

Intertek 731 Enterprise Drive Lexington, KY 40510

Tel 859 226 1000 Fax 859 226 1040

www.intertek.com

Foundation Fitness LLC TEST REPORT

SCOPE OF WORK EMC TESTING – DASH M200 BIKE COMPUTER

REPORT NUMBER

105105027LEX-001.1

ISSUE DATE 8/4/2022

REVISED DATE 8/23/2022

PAGES

38

DOCUMENT CONTROL NUMBER

Non-Specific EMC Report Shell Rev. December 2017 $\ensuremath{\mathbb{C}}$ 2017 INTERTEK

EMC TEST REPORT

(FULL COMPLIANCE)

 Report Number:
 105105027LEX-001b.1

 Project Number:
 G105105027

 Report Issue Date:
 8/4/2022

 Report Revised Date:
 8/23/2022

Model(s) Tested: M200

Standards: Title 47 CFR Part 15.247 RSS-247 Issue 2 RSS-Gen Issue 5

Tested by: Intertek Testing Services NA, Inc. 731 Enterprise Dr. Lexington, KY 40510 USA Client: Foundation Fitness LLC 1220 Main Street Suite 400 Vancouver, WA 98660 USA

Report prepared by

bill

Seth Parker, Associate Engineer

Report reviewed by

Ai Jo

Brian Lackey, Team Leader

This report is for the exclusive use of Intertek's Client and is provided pursuant to the agreement between Intertek and its Client. Intertek's responsibility and liability are limited to the terms and conditions of the agreement. Intertek assumes no liability to any party, other than to the Client in accordance with the agreement, for any loss, expense or damage occasioned by the use of this report. Only the Client is authorized to copy or distribute this report and then only in its entirety. Any use of the Intertek name or one of its marks for the sale or advertisement of the tested material, product or service must first be approved in writing by Intertek. The observations and test results in this report are relevant only to the sample tested. This report by itself does not imply that the material, product, or service is or has ever been under an Intertek certification program.

Table of Contents

1	Introduction and Conclusion	.4
2	Test Summary	.4
3	Client Information	. 5
4	Description of Equipment under Test and Variant Models	.6
5	System Setup and Method	. 7
6	Radiated Spurious Emissions	. 8
7	Output Power	17
8	Occupied Bandwidth	22
9	Power Spectral Density	32
10	Antenna Requirement	37
11	Revision History	38

1 Introduction and Conclusion

The tests indicated in section 2.0 were performed on the product constructed as described in section 4.0. The remaining test sections are the verbatim text from the actual data sheets used during the investigation. These test sections include the test name, the specified test Method, a list of the actual Test Equipment Used, documentation Photos, Results, and raw Data. No additions, deviations, or exclusions have been made from the standard(s) unless specifically noted.

Based on the results of our investigation, we have concluded the product tested **complies** with the requirements of the standard(s) indicated. The results obtained in this test report pertain only to the item(s) tested. Intertek does not make any claims of compliance for samples or variants which were not tested.

2 Test Summary

Section	Test full name	Result
6	Radiated Spurious Emissions (FCC Part 15.247(d), RSS-247 Issue 2 § 5.5)	Pass
7	Output Power (FCC Part 15.247(b)(3), RSS-247 Issue 2 § 5.4(d))	Pass
8	Occupied Bandwidth (FCC Part 15.247, RSS-247 Issue 2 § 5.2(a))	Pass
9	Power Spectral Density (FCC Part 15.247(e), RSS-247 Issue 2 § 5.2(b))	Pass
10	Antenna Requirement (FCC Part 15.203, RSS-Gen Issue 5 § 6.8)	Pass

3 Client Information

This product was tested at the request of the following:

	Client Information					
Client Name:	Foundation Fitness LLC					
Address:	1220 Main Street					
Suite 400						
Vancouver, WA 98660						
USA						
Contact:	Jim Stemper					
Email: jstemper@stagescycling.com						
Manufacturer Information						
Manufacturer Name:	Digital Concepts, Inc.					
Manufacturer Address:	3108 Riverport Tech Center Drive					
	Maryland Heights, MO 63043					
	United States of America					
Factory Address:	Digital Concepts de Mexico. S de RL de CV					
	Ponciano Arriaga No. 716					
	Col. Parque Industrial Los Aztecas					
	Cd. Juarez Chihuahua, Mexico, CP: 32679					

