

Test Report	No.: 1203080	04.fcc05	Page 1 of 37
Client:	Plugwise B.V. Wattstraat 56, 2171TR S	assenheim	
Test Item:	Digital Transmission Built-in module for wireles	System (DTS) as energy measuring and switching	g, ZigBee device
Identification:		Serial No.:	
Project No.:	12030804	Date of Receipt:	2012-04-20
Testing Location:	TÜV Rheinland EPS B. Eiberkamp 10 9351VT Leek	V.	
Test Specification:	ANSI C63.4-2009	bpart C, Section 15.247 (October)74 D01: Measurement of Digital Tr 15.247 (January 18, 2012)	
Test Result:		The test item passed the te	st specification(s).
Testing Laboratory:		TÜV Rheinland EPS B.V. Eiberkamp 10 9351VT Leek The Netherlands	
Tested by:	let	Reviewed by:	loelshi
2012-09-10 R. van de	r Meer / Inspector	2012-09-10 O. Hoekstra / Revi	iewer
Date Name/Po	sition Signature	Date Name/Position	Signature
Other Aspects: N/A			
		F(ail) = fail N/A = not	ssed led t applicable t tested
This report sha		ull, without the written permission of T elate only to the item(s) tested.	ÜV Rheinland EPS B.V.

est Report No.:	12030804.fcc05	Page 2 of 37
	TEST SUMMARY	
.1.1 VOLTAGE REQUI RESULT: PASS	REMENTS	
.1.2 ANTENNA REQUI RESULT: PASS	REMENTS	
.1.3 RESTRICTED BAI RESULT: PASS	NDS OF OPERATION	
.2.1 CONDUCTED OU RESULT: PASS	TPUT POWER	
.2.2 6DB BANDWIDTH RESULT: PASS	I	
.2.3 CONDUCTED SPU RESULT: PASS	JRIOUS EMISSION	
.2.4 PEAK POWER SP RESULT: PASS	PECTRAL DENSITY	
.2.5 BAND EDGE CON RESULT: Pass	DUCTED EMISSIONS	
.2.6 RADIATED SPUR RESULT: PASS	IOUS EMISSIONS OF TRANSMITTER	
.3.1 AC Power Line RESULT: PASS	CONDUCTED EMISSION OF TRANSMITTE	R

Test F	Report No.: 12030804.fcc05	Page 3 of 37
Со	ntents	
1.	GENERAL REMARKS	4
1.1	COMPLEMENTARY MATERIALS	4
2.	TEST SITES	4
2.1	TEST FACILITIES	4
2.2	LIST OF TEST AND MEASUREMENT INSTRUMENTS	5
2.3	MEASUREMENT UNCERTAINTY	6
3.	GENERAL PRODUCT INFORMATION	7
3.1	PRODUCT FUNCTION AND INTENDED USE	7
3.2	SYSTEM DETAILS	7
3.3	CLOCK FREQUENCIES	8
3.4	COUNTERMEASURES TO ACHIEVE EMC COMPLIANCE	8
4.	TEST SET-UP AND OPERATION MODES	9
4.1	TEST METHODOLOGY	9
4.2	OPERATION MODES	9
4.3	Physical Configuration for Testing	9
4.4	Test Software	10
4.5	SPECIAL ACCESSORIES AND AUXILIARY EQUIPMENT	11
5.	TEST RESULTS RADIO	13
5.1	TECHNICAL REQUIREMENTS	
5.1 5.1	5 1	
5.1	,	
5.2 5.2	CONDUCTED MEASUREMENTS AT ANTENNA PORT	
5.2	2.2 6dB Bandwidth	
5.2 5.2		
5.2 5.2	0	
5.3	AC Power Line Conducted Measurements	
5.3		
6.	LIST OF TABLES	
7.	LIST OF FIGURES	

12030804.fcc05

Page 4 of 37

1. General Remarks

1.1 Complementary Materials

There is no attachment to this test report.

2. Test Sites

2.1 Test Facilities

The Federal Communications Commission and Industry Canada has reviewed the technical characteristics of the test facilities at TÜV Rheinland EPS B.V., located in Leek, 9351VT Eiberkamp 10, The Netherlands, and has found these test facilities to be in compliance with the requirements of 47 CFR Part 15, section 2.948, (10-1-09 edition).

The description of the test facilities has been filed at the Office of the Federal Communications Commission under registration number 90828. The facility has been added to the list of laboratories performing these test services for the public on a fee basis.

The description of the test facilities has been filed to Industry Canada under registration number 2932G-2. The facility has been added to the list of laboratories performing these test services for the public on a fee basis.

Normal test conditions:

Temperature (*)	: +15°C to +35°C
Relative humidity(*)	: 20 % to 75 %
Supply voltage	: 120VAC/60Hz
Air pressure	: 950 – 1050 hPa

When it was impracticable to carry out the tests under these conditions, a note to this effect stating the ambient temperature and relative humidity during the tests are stated separately.

12030804.fcc05

Page 5 of 37

2.2 List of Test and Measurement Instruments

Table 1: List of Test and Measurement Equipment

Kind of Equipment	Manufacturer	Model Name	Inventory number	Calibration date (mm/yyyy)	Calibration due date (mm/yyyy)		
For Antenna Port Conducted Emission							
Spectrum Analyzer	Rohde & Schwarz	FSP40	99538	11/2011	11/2012		
Temperature- Humiditymeter	Extech	SD500	99857	02/2012	02/2013		
Power Divider	Weinschel	1515	N/A	N/A	N/A		
	For AC Power Line Conducted Emission						
LISN	EMCO	3625/2	12512	01/2012	01/2014		
Measurement Receiver	Rohde & Schwarz	ESCI	99699	02/2012	02/2013		
Pulse Limiter	Rohde & Schwarz	ESH3-Z2	13313	02/2012	02/2013		
Temperature- Humiditymeter	Extech	SD500	99852	02/2012	02/2013		
Variac	RFT	LSS020	99220	N/A	N/A		
	For R	adiated Emissi	on				
Measurement Receiver	Rohde & Schwarz	ESCI	99699	02/2012	02/2013		
RF Cable S-AR	Gigalink	APG0500	99858	02/2012	02/2013		
Controller	Heinrich Deisel	4630-100	99107	N/A	N/A		
Test fascility	Siepel	FCC listed: 90828	99580	02/2012	02/2015		
Spectrum Analyzer	Rohde & Schwarz	FSP40	99538	11/2011	11/2012		
Controller	EMCS	DOC202	99608	N/A	N/A		
Antenna mast	EMCS	AP-4702C	99609	N/A	N/A		
Temperature- Humiditymeter	Extech	SD500	99855	02/2012	02/2013		
Guidehorn 1-18 GHz	EMCO	3115	12484	04/2012	04/2013		
Guidehorn 18-26.5 GHz	EMCO	RA42-K-F-4B-C	12488	04/2012	04/2013		
Biconilog Testantenna	Chase	CBL 6111B	15633	01/2012	01/2013		
2.4 GHz bandreject filter	BSC	XN-1783	14450	N/A	N/A		
Bandpass filter 4-10 GHz	Reactel	7AS-7G-6G- 511	99076	N/A	N/A		
Bandpass filter 10-26 GHz	Reactel	9HS- 10G/26.5G- S11	99136	N/A	N/A		
Preamplifier 0.5 - 18 GHz	Miteq	AMF-5D- 005180-28- 13p	99596	N/A	N/A		

Conformance of the used measurement and test equipment with the requirements of ISO/IEC 17025:2005 has been confirmed before testing.

