TEST REPORT # No. I20N00956-RF-UMTS for **IDEMIA Identity and Security France** **ID Screen** Model Name: MPH-MB003A MPH-MB003B FCC ID: ZBW-MPHMB003 with Hardware Version: V01 (M16N) V01 (M16I) V01 (M32N) V01 (M32I) Software Version: V01 Issued Date: 2020-06-12 ## Note: The test results in this test report relate only to the devices specified in this report. This report shall not be reproduced except in full without the written approval of SAICT. #### **Test Laboratory:** ## SAICT, Shenzhen Academy of Information and Communications Technology Building G, Shenzhen International Innovation Center, No.1006 Shennan Road, Futian District, Shenzhen, Guangdong, P. R. China 518026. Tel:+86(0)755-33322000, Fax:+86(0)755-33322001 Email: yewu@caict.ac.cn. www.saict.ac.cn # **REPORT HISTORY** | Report Number | Revision | Description | Issue Date | |-------------------|----------|-------------|------------| | I20N00956-RF-UMTS | Rev.0 | 1st edition | 2020-06-12 | # **CONTENTS** | 1. | SUMMARY OF TEST REPORT | | |-----------|---|----| | 1.1. | TEST ITEMS | 4 | | 1.2. | TEST STANDARDS | 4 | | 1.3. | TEST RESULT | 4 | | 1.4. | TESTING LOCATION | 4 | | 1.5. | PROJECT DATA | 4 | | 1.6. | SIGNATURE | 4 | | 2. | CLIENT INFORMATION | 5 | | 2.1. | APPLICANT INFORMATION | 5 | | 2.2. | MANUFACTURER INFORMATION | 5 | | 3. | EQUIPMENT UNDER TEST (EUT) AND ANCILLARY EQUIPMENT (AE) | 6 | | 3.1. | ABOUT EUT | 6 | | 3.2. | | | | 3.3. | INTERNAL IDENTIFICATION OF AE USED DURING THE TEST | 6 | | 3.4. | | | | 4. | REFERENCE DOCUMENTS | | | 5. | LABORATORY ENVIRONMENT | | | 6. | SUMMARY OF TEST RESULTS | | | 7. | STATEMENT | | | 8. | TEST EQUIPMENTS UTILIZED | | | | NEX A: MEASUREMENT RESULTS | | | | .1 OUTPUT POWER | | | | 2 FIELD STRENGTH OF SPURIOUS RADIATION | | | Α | 3 FREQUENCY STABILITY | 26 | | Α | .4 OCCUPIED BANDWIDTH | 29 | | Α | 5 EMISSION BANDWIDTH | 38 | | | 6 BAND EDGE COMPLIANCE | | | | 7 CONDUCTED SPURIOUS EMISSION | | | Α | 8 PEAK-TO-AVERAGE POWER RATIO | 65 | ## 1. SUMMARY OF TEST REPORT ## 1.1. Test Items Description ID Screen Model Name MPH-MB003A MPH-MB003B Applicant's name IDEMIA Identity and Security France Manufacturer's Name IDEMIA Identity and Security France ## 1.2. Test Standards FCC Part 2/22/24 10-1-18 Edition ANSI C63.26 2015 KDB971168 D01 v03r01 ## 1.3. Test Result All test items are pass. Please refer to "6 Summary of Test Results" for detail. ## 1.4. Testing Location Address: Building G, Shenzhen International Innovation Center, No.1006 Shennan Road, Futian District, Shenzhen, Guangdong, P. R. China 518026 ## 1.5. Project Data Testing Start Date: 2020-04-16 Testing End Date: 2020-06-01 ## 1.6. Signature Lai Minghua (Prepared this test report) **Huang Qiuqin** 富钦钦 (Reviewed this test report) Zhang Hao (Approved this test report) Address /Post: ## 2. CLIENT INFORMATION ## 2.1. Applicant Information Company Name: IDEMIA Identity and Security France IDEMIA Identity and Security France 2 place Samuel de Champlain 92400 Courbevoie FRANCE Contact Person: Christophe SUEUR Contact Email christophe.sueur@idemia.com Telephone: +33 130201434 Fax: / ## 2.2. Manufacturer Information Company Name: IDEMIA Identity and Security France Address /Post: IDEMIA Identity and Security France 2 place Samuel de Champlain 92400 Courbevoie FRANCE Contact Person: Christophe SUEUR Contact Email christophe.sueur@idemia.com Telephone: +33 130201434 Fax: / ## 3. EQUIPMENT UNDER TEST (EUT) AND ANCILLARY EQUIPMENT # (AE) ## 3.1. About EUT Description ID Screen Model Name MPH-MB003A MPH-MB003B FCC ID ZBW-MPHMB003 Frequency Bands WCDMA Band 2,5 Antenna Integrated Extreme vol. Limits 3.6VDC to 4.4VDC (nominal: 3.85VDC) Extreme temp. Tolerance 0°C to +50°C Condition of EUT as received No abnormality in appearance ## 3.2. Internal Identification of EUT used during the test | EUT ID* | IMEI | HW Version | SW Version | Sample Arrival Date | |---------|-----------------|-------------------|------------|---------------------| | UT06aa | 354520110005583 | V01 (M16N) | V01 | 2020-04-16 | | UT01aa | 354520110005740 | V01 (M16N) | V01 | 2020-04-16 | ^{*}EUT ID: is used to identify the test sample in the lab internally. ## 3.3. Internal Identification of AE used during the test ## AE ID* Description AE1 Battery AE1 Model MPH-MB003A(178177093) Manufacturer Zhongshan Tianmao Battery Co., Ltd. Capacitance 5000 mAh 19.25Wh Nominal Voltage 3.85V #### 3.4. General Description The Equipment Under Test (EUT) is a model ID Screen with integrated antenna. It consists of normal options: lithium battery, charger. Manual and specifications of the EUT were provided to fulfil the test. Samples undergoing test were selected by the Client. ^{*}AE ID: is used to identify the test sample in the lab internally. # 4. REFERENCE DOCUMENTS The following documents listed in this section are referred for testing. | U | | | |---------------|---|---------| | Reference | Title | Version | | FCC Part 22 | PUBLIC MOBILE SERVICES | 10-1-18 | | | | Edition | | FCC Part 2 | FREQUENCY ALLOCATIONS AND RADIO TREATY | 10-1-18 | | | MATTERS; GENERAL RULES AND REGULATIONS | Edition | | FCC Part 24 | , | | | FCC Part 24 | PERSONAL COMMUNICATIONS SERVICES | Edition | | | American National Standard of Procedures for Compliance | | | ANSI C63.26 | Testing of Licensed Transmitters Used in Licensed Radio | 2015 | | | Service | | | KDB971168 D01 | Power Meas License Digital Systems | v03r01 | # 5. LABORATORY ENVIRONMENT **Shielded room** did not exceed following limits along the RF testing: | Temperature | Min. = 15 °C, Max. = 35 °C | |--------------------------|--| | Relative humidity | Min. = 15 %, Max. = 75 % | | Shielding effectiveness | 0.014MHz-1MHz>60 dB; 1MHz-18000MHz>90 dB | | Electrical insulation | >2 MΩ | | Ground system resistance | < 4 Ω | ## Fully-anechoic chamber did not exceed following limits along the EMC testing | Temperature | Min. = 15 °C, Max. = 35 °C | |------------------------------------|---| | Relative humidity | Min. = 15 %, Max. = 75 % | | Shielding effectiveness | 0.014MHz-1MHz> 60 dB; 1MHz-18000MHz>90 dB | | Electrical insulation | > 2MΩ | | Ground system resistance | < 4 Ω | | Voltage Standing Wave Ratio (VSWR) | ≤ 6 dB, from 1 to 18 GHz, 3 m distance | | Uniformity of field strength | Between 0 and 6 dB, from 80 to 6000 MHz | # 6. SUMMARY OF TEST RESULTS | Abbreviations used in this clause: | | | |------------------------------------|---------|---| | | Р | Pass | | Verdict Column | F | Fail | | | NA | Not applicable | | | NM | Not measured | | Location Column | A/B/C/D | The test is performed in test location A, B, C or D | | Location Column | A/B/C/D | which are described in section 1.1 of this report | ## **WCDMA Band II** | Items | Test Name | Clause in FCC rules | Section in this report | Verdict | |-------|--------------------------------------|----------------------|------------------------|---------| | 1 | Output Power | 2.1046/24.232 | A.1 | Р | | 2 | Field Strength of Spurious Radiation | 2.1053/24.238 | A.2 | Р | | 3 | Frequency Stability | 2.1055/24.235 | A.3 | Р | | 4 | Occupied Bandwidth | 2.1049/24.238 | A.4 | Р | | 5 | Emission Bandwidth | 2.1049/24.238 | A.5 | Р | | 6 | Band Edge Compliance | 2.1051/24.238 | A.6 | Р | | 7 | Conducted Spurious
