentional radiators which, in accordance with §15.31(d), must be measured at the installation site. However, the installer shall be responsible for ensuring that the proper antenna is employed so that the limits in this part are not exceeded.

Conclusion: The Directional gains of antenna used for transmitting is -1.0dBi. The RF transmitter uses an integrate antenna without connector.

A.1 Maximum Peak Output Power

Method of Measurement: See ANSI C63.10-clause 7.8.5.

Use the following spectrum analyzer settings:

- a) Set Span = 6 MHz.
- b) Set RBW = 3 MHz.
- c) Set VBW = 3 MHz.
- d) Sweep time = auto.
- e) Detector = peak.
- f) Trace = max hold.
- g) Allow trace to stabilize.
- h) Use the marker-to-peak function to set the marker to the peak of the emission.
- I) The indicated level is the peak output power.

Measurement Limit:

Standard	Limit (dBm)
FCC CRF Part 15.247(b)(1)	< 30

Measurement Results:

Mada	Peak output power (dBm)			
Mode	2402 MHz (Ch0)	2441 MHz (Ch39)	2480 MHz (Ch78)	
GFSK	8.31	9.71	9.28	
π/4 DQPSK	7.49	8.85	8.47	
8DPSK	7.50	8.89	8.49	

Conclusion: Pass

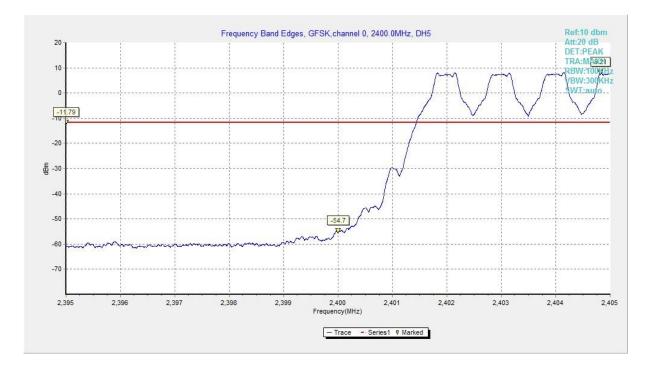
A.2 Band Edges Compliance

Measurement Limit:

Standard	Limit (dBc)	
FCC 47 CFR Part 15.247 (d)	>20	

Measurement Result:

Mode	Channel	Hopping	Test Results	Conclusion
0501	0	ON	Fig.1	Р
GFSK	78	ON	Fig.2	Р
π /4 DQPSK	0	ON	Fig.3	Р
	78	ON	Fig.4	Р
8DPSK	0	ON	Fig.5	Р
	78	ON	Fig.6	Р


Mode	Channel	Hopping	Test Results	Conclusion
OFOK	0	OFF	Fig.7	Р
GFSK	78	OFF	Fig.8	Р
π /4 DQPSK	0	OFF	Fig.9	Р
	78	OFF	Fig.10	Р
0000K	0	OFF	Fig.11	Р
8DPSK	78	OFF	Fig.12	Р

See below for test graphs.

Conclusion: Pass

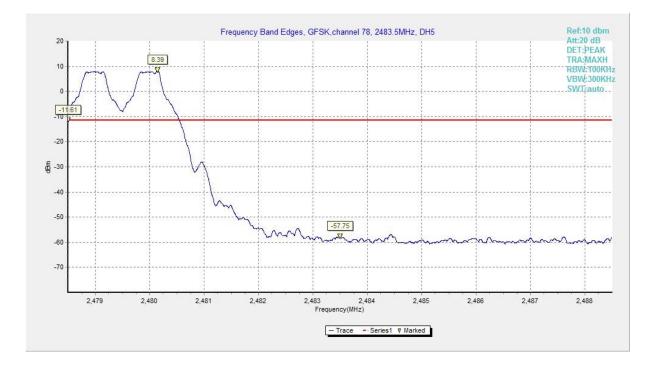
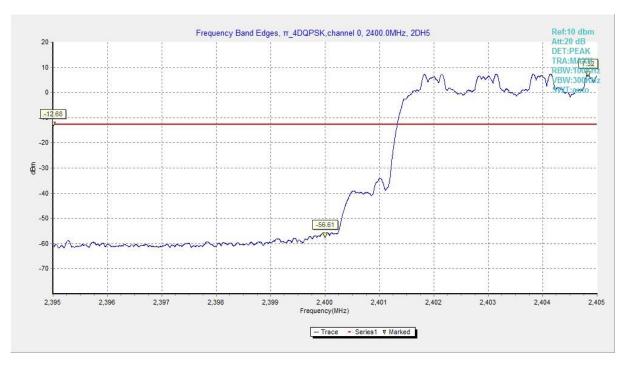



Fig. 2 Band Edges (GFSK, Ch 78, Hopping ON)

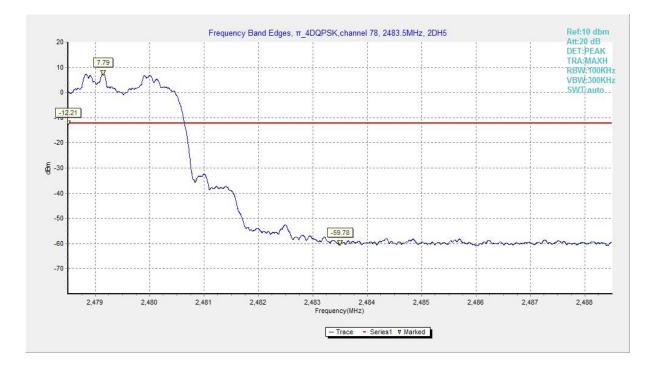
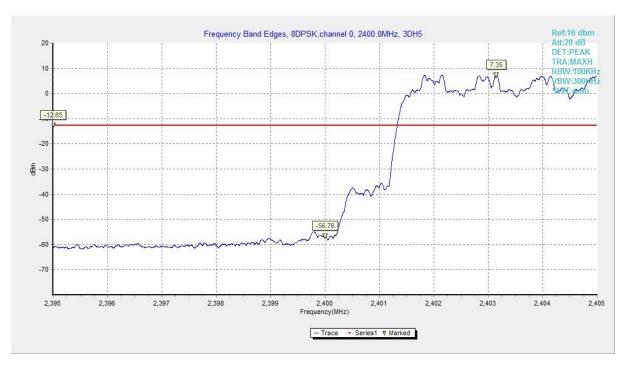



Fig. 4 Band Edges (**π** /4 DQPSK, Ch 78, Hopping ON)