4 Description of Equipment under Test and Variant Models

Equipment Under Test							
Product Name	Dash M200 Bike Computer						
Model Numbers	M200						
Serial Number	Test Sample 2						
Receive Date	9/1/2021						
Test Start Date	7/28/2022						
Test End Date	8/1/2022						
Device Received Condition	Good						
Test Sample Type	Production						
Rated Voltage	5VDC						
Frequency Band(s)	2400-2483.5MHz						
Modulation Type(s)	GFSK						
Test Channel(s)	2402MHz, 2440MHz, 2480MHz						
Maximum Antenna Gain (dBi)	1.6dBi						
	Taiyo Yuden Model AH316M245001-T						
	Antenna Information was provided by Foundation Fitness LLC and may						
	affect compliance						
Descrip	tion of Equipment Under Test (provided by client)						
The Dash M200 Bike Computer is a	The Dash M200 Bike Computer is a 2.7" color display rechargeable bike computer with GPS, Bluetooth (Low						
Energy), Wi-Fi (approved module),	ANT+, Barometric pressure sensor, piezoelectric buzzer, 16GB of memory, 5						
buttons and a plastic mounting into	erface to connect to handlebars. This computer is built on Linux and is based						

on the existing M50 bike computer, utilizing all of its existing features.

4.1 Variant Models:

There were no variant models covered by this evaluation.

5 System Setup and Method

5.1 Method:

Configuration as required by ANSI C63.4: 2014 and ANSI C63.10:2013

No.	Descriptions of EUT Exercising
1	Transmitting an ANT+ signal on a low, middle, or high channel

5.2 EUT Block Diagram:

6 Radiated Spurious Emissions

6.1 Test Limits

FCC Part 15.247(d):

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.205(c)).

RSS-247 Issue 2 § 5.5:

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated device is operating, the RF power that is produced shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided that the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of root-mean-square averaging over a time interval, as permitted under section 5.4(d), the attenuation required shall be 30 dB instead of 20 dB. Attenuation below the general field strength limits specified in RSS-Gen is not required.

6.2 Test Method

Tests are performed in accordance with ANSI C63.10:2013 § 11.12.1 Radiated emission measurements.

6.3 Test Equipment Used

Description	Asset	Manufacturer	Model	Cal Date	Cal Due
EMI Test Receiver	8181	Rohde & Schwarz	ESW44	11/16/2021	11/16/2022
Bilog Antenna	7085	ETS	3142C	10/5/2021	10/5/2022
Horn Antenna	4001	ETS	3117	2/23/2022	2/23/2023
Sustam Controllor	1000	FTC Lindgron	2000	Verify at	Verify at
System controller	4096	ETS Lindgren	2090	Time of Use	Time of Use
System Controller	2057	Supel Sciences	50001	Verify at	Verify at
System controller	5957	Sunor Sciences	30990	Time of Use	Time of Use
Preamplifier	3918	Rohde & Schwarz	TS-PR18	1/13/2022	1/13/2023
Coaxial Cable	3074			1/13/2022	1/13/2023
Coaxial Cable	2588			1/13/2022	1/13/2023
Coaxial Cable	2593			1/13/2022	1/13/2023
Coaxial Cable	8185			1/13/2022	1/13/2023
Coaxial Cable	8188			1/13/2022	1/13/2023
Coaxial Cable	3339			1/13/2022	1/13/2023
Preamplifier	3919	Rohde & Schwarz	TS-PR3	1/13/2022	1/13/2023
Coaxial Cable	3172			1/13/2022	1/13/2023
Coaxial Cable	2590			1/13/2022	1/13/2023
Coaxial Cable	8186			1/13/2022	1/13/2023
Coaxial Cable	8187			1/13/2022	1/13/2023
Preamplifier (18-40GHz)	3921	Rohde & Schwarz	TS-PR40	1/13/2022	1/13/2023
Horn Antenna (18-40GHz)	3779	ETS	3116c	7/30/2021	9/28/2022(1)

6.4 Software Utilized

Name	Manufacturer	Version
EMC32	Rohde & Schwarz	Version 10.60.20

6.5 Test Results

The sample tested was found to be **compliant**. The data presented represents the worst-case emissions with the device positioned in three orthogonal positions. All observed emissions outside of the band of operation were attenuated by at least 20dB.

¹ Operating under a calibration extension during the time of testing.