Emission | 2.1051/24.238 | A.7 | Р | | 8 | Peak-to-Average Power
Ratio | 24.232/KDB971168 D01 | A.8 | Р | ## **WCDMA Band V** | Items | Test Name | Clause in FCC rules | Section in this report | Verdict | |-------|--------------------------------------|---------------------|------------------------|---------| | 1 | Output Power | 2.1046/22.913 | A.1 | Р | | 2 | Field Strength of Spurious Radiation | 2.1053/22.917 | A.2 | Р | | 3 | Frequency Stability | 2.1055/22.355 | A.3 | Р | | 4 | Occupied Bandwidth | 2.1049/22.917 | A.4 | Р | | 5 | Emission Bandwidth | 2.1049/22.917 | A.5 | Р | | 6 | Band Edge Compliance | 2.1051/22.917 | A.6 | Р | | 7 | Conducted Spurious
Emission | 2.1051/22.917 | A.7 | Р | | 8 | Peak-to-Average Power
Ratio | KDB971168 D01 | A.8 | Р | # 7. STATEMENT Since the information of samples in this report is provided by the client, the laboratory is not responsible for the authenticity of sample information. This report takes measured values as criterion of test conclusion. The test conclusion meets the li mit requirements. # 8. TEST EQUIPMENTS UTILIZED | NO. | Description | Туре | Manufacture | Series Number | Cal Due Date | |-----|--|-----------------------|-------------------------|---------------|--------------| | 1 | Test Receiver | ESR7 | R&S | 101676 | 2020-11-27 | | 2 | BiLog Antenna | 3142E | ETS | 00224831 | 2021-05-17 | | 3 | Horn Antenna | 3117 | ETS-lindgren | 00066577 | 2022-04-02 | | 4 | Horn Antenna | QSH-SL-18
-26-S-20 | Q-par | 17013 | 2023-01-06 | | 5 | Antenna | BBHA
9120D | Schwarzbeck | 1593 | 2022-12-05 | | 6 | Antenna | VUBA 9117 | Schwarzbeck | 207 | 2020-07-16 | | 7 | Antenna | QWH-SL-18
-40-K-SG | Q-par | 15979 | 2023-01-06 | | 8 | preamplifier | 83017A | Agilent | MY39501110 | / | | 9 | Signal Generator | SMB100A | R&S | 179725 | 2020-11-27 | | 10 | Fully Anechoic
Chamber | FACT3-2.0 | ETS-Lindgren | 1285 | 2021-07-19 | | 11 | Spectrum Analyzer | FSV40 | R&S | 101192 | 2021-01-14 | | 12 | Universal Radio
Communication
Tester | CMU200 | R&S | 114545 | 2021-01-14 | | 13 | Universal Radio
Communication
Tester | CMU200 | R&S | 123210 | 2020-12-13 | | 14 | Spectrum Analyzer | FSU | R&S | 101506 | 2020-12-13 | | 15 | Temperature
Chamber | SH-241 | ESPECs | 92007516 | 2020-10-15 | | 16 | DC Power Supply | U3606A | Agilent
Technologies | MY50450012 | 2020-11-13 | ## **Test software** | Item | Name | Vesion | |----------|-------|------------------
 | Radiated | EMC32 | Version 10.01.00 | ## **ANNEX A: MEASUREMENT RESULTS** ## **A.1 OUTPUT POWER** #### Reference FCC: CFR Part 2.1046, 22.913, 24.232 ## A.1.1 Summary During the process of testing, the EUT was controlled via Rhode & Schwarz Digital Radio Communication tester (CMU-200 or CMW500) to ensure max power transmission and proper modulation. This result contains max output power and EIRP measurements for the EUT. In all cases, output power is within the specified limits. #### A.1.2 Conducted #### A.1.2.1 Method of Measurements The EUT was set up for the max output power with pseudo random data modulation. These measurements were done at 3 frequencies, 1852.4 MHz, 1880.0MHz and 1907.6MHz for WCDMA Band II and 826.4MHz, 836.6MHz and 846.6MHz for WCDMA Band V (bottom, middle and top of operational frequency range). #### Limit According to FCC Part 2.1046 #### **WCDMA Band II** ## A.1.2.2 Measurement result #### **QPSK** | | CH | Frequency(MHz) | output power(dBm) | |-----------|------|----------------|-------------------| | WCDMA | 9262 | 1852.4 | 23.18 | | (Band II) | 9400 | 1880.0 | 23.29 | | | 9538 | 1907.6 | 23.43 | #### 16QAM | | СН | Frequency(MHz) | output power(dBm) | |-----------|------|----------------|-------------------| | WCDMA | 9262 | 1852.4 | 22.32 | | (Band II) | 9400 | 1880.0 | 22.43 | | | 9538 | 1907.6 | 22.51 | ## WCDMA Band V Measurement result QPSK | | CH | Frequency(MHz) | output power(dBm) | |----------|------|----------------|-------------------| | WCDMA | 4132 | 826.4 | 23.25 | | (Band V) | 4183 | 836.6 | 23.11 | | | 4233 | 846.6 | 23.16 | ## **16QAM** | | СН | Frequency(MHz) | output power(dBm) | |----------|------|----------------|-------------------| | WCDMA | 4132 | 826.4 | 22.36 | | (Band V) | 4183 | 836.6 | 22.25 | | | 4233 | 846.6 | 22.28 | Note: Expanded measurement uncertainty is U = 0.49dB, k = 1.96 #### A.1.3 Radiated #### A.1.3.1 Description This is the test for the maximum radiated power from the EUT. Rule Part 24.232(b) specifies, "Mobile/portable stations are limited to 2 watts e.i.r.p. Peak power" and 24.232(c) specifies that "Peak transmit power must be measured over any interval of continuous transmission using instrumentation calibrated in terms of an rms-equivalent voltage."Rule Part 22.913(a) specifies "The ERP of mobile transmitters and auxiliary test transmitters must not exceed 7 Watts." #### A.1.3.2 Method of Measurement 1. For radiated emissions measurements performed at frequencies less than or equal to 1 GHz, EUT was placed on a 80 cm high non-conductive stand at a 3 meter test distance from the receive antenna. For radiated measurements performed at frequencies above 1 GHz, EUT was placed on a 1.5 meter high non-conductive stand at a 3 meter test distance from the receive antenna. Receiving antenna was placed on the antenna mast 3 meters from the EUT. For emission measurements. The receiving antenna shall be varied from 1 m to 4 m in height above the reference ground in a search for the relative positioning that produces the maximum radiated signal level. The test setup refers to figure below. Detected emissions were maximized at each frequency by rotating the EUT