

3.5 Radiated Band Edges and Spurious Emission Measurement

3.5.1 Limit of Radiated Band Edges and Spurious Emission

In any 100 kHz bandwidth outside the intentional radiator frequency band, all harmonics/spurious must be at least 20 dB below the highest emission level within the authorized band. If the output power of this device is measured by spectrum analyzer, the attenuation under this paragraph shall be 30 dB instead of 20 dB. In addition, radiated emissions which fall in the restricted bands must also comply with the limits as below.

Frequency	Field Strength	Measurement Distance
(MHz)	(microvolts/meter)	(meters)
0.009 – 0.490	2400/F(kHz)	300
0.490 – 1.705	24000/F(kHz)	30
1.705 – 30.0	30	30
30 – 88	100	3
88 – 216	150	3
216 - 960	200	3
Above 960	500	3

3.5.2 Measuring Instruments

Please refer to the measuring equipment list in this test report.

3.5.3 Test Procedures

- 1. The testing follows the ANSI C63.10 Section 11.12.2 Antenna-port conducted measurements.
- 2. Measure the conducted output power (in dBm) using the peak detector.
- 3. Add the maximum transmit antenna gain (in dBi) to the measured output power level to determine the EIRP.
- Add the appropriate maximum ground reflection factor to the EIRP (6 dB for frequencies ≤ 30 MHz; 4.7 dB for frequencies between 30 MHz and 1000 MHz, inclusive; and 0 dB for frequencies > 1000 MHz).
- 5. Convert the resultant EIRP to an equivalent electric field strength using the following relationship:

 $E = EIRP - 20 \log d + 104.8$,

where

E is the electric field strength in dBµV/m

EIRP is the equivalent isotropically radiated power in dBm

d is the specified measurement distance in 3m

- 6. Compare the resultant electric field strength level with the applicable regulatory limit.
- Corrected Reading for conducted spurious emission: Antenna Factor + Cable Loss + Read Level = Level
- 8. Perform the cabinet radiated spurious emission test.
- 9. The EUT is arranged to its worst case and then tune the antenna tower (from 1 m to 4 m) and turntable (from 0 degree to 360 degrees) to find the maximum reading. A pre-amp and a high pass filter are used for the test in order to get better signal level.
- 10. The EUT is placed on a turntable with 0.8 meter for frequency below 1 GHz and 1.5 meter for frequency above 1 GHz respectively above ground.
- 11. The EUT is set 3 meters away from the receiving antenna, which is mounted on the top of a variable height antenna tower.
- 12. Corrected Reading for cabinet radiated spurious emission: Antenna Factor + Cable Loss + Read Level - Preamp Factor = Level
- 13. Radiated testing below 1 GHz is performed by adjusting the antenna tower from 1 m to 4 m and by rotating the turn table from 0 degree to 360 degrees to find the peak maximum hold reading. When there is no suspected emission found and the emission level is with at least 6 dB margin against QP limit line, the position is marked as "-".
- 14. Radiated testing above 1 GHz is performed by adjusting the antenna tower from 1 m to 4 m and by rotating the turn table from 0 degree to 360 degrees to find the peak maximum hold reading for scanning all frequencies. When there is no suspected emission found and the harmonic emission level is with at least 6 dB margin against average limit line, the position is marked as

"_".

FCC RADIO TEST REPORT

- 15. Use the following spectrum analyzer settings:
 - (1) Span shall wide enough to fully capture the emission being measured;
 - (2) Set RBW = 100 kHz for f < 1 GHz; VBW ≥ RBW; Sweep = auto; Detector function = peak; Trace = max hold;
 - (3) Set RBW = 1 MHz, VBW = 3 MHz for $f \ge 1$ GHz for peak measurement. For average measurement:
 - VBW = 10 Hz, when duty cycle is no less than 98 percent.
 - VBW ≥ 1/T, when duty cycle is less than 98 percent where T is the minimum transmission duration over which the transmitter is on and is transmitting at its maximum power control level for the tested mode of operation.

3.5.4 Test Setup

For Conducted Measurement Setup:

For radiated test below 30MHz

Spectrum Analyzer / Receiver

For radiated test from 30MHz to 1GHz

Spectrum Analyzer / Receiver

For radiated test above 18GHz

Spectrum Analyzer / Receiver

3.5.5 Test Results of Radiated Spurious Emissions (9 kHz ~ 30 MHz)

The low frequency, which starts from 9 kHz to 30 MHz, is pre-scanned and the result which is 20 dB lower than the limit line is not reported.

There is adequate comparison measurement of both open-field test site and alternative test site - semi-Anechoic chamber according to 414788 D01 Radiated Test Site v01r01, and the result comes out very similar.

3.5.6 Test Result of Conduced Spurious at Band Edges in the Restricted Band

Please refer to Appendix C and D.

3.5.7 Test Result of Conduced Spurious Emission in the Restricted Band

Please refer to Appendix C and D.

3.5.8 Test Result of Cabinet Radiated Spurious at Band Edges

Please refer to Appendix E and F.

3.5.9 Test Result of Cabinet Radiated Spurious Emission (30 MHz ~ 10th Harmonic)

Please refer to Appendix E and F.

3.5.10 Duty Cycle

Please refer to Appendix G.

3.6 AC Conducted Emission Measurement

3.6.1 Limit of AC Conducted Emission

For equipment that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies within the band 150 kHz to 30 MHz shall not exceed the limits in the following table.

Fraguancy of omission (MHz)	Conducted	limit (dBµV)
r requency or emission (winz)	Quasi-peak	Average
0.15-0.5	66 to 56*	56 to 46*
0.5-5	56	46
5-30	60	50

*Decreases with the logarithm of the frequency.

3.6.2 Measuring Instruments

Please refer to the measuring equipment list in this test report.