6.6 ANT+ 2402MHz Spurious Emissions (Low Band Edge):

Frequency (MHz)	MaxPeak (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Bandwidth (kHz)	Height (cm)	Pol	Azimuth (deg)	Corr. (dB/m)
2384.634615	51.69	73.979	22.29	1000.000	158.0	V	78.0	38.20
2485.653846	52.73	73.979	21.25	1000.000	211.0	Н	272.0	38.52
2488.423077	52.57	73.979	21.41	1000.000	360.0	V	140.0	38.50
2496.961539	52.74	73.979	21.24	1000.000	150.0	Н	70.0	38.59

Frequency (MHz)	Average (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Bandwidth (kHz)	Height (cm)	Pol	Azimuth (deg)	Corr. (dB/m)
2384.634615	34.68	53.979	19.30	1000.000	158.0	V	78.0	38.20
2485.653846	35.20	53.979	18.78	1000.000	211.0	Н	272.0	38.52
2488.423077	35.13	53.979	18.85	1000.000	360.0	V	140.0	38.50
2496.961539	35.23	53.979	18.75	1000.000	150.0	Н	70.0	38.59

Test Personnel:	Seth Parker	Test Date:	7/28/2022 – 8/1/2022
Supervising/Reviewing Engineer:		-	FCC Part 15.209 in Restricted
(Where Applicable)	Brian Lackey	Limit Applied:	Bands from FCC Part 15.205
	FCC Part 15.247	-	
Product Standard:	RSS-247 Issue 2	Ambient Temperature:	22.5C
Input Voltage:	Battery	Relative Humidity:	59.2%
Pretest Verification w / Ambient		-	
Signals or BB Source:	Yes	Atmospheric Pressure:	977.2mbar
		-	

6.7 ANT+ 2480MHz Spurious Emissions (High Band Edge):

Frequency (MHz)	MaxPeak (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Bandwidth (kHz)	Height (cm)	Pol	Azimuth (deg)	Corr. (dB/m)
2368.538462	53.90	73.979	20.08	1000.000	269.0	Н	276.0	37.98
2483.634615	54.14	73.979	19.84	1000.000	311.0	Н	256.0	38.51
2483.923077	53.89	73.979	20.09	1000.000	201.0	Н	274.0	38.51
2491.019231	52.80	73.979	21.18	1000.000	390.0	V	12.0	38.53

Frequency (MHz)	Average (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Bandwidth (kHz)	Height (cm)	Pol	Azimuth (deg)	Corr. (dB/m)
2368.538462	34.49	53.979	19.49	1000.000	269.0	Н	276.0	37.98
2483.634615	36.94	53.979	17.04	1000.000	311.0	Н	256.0	38.51
2483.923077	36.64	53.979	17.34	1000.000	201.0	Н	274.0	38.51
2491.019231	35.27	53.979	18.71	1000.000	390.0	V	12.0	38.53

Test Personnel:	Seth Parker	Test Date:	7/28/2022 – 8/1/2022
Supervising/Reviewing Engineer:		_	FCC Part 15.209 in Restricted
(Where Applicable)	Brian Lackey	Limit Applied:	Bands from FCC Part 15.205
	FCC Part 15.247	_	
Product Standard:	RSS-247 Issue 2	Ambient Temperature:	22.5C
Input Voltage:	Battery	Relative Humidity:	59.2%
Pretest Verification w / Ambient		_	
Signals or BB Source:	Yes	Atmospheric Pressure:	977.2mbar

6.8 Radiated Spurious Emissions, 30MHz-1GHz:

6.8.1 2440MHz

Frequency (MHz)	QuasiPeak (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Bandwidth (kHz)	Height (cm)	Pol	Azimuth (deg)	Corr. (dB/m)
37.760000	14.73	40.000	25.27	120.000	178.0	Н	132.0	23.22
121.287778	12.27	43.522	31.25	120.000	222.0	Н	-1.0	21.97
333.825556	15.79	46.021	30.23	120.000	255.0	Н	27.0	24.97
405.228333	18.33	46.021	27.69	120.000	400.0	Н	0.0	26.94
608.874444	22.49	46.021	23.53	120.000	236.0	Н	105.0	31.63
994.287778	29.41	53.979	24.57	120.000	121.0	Н	218.0	37.38