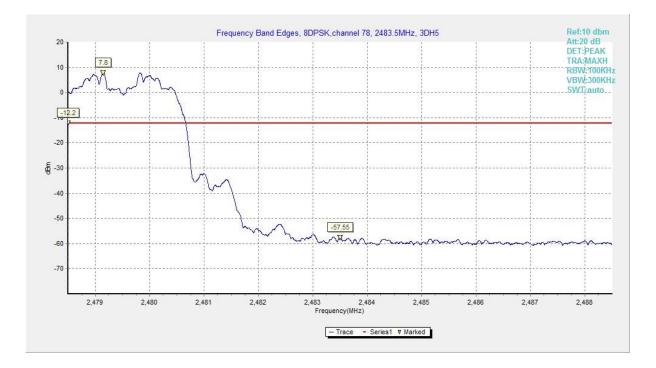
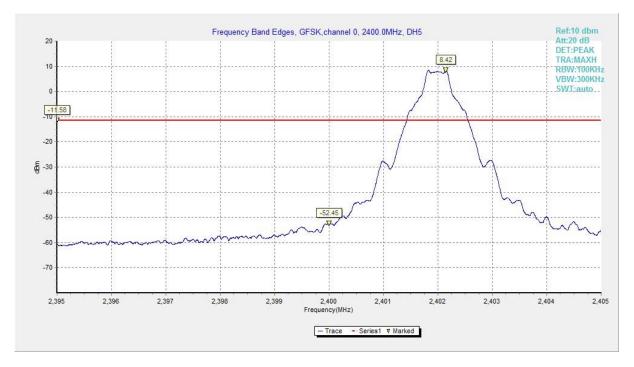



Fig. 6 Band Edges (8DPSK, Ch 78, Hopping ON)

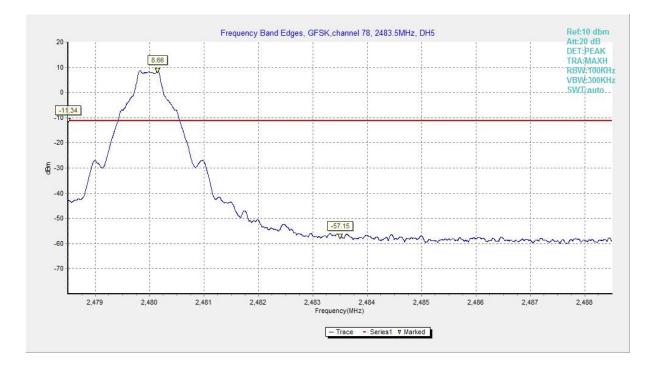
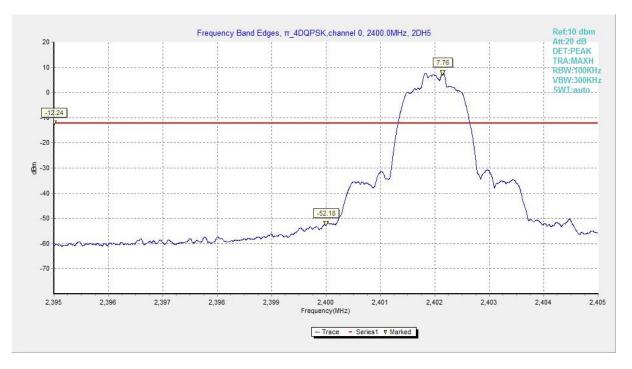



Fig. 8 Band Edges (GFSK, Ch 78, Hopping OFF)

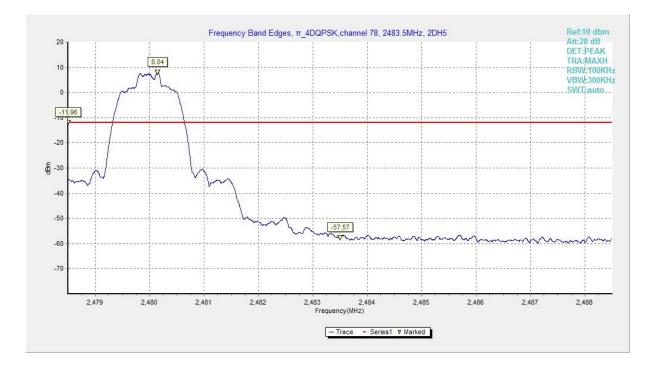
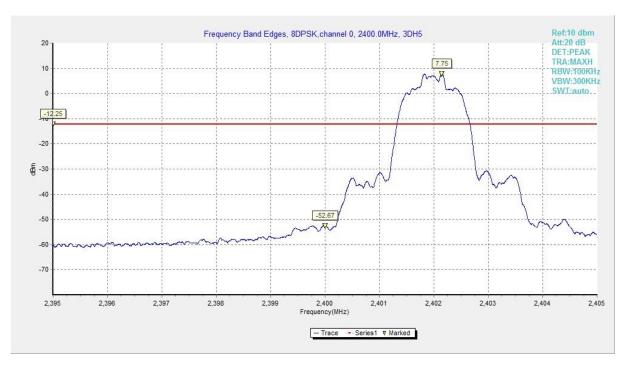



Fig. 10 Band Edges (**#** /4 DQPSK, Ch 78, Hopping OFF)

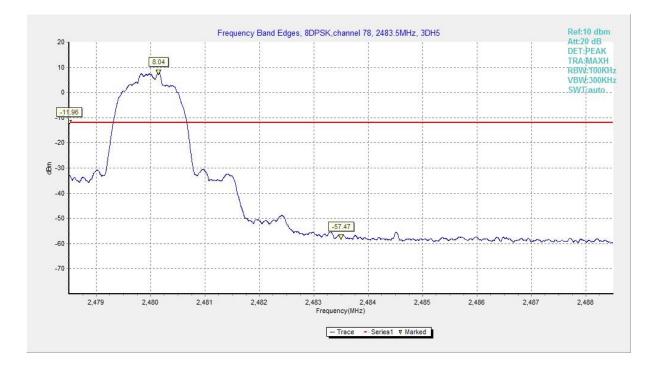


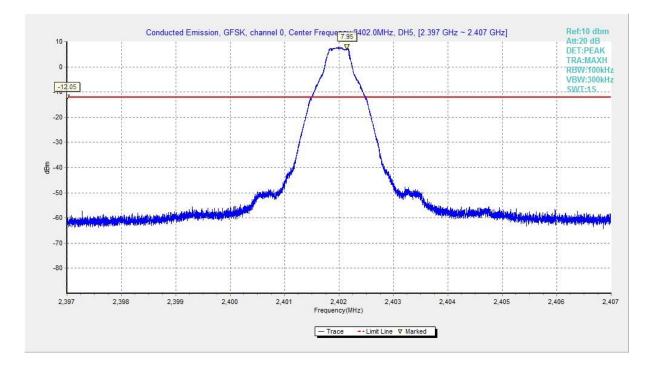
Fig. 12 Band Edges (8DPSK, Ch 78, Hopping OFF)

A.3 Conducted Emission

Measurement Limit:

Standard	Limit		
FCC 47 CFR Part 15.247 (d)	20dB below peak output power in 100 kHz		
	bandwidth		

Measurement Results:


MODE	Channel	Frequency Range	Test Results	Conclusion
GFSK	0	2.402 GHz	Fig.13	Р
		1GHz-3GHz	Fig.14	Р
		3GHz-10GHz	Fig.15	Р
	39	2.441 GHz	Fig.16	Р
		1GHz-3GHz	Fig.17	Р
		3GHz-10GHz	Fig.18	Р
	78	2.480 GHz	Fig.19	Р
		1GHz-3GHz	Fig.20	Р
		3GHz-10GHz	Fig.21	Р
π/4 DQPSK	0	2.402 GHz	Fig.22	Р
		1GHz-3GHz	Fig.23	Р
		3GHz-10GHz	Fig.24	Р
		2.441 GHz	Fig.25	Р
	39	1GHz-3Ghz	Fig.26	Р
		3GHz-10GHz	Fig.27	Р
	78	2.480 GHz	Fig.28	Р
		1GHz-3Ghz	Fig.29	Р
		3GHz-10GHz	Fig.30	Р
8DPSK	0	2.402 GHz	Fig.31	Р
		1GHz-3GHz	Fig.32	Р
		3GHz-10GHz	Fig.33	Р
	39	2.441 GHz	Fig.34	Р
		1GHz-3GHz	Fig.35	Р
		3GHz-10GHz	Fig.36	Р
	78	2.480 GHz	Fig.37	Р
		1GHz-3GHz	Fig.38	Р
		3GHz-10GHz	Fig.39	Р
/	All channels	30 MHz-1GHz	Fig.40	Р
		10GHz-26GHz	Fig.41	Р

See below for test graphs.