12030804.fcc05

Page 6 of 37

2.3 Measurement Uncertainty

Table 2: Emission Measurement Uncertainty

Measurement Type	Frequency	Uncertainty
AC Power Line Conducted Emission	150kHz - 30MHz	±3.5dB
Antenna Port Conducted Emission	< 1GHz	±0.5dB
	> 1GHz	±0.7dB
Radiated Emission	150kHz - 30MHz	±5.0dB
	30MHz - 1GHz	±5.0dB
	> 1GHz	±5.5dB

12030804.fcc05

Page 7 of 37

3. **General Product Information**

3.1 Product Function and Intended Use

The brand Plugwise model Stealth+, hereafter refered to as EUT, is a digitally modulated transmitter intended to be used in a wireless ZigBee-mesh network.

A Plugwise network is a dynamic structure of Plugwise components that measure energy consumption, switch appliances on or off and save energy. The different components perform their tasks independently and connect with each other via ZigBee. Each Plugwise network has one Stealth+. The Stealth+ keeps track of which Stealth belongs to the network and communicates this to the Stick in the computer. After the network is set up the Stealth+ can be used as a regular Stealth. It operates in the 2400 - 2483.5 frequency band (it actually uses the frequency range of 2405 - 2480 MHz).

The content of this report and measurement results have not been changed other than the way of presenting the data.

3.2 System Details

Details and an overview of the system and all of its components, as it has been tested, may be found below.

EUT

EUT	:	Digital Transmission System (DTS)
		(Plugwise System Wireless light and motion detector, ZigBee device)
Manufacturer	:	Applied Micro Electronics "AME" BV
Brand	:	Plugwise
Model	:	Stealth+
Serial number	:	
Voltage input rating	:	100 – 230 Vac
Voltage output rating	:	
Current input rating	:	
Antenna	:	Integral, integrated on the PCB
Operating frequency	:	2405 – 2480 MHz
Modulation	:	O-QPSK
Remarks	:	n.a.

<u>.</u>

12030804.fcc05

Page 8 of 37

Table 3: Interfaces present on the EUT

No.	Interface	Cable Length for Testing, Shielding	Interface Classification
1.	AC Input	<3m, No shielding	AC input power port

3.3 Clock Frequencies

The highest clock frequency generated by the EUT is 24.000 MHz.

3.4 Countermeasures to achieve Compliance

No additional measures were employed to achieve compliance.

12030804.fcc05

Page 9 of 37

4. Test Set-up and Operation Modes

4.1 Test Methodology

The test methodology used is based on the requirements of 47 CFR Part 15, Sections 15.31, 15.33, 15.35, 15.205, 15.207, 15.209, 15.247 and KDB Publication No. 558074 D01: Measurement of Digital Transmission Systems Operating under Section 15.247.

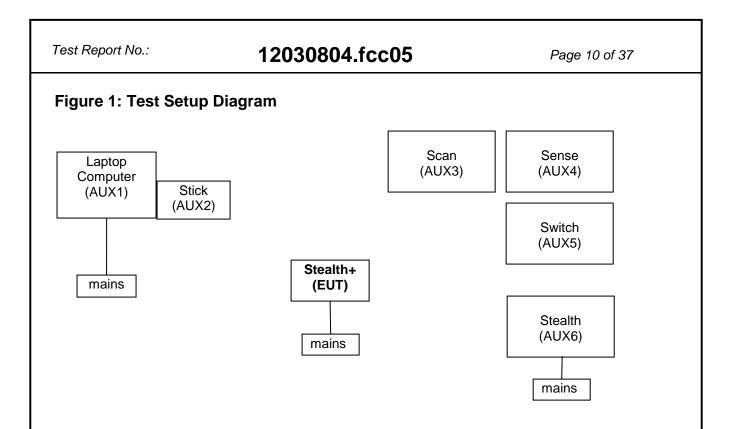
The test methods, which have been used, are based on ANSI C63.4-2009.

For details, see under each test item.

4.2 Operation Modes

Testing was performed at the lowest operating frequency (2405MHz), at the operating frequency in the middle of the specified frequency band (2440MHz) and at the highest operating frequency (2480MHz).

The basic operation modes used for testing are:


- A. EUT transmits (TX mode), with full power, at lowest channel, Channel 11 (2405MHz), a continuous modulated signal streaming called "Burst Mode".
- B. EUT transmits (TX mode), with full power, at middle channel, Channel 18 (2440MHz), a continuous modulated signal streaming called "Burst Mode".
- C. EUT transmits (TX mode), with full power, at highest channel, Channel 26 (2480MHz), a continuous modulated signal streaming called "Burst Mode".

4.3 Physical Configuration for Testing

The EUT was tested on a stand-alone basis (only attached to the test jig) and the test system was configured in a typical fashion (as a customer would normally use it). For conducted measurements a power divider was used between RF output and antenna of the EUT, so the EUT can keep a connection with the network and conducted measurements can be made. For details see the Test setup photographs document (14_PWR-STEALTH-PLUS_Photoreport_Testsetup.pdf)

The justification and manipulation of cables and equipment in order to simulate a worst-case behavior of the test setup has been carried out as prescribed in ANSI C63.4:2009.

For more details, refer to the document: Test Set-Up Photographs document.

4.4 Test Software

The EUT was provided by the manufacturer with suitable software to allow operation in all the required modes.

Software used for testing: Plugwise Easy Tool, Build date: 5/26/2011.

This software was running on a laptop computer (AUX1). It was used to enable the test operation modes listed in section 4.2 as appropriate.