Test Personnel:	Seth Parker	Test Date:	7/28/2022 – 8/1/2022
Supervising/Reviewing Engineer:			FCC Part 15.209 in Restricted
(Where Applicable)	Brian Lackey	Limit Applied:	Bands from FCC Part 15.205
	FCC Part 15.247		
Product Standard:	RSS-247 Issue 2	Ambient Temperature:	22.5C
Input Voltage:	Battery	Relative Humidity:	59.2%
Pretest Verification w / Ambient			
Signals or BB Source:	Yes	Atmospheric Pressure:	977.2mbar

Deviations, additions, or exclusions: This testing represents the worst case of low, middle, and high channels

6.9 Radiated Spurious Emissions, 1GHz - 18GHz

6.9.1 2402MHz

Frequency (MHz)	MaxPeak (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Bandwidth (kHz)	Height (cm)	Pol	Azimuth (deg)	Corr. (dB/m)
4804.500000	45.65	73.979	28.33	1000.000	100.0	V	0.0	9.31
7205.500000	47.96	73.979	26.02	1000.000	328.0	V	348.0	12.46
17407.500000	64.15	73.979	9.83	1000.000	100.0	Н	172.0	27.04
17875.500000	65.52	73.979	8.46	1000.000	109.0	Н	131.0	27.89

Frequency (MHz)	Average (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Bandwidth (kHz)	Height (cm)	Pol	Azimuth (deg)	Corr. (dB/m)
4804.500000	30.93	53.979	23.05	1000.000	100.0	V	0.0	9.31
7205.500000	34.37	53.979	19.61	1000.000	328.0	V	348.0	12.46
17407.500000	51.18	53.979	2.80	1000.000	100.0	Н	172.0	27.04
17875.500000	52.20	53.979	1.78	1000.000	109.0	Н	131.0	27.89

Test Personnel:	Seth Parker	Test Date:	7/28/2022 – 8/1/2022
Supervising/Reviewing Engineer:		_	FCC Part 15.209 in Restricted
(Where Applicable)	Brian Lackey	Limit Applied:	Bands from FCC Part 15.205
	FCC Part 15.247	_	
Product Standard:	RSS-247 Issue 2	Ambient Temperature:	22.5C
Input Voltage:	Battery	Relative Humidity:	59.2%
Pretest Verification w / Ambient		_	
Signals or BB Source:	Yes	Atmospheric Pressure:	977.2mbar

6.9.2 2440MHz

Frequency (MHz)	MaxPeak (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Bandwidth (kHz)	Height (cm)	Pol	Azimuth (deg)	Corr. (dB/m)
4880.500000	48.80	73.979	25.18	1000.000	309.0	Н	302.0	9.18
7321.000000	55.15	73.979	18.83	1000.000	100.0	Н	112.0	12.50
15992.000000	61.44	73.979	12.54	1000.000	100.0	Н	148.0	24.84
17931.500000	66.00	73.979	7.98	1000.000	100.0	Н	0.0	28.14

Frequency (MHz)	Average (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Bandwidth (kHz)	Height (cm)	Pol	Azimuth (deg)	Corr. (dB/m)
4880.500000	38.74	53.979	15.24	1000.000	309.0	Н	302.0	9.18
7321.000000	46.04	53.979	7.94	1000.000	100.0	Н	112.0	12.50
15992.000000	48.14	53.979	5.84	1000.000	100.0	Н	148.0	24.84
17931.500000	52.40	53.979	1.58	1000.000	100.0	Н	0.0	28.14

Test Personnel:	Seth Parker	Test Date:	7/28/2022 – 8/1/2022
Supervising/Reviewing Engineer:			FCC Part 15.209 in Restricted
(Where Applicable)	Brian Lackey	Limit Applied:	Bands from FCC Part 15.205
	FCC Part 15.247		
Product Standard:	RSS-247 Issue 2	Ambient Temperature:	22.5C
Input Voltage:	Battery	Relative Humidity:	59.2%
Pretest Verification w / Ambient			
Signals or BB Source:	Yes	Atmospheric Pressure:	977.2mbar

6.9.3 2480MHz

Frequency (MHz)	MaxPeak (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Bandwidth (kHz)	Height (cm)	Pol	Azimuth (deg)	Corr. (dB/m)
4960.000000	48.56	73.979	25.42	1000.000	336.0	Н	268.0	9.14
7439.500000	55.02	73.979	18.96	1000.000	100.0	Н	112.0	12.63
16192.000000	61.39	73.979	12.59	1000.000	100.0	V	0.0	25.20
17942.500000	65.65	73.979	8.33	1000.000	342.0	Н	0.0	28.19