Conclusion: Pass

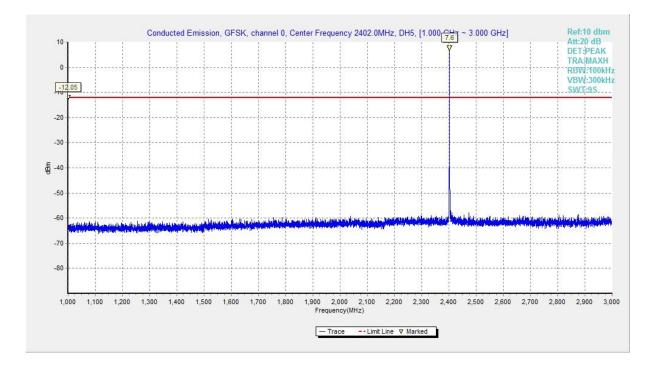


Fig. 14 Conducted Spurious Emission (GFSK, Ch0, 1 GHz-3 GHz)

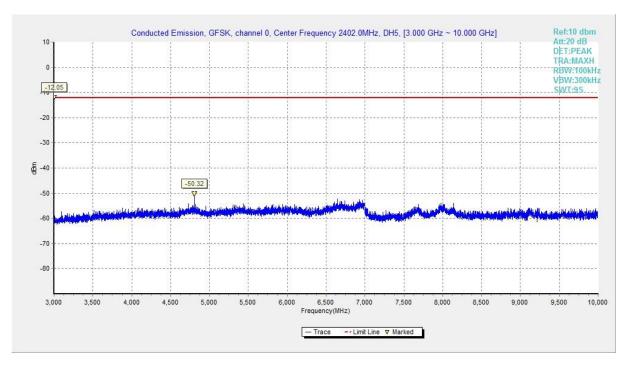


Fig. 15 Conducted Spurious Emission (GFSK, Ch0, 3GHz-10 GHz)

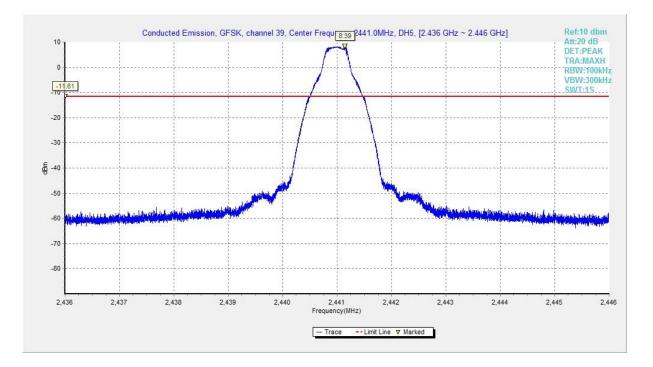


Fig. 16 Conducted Spurious Emission (GFSK, Ch39, 2.441GHz)

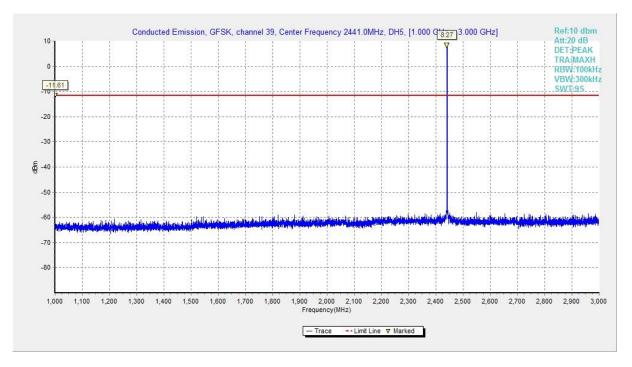


Fig. 17 Conducted Spurious Emission (GFSK, Ch39, 1GHz-3 GHz)

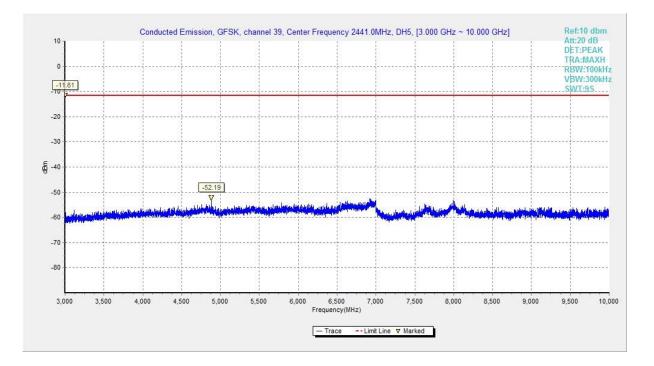


Fig. 18 Conducted Spurious Emission (GFSK, Ch39, 3GHz-10 GHz)

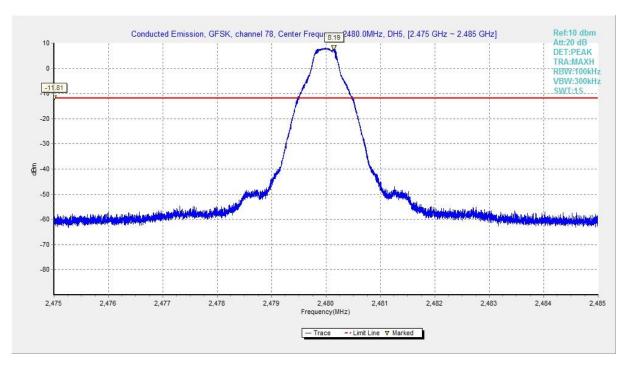


Fig. 19 Conducted Spurious Emission (GFSK, Ch78, 2.480GHz)

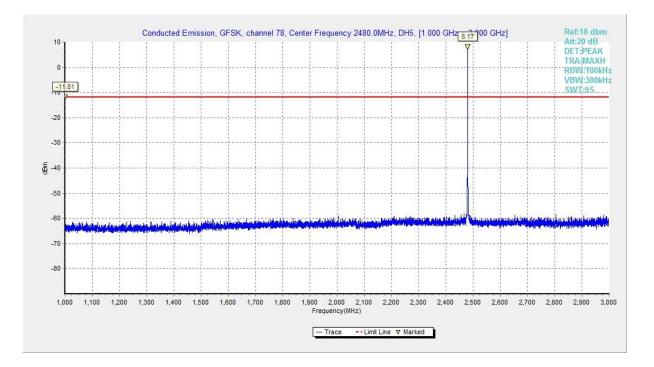
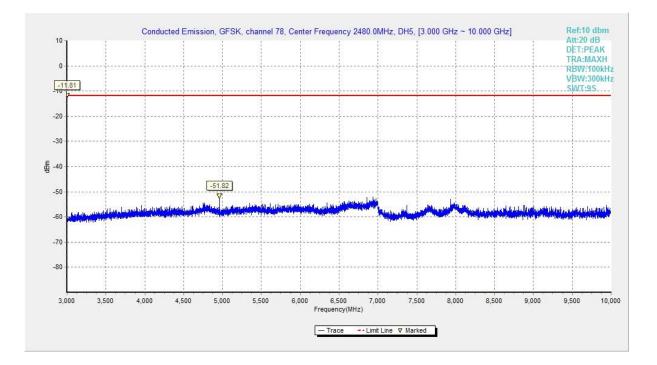