1.5			
.5			
.5			
	Special Ac	cessories and Auxiliary Equipm	nent
he pr	oduct has beer	n tested together with the following additiona	al accessories:
Ma Bra Ra An	JT oduct: anufacturer: and: ted Voltage: tenna: emarks:	ZigBee module Plugwise Stealth+ 100 – 240 Vac Internal, integrated on the PCB FCC ID: ZB9-STEALTH-PLUS	
Bra Mo Se	JX1 oduct: and: odel: rial Number: mark:	Laptop Computer Lenovo 9456-HTG L3-BF847 07/02 property TR-EPS, host for testsoftware a	Ind AUX2
Bra Mc Ra An	IX2 oduct: and: odel: ted Voltage: tenna: marks:	ZigBee module, USB Stick Plugwise Stick 3.3 - 5Vdc (USB powered) Internal, integrated on the PCB FCC ID: ZB9-STICK, connects to AUX1	
Bra Mc Ra An	UX3 oduct: and: odel: ted Voltage: tenna: emarks:	ZigBee module, USB Stick Plugwise Scan 3.6 Vdc (Lithium battery powered) Internal, integrated on the PCB FCC ID: ZB9-SCAN	

Test Report No.:	12030804.fcc05	Page 12 of 37
 AUX4 Product: Brand: Model: Rated Voltage: Antenna: Remarks: 	ZigBee module Plugwise Sense 3.6 Vdc (Lithium battery powered) Internal, integrated on the PCB FCC ID: ZB9-SENSE	
 AUX5 Product: Brand: Model: Rated Voltage: Antenna: Remarks: 	ZigBee module Plugwise Switch 2.4 - 3.3 Vdc (battery powered, 2* AAA-batteries) Internal, integrated on the PCB FCC ID: ZB9-SWITCH	
 7. AUX6 Product: Brand: Model: Rated Voltage: Antenna: Remarks: 	ZigBee module Plugwise Stealth 100 – 240 Vac Internal, integrated on the PCB FCC ID: ZB9-STEALTH	

12030804.fcc05

Page 13 of 37

5. Test Results

5.1 Technical Requirements

5.1.1 Voltage Requirements

RESULT: PASS

Requirements:

FCC 15.31(e)

For intentional radiators, measurements of the variation of the input power or the radiated signal level of the fundamental frequency component of the emission, as appropriate, shall be performed with the supply voltage varied between 85% and 115% of the nominal rated supply voltage. For battery operated equipment, the equipment tests shall be performed using a new battery.

Verdict:

The EUT has an internal voltage regulator to supply the RF circuit. Spot checks indicate that no variation in test results can be observed when the input voltage is varied between 85% - 115% of the nominal input voltage.

5.1.2 Antenna Requirements

RESULT: PASS

Requirements:

FCC 15.203

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device.

Verdict:

The EUT has an internal antenna which is not user accessible. Hence it complies with the requirements.

12030804.fcc05

Page 14 of 37

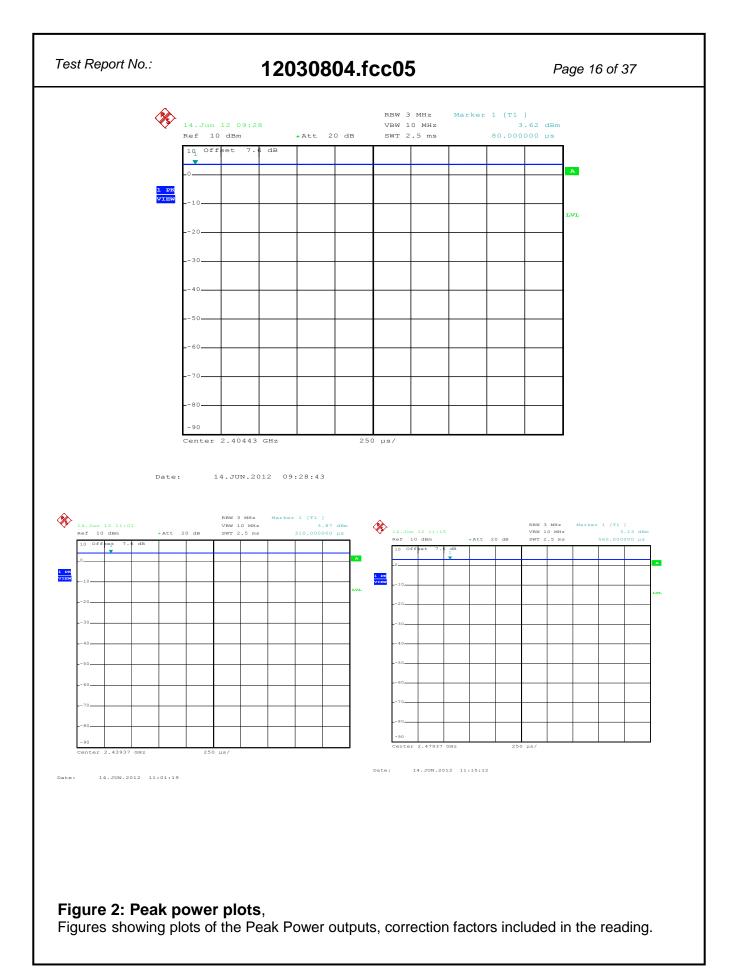
5.1.3 Restricted Bands of Operation

RESULT: PASS

Requirements:

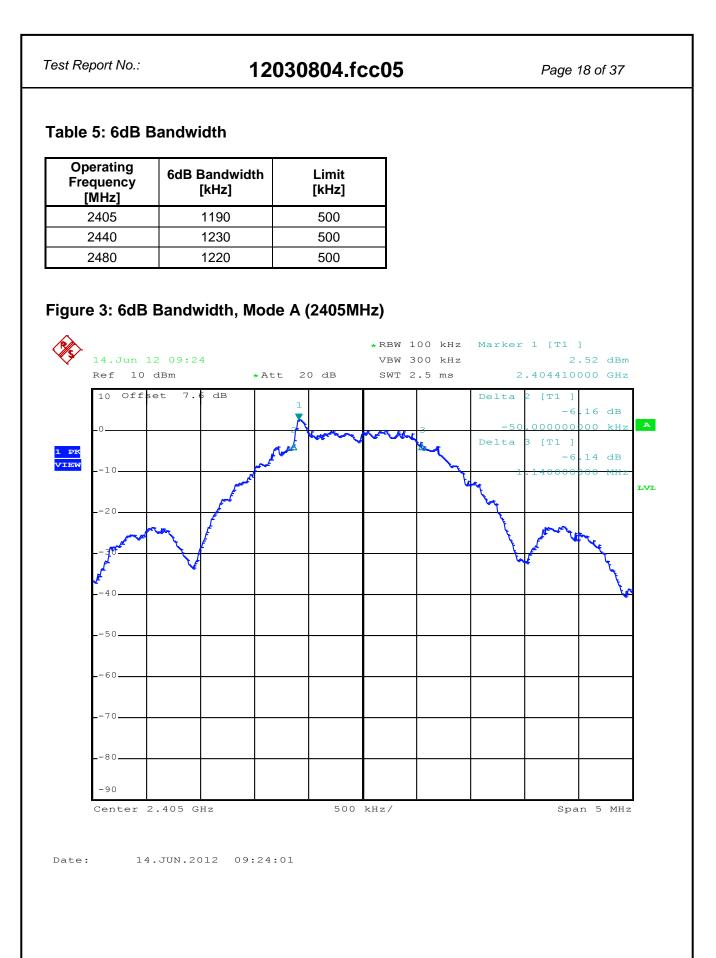
FCC 15.205

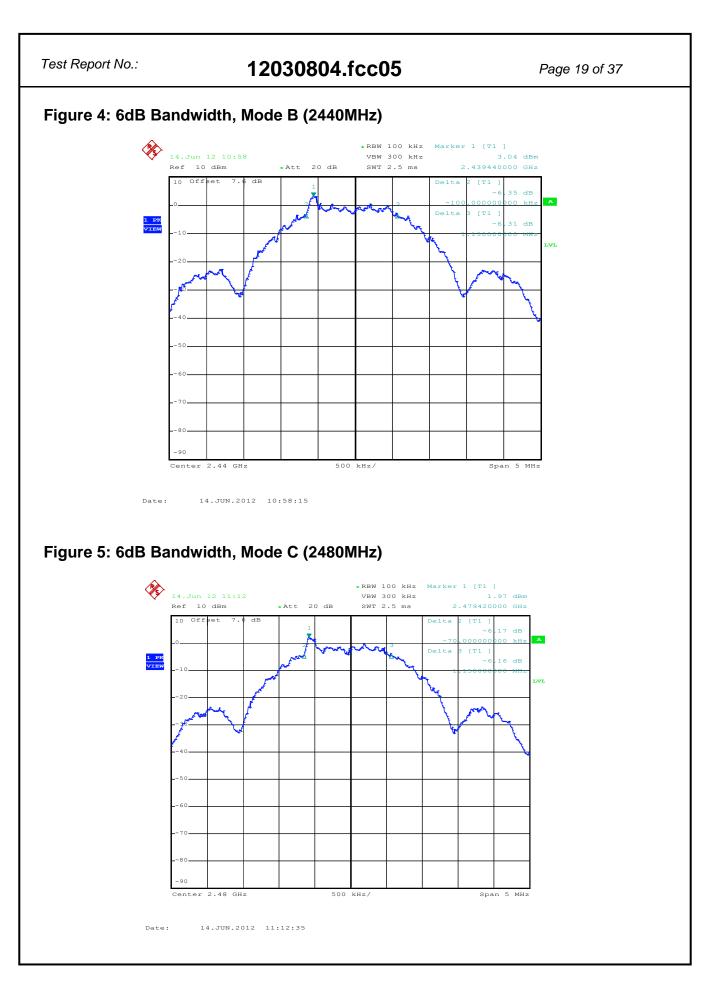
Only spurious emissions are permitted in any of the restricted frequency bands, unless otherwise specified.


Verdict:

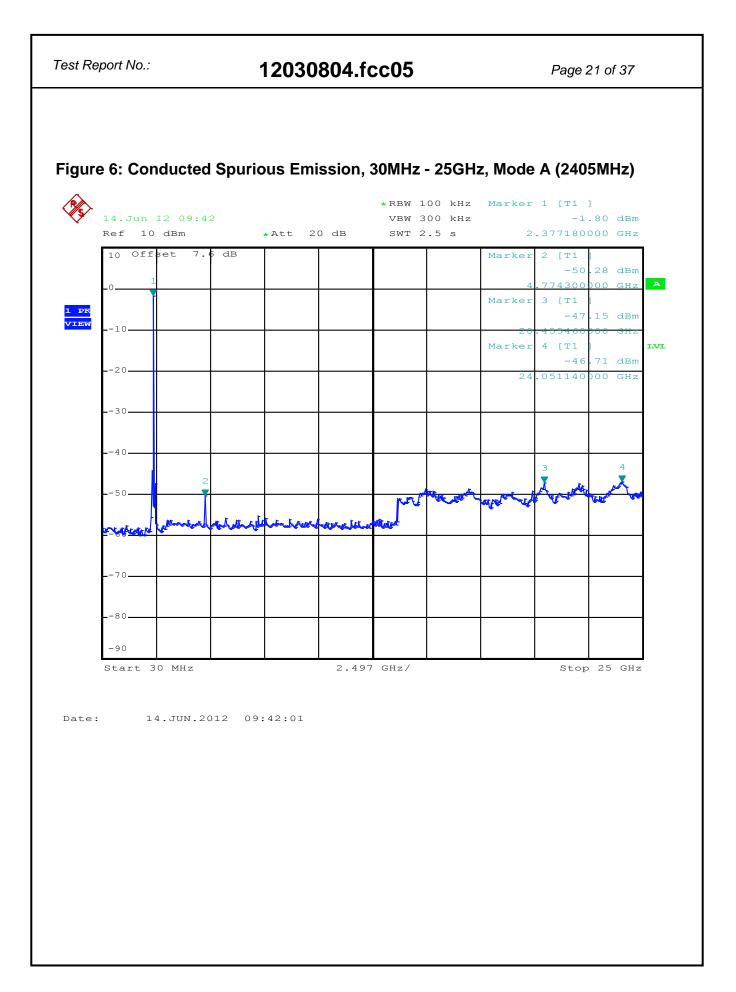
The EUT operation frequency range is 2405 MHz - 2480 MHz. Therefore only spurious emissions may be found in the restricted bands of operation and the EUT complies with the restricted frequency band requirement. Any emissions directly related to the transmitter function located in these bands meet the General radiated emissions limits of 15.209.

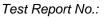
	0.:	1203	80804.fc	c05		Page 15	of 37
5.2 Con	ducted N	leasurem	ents at A	ntenna P	Port		
5.2.1 Conducted Output Power							
RESULT: P	ASS						
Date of testir	ng:		20 ⁻	12-06-14			
Requirement	ts:						
FCC 15.247((b)(3)						
For systems power is 1W		modulation i	n the 2400-2	2483.5MHz	band, the m	naximum pe	ak output
Test procedu	ure:						
ANSI C63.4-	2009 and KI	DB Publicatio		74 D01: Mea	asurement c	of Digital Tra	ansmission
	alyzer. The f	ut power (cor inal measure					
nvolved cab	onducted C	Output Powe	er				
nvolved cab	Reading [dBm]	Output Powe Correction Factor [dB]	er Output Power [dBm]	Output Power [mW]	Limit [dBm]	Limit [mW]	Margin [dB]
Frequency	Reading	Correction Factor	Output Power	Power			