through 360° and adjusting the receiving antenna polarization. The radiated emission measurements of all transmit frequencies in three channels (High, Middle, Low) were measured with peak detector. - 2. The EUT is then put into continuously transmitting mode at its maximum power level during the test. And the maximum value of the receiver should be recorded as (Pr). - 3. The EUT shall be replaced by a substitution antenna. The test setup refers to figure below. In the chamber, an substitution antenna for the frequency band of interest is placed at the reference point of the chamber. An RF Signal source for the frequency band of interest is connected to the substitution antenna with a cable that has been constructed to not interfere with the radiation pattern of the antenna. A power (P_{Mea}) is applied to the input of the substitution antenna, and adjusts the level of the signal generator output until the value of the receiver reach the previously recorded (P_r). The power of signal source (P_{Mea}) is recorded. The test should be performed by rotating the test item and adjusting the receiving antenna polarization. - 4. A amplifier should be connected to the Signal Source output port. And the cable should be connect between the Amplifier and the Substitution Antenna. - The cable loss (P_{cl}) , the Substitution Antenna Gain(dBi) (G_a) and the Amplifier Gain (P_{Ag}) should be recorded after test. - The measurement results are obtained as described below: - Power(EIRP)= $P_{Mea} P_{Ag} P_{cl} + G_a$ - 5. This value is EIRP since the measurement is calibrated using an antenna of known gain (2.15 dBi) and known input power. - 6. ERP can be calculated from EIRP by subtracting the gain of the dipole, ERP = EIRP -2.15dB. ## **WCDMA Band II-EIRP** ## Limits | | Burst Peak EIRP (dBm) | | | |---------------|-----------------------|--|--| | WCDMA Band II | ≤33dBm (2W) | | | #### Measurement result ## QPSK | Frequency(MHz) | P _{Mea} (dBm) | P _{cl} (dB)+
P _{Ag} (dB) | Ga Antenna Gain(dBi) | EIRP(dBm) | Limit(dBm) | Polarization | |----------------|------------------------|---|----------------------|-----------|------------|--------------| | 1852.40 | -16.99 | -29.30 | 9.80 | 22.11 | 33.00 | Н | | 1880.00 | -15.83 | -29.40 | 9.80 | 23.37 | 33.00 | Н | | 1907.60 | -17.59 | -29.30 | 9.80 | 21.51 | 33.00 | Н | ## **16QAM** | Frequency(MHz) | P _{Mea} (dBm) | P _{cl} (dB)+
P _{Ag} (dB) | Ga Antenna Gain(dBi) | EIRP(dBm) | Limit(dBm) | Polarization | |----------------|------------------------|---|----------------------|-----------|------------|--------------| | 1852.40 | -17.01 | -29.30 | 9.80 | 22.09 | 33.00 | Н | | 1880.00 | -15.95 | -29.40 | 9.80 | 23.25 | 33.00 | Н | | 1907.60 | -17.59 | -29.30 | 9.80 | 21.52 | 33.00 | Н | Frequency: 1880.00MHz Peak EIRP(dBm)= PMea(-15.83dBm)-(Pcl+PAg)(-29.40dB)+Ga (9.80dB) =23.37dBm ANALYZER SETTINGS: RBW = VBW = 5MHz ## **WCDMA Band V-ERP** #### Limits | | Burst Peak ERP (dBm) | | | |--------------|----------------------|--|--| | WCDMA Band V | ≤38.45dBm | | | #### Measurement result ## **QPSK** | Frequency(MHz) | P _{Mea} (dBm) | P _{cl} (dB)+
P _{Ag} (dB) | Ga Antenna
Gain(dBi) | Correction(dB) | ERP(dBm) | Limit(dBm) | Polarization | |----------------|------------------------|---|-------------------------|----------------|----------|------------|--------------| | 826.40 | -16.07 | -33.60 | -0.30 | 2.15 | 15.08 | 38.45 | Н | | 836.60 | -15.95 | -33.50 | -0.30 | 2.15 | 15.10 | 38.45 | Н | | 846.60 | -15.40 | -33.50 | -0.30 | 2.15 | 15.65 | 38.45 | Н | #### **16QAM** | Frequency(MHz) | P _{Mea} (dBm) | P _{cl} (dB)+
P _{Ag} (dB) | Ga Antenna
Gain(dBi) | Correction
(dB) | ERP(dBm) | Limit(dBm) | Polarization | |----------------|------------------------|---|-------------------------|--------------------|----------|------------|--------------| | 826.40 | -16.17 | -33.60 | -0.30 | 2.15 | 14.98 | 38.45 | V | | 836.60 | -15.91 | -33.50 | -0.30 | 2.15 | 15.14 | 38.45 | V | | 846.60 | -15.40 | -33.50 | -0.30 | 2.15 | 15.65 | 38.45 | ٧ | Frequency: 846.60MHz Peak ERP(dBm)= PMea(-15.40dBm)-(Pcl+PAg)(-33.50dB)+Ga (-0.30dB)-2.15dB=15.65dBm #### ANALYZER SETTINGS: RBW = VBW = 5MHz Note: The maximum value of expanded measurement uncertainty for this test item is U = 2.90dB(30MHz-3GHz)/3.50dB(3GHz-18GHz)/3.90dB(18GHz-26.5GHz), k = 2 Note: Both of Vertical and Horizontal polarizations are evaluated, but only the worst case is recorded in this report. ## A.2 FIELD STRENGTH OF SPURIOUS RADIATION #### Reference FCC: CFR 2.1053, 22.917, 24.238. #### A.2.1 Measurement Method The spectrum was scanned from 30 MHz to the 10th harmonic of the highest frequency generated within the equipment. The resolution bandwidth is set 1MHz as outlined in Part 24.238, Part 22.917 and Part 27.53. The spectrum was scanned with the mobile station transmitting at carrier frequencies that pertain to low, mid and high channels of WCDMA Band II and WCDMA Band V. #### The procedure of radiated spurious emissions is as follows: 1. For radiated emissions measurements performed at frequencies less than or equal to 1 GHz, EUT was placed on a 80 cm high non-conductive stand at a 3 meter test distance from the receive antenna. For radiated measurements performed at frequencies above 1 GHz, EUT was placed on a 1.5 meter high non-conductive stand at a 3 meter test distance from the receive antenna. Receiving antenna was placed on the antenna mast 3 meters from the EUT. For emission measurements. The receiving antenna shall be varied from 1 m to 4 m in height above the reference ground in a search for the relative positioning that produces the maximum radiated signal level. The test setup refers to figure below. Detected emissions were maximized at each frequency by rotating the EUT through 360° and adjusting the receiving antenna polarization. The radiated emission measurements of all transmit frequencies in three channels (High, Middle, Low) were measured with peak detector. - 2. The EUT is then put into continuously transmitting mode at its maximum power level during the test. And the maximum value of the receiver should be recorded as (Pr). - 3. The EUT shall be replaced by a substitution antenna. The test setup refers to figure below. In the chamber, an substitution antenna for the frequency band of interest is placed at the reference point of the chamber. An RF Signal source for the frequency band of interest is connected to the substitution antenna with a cable that has been constructed to not interfere with the radiation pattern of the antenna. A power (P_{Mea}) is applied to the input