3.6.3 Test Procedures

- 1. The EUT is placed 0.4 meter away from the conducting wall of the shielding room, and is kept at least 80 centimeters from any other grounded conducting surface.
- 2. Connect EUT to the power mains through a line impedance stabilization network (LISN).
- 3. All the support units are connecting to the other LISN.
- 4. The LISN provides 50 ohm coupling impedance for the measuring instrument.
- 5. The FCC states that a 50 ohm, 50 microhenry LISN shall be used.
- 6. Both Line and Neutral shall be tested in order to find out the maximum conducted emission.
- 7. The frequency range from 150 kHz to 30 MHz is scanned.
- Set the test-receiver system to Peak Detect Function and specified bandwidth (IF Bandwidth = 9 kHz) with Maximum Hold Mode. Then measurement is also conducted by Average Detector and Quasi-Peak Detector Function respectively.

3.6.4 Test Setup

3.6.5 Test Result of AC Conducted Emission

Please refer to Appendix B.

3.7 Antenna Requirements

3.7.1 Standard Applicable

If directional gain of transmitting antennas is greater than 6 dBi, the power shall be reduced by the same level in dB comparing to gain minus 6 dBi. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the rule.

3.7.2 Antenna Anti-Replacement Construction

An embedded-in antenna design is used.

3.7.3 Antenna Gain

The antenna peak gain of EUT is less than 6 dBi. Therefore, it is not necessary to reduce maximum peak output power limit.

List of Measuring Equipment 4

Instrument	Brand Name	Model No.	Serial No.	Characteristics	Calibration Date	Test Date	Due Date	Remark
Power Meter	Anritsu	ML2495A	932001	N/A	Sep. 30, 2021	May 02, 2022~ Jun. 13, 2022	Sep. 29, 2022	Conducted (TH02-HY)
Power Sensor	Anritsu	MA2411B	846202	300MHz~40GHz	Sep. 30, 2021	May 02, 2022~ Jun. 13, 2022	Sep. 29, 2022	Conducted (TH02-HY)
Signal Analyzer	Rohde & Schwarz	FSV40	101566	10Hz~40GHz	Aug. 30, 2021	May 02, 2022~ Jun. 13, 2022	Aug. 29, 2022	Conducted (TH02-HY)
Switch Control Mainframe	E-IUSTRUME NT	ETF-1405-0	EC1900067 (BOX7)	N/A	Aug. 12, 2021	May 02, 2022~ Jun. 13, 2022	Aug. 11, 2022	Conducted (TH02-HY)
Spectrum Analyzer	ROHDE & SCHWARZ	FSV40	101565	10Hz~40GHz	Dec. 29, 2021	May 11, 2022~ Jun. 13, 2022	Dec. 28, 2022	CSE (TH02-HY)
RF Cable	HUBER + SUHNER	SUCOFLEX 104	MY9837/4PE	9kHz~30MHz	Mar. 10, 2022	May 11, 2022~ Jun. 13, 2022	Mar. 09, 2023	CSE (TH02-HY)
RF Cable	HUBER + SUHNER	SUCOFLEX 126E	0058/126E	30MHz~18GHz	Dec. 10, 2021	May 11, 2022~ Jun. 13, 2022	Dec. 09, 2022	CSE (TH02-HY)
RF Cable	HUBER + SUHNER	SUCOFLEX 102	505134/2	30MHz~40GHz	Feb. 21, 2022	May 11, 2022~ Jun. 13, 2022	Feb. 20, 2023	CSE (TH02-HY)
Filter	Wainwright	WLKS1200-12 SS	SN2	1.2GHz Low Pass Filter	Mar. 15, 2022	May 11, 2022~ Jun. 13, 2022	Mar. 14, 2023	CSE (TH02-HY)
Filter	Wainwright	WHKX12-2700 -3000-18000-6 0ST	SN2	3GHz High Pass Filter	Jul. 12, 2021	May 11, 2022~ Jun. 13, 2022	Jul. 11, 2022	CSE (TH02-HY)
AC Power Source	ChainTek	APC-1000W	N/A	N/A	N/A	Jun. 07, 2022	N/A	Conduction (CO05-HY)
EMI Test Receiver	Rohde & Schwarz	ESR3	102388	9kHz~3.6GHz	Dec. 01, 2021	Jun. 07, 2022	Nov. 30, 2022	Conduction (CO05-HY)
LISN	Rohde & Schwarz	ENV216	100080	9kHz~30MHz	Dec. 03, 2021	Jun. 07, 2022	Dec. 02, 2022	Conduction (CO05-HY)
LISN	Rohde & Schwarz	ENV216	100081	9kHz~30MHz	Nov. 16, 2021	Jun. 07, 2022	Nov. 15, 2022	Conduction (CO05-HY)
Software	Rohde & Schwarz	EMC32	N/A	N/A	N/A	Jun. 07, 2022	N/A	Conduction (CO05-HY)
Pulse Limiter	SCHWARZBE CK	VTSD 9561-F N	00691	N/A	Jul. 28, 2021	Jun. 07, 2022	Jul. 27, 2022	Conduction (CO05-HY)
LISN Cable	MVE	RG-400	260260	N/A	Dec. 30, 2021	Jun. 07, 2022	Dec. 29, 2022	Conduction (CO05-HY)
Loop Antenna	Rohde & Schwarz	HFH2-Z2	100315	9 kHz~30 MHz	Jan. 07, 2022	May 11, 2022~ May 12, 2022	Jan. 06, 2023	Radiation (03CH07-HY)
Bilog Antenna	TESEQ	CBL 6111D & 00800N1D01N -06	35419 & 03	30MHz~1GHz	Apr. 24, 2022	May 11, 2022~ May 12, 2022	Apr. 23, 2023	Radiation (03CH07-HY)
Double Ridge Horn Antenna	ESCO	3117	00075962	1GHz ~ 18GHz	Dec. 03, 2021	May 11, 2022~ May 12, 2022	Dec. 02, 2022	Radiation (03CH07-HY)
SHF-EHF Horn Antenna	SCHWARZBE CK	BBHA 9170	BBHA9170251	18GHz~40GHz	Nov. 30, 2021	May 11, 2022~ May 12, 2022	Nov. 29, 2022	Radiation (03CH07-HY)
Preamplifier	MITEQ	AMF-7D-0010 1800-30-10P	1590075	1GHz~18GHz	Apr. 21, 2022	May 11, 2022~ May 12, 2022	Apr. 20, 2023	Radiation (03CH07-HY)
Preamplifier	COM-POWER	PA-103A	161241	10MHz~1GHz	Oct. 04, 2021	May 11, 2022~ May 12, 2022	Oct. 03, 2022	Radiation (03CH07-HY)
Preamplifier	Agilent	8449B	3008A02362	1GHz~26.5GHz	Oct. 04, 2021	May 11, 2022~ May 12, 2022	Oct. 03, 2022	Radiation (03CH07-HY)
Preamplifier	EMEC	EM18G40G	0600789	18-40GHz	Jul. 23, 2021	May 11, 2022~ May 12, 2022	Jul. 22, 2022	Radiation (03CH07-HY)
Spectrum Analyzer	Agilent	N9030A	MY52350276	3Hz~44GHz	Jul. 22, 2021	May 11, 2022~ May 12, 2022	Jul. 21, 2022	Radiation (03CH07-HY)