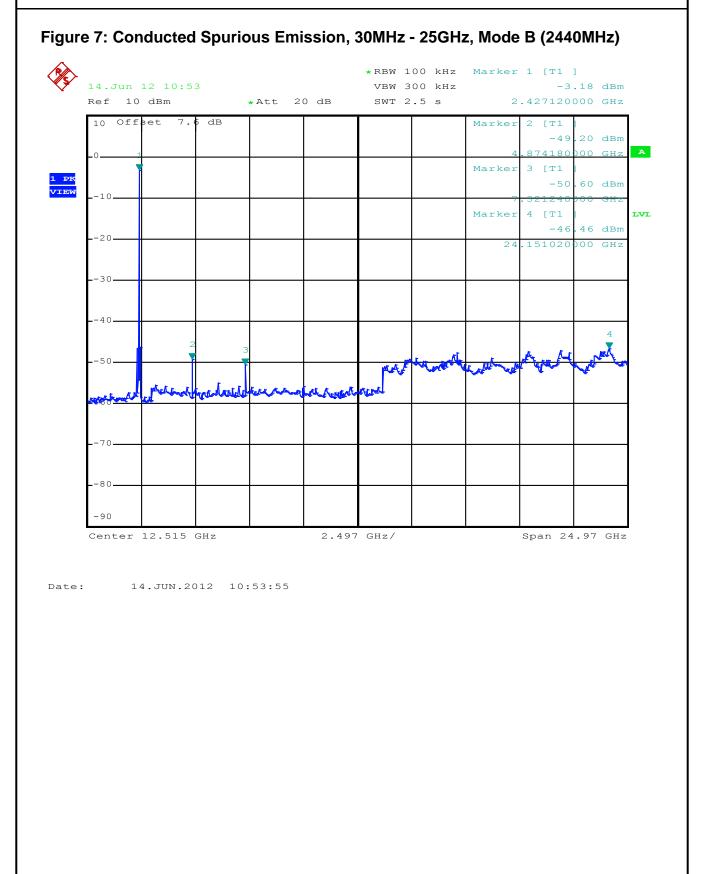


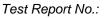
Test Report No.:	12030804.fcc05	Page 17 of 37
5.2.2 6dB Bandwidt	h	
RESULT: PASS		
Date of testing:	2012-06-14	
Requirements:		
FCC 15.247(a)(2)		
For systems using digita at least 500kHz.	al modulation in the 2400-2483.5MHz band	I, the 6dB bandwidth shall be
Test procedure:		
ANSI C63.4-2009 and k Systems Operating und	KDB Publication No. 558074 D01: Measure er Section 15.247.	ement of Digital Transmission
	as connected to the antenna port of the EU as set to 100kHz and the span to 5 MHz.	T. The spectrum analyzer





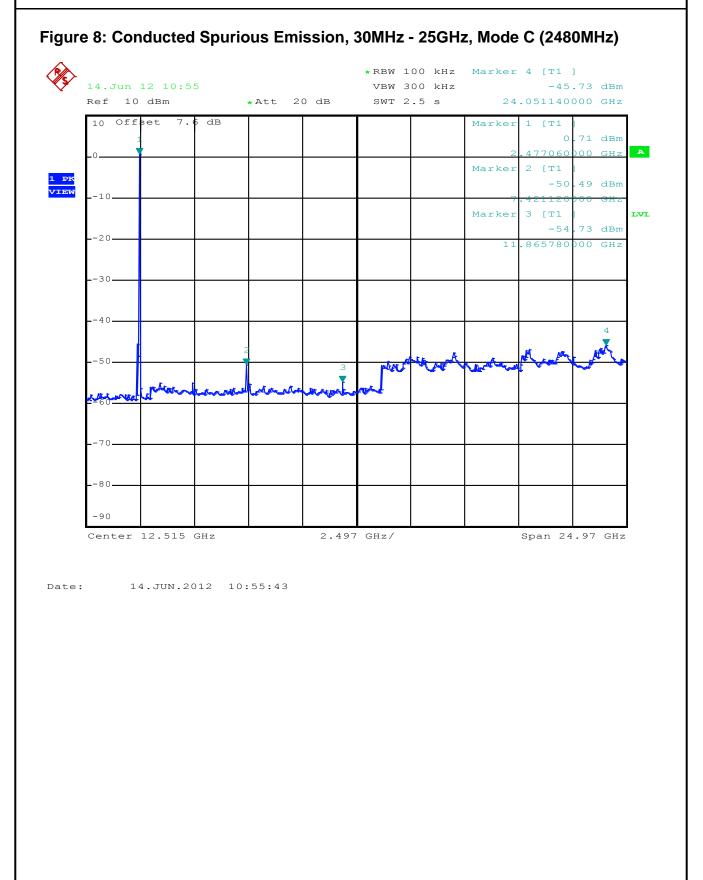
Test Report No.:	12030804.fcc05	Page 20 of 37
5.2.3 Conducted S	Spurious Emission	
RESULT: PASS		
Date of testing:	2012-06-14	
Requirements:		
FCC 15.247(d)		
	h outside the frequency band, the RF p um in-band 100kHz emission.	ower shall be at least 20dB
Test procedure:		
ANSI C63.4-2009 and K Systems Operating unde	DB Publication No. 558074 D01: Measurer Section 15.247.	urement of Digital Transmission
bandwidth was set to 10	s connected to the antenna port of the I 0kHz. For each channel investigated, th were performed. The out-of-band emis armonics).	ne in-band and out-of-band
The final measurement t	akes into account the loss generated by	y all the involved cables.