Fig. 20 Conducted Spurious Emission (GFSK, Ch78, 1GHz-3 GHz)

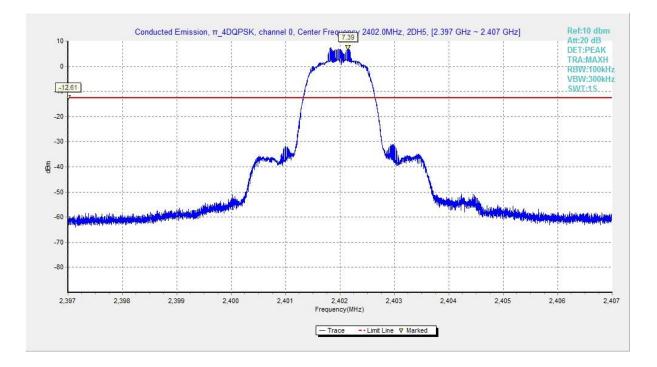


Fig. 22 Conducted Spurious Emission (π/4 DQPSK, Ch0, 2.402GHz)

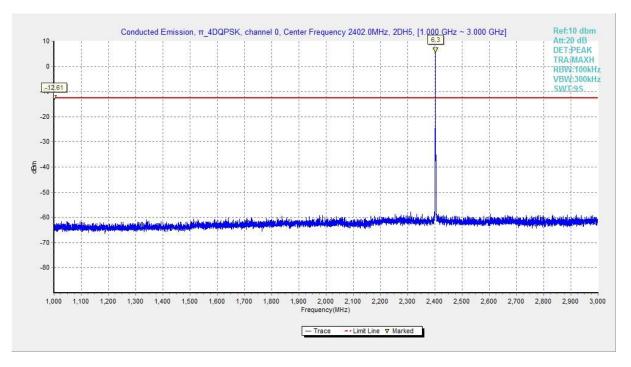


Fig. 23 Conducted Spurious Emission (π/4 DQPSK, Ch0, 1GHz-3 GHz)

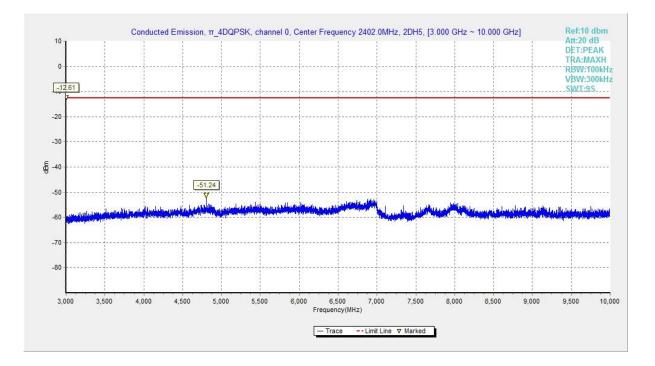


Fig. 24 Conducted Spurious Emission (**π** /4 DQPSK, Ch0, 3GHz-10 GHz)

Fig. 25 Conducted Spurious Emission (π/4 DQPSK, Ch39, 2.441GHz)

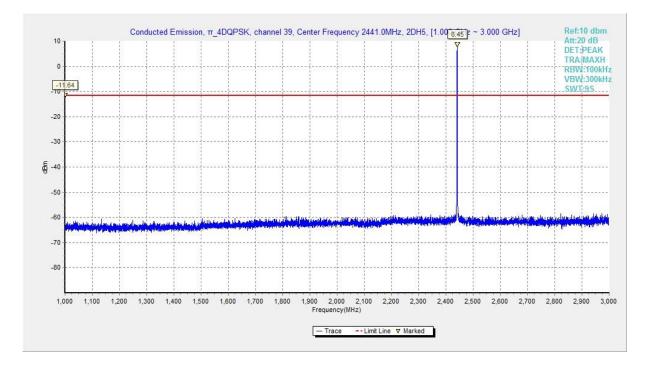


Fig. 26 Conducted Spurious Emission (π/4 DQPSK, Ch39, 1GHz-3 GHz)

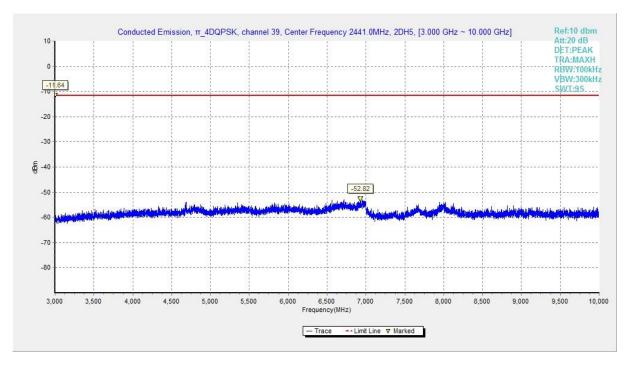


Fig. 27 Conducted Spurious Emission (π/4 DQPSK, Ch39, 3GHz-10 GHz)

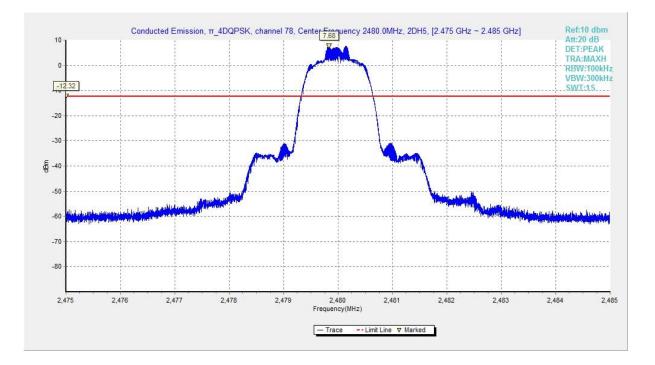


Fig. 28 Conducted Spurious Emission (π /4 DQPSK, Ch78, 2.480GHz)

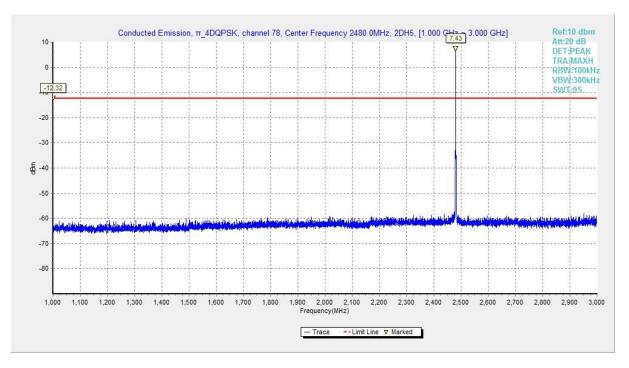


Fig. 29 Conducted Spurious Emission (π/4 DQPSK, Ch78, 1GHz-3 GHz)