Instrument	Brand Name	Model No.	Serial No.	Characteristics	Calibration Date	Test Date	Due Date	Remark
RF Cable	HUBER + SUHNER	SUCOFLEX 104	MY15682/4	30MHz to 18GHz	Feb. 23, 2022	May 11, 2022~ May 12, 2022	Feb. 22, 2023	Radiation (03CH07-HY)
RF Cable	HUBER + SUHNER	SUCOFLEX 104	MY24971/4	9kHz to 18GHz	Feb. 23, 2022	May 11, 2022~ May 12, 2022	Feb. 22, 2023	Radiation (03CH07-HY)
RF Cable	HUBER + SUHNER	SUCOFLEX 104	MY28655/4	9kHz to 18GHz	Feb. 23, 2022	May 11, 2022~ May 12, 2022	Feb. 22, 2023	Radiation (03CH07-HY)
RF Cable	HUBER + SUHNER	SUCOFLEX 126	532078/126E	30MHz~18GHz	Sep. 17, 2021	May 11, 2022~ May 12, 2022	Sep. 16, 2022	Radiation (03CH07-HY)
RF Cable	HUBER + SUHNER	SUCOFLEX 102	MY2858/2	18GHz~40GHz	Feb. 23, 2022	May 11, 2022~ May 12, 2022	Feb. 22, 2023	Radiation (03CH07-HY)
RF Cable	HUBER + SUHNER	SUCOFLEX 102	801606/2	9KHz ~ 40GHz	Apr. 14, 2022	May 11, 2022~ May 12, 2022	Apr. 13, 2023	Radiation (03CH07-HY)
Antenna Mast	EMEC	AM-BS-4500E	N/A	Boresight mast 1M~4M	N/A	May 11, 2022~ May 12, 2022	N/A	Radiation (03CH07-HY)
Turn Table	ChainTek	Chaintek 3000	N/A	0~360 Degree	N/A	May 11, 2022~ May 12, 2022	N/A	Radiation (03CH07-HY)
Software	Audix	E3	N/A	N/A	N/A	May 11, 2022~ May 12, 2022	N/A	Radiation (03CH07-HY)
USB Data Logger	TECPEL	TR-32	HE17XB1148	N/A	Oct. 25, 2021	May 11, 2022~ May 12, 2022	Oct. 24, 2022	Radiation (03CH07-HY)

5 Uncertainty of Evaluation

Uncertainty of Conducted Emission Measurement (150 kHz ~ 30 MHz)

Measuring Uncertainty for a Level of Confidence	2.1.40
of 95% (U = 2Uc(y))	3.1 dB

Uncertainty of Radiated Emission Measurement (30 MHz ~ 1000 MHz)

Measuring Uncertainty for a Level of Confidence	E 1 dP
of 95% (U = 2Uc(y))	5.1 06

Uncertainty of Radiated Emission Measurement (1000 MHz ~ 18000 MHz)

Measuring Uncertainty for a Level of Confidence	5 9 dB
of 95% (U = 2Uc(y))	5.0 UB

Uncertainty of Radiated Emission Measurement (18000 MHz ~ 40000 MHz)

Measuring Uncertainty for a Level of Confidence	4.0 dB
of 95% (U = 2Uc(y))	4.0 GB

Report Number : FR242614A

Appendix A. Test Result of Conducted Test Items

Test Engineer:	Kai Liao	Temperature:	21~25	°C
Test Date:	2022/05/02 ~2022/06/13	Relative Humidity:	51~54	%

<u>TEST RESULTS DATA</u> 6dB and 99% Occupied Bandwidth										
	Data			Freq	99% Occupied	6dB BW	6dB BW			
Mod.	Rate	NTX	CH.	(MHz)	BW (MHz)	(MHz)	Limit (MHz)	Pass/Fail		
BLE	1Mbps	1	0	2402	1.070	0.696	0.50	Pass		
BLE	1Mbps	1	19	2440	1.093	0.720	0.50	Pass		
BLE	1Mbps	1	39	2480	1.089	0.710	0.50	Pass		

<u>TEST RESULTS DATA</u> <u>Peak Power Table</u>												
Mod.	Data Rate	NTX	CH.	Freq. (MHz)	Peak Conducted Power (dBm)	Conducted Power Limit (dBm)	DG (dBi)	EIRP Power (dBm)	EIRP Power Limit (dBm)	Pass /Fail		
BLE	1Mbps	1	0	2402	4.98	30.00	3.30	8.28	36.00	Pass		
BLE	1Mbps	1	19	2440	5.13	30.00	3.30	8.43	36.00	Pass		
BLE	1Mbps	1	39	2480	4.97	30.00	3.30	8.27	36.00	Pass		