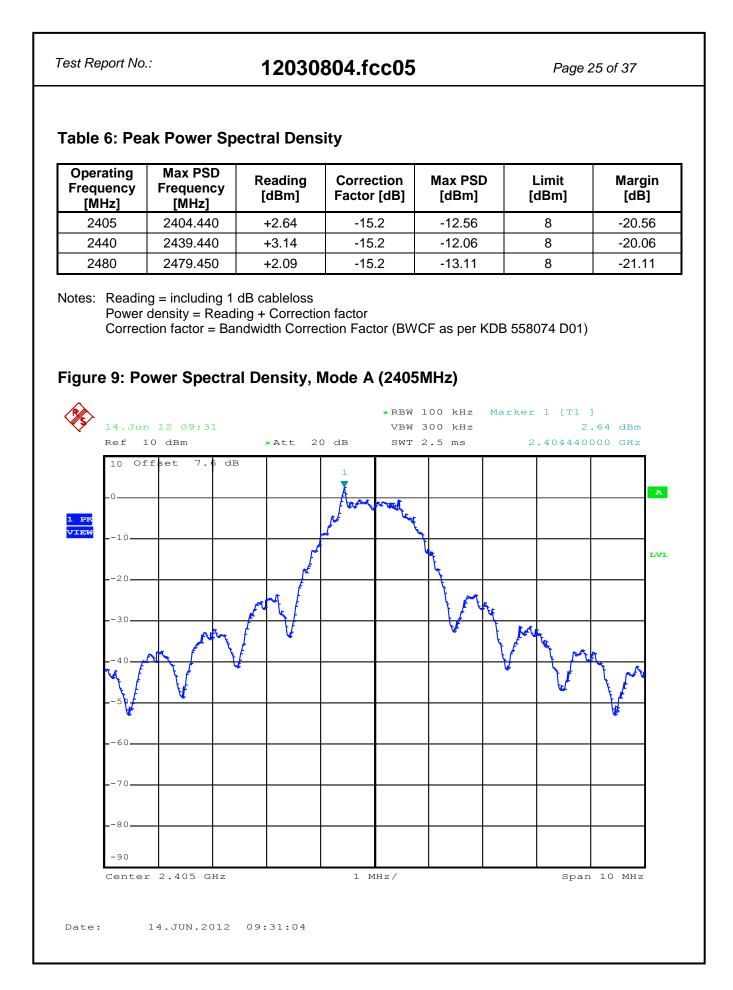


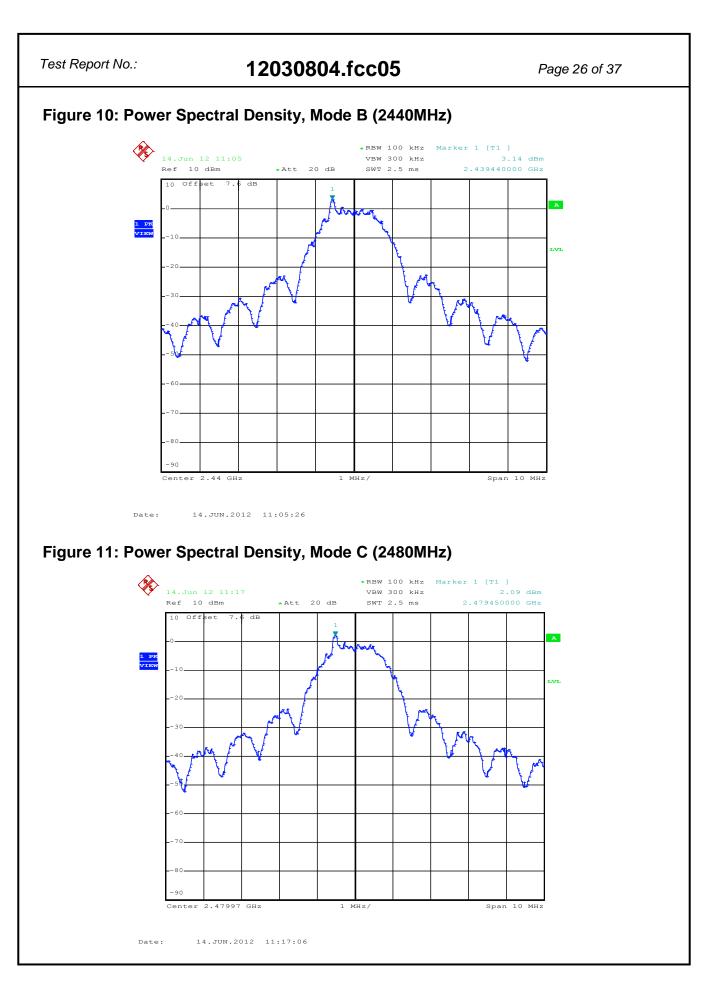
12030804.fcc05

Page 22 of 37

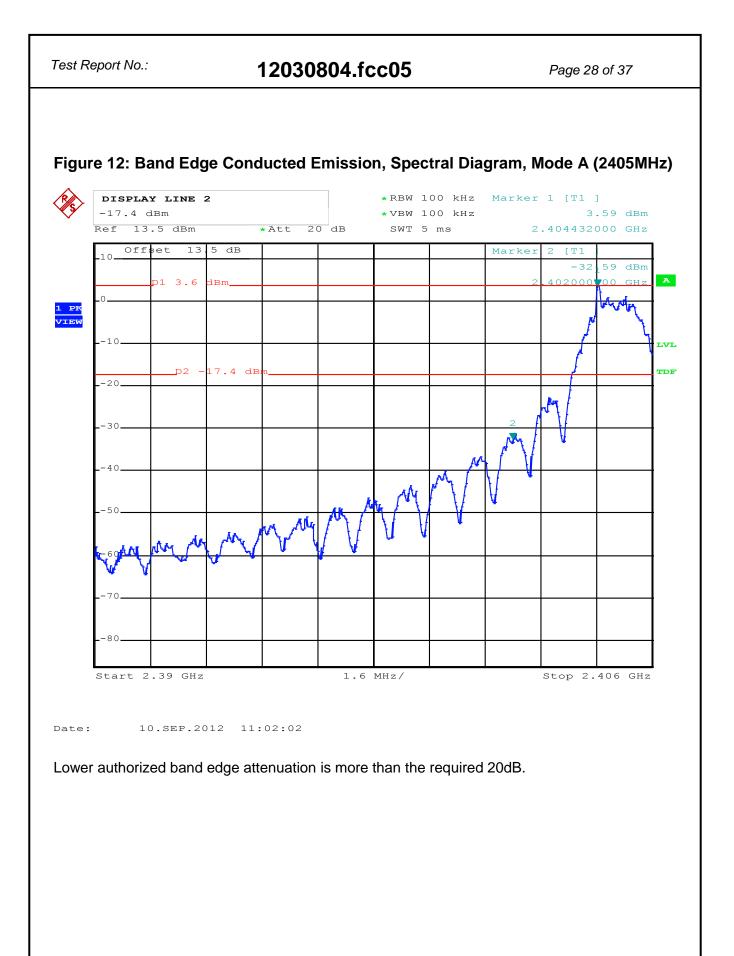


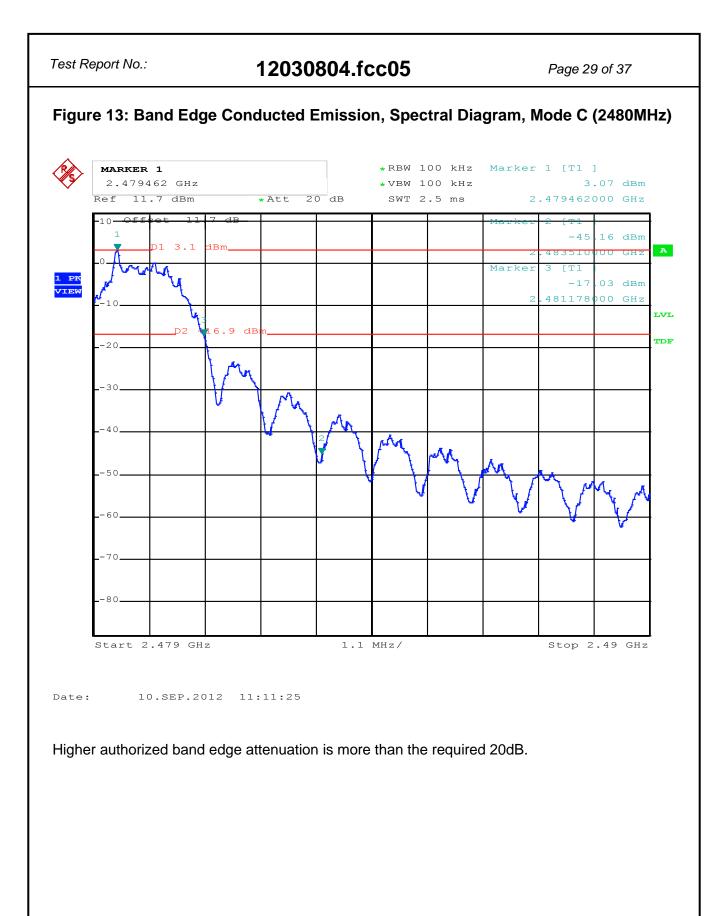
12030804.fcc05


Page 23 of 37



Test Report No.:	12030804.fcc05	Page 24 of 37
5.2.4 Peak Power	Spectral Density	
RESULT: Pass		
Date of testing:	2012-06-14	
Requirements:		
FCC 15.247(e)		
	systems, the power spectral density (PSD) e antenna shall not be greater than 8dBm ous transmission.	
Test procedure:		
ANSI C63.4-2009 and k Systems Operating und	(DB Publication No. 558074 D01: Measure er Section 15.247.	ment of Digital Transmission
	as connected to the antenna port of the EU Hz and the video bandwidth was set to 10	
The final measurement	takes into account the loss generated by a	Il the involved cables.