Frequency (MHz)	Average (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Bandwidth (kHz)	Height (cm)	Pol	Azimuth (deg)	Corr. (dB/m)
4960.000000	37.72	53.979	16.26	1000.000	336.0	Н	268.0	9.14
7439.500000	45.51	53.979	8.47	1000.000	100.0	Н	112.0	12.63
16192.000000	47.96	53.979	6.02	1000.000	100.0	V	0.0	25.20
17942.500000	52.41	53.979	1.57	1000.000	342.0	Н	0.0	28.19

Test Personnel:	Seth Parker	Test Date:	7/28/2022 – 8/1/2022
Supervising/Reviewing Engineer:			FCC Part 15.209 in Restricted
(Where Applicable)	Brian Lackey	Limit Applied:	Bands from FCC Part 15.205
	FCC Part 15.247		
Product Standard:	RSS-247 Issue 2	Ambient Temperature:	22.5C
Input Voltage:	Battery	Relative Humidity:	59.2%
Pretest Verification w / Ambient			
Signals or BB Source:	Yes	Atmospheric Pressure:	977.2mbar

6.10 Radiated Spurious Emissions, 18GHz-40GHz:

6.10.1 2440MHz

Frequency	MaxPeak	Limit	Margin	Bandwidth	Height	Pol	Azimuth	Corr.
(MHz)	(dBµV/m)	(dBµV/m)	(dB)	(kHz)	(cm)		(deg)	(dB/m)
18844.000000	54.82	73.979	19.16	1000.000	215.0	V	182.0	18.12
20500.500000	53.85	73.979	20.13	1000.000	100.0	V	280.0	12.21
22504.500000	52.27	73.979	21.71	1000.000	196.0	Н	0.0	6.87
23901.500000	53.73	73.979	20.25	1000.000	234.0	Н	209.0	6.39
31541.500000	54.96	73.979	19.02	1000.000	100.0	Н	135.0	11.21
36528.500000	55.73	1000.000	944.27	1000.000	100.0	V	0.0	11.43

Frequency (MHz)	Average (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Bandwidth (kHz)	Height (cm)	Pol	Azimuth (deg)	Corr. (dB/m)
18844.000000	41.79	53.979	12.19	1000.000	215.0	V	182.0	18.12
20500.500000	40.05	53.979	13.93	1000.000	100.0	V	280.0	12.21
22504.500000	39.50	53.979	14.48	1000.000	196.0	Н	0.0	6.87
23901.500000	40.18	53.979	13.80	1000.000	234.0	Н	209.0	6.39
31541.500000	41.78	53.979	12.20	1000.000	100.0	Н	135.0	11.21
36528.500000	42.57	1000.000	957.43	1000.000	100.0	V	0.0	11.43

Test Personnel:	Seth Parker	Test Date:	7/28/2022 - 8/1/2022
Supervising/Reviewing Engineer:			FCC Part 15.209 in Restricted
(Where Applicable)	Brian Lackey	Limit Applied:	Bands from FCC Part 15.205
	FCC Part 15.247		
Product Standard:	RSS-247 Issue 2	Ambient Temperature:	22.5C
Input Voltage:	Battery	Relative Humidity:	59.2%
Pretest Verification w / Ambient			
Signals or BB Source:	Yes	Atmospheric Pressure:	977.2mbar

Deviations, additions, or exclusions: This testing represents the worst case of low, middle, and high channels

7 Output Power

7.1 Test Limits

FCC Part 15.247(b)(3):

For systems using digital modulation in the 902-928 MHz, 2400-2483.5 MHz, and 5725-5850 MHz bands: 1 Watt. As an alternative to a peak power measurement, compliance with the one Watt limit can be based on a measurement of the maximum conducted output power. Maximum Conducted Output Power is defined as the total transmit power delivered to all antennas and antenna elements averaged across all symbols in the signaling alphabet when the transmitter is operating at its maximum power control level. Power must be summed across all antennas and antenna elements. The average must not include any time intervals during which the transmitter is off or is transmitting at a reduced power level. If multiple modes of operation are possible (e.g., alternative modulation methods), the maximum conducted output power is the highest total transmit power occurring in any mode.