<u>TEST RESULTS DATA</u> <u>Average Power Table</u> <u>(Reporting Only)</u>											
Mod.	Data Rate	Ντx	CH.	Freq. (MHz)	Average Conducted Power (dBm)	Conducted Power Limit (dBm)	DG (dBi)	EIRP Power (dBm)	EIRP Power Limit (dBm)	Pass /Fail	
BLE	1Mbps	1	0	2402	4.68	30.00	3.30	7.98	36.00	Pass	
BLE	1Mbps	1	19	2440	4.77	30.00	3.30	8.07	36.00	Pass	
BLE	1Mbps	1	39	2480	4.66	30.00	3.30	7.96	36.00	Pass	

	<u>TEST RESULTS DATA</u> <u>Peak Power Density</u>									
Mod.	Data Rate	NTX	CH.	Freq. (MHz)	Peak PSD (dBm /100kHz)	Peak PSD (dBm /3kHz)	DG (dBi)	Peak PSD Limit (dBm /3kHz)	Pass/Fail	
BLE	1Mbps	1	0	2402	3.74	-8.24	3.30	8.00	Pass	
BLE	1Mbps	1	19	2440	3.82	-8.61	3.30	8.00	Pass	
BLE	1Mbps	1	39	2480	3.80	-8.19	3.30	8.00	Pass	

Report Number : FR242614A

		<u>TEST RESULTS DATA</u> 6dB and 99% Occupied Bandwidth									
ſ											
	Mod.	Data Rate	NTX	CH.	Freq. (MHz)	99% Occupied BW (MHz)	6dB BW (MHz)	6dB BW Limit (MHz)	Pass/Fail		
ſ	BLE	2Mbps	1	0	2402	2.062	1.292	0.50	Pass		
ſ	BLE	2Mbps	1	19	2440	2.058	1.328	0.50	Pass		
ſ	BLE	2Mbps	1	39	2480	2.074	1.400	0.50	Pass		

TEST RESULTS DATA Peak Power Table

	Mod.	Data Rate	Ντx	CH.	Freq. (MHz)	Peak Conducted Power (dBm)	Conducted Power Limit (dBm)	DG (dBi)	EIRP Power (dBm)	EIRP Power Limit (dBm)	Pass /Fail
ĺ	BLE	2Mbps	1	0	2402	4.97	30.00	3.30	8.27	36.00	Pass
	BLE	2Mbps	1	19	2440	5.10	30.00	3.30	8.40	36.00	Pass
	BLE	2Mbps	1	39	2480	4.92	30.00	3.30	8.22	36.00	Pass

TEST RESULTS DATA Average Power Table (Reporting Only)

		_								
Mod.	Data Rate	NTX	CH.	Freq. (MHz)	Average Conducted Power (dBm)	Conducted Power Limit (dBm)	DG (dBi)	EIRP Power (dBm)	EIRP Power Limit (dBm)	Pass /Fail
BLE	2Mbps	1	0	2402	4.67	30.00	3.30	7.97	36.00	Pass
BLE	2Mbps	1	19	2440	4.76	30.00	3.30	8.06	36.00	Pass
BLE	2Mbps	1	39	2480	4.65	30.00	3.30	7.95	36.00	Pass

<u>TEST RESULTS DATA</u> <u>Peak Power Density</u>										
Mod.	Data Rate	Ntx	CH.	Freq. (MHz)	Peak PSD (dBm /100kHz)	Peak PSD (dBm /3kHz)	DG (dBi)	Peak PSD Limit (dBm /3kHz)	Pass/Fail	
BLE	2Mbps	1	0	2402	3.12	-10.57	3.30	8.00	Pass	
BLE	2Mbps	1	19	2440	3.20	-10.47	3.30	8.00	Pass	
BLE	2Mbps	1	39	2480	3.25	-10.62	3.30	8.00	Pass	

Appendix B. AC Conducted Emission Test Results

Toot Engineer	Tom Loo	Temperature :	23~26°C
Test Engineer :	Tom Lee	m Lee Relative Humidity :	45~55%

EUT Information

Report NO : Test Mode : Test Voltage : Phase : 242614 Mode 1 Power From System Line

FullSpectrum

Final_Result

Frequency	QuasiPeak	CAverage	Limit	Margin	Line	Filter	Corr.
(MHz)	(dBuV)	(dBuV)	(dBuV)	(dB)			(dB)
0.152250		38.00	55.88	17.88	L1	OFF	19.6
0.152250	58.79		65.88	7.09	L1	OFF	19.6
0.161250		25.03	55.40	30.37	L1	OFF	19.6
0.161250	49.03		65.40	16.37	L1	OFF	19.6
0.172500		24.30	54.84	30.54	L1	OFF	19.6
0.172500	44.32		64.84	20.52	L1	OFF	19.6
0.183750		41.61	54.31	12.70	L1	OFF	19.6
0.183750	56.55		64.31	7.76	L1	OFF	19.6
0.197250		35.35	53.73	18.38	L1	OFF	19.6
0.197250	52.69		63.73	11.04	L1	OFF	19.6
0.210750		21.18	53.18	32.00	L1	OFF	19.6
0.210750	44.10		63.18	19.08	L1	OFF	19.6
0.224250		28.59	52.66	24.07	L1	OFF	19.6
0.224250	46.12		62.66	16.54	L1	OFF	19.6
0.240000		34.70	52.10	17.40	L1	OFF	19.6
0.240000	47.33		62.10	14.77	L1	OFF	19.6
0.255750		23.56	51.57	28.01	L1	OFF	19.6
0.255750	42.49		61.57	19.08	L1	OFF	19.6
0.438000		28.42	47.10	18.68	L1	OFF	19.6
0.438000	39.93		57.10	17.17	L1	OFF	19.6
1.236750		33.13	46.00	12.87	L1	OFF	19.6