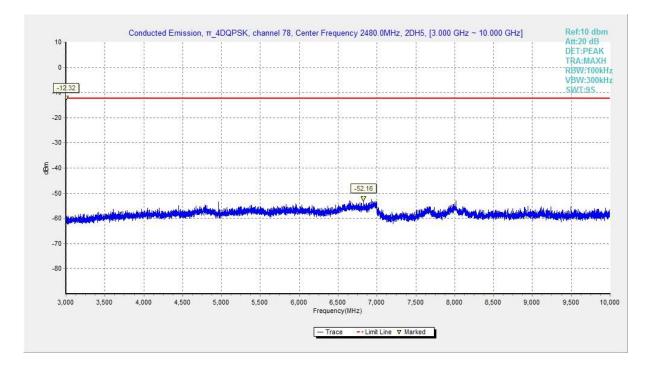


Fig. 30 Conducted Spurious Emission (π/4 DQPSK, Ch78, 3GHz-10 GHz)

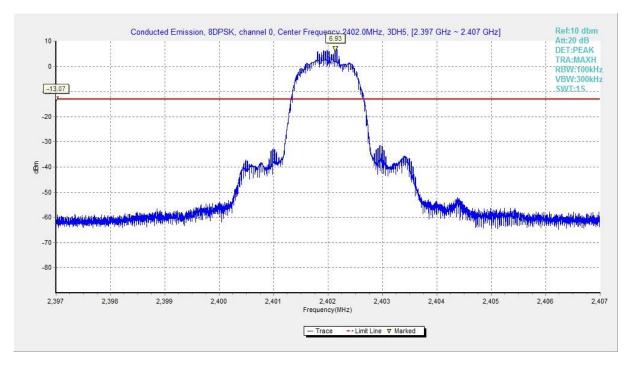


Fig. 31 Conducted Spurious Emission (8DPSK, Ch0, 2.402GHz)

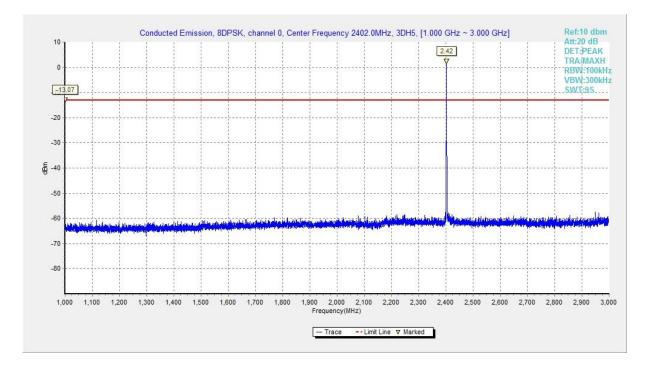


Fig. 32 Conducted Spurious Emission (8DPSK, Ch0, 1GHz-3 GHz)

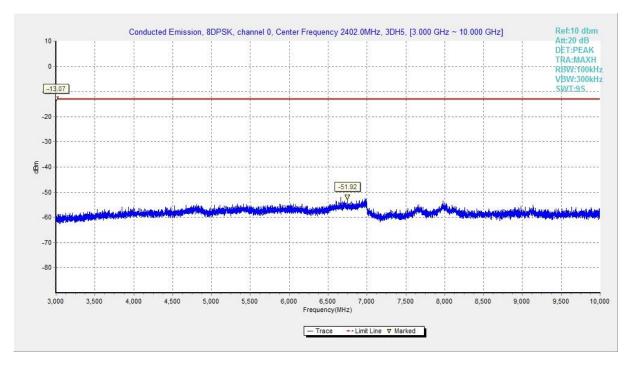


Fig. 33 Conducted Spurious Emission (8DPSK, Ch0, 3GHz-10 GHz)

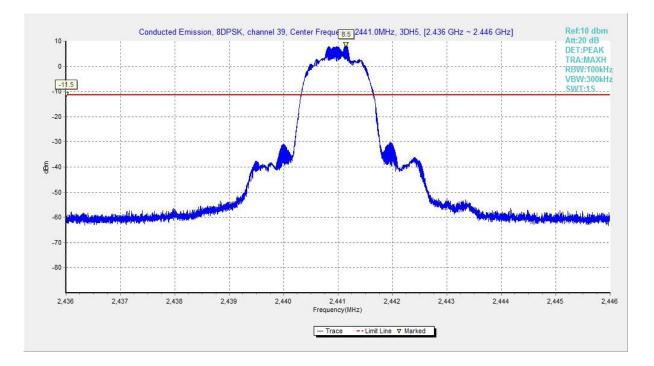


Fig. 34 Conducted Spurious Emission (8DPSK, Ch39, 2.441GHz)

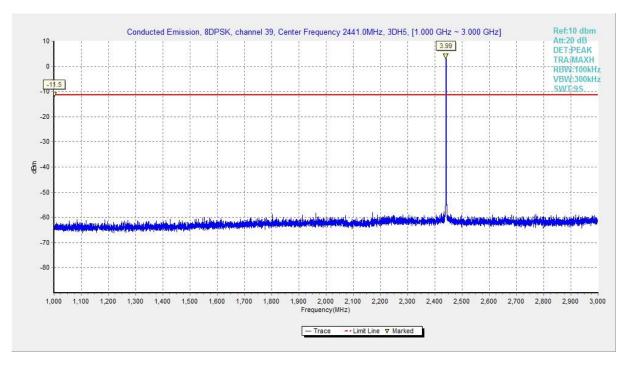


Fig. 35 Conducted Spurious Emission (8DPSK, Ch39, 1GHz-3 GHz)

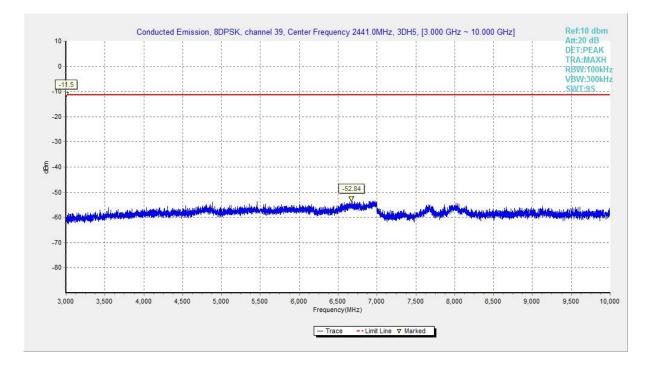


Fig. 36 Conducted Spurious Emission (8DPSK, Ch39, 3GHz-10 GHz)