RSS-247 Issue 2 § 5.4(d):

For DTSs employing digital modulation techniques operating in the bands 902-928 MHz and 2400-2483.5 MHz, the maximum peak conducted output power shall not exceed 1 W. The e.i.r.p. shall not exceed 4 W, except as provided in section 5.4(e).

As an alternative to a peak power measurement, compliance can be based on a measurement of the maximum conducted output power. The maximum conducted output power is the total transmit power delivered to all antennas and antenna elements, averaged across all symbols in the signaling alphabet when the transmitter is operating at its maximum power control level. Power must be summed across all antennas and antenna elements. The average must not include any time intervals during which the transmitter is off or transmitting at a reduced power level. If multiple modes of operation are implemented, the maximum conducted output power is the highest total transmit power occurring in any mode.

7.2 Test Method

Tests are performed in accordance with ANSI C63.10:2013 § 11.9.1.1. EIRP measurements were converted to output power based on customer-supplied antenna gain values.

7.3 Test Equipment Used

Description	Asset	Manufacturer	Model	Cal Date	Cal Due
EMI Test Receiver	8181	Rohde & Schwarz	ESW44	11/16/2021	11/16/2022
Horn Antenna	4001	ETS	3117	2/23/2022	2/23/2023
Sustem Controller	2057	Sunal Sciences	50001	Verify at	Verify at
System Controller	3957	Sunoi Sciences	30990	Time of Use	Time of Use
Coaxial Cable	3074			1/13/2022	1/13/2023
Coaxial Cable	2588			1/13/2022	1/13/2023
Coaxial Cable	2593			1/13/2022	1/13/2023
Coaxial Cable	2592			1/13/2022	1/13/2023

7.4 Test Results

The device was found to be **compliant**. The peak output power was less than 1W.

7.5 Test Data

Frequency (MHz)	Rx Reading	Correction Factor	Field Strength (dBuV/m)	EIRP (dBm)	Conducted Power (dBm)	Limit (dBm)	Margin (dB)	Result
2402	59.79	38.50	98.29	3.06	1.46	30	28.54	PASS
2440	59.36	38.50	97.86	2.63	1.03	30	28.97	PASS
2480	56.17	38.50	94.67	-0.56	-2.16	30	32.16	PASS

Test Personnel:	Seth Parker	Test Date:	7/28/2022 - 8/1/2022
Supervising/Reviewing Engineer:			
(Where Applicable)	Brian Lackey	Limit Applied:	See Above
	FCC Part 15.247		
Product Standard:	RSS-247 Issue 2	Ambient Temperature:	25.6C
Input Voltage:	Battery	Relative Humidity:	52.2%
Pretest Verification w / Ambient			
Signals or BB Source:	Yes	Atmospheric Pressure:	985.4mbar

7.5.1 2402MHz

								- 😣
MultiView	Spectrum							
Ref Level 89.0 Att	0 dBµV 10 dB ● SWT 100 ms	RBW 1 MHz S VBW 3 MHz Mode	e Auto Sweep			Fre	equency 2.40)20000 GHz
1 Frequency Sw	rac PS OF	r Notch Οπ						●1Pk View
							M1[1] 2.4	59.79 dBµV 02289970 GHz
80 dBµV								
70 dBμV								
60. dBuY				M1	-			
50 dBµ∨							a human and he has a star	
40 dBuV								
30 dBµV								
20. dBuV								
10 dBµV								
0 dвµV								
CF 2.402 GHz		10001 pt	s	50	0.0 kHz/			Span 5.0 MHz
	~	· · · · ·		- Measuring		28.07.2 11:35	022 Ref Level	RBW

11:35:51 28.07.2022

7.5.2 2440MHz

MultiView	Spectrum	1							•
e Att	00 dBµV 0 dB ● SWT	• RBW 100 ms VBW	/ 1 MHz / 1 MHz Mod	e Auto Sweep			Fre	equency 2.44	100000 GHz
1 Erequency S	IAC PS	Off Note	n Οπ						A 1 Dk View
	HCCP							M1[1] 2.4	59.36 dBµV 39749530 GHz
70 dBµ∨									
en douv				M1					
00 0644			and the state of the	[_]					
	h n nha	Jul Mun Market					- widue	- Junited Thill	
	1 0 7								
30 GBHA									
20 dBµV									
10 dBµV									
0 dBµV									
-10 dBµ∨									
-20 dBµV									
CF 2.44 GHz			10001 pt	S	50	0.0 kHz/			Span 5.0 MHz
					- Measuring		28.07.2	022 Ref Level 3:14 •	RBW