of the substitution antenna, and adjusts the level of the signal generator output until the value of the receiver reach the previously recorded (P_{r}). The power of signal source (P_{Mea}) is recorded. The test should be performed by rotating the test item and adjusting the receiving antenna polarization. - 4. The Path loss (P_{pl}) between the Signal Source with the Substitution Antenna and the Substitution Antenna Gain(dBi) (G_a) should be recorded after test. - A amplifier should be connected in for the test. - The Path loss (Ppl) is the summation of the cable loss and the gain of the amplifier. - The measurement results are obtained as described below: - Power(EIRP)= $P_{Mea} P_{pl} + G_a$ - 5. This value is EIRP since the measurement is calibrated using an antenna of known gain (2.15 dBi) and known input power. - 6. ERP can be calculated from EIRP by subtracting the gain of the dipole, ERP = EIRP -2.15dB. #### A.2.2 Measurement Limit Part 24.238 and Part 22.917 specify that the power of any emission outside of the authorized operating frequency ranges must be attenuated below the transmitting power (P) by a factor of at least 43 + 10 log(P) dB. The specification that emissions shall be attenuated below the transmitter power (P) by at least 43 + 10 log (P) dB, translates in the relevant power range (1 to 0.001 W) to -13 dBm. At 1 W the specified minimum attenuation becomes 43 dB and relative to a 30 dBm (1 W) carrier becomes a limit of -13 dBm. At 0.001 W (0 dBm) the minimum attenuation is 13 dB, which again yields a limit of -13 dBm. In this way a translation of the specification from relative to absolute terms is carried out. #### A.2.3 Measurement Results Radiated emissions measurements were made only at the upper, middle, and lower carrier frequencies of WCDMA Band II (1852.4 MHz, 1880.0MHz and 1907.6MHz) and WCDMA Band V(826.4MHz, 836.6MHz and 846.6MHz). It was decided that measurements at these three carrier frequencies would be sufficient to demonstrate compliance with emissions limits because it was seen that all the significant spurs occur well outside the band and no radiation was seen from a carrier in one block of the WCDMA Band II and WCDMA Band V into any of the other blocks. The equipment must still, however, meet emissions requirements with the carrier at all frequencies over which it is capable of operating and it is the manufacturer's responsibility to verify this. ## A.2.4 Measurement Results Table | Frequency | Channel | Frequency Range | Result | |---------------|---------------------|-----------------|--------| | | Low | 30MHz-10GHz | Pass | | WCDMA Band V | WCDMA Band V Middle | | Pass | | | High | 30MHz-10GHz | Pass | | | Low | 30MHz-20GHz | Pass | | WCDMA Band II | Middle | 30MHz-20GHz | Pass | | | High | 30MHz-20GHz | Pass | ## A.2.5 Sweep Table | Working | Subrange (GHz) | RBW | VBW | Sweep time (s) | |-----------------|----------------|--------|--------|----------------| | Frequency | oublange (OHZ) | NBW | 7511 | Owecp time (5) | | | 0.03~1 | 100KHz | 300KHz | 10 | | | 1-2 | 1 MHz | 3 MHz | 2 | | WCDMA Band V | 2~5 | 1 MHz | 3 MHz | 3 | | | 5~8 | 1 MHz | 3 MHz | 3 | | | 8~10 | 1 MHz | 3 MHz | 3 | | | 0.03~1 | 100KHz | 300KHz | 10 | | | 1-2 | 1 MHz | 3 MHz | 2 | | | 2~5 | 1 MHz | 3 MHz | 3 | | WCDMA Band II | 5~8 | 1 MHz | 3 MHz | 3 | | WCDIVIA BAHU II | 8~11 | 1 MHz | 3 MHz | 3 | | | 11~14 | 1 MHz | 3 MHz | 3 | | | 14~18 | 1 MHz | 3 MHz | 3 | | | 18~20 | 1 MHz | 3 MHz | 2 | ## WCDMA BAND II Mode Channel 9662/1932.4MHz (QPSK) | Fragues ov (MHz) | PMea(dB | Path | Antenna | Peak | Limit(dB | Polarization | |------------------|---------|------|-----------|-----------|----------|--------------| | Frequency(MHz) | m) | loss | Gain(dBi) | EIRP(dBm) | m) | Polarization | | 2241.20 | -50.99 | 0.90 | 9.80 | -42.09 | -13.00 | V | | 2834.00 | -51.12 | 1.00 | 10.70 | -41.42 | -13.00 | V | | 8722.00 | -53.86 | 2.00 | 12.00 | -43.86 | -13.00 | Н | | 9966.80 | -52.08 | 2.20 | 11.20 | -43.08 | -13.00 | V | | 13518.60 | -49.61 | 2.50 | 12.40 | -39.71 | -13.00 | V | | 17827.80 | -45.89 | 3.60 | 12.80 | -36.69 | -13.00 | V | ## WCDMA BAND II Mode Channel 9800/1960MHz (QPSK) | F (NALL.) | PMea(dB | Path | Antenna | Peak | Limit(dB | D. L. C. C. | |----------------|---------|------|-----------|-----------|----------|--------------| | Frequency(MHz) | m) | loss | Gain(dBi) | EIRP(dBm) | m) | Polarization | | 2207.60 | -50.95 | 0.90 | 9.80 | -42.05 | -13.00 | V | | 2736.80 | -51.72 | 1.00 | 10.70 | -42.02 | -13.00 | V | | 7508.40 | -56.05 | 1.90 | 11.30 | -46.65 | -13.00 | V | | 10019.60 | -51.51 | 2.20 | 11.30 | -42.41 | -13.00 | V | | 13509.15 | -49.76 | 2.50 | 12.40 | -39.86 | -13.00 | V | | 17747.10 | -46.55 | 3.60 | 12.80 | -37.35 | -13.00 | V | ## WCDMA BAND II Mode Channel 9938/1987.6MHz (QPSK) | Fragueney/MHz) | PMea(dB | Path | Antenna | Peak | Limit(dB | Polarization | |----------------|---------|------|-----------|-----------|----------|--------------| | Frequency(MHz) | m) | loss | Gain(dBi) | EIRP(dBm) | m) | Polatization | | 2258.00 | -51.04 | 0.90 | 9.80 | -42.14 | -13.00 | V | | 2914.40 | -52.29 | 1.00 | 10.70 | -42.59 | -13.00 | Н | | 6488.80 | -61.35 | 1.60 | 13.10 | -49.85 | -13.00 | V | | 9928.40 | -51.52 | 2.20 | 11.20 | -42.52 | -13.00 | V | | 13524.45 | -48.90 | 2.50 | 12.40 | -39.00 | -13.00 | V | | 17739.30 | -47.18 | 3.60 | 12.80 | -37.98 | -13.00 | Н | ## WCDMA BAND II Mode Channel 9662/1932.4MHz (16QAM) | Fragueney/MHz) | P _{Mea} (dBm | Path | Antenna | Peak | Limit(dB | Polarization | |----------------|-----------------------|------|-----------|-----------|----------|--------------| | Frequency(MHz) |) | loss | Gain(dBi) | EIRP(dBm) | m) | Polanzation | | 2222.80 | -50.50 | 0.90 | 9.80 | -41.60 | -13.00 | V | | 2986.40 | -51.68 | 1.00 | 10.70 | -41.98 | -13.00 | V | | 8604.00 | -53.89 | 2.00 | 12.00 | -43.89 | -13.00 | V | | 9928.80 | -51.29 | 2.20 | 11.20 | -42.29 | -13.00 | Н | | 13542.90 | -49.25 | 2.50 | 12.40 | -39.35 | -13.00 | Н | | 17730.60 | -46.95 | 3.30 | 12.80 | -37.45 | -13.00 | V | ## WCDMA BAND II Mode Channel 9800/1960MHz (16QAM) | Frequency(MHz) | P _{Mea} (dBm | Path | Antenna | Peak | Limit(dB | Polarization | |-----------------|-----------------------|------|-----------|-----------|----------|--------------| | Frequency(winz) |) | loss | Gain(dBi) | EIRP(dBm) | m) | Polatization | | 2268.40 | -50.82 | 0.90 | 9.80 | -41.92 | -13.00 | V | | 2867.20 | -51.04 | 1.00 | 10.70 | -41.34 | -13.00 | V | | 7512.00 | -56.43 | 1.90 | 11.30 | -47.03 | -13.00 | V | | 9925.20 | -51.35 | 2.20 | 11.20 | -42.35 | -13.00 | V | | 13584.75 | -49.06 | 2.40 | 12.40 | -39.06 | -13.00 | V | | 17817.90 | -46.47 | 3.60 | 12.80 | -37.27 | -13.00 | V | ## WCDMA BAND II Mode Channel 9938/1987.6MHz (16QAM) | Fragues (MUz) | P _{Mea} (dBm | Path | Antenna | Peak | Limit(dB | Polarization | |----------------|-----------------------|------|-----------|-----------|----------|--------------| | Frequency(MHz) |) | loss | Gain(dBi) | EIRP(dBm) | m) | Polarization | | 2239.20 | -50.66 | 0.90 | 9.80 | -41.76 | -13.00 | V | | 2752.40 | -51.29 | 1.00 | 10.70 | -41.59 | -13.00 | V | | 7499.20 | -56.31 | 1.90 | 12.00 | -46.21 | -13.00 | V | | 9960.40 | -50.87 | 2.20 | 11.20 | -41.87 | -13.00 | V | | 13524.00 | -48.73 | 2.50 | 12.40 | -38.83 | -13.00 | V | | 17768.40 | -46.87 | 3.60 | 12.80 | -37.67 | -13.00 | V | ## WCDMA BAND V Mode Channel 4357/871.4 MHz (QPSK) | Fragueney/MHz) | P _{Mea} (dBm | Path | Antenna | Peak | Limit(dB | Polarization | |----------------|-----------------------|------|-----------|----------|----------|--------------| | Frequency(MHz) |) | loss | Gain(dBi) | ERP(dBm) | m) | Polarization | | 1426.00 | -52.29 | 0.70 | 6.00 | -49.14 | -13.00 | Н | | 2199.80 | -50.93 | 0.90 | 9.80 | -44.18 | -13.00 | V | | 2992.20 | -51.86 | 1.00 | 10.70 | -44.31 | -13.00 | V | | 3614.00 | -64.69 | 1.20 | 12.20 | -55.84 | -13.00 | V | | 6508.00 | -60.19 | 1.70 | 12.40 | -51.64 | -13.00 | V | | 8667.20 | -53.85 | 2.00 | 12.00 | -46.00 | -13.00 | V | ## WCDMA BAND V Mode Channel 4408/881.6MHz (QPSK) | Fragues av (MILIT) | PMea(dB | Path | Antenna | Peak | Limit(dB | Dolorization | |--------------------|---------|------|-----------|----------|----------|--------------| | Frequency(MHz) | m) | loss | Gain(dBi) | ERP(dBm) | m) | Polarization | | 1684.20 | -55.97 | 0.80 | 8.10 | -50.82 | -13.00 | V | | 2240.40 | -51.37 | 0.90 | 9.80 | -44.62 | -13.00 | V | | 2766.40 | -51.09 | 1.00 | 10.70 | -43.54 | -13.00 | V | | 3341.20 | -63.82 | 1.10 | 11.50 | -55.57 | -13.00 | V | | 6548.80 | -60.04 | 1.70 | 12.40 | -51.49 | -13.00 | V | | 8613.60 | -54.82 | 2.00 | 12.00 | -46.97 | -13.00 | V | ## WCDMA BAND V Mode Channel 4458/891.6MHz (QPSK) | Fraguency/MHz) | PMea(dB | Path | Antenna | Peak | Limit(dB | Polarization | |----------------|---------|------|-----------|----------|----------|--------------| | Frequency(MHz) | m) | loss | Gain(dBi) | ERP(dBm) | m) | Polatization | | 1392.80 | -54.02 | 0.70 | 6.00 | -50.87 | -13.00 | Н | | 1708.60 | -56.16 | 0.80 | 8.10 | -51.01 | -13.00 | V | | 2977.20 | -51.94 | 1.00 | 10.70 | -44.39 | -13.00 | V | | 3486.40 | -63.92 | 1.10 | 11.50 | -55.67 | -13.00 | V | | 4821.60 | -63.46 | 1.30 | 12.50 | -54.41 | -13.00 | V | | 8972.40 | -54.83 | 2.00 | 12.00 | -46.98 | -13.00 | Н | ## WCDMA BAND V Mode Channel 4357/871.4 MHz (16QAM) | Fraguency/MUz) | PMea(dB | Path | Antenna | Peak | Limit(dB | Polarization | |----------------|---------|------|-----------|----------|----------|--------------| | Frequency(MHz) | m) | loss | Gain(dBi) | ERP(dBm) | m) | Polarization | | 1403.80 | -53.03 | 0.70 | 6.00 | -49.88 | -13.00 | Н | | 1968.80 | -53.27 | 0.80 | 8.10 | -48.12 | -13.00 | V | | 2226.40 | -50.44 | 0.90 | 9.80 | -43.69 | -13.00 | V | | 2842.40 | -51.55 | 1.00 | 10.70 | -44.00 | -13.00 | V | | 7413.20 | -57.42 | 1.90 | 12.00 | -49.47 | -13.00 | V | | 9977.40 | -52.39 | 2.20 | 11.20 | -45.54 | -13.00 | V | ## WCDMA BAND V Mode Channel
4408/881.6MHz (16QAM) | Fraguenov/MHz) | PMea(dB | Path | Antenna | Peak | Limit(dB | Polarization | |----------------|---------|------|-----------|----------|----------|--------------| | Frequency(MHz) | m) | loss | Gain(dBi) | ERP(dBm) | m) | Polanzation | | 1969.20 | -52.74 | 0.80 | 8.10 | -47.59 | -13.00 | V | | 2229.80 | -49.59 | 0.90 | 9.80 | -42.84 | -13.00 | V | | 2979.20 | -51.35 | 1.00 | 10.70 | -43.80 | -13.00 | V | | 7490.40 | -56.84 | 1.90 | 12.00 | -48.89 | -13.00 | V | | 8048.80 | -56.25 | 2.00 | 11.30 | -49.10 | -13.00 | V | | 9928.00 | -52.16 | 2.20 | 11.20 | -45.31 | -13.00 | V | ## WCDMA BAND V Mode Channel 4458/891.6MHz (16QAM) | Fraguenov/MHz) | PMea(dB | Path | Antenna | Peak | Limit(dB | Polarization | |----------------|---------|------|-----------|----------|----------|--------------| | Frequency(MHz) | m) | loss | Gain(dBi) | ERP(dBm) | m) | Polanzation | | 1977.00 | -52.38 | 0.80 | 8.10 | -47.23 | -13.00 | V | | 2289.20 | -50.47 | 0.90 | 9.80 | -43.72 | -13.00 | V | | 2995.40 | -51.45 | 1.00 | 10.70 | -43.90 | -13.00 | V | | 7461.60 | -56.32 | 1.90 | 12.00 | -48.37 | -13.00 | V | | 8662.00 | -54.45 | 2.00 | 12.00 | -46.60 | -13.00 | V | | 9905.20 | -52.51 | 2.20 | 11.20 | -45.66 | -13.00 | V | Note: The maximum value of expanded measurement uncertainty for this test item is $\boldsymbol{U} = \boldsymbol{U}$ 2.90dB(30MHz-3GHz)/3.50dB(3GHz-18GHz)/3.90dB(18GHz-26.5GHz), k = 2 ## **A.3 FREQUENCY STABILITY** #### Reference FCC: CFR Part 2.1055, 22.355, 24.235 #### A.3.1 Method of Measurement In order to measure the carrier frequency under the condition of AFC lock, it is necessary to make measurements with the EUT in a "call mode". This is accomplished with the use of R&S CMU200 DIGITAL RADIO COMMUNICATION TESTER. - 1. Measure the carrier frequency at room temperature. - 2. Subject the EUT to overnight soak at 0°C. - 3. With the EUT, powered via nominal voltage, connected to the CMU200 and in a simulated call on mid channel of WCDMA Band II and WCDMA Band V, measure the carrier frequency. These measurements should be made within 2 minutes of Powering up the EUT, to prevent significant self-warming. - 4. Repeat the above measurements at 10°C increments from 0°C to +50°C. Allow at least 1 1/2 hours at each temperature, unpowered, before making measurements. - 5. Remeasure carrier frequency at room temperature with nominal voltage. Vary supply voltage from minimum voltage to maximum voltage, in 0.1Volt increments remeasuring carrier frequency at each voltage. Pause at nominal voltage for 1 1/2 hours unpowered, to allow any self-heating to stabilize, before continuing. - 6. Subject the EUT to overnight soak at $+50^{\circ}$ C. - 7. With the EUT, powered