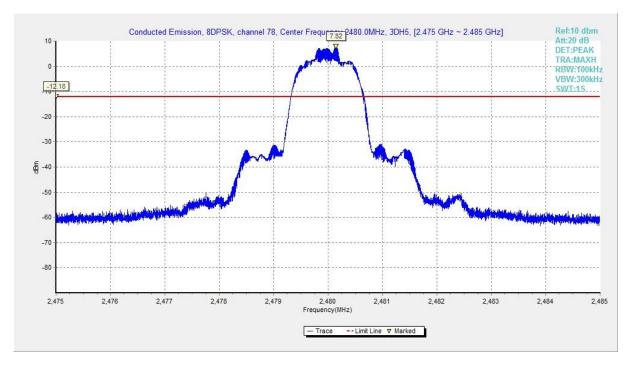


Fig. 37 Conducted Spurious Emission (8DPSK, Ch78, 2.480GHz)

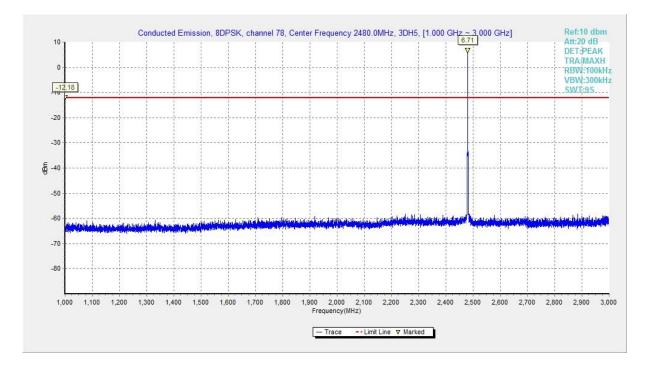
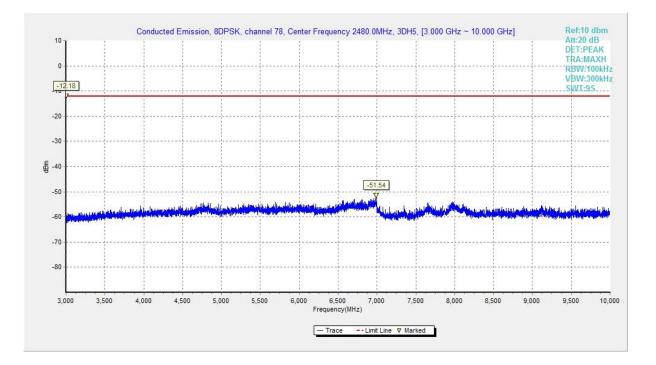



Fig. 38 Conducted Spurious Emission (8DPSK, Ch78, 1GHz-3 GHz)

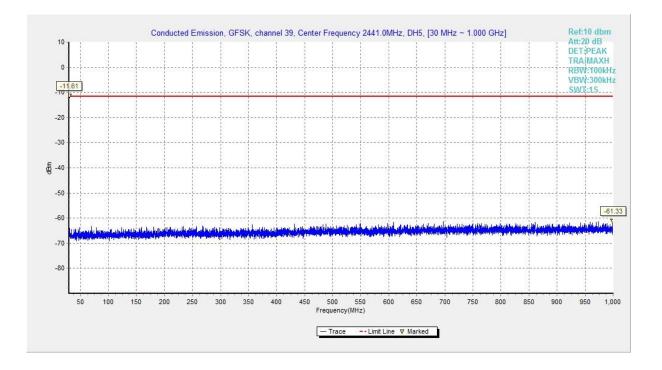


Fig. 40 Conducted Spurious Emission (All channel, 30 MHz-1 GHz)

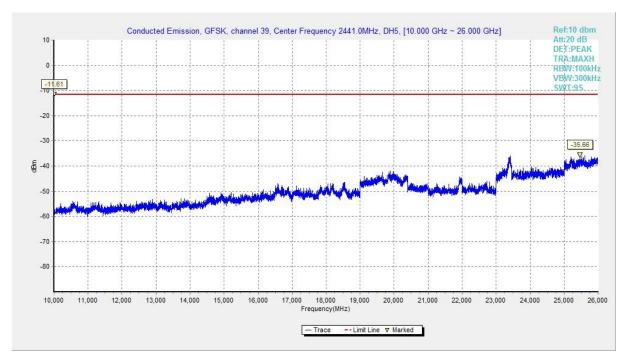


Fig. 41 Conducted Spurious Emission All channel, 10 GHz-26 GHz,)

A.4 Radiated Emission

Measurement Limit:

Standard	Limit	
FCC 47 CFR Part 15.247, 15.205, 15.209	20dB below peak output power	

In addition, radiated emissions which fall in the restricted bands, as defined in § 15.205(a), must also comply with the radiated emission limits specified in § 15.209(a) (see § 15.205(c)).

Limit in restricted band:

Frequency of emission (MHz)	Field strength(µV/m)	Measurement distance(meters)
0.009-0.490	2400/F(kHz)	300
0.490-1.705	24000/F(kHz)	30
1.705-30.0	30	30
30-88	100	3
88-216	150	3
216-960	200	3
Above 960	500	3

Test Condition:

The EUT was placed on a non-conductive table. The measurement antenna was placed at a distance of 3 meters from the EUT. During the tests, the antenna height and the EUT azimuth were varied in order to identify the maximum level of emissions from the EUT. This maximization process was repeated with the EUT positioned in each of its three orthogonal orientations.

Frequency of emission	RBW/VBW	Sweep Time(s)
(MHz)		
30-1000	120kHz/300kHz	5
1000-4000	1MHz/3MHz	15
4000-18000	1MHz/3MHz	40
18000-26500	1MHz/3MHz	20

Note: According to the performance evaluation, the radiated emission margin of EUT is over 20dB in the band from 9kHz to 30MHz. Therefore, the measurement starts from 30MHz to tenth harmonic.

The measurement results include the horizontal polarization and vertical polarization measurements.

Measurement Results:

Mode	Channel	Frequency Range	Test Results	Conclusion
	0	1 GHz ~18 GHz	Fig.42	Р
	39	1 GHz ~18 GHz	Fig.43	Р
GFSK	78	1 GHz ~18 GHz	Fig.44	Р
	Restricted Band(CH0)	2.38 GHz ~ 2.45 GHz	Fig.45	Р
	Restricted Band (CH78)	2.45 GHz ~ 2.5 GHz	Fig.46	Р
	0	1 GHz ~18 GHz	Fig.47	Р
π /4	39	1 GHz ~18 GHz	Fig.48	Р
-	78	1 GHz ~18 GHz	Fig.49	Р
DQPSK	Restricted Band (CH0)	2.38 GHz ~ 2.45 GHz	Fig.50	Р
	Restricted Band (CH78)	2.45 GHz ~ 2.5 GHz	Fig.51	Р
	0	1 GHz ~18 GHz	Fig.52	Р
	39	1 GHz ~18 GHz	Fig.53	Р
8DPSK	78	1 GHz ~18 GHz	Fig.54	Р
	Restricted Band (CH0)	2.38 GHz ~ 2.45 GHz	Fig.55	Р
	Restricted Band (CH78)	2.45 GHz ~ 2.5 GHz	Fig.56	Р
		9 kHz ~30 MHz	Fig.57	Р
/	All channels	30 MHz ~1 GHz	Fig.58	Р
		18 GHz ~26.5 GHz	Fig.59	Р

Worst Case Result

GFSK CH39 (1-18GHz)