12:08:15 28.07.2022

7.5.3 2480MHz

MultiView	Spectrum	I								•
Ref Level 78. Att	00 dBµV 0 dB ● SWT 1 AC PS	• RBV 100 ms VBV	NY 1 MHz NY 1 MHz Mo ch Off	ode Auto Sweep			Fre	equency	2.480	0000 GHz
1 Frequency S	weep		en on							●1Pk View
								M1[1]		56.17 dB⊔V
									2.480	263470 GHz
70 dBµV										
60 dBµV					MI					
						* Annone in				
50 dBuV										
40, dBµV	1 1 1 1 1 1 1	Luman								
alarti, at bili alam		T						-	-	
), MINNY, INTRIAN IN	NN NN PROVINCE									Nite Land
NET REPORT OF A CONTRACT OF										and the second s
al dinta :										
20 dBµV										
10 dBµV										
0. d9uV										
o apha										
-10 dBuV										
-20 dBµV										
CF 2.48 GHz			10001	pts	. 50	0.0 kHz/			S	oan 5.0 MHz
	-				Measuring		28.07.2	2022 Ref	Level	RBW
							13:1	8:38	•	•

13:18:39 28.07.2022

8 Occupied Bandwidth

8.1 Test Limits

FCC Part 15.247(a)(2):

Systems using digital modulation techniques may operate in the 902-928 MHz, 2400-2483.5 MHz, and 5725-5850 MHz bands. The minimum 6 dB bandwidth shall be at least 500 kHz.

RSS-247 Issue 2 § 5.2(a):

The minimum 6 dB bandwidth shall be 500 kHz.

8.2 Test Method

Tests are performed in accordance with ANSI C63.10:2013 § 11.8.1.

8.3 Test Equipment Used

Description	Asset	Manufacturer	Model	Cal Date	Cal Due
Signal Analyzer	3727	Rohde & Schwarz	FSQ	Verify at	Verify at
				Time of Use	Time of Use

8.4 Test Results

The device was found to be **compliant**. The 6dB bandwidth was at least 500kHz.

8.5 Test Data

Frequency (MHz)	DTS BW (kHz)	OBW (kHz)	99% BW (kHz)
2402	915	2019	1730
2440	909	1866	1735
2480	915	2019	1750

Test Personnel:	Seth Parker	Test Date:	7/28/2022 - 8/1/2022
Supervising/Reviewing Engineer:			
(Where Applicable)	Brian Lackey	Limit Applied:	See Above
	FCC Part 15.247		
Product Standard:	RSS-247 Issue 2	Ambient Temperature:	25.6C
Input Voltage:	Battery	Relative Humidity:	52.2%
Pretest Verification w / Ambient			
Signals or BB Source:	Yes	Atmospheric Pressure:	985.4mbar

8.6 DTS Bandwidth, 2402MHz

Date: 27.JUL.2022 15:15:25

8.7 DTS Bandwidth, 2440MHz

Date: 27.JUL.2022 15:29:09

8.8 DTS Bandwidth, 2480MHz

Date: 27.JUL.2022 15:30:10

8.9 Occupied Bandwidth, 2402MHz

Date: 27.JUL.2022 16:22:40

8.10 Occupied Bandwidth, 2440MHz

Date: 27.JUL.2022 16:25:54

8.11 Occupied Bandwidth, 2480MHz

Date: 27.JUL.2022 16:28:40

8.12 99% Bandwidth, 2402MHz

Date: 27.JUL.2022 15:21:20

8.13 99% Bandwidth, 2440MHz

Date: 27.JUL.2022 15:27:56

8.14 99% Bandwidth, 2480MHz

Date: 27.JUL.2022 15:36:58

9 Power Spectral Density

9.1 Test Limits

FCC Part 15.247(e):

For digitally modulated systems, the power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission. This power spectral density shall be determined in accordance with the provisions of paragraph (b) of this section. The same method of determining the conducted output power shall be used to determine the power spectral density.

RSS-247 Issue 2 § 5.2(b):

The transmitter power spectral density conducted from the transmitter to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission. This power spectral density shall be determined in accordance with the provisions of section 5.4(d), (i.e. the power spectral density shall be determined using the same method as is used to determine the conducted output power).