Test Report No.:	12030804.fcc05	Page 27 of 37			
525 Band Edge (Conducted Emissions				
-					
RESULT: Pass					
Date of testing:	2012-09-10				
Requirements:					
FCC 15.205, FCC 15.20	9 and FCC 15.247(d)				
In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits.					
Test procedure:					
ANSI C63.4-2009 and K Systems Operating under	DB Publication No. 558074 D01: Measure er Section 15.247.	ement of Digital Transmission			
•	formed using a spectrum analyzer with a sental and using the following settings: 100kHz.	suitable span to encompass			
The highest emission ar in this report.	nplitudes relative to the appropriate limit w	vere measured and recorded			
Results: All out of band See Figures 12 and 13 o	spurious emissions are more than 20 dB b on the following pages.	pelow the fundamental.			

Test Report No.:	12030804.fcc05	Page 30 of 37						
5.2.6 Radiated Spu	5.2.6 Radiated Spurious Emissions of Transmitter							
RESULT: PASS								
Date of testing:	2012-05-21 and	2012-05-23						
Frequency range:	30MHz - 25GHz							
Requirements:								
	fall in the restricted bands, as define	d in FCC 15.205(a), must comply						
	Imits specified in FCC 15.209(a). If all outside the operation frequency because the	pand and outside restricted						
bands shall either meet th	e limit specified in FCC 15.209(a) or the 100kHz bandwidth within the band	pe attenuated at least 20dB						
Test procedure:								
ANSI C63.4-2009 and KD Systems Operating under	B Publication No. 558074 D01: Meas Section 15.247.	urement of Digital Transmission						
measurements of radiated emission spectrum profile	a nonconductive turntable 0.8m above d emissions were performed, the EUT . The physical arrangement of the tes K, Y, Z) were varied in order to ensure	was scanned to determine its t system, the associated cabling						
	ned from 30MHz to the 10th harmonic GHz). Final radiated emission measur							
antenna was raised and lo	a spurious emission was found, the E owered from 1 to 4m in order to deterr e taken using both horizontal and verti	mine the emission's maximum						
U U U	plitudes relative to the appropriate limi diated emissions at frequencies not li e limit.	•						

12030804.fcc05

Page 31 of 37

Table 7: Radiated Emission, Quasi Peak Data, 30MHz - 1GHz, Horizontal and Vertical Antenna Orientations

Freq. [MHz]	Antenna Orientation	Reading QP [dBµV]	Factor [dB(1/m)]	Level QP [dBµV/m]	Limit [dBµV/m]	Margin QP [dB]
53.30	Vertical	4.33	7.0	11.33	40.0	28.67
74.62	Vertical	6.52	6.5	13.02	40.0	26.98
76.12	Vertical	7.52	6.8	14.32	40.0	25.68
144.26	Vertical	1.35	11.5	12.85	43.5	30.65
652.74	Horizontal	-0.20	22.6	22.40	46.0	23.60
683.34	Vertical	-0.72	23.2	22.48	46.0	23.52

Note: - Level QP = Reading QP + Factor

- Tested in Mode A (2405MHz), Mode B (2440MHz) and Mode C (2480MHz), highest values noted.

- Quasi Peak detector used with a bandwidth of 120 kHz.

- Reported values are noise floor values, no EUT emissions found above noise floor.

12030804.fcc05

Page 32 of 37

Table 8: Radiated Emission, Average Data, 1 - 25GHz, Horizontal and Vertical Antenna Orientations, Mode A (2405MHz)

Freq. [MHz]	Antenna Orientation	Reading AV [dBµV]	Factor [dB(1/m)]	Level AV [dBµV/m]	Limit [dBµV/m]	Margin AV [dB]
2287	Vertical	39.6	11.6	51.2	54	-22.8
4800	Horizontal	41.7	6.5	48.2	54	-5.8
7104	Horizontal	35.6	10.5	46.2	54	-7.8
11100	Horizontal	31.2	16.0	47.2	54	-6.8
13152	Horizontal	32.6	14.6	47.2	54	-6.8
13848	Vertical	33.7	17.6	51.2	54	-2.8

Note: - Level AV = Reading AV + Factor

- Average detector used with a bandwidth of 1 MHz.

Table 9: Radiated Emission, Peak Data, 1 - 25GHz, Horizontal and Vertical Antenna Orientations, Mode A (2405MHz)

Freq. [MHz]	Antenna Orientation	Reading PK [dBµV]	Factor [dB(1/m)]	Level PK [dBµV/m]	Limit [dBµV/m]	Margin PK [dB]
2287	Vertical	28.6	11.6	40.2	74	-33.8
4800	Horizontal	52.5	6.5	59.0	74	-15.0
7104	Horizontal	41.9	10.5	52.5	74	-21.5
11100	Horizontal	42.3	16.0	58.3	74	-15.7
13152	Horizontal	44.6	14.6	59.2	74	-14.8
13848	Vertical	50.8	17.6	68.3	74	-5.7

Note: - Level PK = Reading PK + Factor

- Peak detector used with a bandwidth of 1 MHz

12030804.fcc05

Page 33 of 37

Table 10: Radiated Emission, Average Data, 1 - 25GHz, Horizontal and Vertical Antenna Orientations, Mode B (2440MHz)

Freq. [MHz]	Antenna Orientation	Reading AV [dBµV]	Factor [dB(1/m)]	Level AV [dBµV/m]	Limit [dBµV/m]	Margin AV [dB]
1723	Vertical	4.3	18.9	23.2	54	-30.8
1988	Vertical	7.6	15.6	23.2	54	-60.8
2120	Vertical	8.1	15.6	23.7	54	-30.3
2253	Vertical	8.3	15.6	23.9	54	-30.1
4872	Horizontal	38.7	6.5	45.2	54	-8.8
12552	Vertical	18.6	16.6	35.2	54	-18.8
13920	Horizontal	27.7	17.5	45.2	54	-8.8

Note: - Level AV = Reading AV + Factor

- Average detector used with a bandwidth of 1 MHz

Table 11: Radiated Emission, Peak Data, 1 - 25GHz, Horizontal and Vertical Antenna Orientations, Mode B (2440MHz)

Freq. [MHz]	Antenna Orientation	Reading PK [dBµV]	Factor [dB(1/m)]	Level PK [dBµV/m]	Limit [dBµV/m]	Margin PK [dB]
1723	Vertical	12.7	18.9	31.6	74	-42.4
1988	Vertical	16.4	15.6	31.8	74	-42.2
2120	Vertical	16.8	15.6	32.2	74	-41.8
2253	Vertical	17.2	15.6	32.6	74	-41.4
4872	Horizontal	48.0	6.5	54.5	74	-19.5
12552	Vertical	28.2	11.2	44.8	74	-29.2
13920	Horizontal	33.8	17.5	51.3	74	-22.7