1.236750	40.20		56.00	15.80	L1	OFF	19.6
1.329000		34.69	46.00	11.31	L1	OFF	19.6
1.329000	41.57		56.00	14.43	L1	OFF	19.6
1.430250		35.58	46.00	10.42	L1	OFF	19.6
1.430250	42.24		56.00	13.76	L1	OFF	19.6
1.518000		34.51	46.00	11.49	L1	OFF	19.6
1.518000	41.19		56.00	14.81	L1	OFF	19.6
1.626000		33.90	46.00	12.10	L1	OFF	19.6
1.626000	40.10		56.00	15.90	L1	OFF	19.6
1.707000		32.35	46.00	13.65	L1	OFF	19.6
1.707000	38.65		56.00	17.35	L1	OFF	19.6
13.276500		24.94	50.00	25.06	L1	OFF	19.8
13.276500	29.76		60.00	30.24	L1	OFF	19.8

EUT Information

Report NO : Test Mode : Test Voltage : Phase : 242614 Mode 1 Power From System Neutral

FullSpectrum

Final_Result

Frequency	QuasiPeak	CAverage	Limit	Margin	Line	Filter	Corr.
(MHz)	(dBuV)	(dBuV)	(dBuV)	(dB)			(dB)
0.152250		38.25	55.88	17.63	Ν	OFF	19.6
0.152250	58.67		65.88	7.21	Ν	OFF	19.6
0.159000		26.15	55.52	29.37	Ν	OFF	19.6
0.159000	50.21		65.52	15.31	Ν	OFF	19.6
0.168000		23.66	55.06	31.40	Ν	OFF	19.6
0.168000	48.05		65.06	17.01	Ν	OFF	19.6
0.179250		33.23	54.52	21.29	Ν	OFF	19.6
0.179250	52.09		64.52	12.43	Ν	OFF	19.6
0.192750		39.26	53.92	14.66	Ν	OFF	19.6
0.192750	53.58		63.92	10.34	Ν	OFF	19.6
0.204000		28.59	53.45	24.86	Ν	OFF	19.6
0.204000	49.57		63.45	13.88	Ν	OFF	19.6
0.222000		25.01	52.74	27.73	Ν	OFF	19.6
0.222000	44.64		62.74	18.10	Ν	OFF	19.6
0.237750		35.78	52.17	16.39	Ν	OFF	19.6
0.237750	47.56		62.17	14.61	Ν	OFF	19.6
0.249000		27.99	51.79	23.80	Ν	OFF	19.6
0.249000	44.83		61.79	16.96	Ν	OFF	19.6
1.358250		33.83	46.00	12.17	Ν	OFF	19.6
1.358250	40.52		56.00	15.48	Ν	OFF	19.6
1.425750		34.19	46.00	11.81	Ν	OFF	19.6

1.425750	40.97		56.00	15.03	Ν	OFF	19.6
1.520250		33.19	46.00	12.81	Ν	OFF	19.6
1.520250	39.87		56.00	16.13	Ν	OFF	19.6
18.478500		25.76	50.00	24.24	Ν	OFF	19.9
18.478500	30.78		60.00	29.22	Ν	OFF	19.9

Ground

Appendix C. Conducted Spurious Emission

Tost Engineer :	Kalliza	Temperature :	21.2 ~ 24.7°C
rest Engineer .		Relative Humidity :	54.4 ~ 66.8%

<1Mbps>

BLE

2.4GHz 2400~2483.5MHz

BLE (Band Edge)

	noto	ricqueriey		Over	Emm	neuu	Antenna	1 aut		ing	I Car
				Limit	Line	Level	Gain	Loss	Factor	Factor	Avg.
		(MHz)	(dBm)	(dB)	(dBm)	(dBm)	(dBi)	(dB)	(dB)	(dB)	(P/A)
		2363.025	-41.76	-20.56	-21.2	-46.59	3.3	1.53	0	0	Р
D 1 E		2388.33	-55.12	-13.92	-41.2	-59.92	3.3	1.5	0	0	А
BLE	*	2402	11.13	-	-	6.33	3.3	1.5	0	0	Р
	*	2402	9.53	-	-	4.73	3.3	1.5	0	0	А
2402101712											
		2316.86	-42.09	-20.89	-21.2	-46.9	3.3	1.51	0	0	Ρ
		2389.8	-55.91	-14.71	-41.2	-60.71	3.3	1.5	0	0	А
	*	2440	11.1	-	-	6.22	3.3	1.58	0	0	Ρ
	*	2440	9.52	-	-	4.64	3.3	1.58	0	0	А
СП 19 2440МН 7		2489.92	-41.03	-19.83	-21.2	-45.95	3.3	1.62	0	0	Р
244010112		2487.96	-54.89	-13.69	-41.2	-59.66	3.3	1.47	0	0	А
	*	2480	11.14	-	-	6.37	3.3	1.47	0	0	Ρ
DIE	*	2480	9.64	-	-	4.87	3.3	1.47	0	0	А
		2483.48	-38.11	-16.91	-21.2	-42.88	3.3	1.47	0	0	Р
2480MHz		2483.48	-48.53	-7.33	-41.2	-53.3	3.3	1.47	0	0	А
24001112											
Remark	1. No 2. All	o other spurious results are PA	s found. SS against F	Peak and	Average limi	t line.					