9.2 Test Method

Tests are performed in accordance with ANSI C63.10:2013 § 11.10.2 Method PKPSD (peak PSD). EIRP measurements were converted to conducted PPSD values based on customer-supplied antenna gain.

9.3 Test Equipment Used

Description	Asset	Manufacturer	Model	Cal Date	Cal Due
EMI Test Receiver	8181	Rohde & Schwarz	ESW44	11/16/2021	11/16/2022
Horn Antenna	4001	ETS	3117	2/23/2022	2/23/2023
System Controller	3957	Sunol Sciences	SC99V	Verify at	Verify at
				Time of Use	Time of Use
Coaxial Cable	3074			1/13/2022	1/13/2023
Coaxial Cable	2588			1/13/2022	1/13/2023
Coaxial Cable	2593			1/13/2022	1/13/2023
Coaxial Cable	2592			1/13/2022	1/13/2023

9.4 Test Results

The device was found to be **compliant**. The peak power spectral density was less than 8dBm.

9.6 Test Data

Frequency (MHz)	Rx Reading	Correction Factor	Field Strength (dBuV/m)	EIRP (dBm)	PPSD (dBm/3kHz)	Limit (dBm/3kHz)	Margin (dB)	Result
2402	44.86	38.50	83.36	-11.87	-13.47	8.00	21.47	PASS
2440	43.95	38.50	82.45	-12.78	-14.38	8.00	22.38	PASS
2480	40.18	38.50	78.68	-16.55	-18.15	8.00	26.15	PASS

Test Personnel:	Seth Parker	Test Date:	7/28/2022
Supervising/Reviewing Engineer:			
(Where Applicable)	Brian Lackey	Limit Applied:	See Above
	FCC Part 15.247		
Product Standard:	RSS-247 Issue 2	Ambient Temperature:	23.3C
Input Voltage:	Battery	Relative Humidity:	48.2%
Pretest Verification w / Ambient			
Signals or BB Source:	Yes	Atmospheric Pressure:	998mbar

9.7 PPSD, 2402MHz

11:47:19 28.07.2022

9.8 PPSD, 2440MHz

11:59:02 28.07.2022

9.9 PPSD, 2480MHz

13:23:08 28.07.2022

10 Antenna Requirement

10.1 Test Limits

FCC Part 15.203:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited. This requirement does not apply to carrier current devices or to devices operated under the provisions of §§15.211, 15.213, 15.217, 15.219, 15.221, or §15.236. Further, this requirement does not apply to intentional radiators that must be professionally installed, such as perimeter protection systems and some field disturbance sensors, or to other intentional radiators which, in accordance with §15.31(d), must be measured at the installation site. However, the installer shall be responsible for ensuring that the proper antenna is employed so that the limits in this part are not exceeded.

RSS-Gen Issue 5 § 6.8:

The applicant for equipment certification, as per RSP-100, must provide a list of all antenna types that may be used with the license-exempt transmitter, indicating the maximum permissible antenna gain (in dBi) and the required impedance for each antenna.

License-exempt transmitters that have received equipment certification may operate with different types of antennas. However, it is not permissible to exceed the maximum equivalent isotopically radiated power (e.i.r.p.) limits specified in the applicable standard (RSS) for the license-exempt apparatus.

Testing shall be performed using the highest gain antenna of each combination of license-exempt transmitter and antenna type, with the transmitter output power set at the maximum level. When a measurement at the antenna connector is used to determine RF output power, the effective gain of the device's antenna shall be stated, based on a measurement or on data from the antenna manufacturer.

User manuals for transmitters equipped with detachable antennas shall also contain the following notice in a conspicuous location:

This radio transmitter (identify the device by certification number) has been approved by Industry Canada to operate with the antenna types listed below with the maximum permissible gain indicated. Antenna types not included in this list, having a gain greater than the maximum gain indicated for that type, are strictly prohibited for use with this device.

Immediately following the above notice, the manufacturer shall provide a list of all antenna types approved for use with the transmitter, indicating the maximum permissible antenna gain (in dBi).

10.2 Test Results

The device was found to be **compliant**. The device has an internal, permanently affixed antenna.

11 Revision History

Revision Level	Date	Report Number	Prepared By	Reviewed By	Notes
0	8/4/2022	105105027LEX-001b	H.	BL	Original Issue
1	8/23/2022	105105027LEX-001b.1	H.	BL	Updated antenna gain