Note: - Level PK = Reading PK + Factor

- Peak detector used with a bandwidth of 1 MHz

12030804.fcc05

Page 34 of 37

Table 12: Radiated Emission, Average Data, 1 - 25GHz, Horizontal and Vertical Antenna Orientations, Mode C (2480MHz)

Freq. [MHz]	Antenna Orientation	Reading AV [dBµV]	Factor [dB(1/m)]	Level AV [dBµV/m]	Limit [dBµV/m]	Margin AV [dB]
1723	Vertical	3.3	18.9	22.2	54	-31.8
1980	Vertical	6.6	15.6	22.2	54	-31.8
2121	Horizontal	6.9	15.6	22.5	54	-31.5
2253	Horizontal	7.4	15.6	23.0	54	-31.0
4962	Horizontal	34.7	6.5	41.2	54	-12.8
11290	Horizontal	23.2	16.0	39.2	54	-14.8
13210	Horizontal	21.4	14.8	36.2	54	-17.8
14112	Horizontal	27.7	17.5	45.2	54	-8.8

Note: - Level AV = Reading AV + Factor

- Average detector used with a bandwidth of 1 MHz

Table 13: Radiated Emission, Peak Data, 1 - 25GHz, Horizontal and Vertical Antenna Orientations, Mode C (2480MHz)

Freq. [MHz]	Antenna Orientation	Reading PK [dBµV]	Factor [dB(1/m)]	Level PK [dBµV/m]	Limit [dBµV/m]	Margin PK [dB]
1723	Vertical	8.8	18.9	27.7	74	-46.3
1980	Vertical	16.5	15.6	32.1	74	-41.9
2121	Horizontal	16.1	15.6	31.7	74	-42.3
2253	Horizontal	16.1	15.6	31.7	74	-42.3
4962	Horizontal	46.9	6.5	53.4	74	-20.6
11290	Horizontal	29.3	16.0	45.3	74	-28.7
13210	Horizontal	30.4	14.8	45.2	74	-28.8
14112	Horizontal	32.9	17.5	50.4	74	-23.6

Note: - Level PK = Reading PK + Factor

- Peak detector used with a bandwidth of 1 MHz

Test Report No.:	12030804.fcc05	Page 35 of 37				
5.3 AC Power Line Conducted Measurements						
5.3.1 AC Power Lin	e Conducted Emission of Transmit	ter				
RESULT: PASS						
Date of testing:	2012-05-14					
Frequency range: Kind of test site:	0.15 - 30MHz Shielded Room					
Requirements: FCC 15.207						
	ducted emission on any frequency within hits specified in FCC 15.207.	the band 150kHz to 30MHz				
Test procedure: ANSI C63.4-2009						
vertical conducting plar	n a wooden table raised 80cm above the ne of the screened room was located 40cr a Line Impedance Stabilization Network (m to the rear of the EUT. The				
	ent of the test system and associated cab emissions in amplitude and frequency in ere attained.	-				
	re performed with the measuring receiver ction modes. The analyzer's 6dB bandwid					
Conducted emissions a applicable limit.	at frequencies not listed in the table are m	ore than 20 dB below the				

12030804.fcc05

Page 36 of 37

Table 14: AC Power Line Conducted Emission, Quasi Peak and Average Data, 0.15 - 30MHz, Phase N (N) and L1 (L)

Freq. [MHz]	Reading L1 QP [dBµV]	Reading L1 AV [dBµV]	Level QP N(L2) [dBµV]	Level AV N(L2) [dBµV]	Limit QP [dBµV]	Limit AV [dBµV]	Margin QP [dB]	Margin AV [dB]
0.19646	57.0	41.1	54.7	40.2	63.6	53.6	6.6	12.5
0.26987	53.3	38.2	51.5	37.5	61.1	51.1	7.8	12.9
0.34242	50.2	34.3	48.8	35.3	59.2	49.2	9.0	13.9
0.40133	48.0	33.2	46.6	33.5	57.9	47.9	9.9	14.4
0.47037	45.8	31.2	44.6	31.6	56.5	46.5	10.7	14.9
0.54260	43.2	29.0	42.8	28.9	56.0	46.0	12.8	17.0
0.60637	41.1	27.4	40.8	28.1	56.0	46.0	14.9	17.9
0.65646	39.0	34.4	38.9	26.8	56.0	46.0	17.0	11.6

Note: - Level QP = Reading QP + Factor, Level AV = Reading AV + Factor - Tested in Mode A (2405MHz), Mode B (2440MHz) and Mode C (2480MHz), worst case values noted.

- Margin is given in the worst case situation (L1 compared to N).

12030804.fcc05

Page 37 of 37

6. List of Tables

Table 1: List of Test and Measurement Equipment Table 2: Emission Measurement Uncertainty	6
Table 3: Interfaces present on the EUT	8
Table 4: Conducted Output Power Table 5: 6dB Bandwidth	.15
Table 5: 6dB Bandwidth	.18
Table 6: Peak Power Spectral Density	.25
Table 7: Radiated Emission, Quasi Peak Data, 30MHz - 1GHz, Horizontal and Vertical Antenna	
	.31
Table 8: Radiated Emission, Average Data, 1 - 25GHz, Horizontal and Vertical Antenna Orientations,	
	.32
Table 9: Radiated Emission, Peak Data, 1 - 25GHz, Horizontal and Vertical Antenna Orientations,	
	.32
Table 10: Radiated Emission, Average Data, 1 - 25GHz, Horizontal and Vertical Antenna Orientations,	
	.33
Table 11: Radiated Emission, Peak Data, 1 - 25GHz, Horizontal and Vertical Antenna Orientations,	
	.33
Table 12: Radiated Emission, Average Data, 1 - 25GHz, Horizontal and Vertical Antenna Orientations,	
Mode C (2480MHz)	.34
Table 13: Radiated Emission, Peak Data, 1 - 25GHz, Horizontal and Vertical Antenna Orientations,	
	.34
Table 14: AC Power Line Conducted Emission, Quasi Peak and Average Data, 0.15 - 30MHz, Phase	
N (N) and L1 (L)	.36

7. List of Figures

Figure 1: Test Setup Diagram	10
Figure 2: Peak power plots,	
Figure 3: 6dB Bandwidth, Mode A (2405MHz)	18
Figure 4: 6dB Bandwidth, Mode B (2440MHz)	19
Figure 5: 6dB Bandwidth, Mode C (2480MHz)	19
Figure 6: Conducted Spurious Emission, 30MHz - 25GHz, Mode A (2405MHz)	21
Figure 7: Conducted Spurious Emission, 30MHz - 25GHz, Mode B (2440MHz)	22
Figure 8: Conducted Spurious Emission, 30MHz - 25GHz, Mode C (2480MHz)	23
Figure 9: Power Spectral Density, Mode A (2405MHz)	25
Figure 10: Power Spectral Density, Mode B (2440MHz)	26
Figure 11: Power Spectral Density, Mode C (2480MHz)	26
Figure 12: Band Edge Conducted Emission, Spectral Diagram, Mode A (2405MHz)	28
Figure 13: Band Edge Conducted Emission, Spectral Diagram, Mode C (2480MHz)	29