via nominal voltage, connected to the CMU200 and in a simulated call on the centre channel, measure the carrier frequency. These measurements should be made within 2 minutes of Powering up the EUT, to prevent significant self-warming. - 8. Repeat the above measurements at 10°C increments from +50°C to 0°C. Allow at least 1 1/2 hours at each temperature, unpowered, before making measurements. - 9. At all temperature levels hold the temperature to $\pm 0.5^{\circ}$ during the measurement procedure. #### A.3.2 Measurement Limit #### A.3.2.1 For Hand carried battery powered equipment According to the JTC standard the frequency stability of the carrier shall be accurate to within 0.1 ppm of the received frequency from the base station. This accuracy is sufficient to meet Sec. 24.235, Frequency Stability. The frequency stability shall be sufficient to ensure that the fundamental emission stays within the authorized frequency block. As this transceiver is considered "Hand carried, battery powered equipment" Section 2.1055(d)(2) applies. This requires that the lower voltage for frequency stability testing be specified by the manufacturer. This transceiver is specified to operate with an input voltage of between 3.6VDC and 4.4VDC, with a nominal voltage of 3.85VDC. Operation above or below these voltage limits is prohibited by transceiver software in order to prevent improper operation as well as to protect components from overstress. These voltages represent a tolerance of -10 % and +12.5 %. For the purposes of measuring frequency stability these voltage limits are to be used. #### A.3.2.2 For equipment powered by primary supply voltage According to the JTC standard the frequency stability of the carrier shall be accurate to within 0.1 ppm of the received frequency from the base station. This accuracy is sufficient to meet Sec. 24.235, Frequency Stability. The frequency stability shall be sufficient to ensure that the fundamental emission stays within the authorized frequency block. For this EUT section 2.1055(d)(1) applies. This requires varying primary supply voltage from 85 to 115 percent of the nominal value for other than hand carried battery equipment. ## A.3.3 Measurement results #### **WCDMA Band II** ## Frequency Error vs Voltage-QPSK | Voltage(V) | Frequency error(Hz) | Frequency error(ppm) | |------------|---------------------|----------------------| | 3.6 | -7 | 0.004 | | 3.85 | -5 | 0.003 | | 4.4 | -3 | 0.002 | ## **Frequency Error vs Temperature-QPSK** | temperature(°C) | Frequency error(Hz) | Frequency error(ppm) | |-----------------|---------------------|----------------------| | 0 | -3 | 0.002 | | 10 | -4 | 0.002 | | 20 | -3 | 0.002 | | 30 | 5 | 0.002 | | 40 | -3 | 0.002 | | 50 | -3 | 0.002 | ## Frequency Error vs Voltage-16QAM | Voltage(V) | Frequency error(Hz) | Frequency error(ppm) | |------------|---------------------|----------------------| | 3.6 | -6 | 0.003 | | 3.85 | -6 | 0.003 | | 4.4 | -4 | 0.002 | ## Frequency Error vs Temperature-16QAM | temperature(°C) | Frequency error(Hz) | Frequency error(ppm) | |-----------------|---------------------|----------------------| | 0 | 6 | 0.003 | | 10 | -4 | 0.002 | | 20 | -4 | 0.002 | | 30 | 4 | 0.002 | | 40 | 5 | 0.003 | | 50 | -4 | 0.002 | ## **WCDMA Band V** ## Frequency Error vs Voltage-QPSK | Voltage(V) | Frequency error(Hz) | Frequency error(ppm) | |------------|---------------------|----------------------| | 3.6 | 13 | 0.016 | | 3.85 | -5 | 0.006 | | 4.4 | 4 | 0.004 | ## **Frequency Error vs Temperature-QPSK** | temperature(°C) | Frequency error(Hz) | Frequency error(ppm) | |-----------------|---------------------|----------------------| | 0 | 2 | 0.003 | | 10 | 4 | 0.005 | | 20 | -4 | 0.005 | | 30 | -3 | 0.004 | | 40 | -3 | 0.004 | | 50 | -3 | 0.004 | ## Frequency Error vs Voltage-16QAM | Voltage(V) | Frequency error(Hz) | Frequency error(ppm) | |------------|---------------------|----------------------| | 3.6 | -4 | 0.004 | | 3.85 | -4 | 0.005 | | 4.4 | -4 | 0.005 | ## Frequency Error vs Temperature-16QAM | temperature(°C) | Frequency error(Hz) | Frequency error(ppm) | |-----------------|---------------------|----------------------| | 0 | -6 | 0.007 | | 10 | -4 | 0.005 | | 20 | -4 | 0.005 | | 30 | -4 | 0.005 | | 40 | 5 | 0.006 | | 50 | 3 | 0.004 | Expanded measurement uncertainty is 10Hz, k = 2 ## A.4 OCCUPIED BANDWIDTH #### Reference FCC: CFR Part 2.1049, 22.917, 24.238. ### A.4.1 Occupied Bandwidth Results Occupied bandwidth measurements are only provided for selected frequencies in order to reduce the amount of submitted data. Data were taken at the extreme and mid frequencies of the US Cellular/PCS frequency bands. The table below lists the measured 99% BW. Spectrum analyzer plots are included on the following pages. - a) The spectrum analyzer center frequency is set to the nominal EUT channel center frequency. The frequency span for the spectrum analyzer shall be set wide enough to capture all modulation products including the emission skirts (i.e., two to five times the OBW). - b) The nominal IF filter bandwidth (3 dB RBW) shall be in the range of 1 to 5 % of the anticipated OBW, and the VBW shall be at least 3 times the RBW. - c) Set the reference level of the instrument as required to keep the signal from exceeding the maximum input mixer level for linear operation. In general, the peak of the spectral envelope must be at least 10log (OBW / RBW) below the reference level. - e) Set the detection mode to peak, and the trace mode to max hold. - d) Use the 99 % power bandwidth function of the spectrum analyzer and report the measured bandwidth. ## WCDMA Band II (99% BW)-QPSK | Frequency(MHz) | Occupied Bandwidth (99% BW)(MHz) | |----------------|----------------------------------| | 1852.4 | 4.15 | | 1880.0 | 4.15 | | 1907.6 | 4.15 | #### **WCDMA Band II** ## Channel 9262-Occupied Bandwidth (99% BW)-QPSK Date: 23.APR.2020 13:09:37 ## Channel 9400-Occupied Bandwidth (99% BW)-QPSK Date: 23.APR.2020 13:10:11 ## Channel 9538-Occupied Bandwidth (99% BW)-QPSK Date: 23.APR.2020 13:10:45 ## WCDMA Band II (99% BW)-16QAM | Frequency(MHz) | Occupied Bandwidth (99% BW)(MHz) | |----------------|----------------------------------| | 1852.4 | 4.15 | | 1880.0 | 4.15 | | 1907.6 | 4.15 | WCDMA Band II ## Channel 9262-Occupied Bandwidth (99% BW)-16QAM Date: 23.APR.2020 14:04:25 ## Channel 9400-Occupied Bandwidth (99% BW)-16QAM Date: 23.APR.2020 14:04:59 ## Channel 9538-Occupied Bandwidth (99% BW)-16QAM Date: 23.APR.2020 14:05:33 ## WCDMA Band V(99% BW)-QPSK | Frequency(MHz) | Occupied Bandwidth (99% BW)(MHz) | |----------------|----------------------------------| | 826.4 | 4.18 | | 836.6 | 4.17 | | 846.6 | 4.17 | #### **WCDMA Band V** ## Channel 4132-Occupied Bandwidth (99% BW)-QPSK Date: 23.APR.2020 13:29:17 ## Channel 4183-Occupied Bandwidth (99% BW)-QPSK Date: 23.APR.2020 13:29:51 ## Channel 4233-Occupied Bandwidth (99% BW)-QPSK Date: 23.APR.2020 13:30:25 ## WCDMA Band V(99% BW)-16QAM | Frequency(MHz) | Occupied Bandwidth (99% BW)(MHz) | |----------------|----------------------------------| | 826.4 | 4.18 | | 836.6 | 4.13 | | 846.6 | 4.15 | #### **WCDMA Band V** ## Channel 4132-Occupied Bandwidth (99% BW)-16QAM Date: 23.APR.2020 13:55:49 ## Channel 4183-Occupied Bandwidth (99% BW)-16QAM