2.4GHz 2400~2483.5MHz

BLE (Harmonic)

BLE	Note	Frequency	Level	Over	Limit	Read	Antenna	Path	MIMO	Groun dina	Peak
		(MHz)	(dBm)	Limit (dB)	Line (dBm)	Level (dBm)	Gain (dBi)	Loss (dB)	Factor (dB)	Factor (dB)	Avg. (P/A)
		4804	-54.4	-33.2	-21.2	-60.67	3.3	2.97	0	0	Ρ
		7206	-54.76	-33.56	-21.2	-61.55	3.3	3.49	0	0	Ρ
51.5		9608	-57.99	-36.79	-21.2	-65.22	3.3	3.93	0	0	Ρ
BLE		12010	-54.46	-33.26	-21.2	-62.04	3.3	4.28	0	0	Ρ
2402MH7		14412	-52.64	-31.44	-21.2	-62.26	3.3	6.32	0	0	Ρ
240210112											
		4880	-46.67	-25.47	-21.2	-52.69	3.3	2.72	0	0	Р
		7320	-59.5	-38.3	-21.2	-66.27	3.3	3.47	0	0	Р
DLE		9760	-58.98	-37.78	-21.2	-66.26	3.3	3.98	0	0	Р
		12200	-51.53	-30.33	-21.2	-59.52	3.3	4.69	0	0	Ρ
2440MHz		14640	-48.78	-27.58	-21.2	-57.65	3.3	5.57	0	0	Р
244010112											
		4960	-51.84	-30.64	-21.2	-57.79	3.3	2.65	0	0	Ρ
		7440	-53.37	-32.17	-21.2	-60.16	3.3	3.49	0	0	Ρ
BLE		9920	-56.45	-35.25	-21.2	-63.82	3.3	4.07	0	0	Ρ
		12400	-54.87	-33.67	-21.2	-62.86	3.3	4.69	0	0	Ρ
2480MHz		14880	-50.31	-29.11	-21.2	-59.93	3.3	6.32	0	0	Ρ
24000012											
Remark	1. No 2. Al	o other spurious I results are PA	s found. SS against F	Peak and	Average lim	it line.					

BLE	Note	Frequency	Level	Over	Limit	Read	Antenna	Path	МІМО	Grounding	Peak
				Limit	Line	Level	Factor	Loss	Factor	Factor	Avg.
		(MHz)	(dBm)	(dB)	(dBm)	(dBm)	(dBi)	(dB)	(dB)	(dB)	(P/A)
		77.79	-80.16	-24.96	-55.2	-88.51	3.3	0.35	0	4.7	Р
		156.63	-78.34	-26.64	-51.7	-86.86	3.3	0.52	0	4.7	Р
		231.15	-78.35	-29.15	-49.2	-86.98	3.3	0.63	0	4.7	Р
2.4GHZ		729.1	-72.05	-22.85	-49.2	-81.24	3.3	1.19	0	4.7	Р
JE		743.8	-64.52	-15.32	-49.2	-73.64	3.3	1.12	0	4.7	Р
		840.4	-64.7	-15.5	-49.2	-74.04	3.3	1.34	0	4.7	Р
Remark	1. N 2. Al	o other spuriou I results are PA	s found. SS against	limit line.							

Emission below 1GHz

BLE (LF)

<2Mbps>

2.4GHz 2400~2483.5MHz

BLE	Note	Frequency	Level	Over	Limit	Read	Antenna	Path	ΜΙΜΟ	Ground ina	Peak
		(MHz)	(dBm)	Limit (dB)	Line (dBm)	Level (dBm)	Gain (dBi)	Loss (dB)	Factor (dB)	Factor (dB)	Avg. (P/A)
		2385.6	-41.95	-20.75	-21.2	-46.75	3.3	1.5	0	0	Ρ
		2388.435	-55.28	-14.08	-41.2	-60.08	3.3	1.5	0	0	А
BLE	*	2402	10.93	-	-	6.13	3.3	1.5	0	0	Ρ
2402MHz	*	2402	7.79	-	-	2.99	3.3	1.5	0	0	А
240211112											
		2382.8	-42.04	-20.84	-21.2	-46.83	3.3	1.49	0	0	Ρ
		2389.1	-56.02	-14.82	-41.2	-60.82	3.3	1.5	0	0	А
DI E	*	2440	10.9	-	-	6.02	3.3	1.58	0	0	Ρ
CH 19	*	2440	7.85	-	-	2.97	3.3	1.58	0	0	А
2440MHz		2488.1	-41.21	-20.01	-21.2	-45.98	3.3	1.47	0	0	Ρ
		2487.82	-55.05	-13.85	-41.2	-59.82	3.3	1.47	0	0	А
	*	2480	10.92	-	-	6.15	3.3	1.47	0	0	Ρ
BLE	*	2480	7.94	-	-	3.17	3.3	1.47	0	0	А
CH 39		2483.55	-34.67	-13.47	-21.2	-39.44	3.3	1.47	0	0	Ρ
2480MHz		2483.48	-45.81	-4.61	-41.2	-50.58	3.3	1.47	0	0	А
240010172											
Remark	1. No 2. Al	o other spurious I results are PA	s found. SS against F	Peak and	Average lim	it line.					

BLE (Band Edge)