Frequency (MHz)	MaxPeak (dBuV/m)	Average (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Pol	Corr. (dB)
2973.20000	49.7		74.00	24.3	Н	11.0
4881.60000	41.9		74.00	32.1	Н	-7.4
7723.20000	46.1		74.00	27.9	Н	-0.6
11150.0000	49.2		74.00	24.8	Н	3.0
14180.5000	51.1		74.00	22.9	V	7.1
17826.4000	56.9		74.00	17.1	Н	13.6
2997.00000		37.5	54.00	16.5	V	11.0
4881.60000		35.3	54.00	18.7	Н	-7.4
7327.20000		32.5	54.00	21.5	Н	-0.6
9958.40000		36.5	54.00	17.5	Н	2.3
14142.0000		39.2	54.00	14.8	Н	7.0
17949.2000		45.5	54.00	8.5	Н	14.9

π /4 DQPSK CH39 (1-18GHz)

Frequency	MaxPeak	Average	Limit	Margin	Pol	Corr.
(MHz)	(dBuV/m)	(dBuV/m)	(dBuV/m)	(dB)	1.01	(dB)
2907.20000	49.3		74.00	24.7	Н	10.5
5024.00000	40.2		74.00	33.8	V	-7.2
7433.60000	44.5		74.00	29.5	Н	-0.6
9952.00000	48.2		74.00	25.8	Н	2.4
14109.0000	51.1		74.00	22.9	V	6.9
17790.0000	56.5		74.00	17.5	V	13.2
2967.00000		37.7	54.00	16.3	V	10.9
5011.20000		28.5	54.00	25.5	V	-7.1
7667.20000		33.4	54.00	20.6	Н	-0.4
9958.40000		36.6	54.00	17.4	V	2.3
14188.5000		39.1	54.00	14.9	Н	7.1
17949.2000		45.3	54.00	8.7	Н	14.9

8DPSK CH39 (1-18GHz)

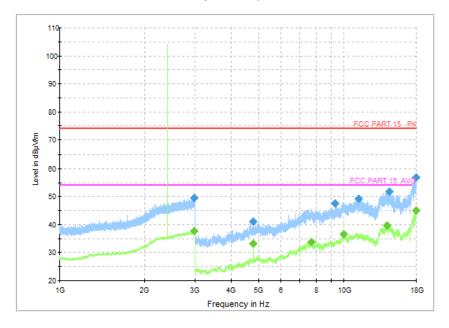
Frequency (MHz)	MaxPeak (dBuV/m)	Average (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Pol	Corr. (dB)
2971.60000	49.1		74.00	24.9	Н	11.0
4648.80000	41.1		74.00	32.9	V	-7.7
6996.80000	44.8		74.00	29.2	V	-2.0
9906.40000	48.1		74.00	25.9	V	2.0
14123.0000	51.2		74.00	22.8	V	6.9
17824.0000	56.4		74.00	17.6	V	13.5
2997.00000		37.5	54.00	16.5	V	11.0
4881.60000		31.2	54.00	22.8	Н	-7.4
7731.20000		33.5	54.00	20.5	Н	-0.6
9904.00000		36.3	54.00	17.7	V	1.9
14381.0000		39.1	54.00	14.9	V	7.1
17948.4000		45.4	54.00	8.6	Н	14.9

Note:

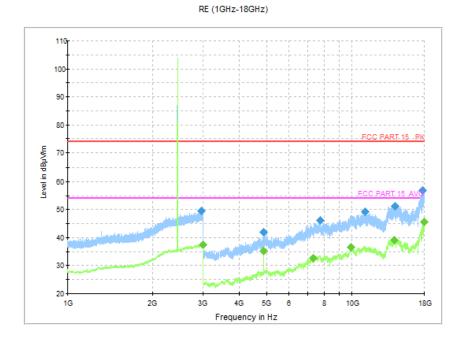
A "reference path loss" is established and the A_{Rpl} is the attenuation of "reference path loss", and Antenna Factor, the gain of the preamplifier, the cable loss. P_{Mea} is the field strength recorded from the instrument.

The measurement results are obtained as described below:

Result= P_{Mea} +Cable Loss +Antenna Factor-Gain of the preamplifier.


See below for test graphs.

Conclusion: Pass


©Copyright. All rights reserved by SAICT.

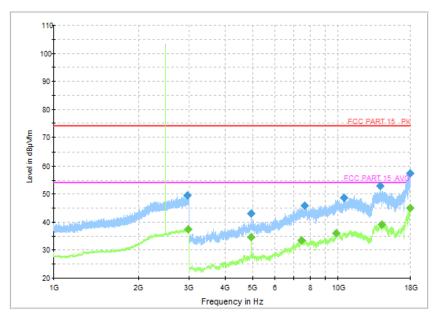

Fig. 42 Radiated Spurious Emission (GFSK, Ch0, 1 GHz ~18 GHz)

Fig. 43 Radiated Spurious Emission (GFSK, Ch39, 1 GHz ~18 GHz)

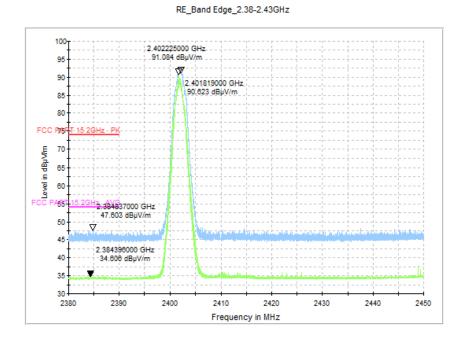
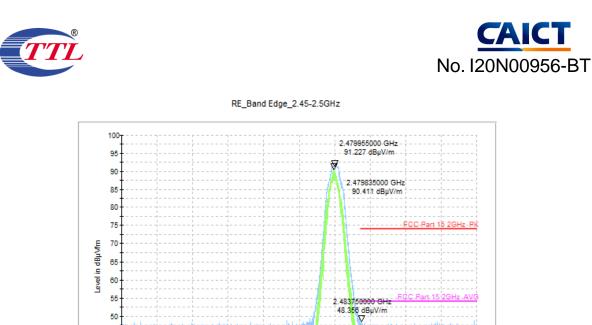



Fig. 45 Radiated Band Edges (GFSK, Ch0, 2380GHz~2450GHz)

Frequency in MHz

2470

2.483525000 GHz 39.468 dBuV/m

2490

2500

2480

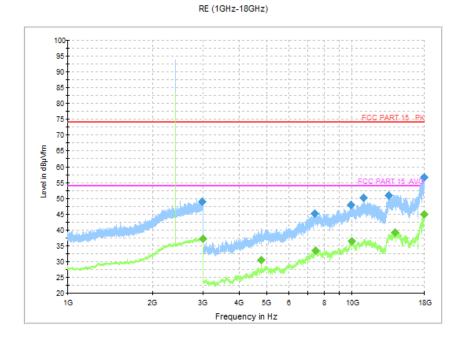


Fig. 47 Radiated Spurious Emission (π/4 DQPSK, Ch0, 1 GHz ~18 GHz)