Date: 23.APR.2020 13:56:23 # Channel 4233-Occupied Bandwidth (99% BW)-16QAM Date: 23.APR.2020 13:56:57 Note: Expanded measurement uncertainty is U = 3428Hz, k = 2 # **A.5 EMISSION BANDWIDTH** #### Reference FCC: CFR Part 2.1049, 22.917, 24.238. #### A.5.1Emission Bandwidth Results The emission bandwidth is defined as the width of the signal between two points, one below the carrier center frequency and one above the carrier center frequency, outside of which all emissions are attenuated at least 26dB below the transmitter power. Similar to conducted emissions; Emission bandwidth measurements are only provided for selected frequencies in order to reduce the amount of submitted data. Data were taken at the extreme and mid frequencies. Table below lists the measured -26dBc BW. Spectrum analyzer plots are included on the following pages. #### WCDMA Band II (-26dBc BW)-QPSK | Frequency(MHz) | Emission Bandwidth (-26dBc BW)(MHz) | |----------------|-------------------------------------| | 1852.4 | 4.82 | | 1880.0 | 4.79 | | 1907.6 | 4.81 | #### **WCDMA Band II** #### Channel 9262-Emission Bandwidth (-26dBc BW)-QPSK Date: 23.APR.2020 13:11:55 # Channel 9400-Emission Bandwidth (-26dBc BW)-QPSK Date: 23.APR.2020 13:13:04 # Channel 9538-Emission Bandwidth (-26dBc BW)-QPSK Date: 23.APR.2020 13:14:12 # WCDMA Band II (-26dBc BW)-16QAM | Frequency(MHz) | Emission Bandwidth (-26dBc BW)(MHz) | |----------------|-------------------------------------| | 1852.4 | 4.86 | | 1880.0 | 4.79 | | 1907.6 | 4.82 | #### **WCDMA Band II** # Channel 9262-Emission Bandwidth (-26dBc BW)-16QAM Date: 23.APR.2020 14:06:43 # Channel 9400-Emission Bandwidth (-26dBc BW)-16QAM Date: 23.APR.2020 14:07:52 # Channel 9538-Emission Bandwidth (-26dBc BW)-16QAM Date: 23.APR.2020 14:09:00 # WCDMA Band V(-26dBc BW)-QPSK | Frequency(MHz) | Emission Bandwidth (-26dBc BW)(MHz) | |----------------|-------------------------------------| | 826.40 | 4.78 | | 836.60 | 4.79 | | 846.60 | 4.78 | #### **WCDMA Band V** # Channel 4132-Emission Bandwidth (-26dBc BW)-QPSK Date: 23.APR.2020 13:31:35 # Channel 4183-Emission Bandwidth (-26dBc BW)-QPSK Date: 23.APR.2020 13:32:44 # Channel 4233-Emission Bandwidth (-26dBc BW)-QPSK Date: 23.APR.2020 13:33:52 # WCDMA Band V(-26dBc BW)-16QAM | Frequency(MHz) | Emission Bandwidth (-26dBc BW)(MHz) | |----------------|-------------------------------------| | 826.40 | 4.79 | | 836.60 | 4.76 | | 846.60 | 4.79 | #### **WCDMA Band V** # Channel 4132-Emission Bandwidth (-26dBc BW)-16QAM Date: 23.APR.2020 13:58:07 # Channel 4183-Emission Bandwidth (-26dBc BW)-16QAM Date: 23.APR.2020 13:59:16 # Channel 4233-Emission Bandwidth (-26dBc BW)-16QAM Date: 23.APR.2020 14:00:25 Note: Expanded measurement uncertainty is U = 3428Hz, k = 2 # **A.6 BAND EDGE COMPLIANCE** #### Reference FCC: CFR Part 2.1051, 22.917, 24.238. #### A.6.1 Measurement limit On any frequency outside frequency band of the US Cellular/PCS spectrum, the power of any emission shall be attenuated below the transmitter power (P, in Watts) by at least 43+10Log (P) dB. For all power levels +30 dBm to 0 dBm, this becomes a constant specification limit of -13 dBm. A relaxation of the reference bandwidth is often provided for measurements within a specified frequency range at the edge of the authorized frequency block/band. This is often implemented by permitting the use of a narrower RBW (typically limited to a minimum RBW of 1% of the OBW) for measuring the out-of-band emissions without a requirement to integrate the result over the full reference bandwidth. # A.6.2 Measurement result Only worst case result is given below WCDMA Band II LOW BAND EDGE BLOCK-A-Channel 9262 Date: 23.APR.2020 13:14:22 # **HIGH BAND EDGE BLOCK-C-Channel 9538** Date: 23.APR.2020 13:16:27 # WCDMA Band V LOW BAND EDGE BLOCK-A-Channel 4132 Date: 23.APR.2020 13:34:03 # HIGH BAND EDGE BLOCK-C (WCDMA Band V) -Channel 4233 Date: 23.APR.2020 13:36:07 Note: Expanded measurement uncertainty is U = 0.49 dB(100KHz-2GHz)/1.21 dB (2GHz-26.5GHz), k = 1.96 # A.7 CONDUCTED SPURIOUS EMISSION #### Reference FCC: CFR Part 2.1051, 22.917, 24.238. #### A.7.1 Measurement Method The following steps outline the procedure used to measure the conducted emissions from the EUT. - Determine frequency range for measurements: From CFR 2.1051 the spectrum should be investigated from the lowest radio frequency generated in the equipment up to at least the 10th harmonic of the carrier frequency. For the mobile station equipment tested, this equates to a frequency range of 13 MHz to 9 GHz, data taken from 10 MHz to 25 GHz. - 2. Determine EUT transmit frequencies: below outlines the band edge frequencies pertinent to conducted emissions testing. #### WCDMA Band II Transmitter | Channel | Frequency (MHz) | |---------|-----------------| | 9262 | 1852.4 | | 9400 | 1880.0 | | 9538 | 1907.6 | | WCDMA Band | VTransmitter | | |------------|-----------------|--| | Channel | Frequency (MHz) | | | 4132 | 826.4 | | | 4183 | 836.6 | | 846.6 #### A.7.2 Measurement Limit 4233 Part 24.238 and Part 22.917 specify that the power of any emission outside of the authorized operating frequency ranges must be attenuated below the transmitting power (P) by a factor of at least 43 + 10 log(P) dB. The specification that emissions shall be attenuated below the transmitter power (P) by at least 43 + 10 log (P) dB, translates in the relevant power range (1 to 0.001 W) to -13 dBm. At 1 W the specified minimum attenuation becomes 43 dB and relative to a 30 dBm (1 W) carrier becomes a limit of -13 dBm. At 0.001 W (0 dBm) the