BLE	Note	Frequency	Level	Over	Limit	Read	Antenna	Path	МІМО	Groun dina	Peak
		(MH=)	(dBm)	Limit	Line	Level	Gain	Loss	Factor	Factor	Avg.
		4804	-55.09	-33.89	-21.2	-61.36	3.3	2.97	(ub) 0	(UB) 0	(F/A) P
		7206	-55 28	-34 08	-21.2	-62.07	3.3	3 49	0	0	P
		9608	-57.93	-36 73	-21.2	-65 16	3.3	3 93	0	0	P
BLE		12010	-55 38	-34 18	-21.2	-62.96	3.3	1 28	0	0	' P
CH 00		14412	52.06	21 76	-21.2	62.50	3.3	6.22	0	0	' Р
2402MHz		14412	-32.90	-31.70	-21.2	-02.30	5.5	0.52	0	0	Г
		4000	46.60	05.40	24.2	50.04	2.2	0.70	0	0	D
		4000	-40.02	-20.42	-21.2	-52.04	3.3	2.12	0	0	P
		7320	-59.69	-38.49	-21.2	-00.40	3.3	3.47	0	0	Р -
BLE		9760	-58.86	-37.66	-21.2	-66.14	3.3	3.98	0	0	Р
CH 19		12200	-51.66	-30.46	-21.2	-59.65	3.3	4.69	0	0	Р
2440MHz		14640	-49.12	-27.92	-21.2	-57.99	3.3	5.57	0	0	Р
		4960	-52.13	-30.93	-21.2	-58.08	3.3	2.65	0	0	Р
		7440	-53.91	-32.71	-21.2	-60.7	3.3	3.49	0	0	Р
BI F		9920	-56.78	-35.58	-21.2	-64.15	3.3	4.07	0	0	Ρ
CH 39		12400	-54.93	-33.73	-21.2	-62.92	3.3	4.69	0	0	Р
2480MHz		14880	-51.02	-29.82	-21.2	-60.64	3.3	6.32	0	0	Ρ
	1. No	o other spurious	found.								
Remark	2. All	results are PA	SS against F	eak and	Average limi	t line.					
			v		õ						

2.4GHz 2400~2483.5MHz BLE (Harmonic)

Note symbol

*	Fundamental Frequency which can be ignored. However, the level of any unwanted emissions
	shall not exceed the level of the fundamental frequency.
!	Test result is over limit line.
P/A	Peak or Average
H/V	Horizontal or Vertical

A calculation example for conducted spurious emission is shown as below:

BLE	Note	Frequency	Level	Over	Limit	Read	Antenna	Path	MIMO	Groun ding	Peak
				Limit	Line	Level	Factor	Loss	Factor	Factor	Avg.
		(MHz)	(dBm)	(dB)	(dBm)	(dBm)	(dBi)	(dB)	(dB)	(dB)	(P/A)
BLE		2390	-45.8	-24.6	-21.2	-48.44	2	0.64	0	0	Р
2402MHz		2390	-59.91	-18.71	-41.2	-62.58	2	0.67	0	0	А

- 1. Path Loss(dB) = Cable loss(dB) + Filter loss(dB) + Attenuator loss(dB)
- 2. Level(dBm) =

Antenna Factor(dBi) + Path Loss(dB) + Read Level(dBm)

3. Over Limit(dB) = Level(dBm) – Limit Line(dBm)

For Peak Limit @ 2390MHz:

- 1. Level(dBm)
- = Antenna Factor(dBi) + Path Loss(dB) + Read Level(dBm)
- = 2(dBi) + 0.64(dB) 48.44(dBm)
- = -45.8 (dBm)
- 2. Over Limit(dB)
- = Level(dBm) Limit Line(dBm)
- = -45.8(dBm) +21.2(dBm)
- = -24.6(dB)

For Average Limit @ 2390MHz:

- 1. Level(dBm)
- = Antenna Factor(dBi) + Path Loss(dB) + Read Level(dBm)
- = 2(dBi) + 0.67(dB) 62.58(dBm)
- = -59.91 (dBm)
- 2. Over Limit(dB)
- = Level(dBm) Limit Line(dBm)
- = -59.91(dBm) + 41.2(dBm)
- = -18.71(dB)

Both peak and average measured complies with the limit line, so test result is "PASS".

Appendix D. Conducted Spurious Emission Plots

Toot Engineer :	Kalliaa	Temperature :	21.2 ~ 24.7°C
rest Engineer .		Relative Humidity :	54.4 ~ 66.8%

Note symbol

-L	Low channel location
-R	High channel location

<1Mbps>

2.4GHz 2400~2483.5MHz

BLE (Band Edge)

BLE	2.4GHz 2400~2483.5MHz Band Edge					
	BLE CH19 2440MHz - R					
	CSE	Fundamental				
Peak	methodme	Left blank				
Avg.	Image:	Left blank				

2.4GHz 2400~2483.5MHz

BLE (Harmonic)

BLE	2.4GHz 2400~2483.5MHz Harmonic						
	BI	E					
	CH39 2480MHz						
Peak Avg.	Month Det 202.05.4 Month Month Month Month						

Emission below 1GHz

<2Mbps>

2.4GHz 2400~2483.5MHz

BLE (Band Edge)

BLE	2.4GHz 2400~2483	.5MHz Band Edge
	BLE CH19 2	440MHz - R
	CSE	Fundamental
Peak	$M_{intervent}$ (film) Dec 202.05.11 $M_{intervent}$ (film) Dec 202.05.11 $M_{intervent}$ (film) Dec 202.05.11 $M_{intervent}$ (film) Dec 202.05.12 $M_{intervent}$ (film) Dec 202.0	Left blank
Avg.	main fillingDistrict 2011main fillingDistrict 2011ma	Left blank

BLE (Harmonic)

BLE	2.4GHz 2400~248	3.5MHz Harmonic
	В	LE
	CH39 2480MHz	
Peak Avg.	Image: Weildering Control of the second s	

Appendix E. Cabinet Radiated Spurious Emission

Tost Engineer :	Jassa Wang, Stan Heigh and Kan Wu	Temperature :	23~26.2°C
rest Engineer .	Jesse Wang, Stan Hsien and Ken Wu	Relative Humidity :	55.3~61%