50 45

2460

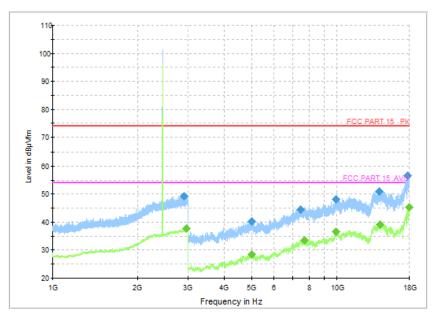


Fig. 48 Radiated Spurious Emission (π/4 DQPSK, Ch39, 1 GHz ~18 GHz)

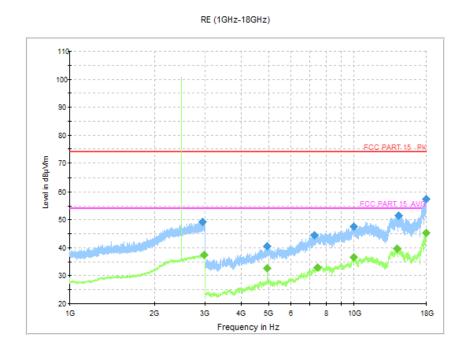
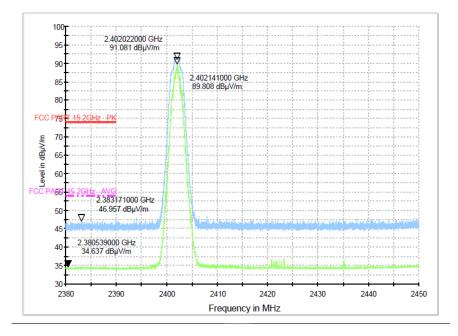
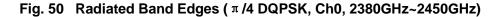




Fig. 49 Radiated Spurious Emission (π/4 DQPSK, Ch78, 1 GHz ~18 GHz)

RE_Band Edge_2.38-2.43GHz

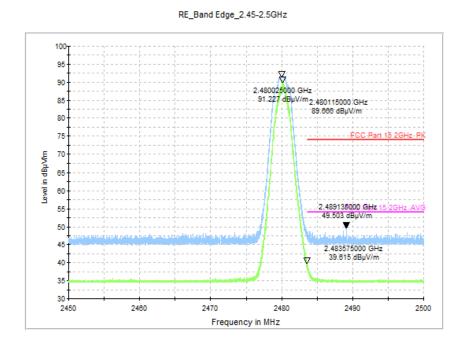


Fig. 51 Radiated Band Edges (**π** /4 DQPSK, Ch78, 2450GHz~2500GHz)

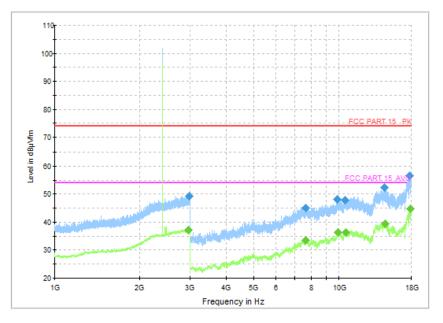


Fig. 52 Radiated Spurious Emission (8DPSK, Ch0, 1 GHz ~18 GHz)

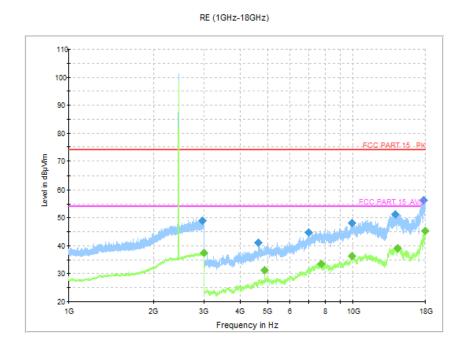


Fig. 53 Radiated Spurious Emission (8DPSK, Ch39, 1 GHz ~18 GHz)

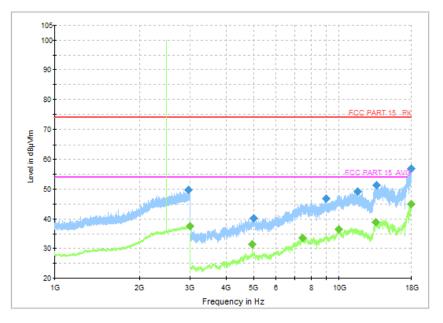


Fig. 54 Radiated Spurious Emission (8DPSK, Ch78, 1 GHz ~18 GHz)

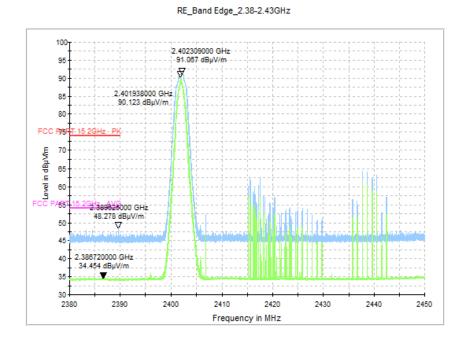
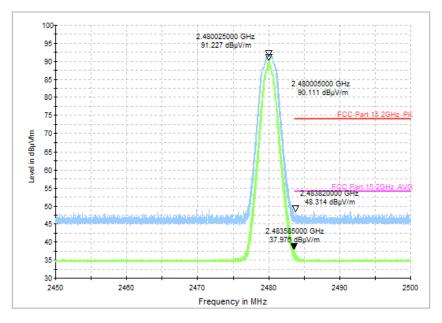



Fig. 55 Radiated Band Edges (8DPSK, Ch0, 2380GHz~2450GHz)

RE_Band Edge_2.45-2.5GHz

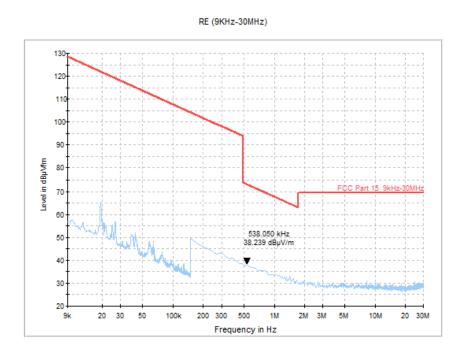
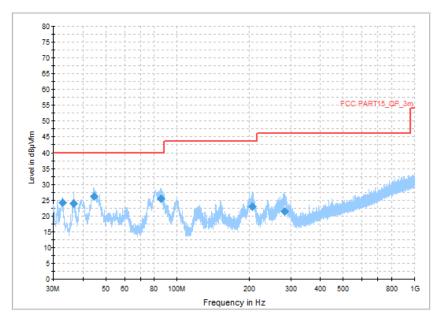



Fig. 57 Radiated Spurious Emission (All Channels, 9 kHz ~30 MHz)

RE (30MHz-1GHz)

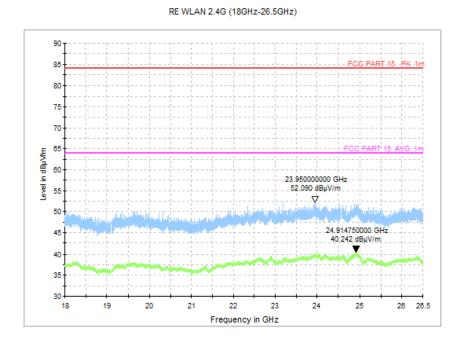


Fig. 59 Radiated Spurious Emission (All Channels, 18 GHz ~26.5 GHz)