minimum attenuation is 13 dB, which again yields a limit of -13 dBm. In this way a translation of the specification from relative to absolute terms is carried out. #### A.7.3 Measurement result Only worst case result is given below WCDMA Band I Channel 9262: 30MHz -1GHz Spurious emission limit -13dBm. Date: 23.APR.2020 13:17:19 Channel 9262: 1GHz –2.5GHz Spurious emission limit –13dBm. NOTE: peak above the limit line is the carrier frequency. Date: 23.APR.2020 13:17:46 # **Channel 9262: 2.5GHz –7.5GHz** Spurious emission limit –13dBm. Date: 23.APR.2020 13:18:13 # Channel 9262: 7.5GHz -10GHz Spurious emission limit -13dBm. Date: 23.APR.2020 13:18:39 # Channel 9262: 10GHz –15GHz Spurious emission limit –13dBm. Date: 23.APR.2020 13:19:06 # Channel 9262: 15GHz -20GHz Spurious emission limit -13dBm. Date: 23.APR.2020 13:19:33 # Channel 9400: 30MHz –1GHz Spurious emission limit –13dBm. Date: 23.APR.2020 13:20:03 # **Channel 9400: 1GHz –2.5GHz**Spurious emission limit –13dBm. # NOTE: peak above the limit line is the carrier frequency. Date: 23.APR.2020 13:20:30 # Channel 9400: 2.5GHz -7.5GHz Spurious emission limit -13dBm. Date: 23.APR.2020 13:20:57 # Channel 9400: 7.5GHz -10GHz Spurious emission limit -13dBm. Date: 23.APR.2020 13:21:23 # Channel 9400: 10GHz –15GHz Spurious emission limit –13dBm. Date: 23.APR.2020 13:21:50 # Channel 9400: 15GHz -20GHz Spurious emission limit -13dBm. Date: 23.APR.2020 13:22:17 # Channel 9538: 30MHz –1GHz Spurious emission limit –13dBm. Date: 23.APR.2020 13:22:47 # **Channel 9538: 1GHz –2.5GHz**Spurious emission limit –13dBm. # NOTE: peak above the limit line is the carrier frequency. Date: 23.APR.2020 13:23:14 # Channel 9538: 2.5GHz -7.5GHz Spurious emission limit -13dBm. Date: 23.APR.2020 13:23:40 # Channel 9538: 7.5GHz -10GHz Spurious emission limit -13dBm. Date: 23.APR.2020 13:24:07 # Channel 9538: 10GHz –15GHz Spurious emission limit –13dBm. Date: 23.APR.2020 13:24:34 # Channel 9538: 15GHz -20GHz Spurious emission limit -13dBm. Date: 23.APR.2020 13:25:01 WCDMA Band V Channel 4132: 30MHz –1GHz Spurious emission limit –13dBm. NOTE: peak above the limit line is the carrier frequency. Date: 23.APR.2020 13:37:00 # Channel 4132: 1GHz - 2.5GHz Spurious emission limit -13dBm. Date: 23.APR.2020 13:37:26 # Channel 4132: 2.5GHz -7.5GHz Spurious emission limit -13dBm. Date: 23.APR.2020 13:37:53 # Channel 4132: 7.5GHz - 10GHz Spurious emission limit -13dBm. Date: 23.APR.2020 13:38:20 Channel 4183: 30MHz –1GHz Spurious emission limit –13dBm. NOTE: peak above the limit line is the carrier frequency. Date: 23.APR.2020 13:38:50 # **Channel 4183: 1GHz – 2.5GHz** Spurious emission limit –13dBm. Date: 23.APR.2020 13:39:17 # Channel 4183: 2.5GHz -7.5GHz Spurious emission limit -13dBm. Date: 23.APR.2020 13:39:43 # Channel 4183: 7.5GHz - 10GHz Spurious emission limit -13dBm. Date: 23.APR.2020 13:40:10 Channel 4233: 30MHz –1GHz Spurious emission limit –13dBm. NOTE: peak above the limit line is the carrier frequency. Date: 23.APR.2020 13:40:40 # **Channel 4233: 1GHz – 2.5GHz** Spurious emission limit –13dBm. Date: 23.APR.2020 13:41:07 #### Channel 4233: 2.5GHz -7.5GHz Spurious emission limit -13dBm. Date: 23.APR.2020 13:41:34 # Channel 4233: 7.5GHz - 10GHz Spurious emission limit -13dBm. Date: 23.APR.2020 13:42:00 Note: Expanded measurement uncertainty is U = 0.49 dB(100KHz-2GHz)/1.21 dB (2GHz-26.5GHz), k = 1.96 # A.8 PEAK-TO-AVERAGE POWER RATIO #### Reference FCC: CFR Part 24.232, KDB971168 D01. The peak-to-average power ratio (PAPR) of the transmitter output power must not exceed 13 dB. The PAPR measurements should be made using either an instrument with complementary cumulative distribution function (CCDF) capabilities to determine that PAPR will not exceed 13 dB for more than 0.1 percent of the time or other Commission approved procedure. The measurement must be performed using a signal corresponding to the highest PAPR expected during periods of continuous transmission. - a)Refer to instrument's analyzer instruction manual for details on how to use the power statistics/CCDF function; - b) Set resolution/measurement bandwidth ≥ signal's occupied bandwidth; - c) Set the number of counts to a value that stabilizes the measured CCDF curve; - d) Set the measurement interval to 1 ms - e)Record the maximum PAPR level associated with a probability of 0.1% #### A.8.1 Measurement limit not exceed 13 dB #### A.8.2 Measurement results #### Only worst case
result is given below #### WCDMA Band II (PAPR)-QPSK | Frequency(MHz) | Peak-To-Average Power Ratio(PAPR)(dB) | |----------------|---------------------------------------| | 1852.4 | 4.42 | | 1880.0 | 4.33 | | 1907.6 | 4.33 | #### **WCDMA Band II** #### Channel 9262-Peak-To-Average Power Ratio(PAPR)-QPSK Date: 23.APR.2020 13:16:34 # Channel 9400- Peak-To-Average Power Ratio(PAPR)-QPSK Date: 23.APR.2020 13:16:42 # Channel 9538- Peak-To-Average Power Ratio(PAPR)-QPSK Date: 23.APR.2020 13:16:49 #### WCDMA Band II (PAPR)-16QAM | Frequency(MHz) | Peak-To-Average Power Ratio(PAPR)(dB) | |----------------|---------------------------------------| | 1852.4 | 4.39 | | 1880.0 | 4.29 | | 1907.6 | 4.17 | # **WCDMA Band II** #### Channel 9262- Peak-To-Average Power Ratio(PAPR)-16QAM Date: 23.APR.2020 14:09:08 # Channel 9400- Peak-To-Average Power Ratio(PAPR)-16QAM Date: 23.APR.2020 14:09:16 # Channel 9538- Peak-To-Average Power Ratio(PAPR)-16QAM Date: 23.APR.2020 14:09:23 # WCDMA Band V (PAPR)-QPSK | Frequency(MHz) | Peak-To-Average Power Ratio(PAPR)(dB) | |----------------|---------------------------------------| | 826.4 | 4.01 | | 836.6 | 4.01 | | 846.6 | 3.88 | #### **WCDMA Band V** # Channel 4132- Peak-To-Average Power Ratio(PAPR)-QPSK Date: 23.APR.2020 13:36:15 # Channel 4183- Peak-To-Average Power Ratio(PAPR)-QPSK Date: 23.APR.2020 13:36:22 # Channel 4233- Peak-To-Average Power Ratio(PAPR)-QPSK Date: 23.APR.2020 13:36:30 # WCDMA Band V (PAPR)-16QAM | Frequency(MHz) | Peak-To-Average Power Ratio(PAPR)(dB) | |----------------|---------------------------------------| | 826.4 | 3.97 | | 836.6 | 4.07 | | 846.6 | 3.91 | #### **WCDMA Band V** # Channel 4132- Peak-To-Average Power Ratio(PAPR)-16QAM Date: 23.APR.2020 14:00:32 # Channel 4183- Peak-To-Average Power Ratio(PAPR)-16QAM Date: 23.APR.2020 14:00:39 # Channel 4233- Peak-To-Average Power Ratio(PAPR)-16QAM Date: 23.APR.2020 14:00:47 Note: Expanded measurement uncertainty is U = 0.48 dB, k = 2 ***END OF REPORT***