<1Mbps>

2.4GHz 2400~2483.5MHz

BLE	Note	Frequency	Level	Margin	Limit	Read	Antenna	Path	Preamp	Ant	Table	Peak	Pol.
					Line	Level	Factor	Loss	Factor	Pos	Pos	Avg.	
		(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB/m)	(dB)	(dB)	(cm)	(deg)	(P/A)	(H/V)
		2365.335	55.18	-18.82	74	40.81	31.4	18.38	35.41	391	0	Р	Н
		2384.97	42.94	-11.06	54	28.52	31.4	18.43	35.41	391	0	A	Н
	*	2402	86.5	-	-	72.02	31.42	18.48	35.42	391	0	Р	Н
	*	2402	85.85	-	-	71.37	31.42	18.48	35.42	391	0	А	Н
BLE													Н
													Н
2402MH 7		2313.57	53.68	-20.32	74	39.3	31.55	18.22	35.39	393	246	Р	V
240211112		2382.345	42.93	-11.07	54	28.51	31.4	18.43	35.41	393	246	А	V
	*	2402	84.91	-	-	70.43	31.42	18.48	35.42	393	246	Р	V
	*	2402	84.26	-	-	69.78	31.42	18.48	35.42	393	246	А	V
													V
													V
		2376.08	53.74	-20.26	74	39.35	31.4	18.4	35.41	380	5	Р	Н
		2389.52	42.97	-11.03	54	28.53	31.4	18.45	35.41	380	5	А	Н
	*	2440	85.25	-	-	70.42	31.72	18.54	35.43	380	5	Р	Н
	*	2440	84.66	-	-	69.83	31.72	18.54	35.43	380	5	А	Н
DIE		2489.01	54.85	-19.15	74	39.58	32.11	18.61	35.45	380	5	Р	Н
		2499.86	43.93	-10.07	54	28.56	32.2	18.63	35.46	380	5	А	Н
2440MHz		2341.36	53.37	-20.63	74	39.04	31.43	18.3	35.4	386	137	Р	V
244011112		2382.52	42.92	-11.08	54	28.5	31.4	18.43	35.41	386	137	А	V
	*	2440	83.17	-	-	68.34	31.72	18.54	35.43	386	137	Р	V
	*	2440	82.51	-	-	67.68	31.72	18.54	35.43	386	137	А	V
		2489.92	53.78	-20.22	74	38.5	32.12	18.61	35.45	386	137	Р	V
		2499.86	43.86	-10.14	54	28.49	32.2	18.63	35.46	386	137	А	V

	*	2480	83.1	-	-	67.91	32.04	18.6	35.45	361	2	Р	Н
	*	2480	82.47	-	-	67.28	32.04	18.6	35.45	361	2	А	Н
		2488.28	54.83	-19.17	74	39.57	32.11	18.6	35.45	361	2	Р	Н
		2497.96	43.85	-10.15	54	28.5	32.18	18.63	35.46	361	2	А	Н
													Н
													Н
2480MH7	*	2480	79.23	-	-	64.04	32.04	18.6	35.45	369	114	Р	V
240010112	*	2480	78.4	-	-	63.21	32.04	18.6	35.45	369	114	А	V
		2489.16	55.18	-18.82	74	39.91	32.11	18.61	35.45	369	114	Р	V
		2500	43.84	-10.16	54	28.48	32.2	18.62	35.46	369	114	А	V
													V
													V
Remark	1. N 2. A	o other spurious Il results are PA	s found. SS against	Peak and	Average lim	it line.							

							•••••						
BLE	Note	Frequency	Level	Margin	Limit	Read	Antenna	Path	Preamp	Ant	Table	Peak	Pol.
		(MHz)	(dBµV/m)	(dB)	Line (dBµV/m)	Level (dBµV)	Factor (dB/m)	Loss (dB)	Factor (dB)	Pos (cm)	Pos (deg)	Avg. (P/A)	(H/V)
		4804	40.78	-33.22	74	53.07	34.01	12.7	59	-	-	Р	Н
		14499	46.99	-27.01	74	43.25	39.6	21.66	57.52	-	-	Р	Н
		15870	48.52	-25.48	74	41.36	40.84	22.52	56.2	-	-	Р	Н
		15870	38.92	-15.08	54	31.76	40.84	22.52	56.2	-	-	А	Н
		17850	50.57	-23.43	74	40.57	41.5	23.62	55.12	-	-	Р	Н
		17850	41.06	-12.94	54	31.06	41.5	23.62	55.12	-	-	А	Н
													Н
													Н
													Н
BLE CH 00													Н
													Н
													Н
		4804	43.35	-30.65	74	55.64	34.01	12.7	59	-	-	Р	V
2402101112		14499	47.41	-26.59	74	43.67	39.6	21.66	57.52	-	-	Р	V
		15975	49.02	-24.98	74	41.49	40.97	22.59	56.03	-	-	Р	V
		15975	39.4	-14.6	54	31.87	40.97	22.59	56.03	-	-	А	V
		17925	50.78	-23.22	74	40.76	41.43	23.67	55.08	-	-	Р	V
		17925	40.9	-13.1	54	30.88	41.43	23.67	55.08	-	-	А	V
													V
													V
													V
													V
-													V
													V

BLE (Harmonic @ 3m)

BLE	Note	Frequency	Level	Margin	Limit	Read	Antenna	Path	Preamp	Ant	Table	Peak	Pol.
		(MHz)	(dBµV/m)	(dB)	Line (dBµV/m)	Level (dBµV)	Factor (dB/m)	Loss (dB)	Factor (dB)	Pos (cm)	Pos (deg)	Avg. (P/A)	(H/V)
		4880	41.69	-32.31	74	53.76	34.04	12.75	58.86	-	-	Р	н
		7320	44.53	-29.47	74	51.32	35.68	15.03	57.5	-	-	Р	н
		14499	47.18	-26.82	74	43.44	39.6	21.66	57.52	-	-	Р	н
		16125	48.64	-25.36	74	40.84	41.2	22.67	56.07	-	-	Р	н
		16125	38.64	-15.36	54	30.84	41.2	22.67	56.07	-	-	А	Н
		17850	51.47	-22.53	74	41.47	41.5	23.62	55.12	-	-	Р	Н
		17850	40.78	-13.22	54	30.78	41.5	23.62	55.12	-	-	А	н
													Н
													Н
													н
BLE													Н
													н
CH 19		4880	43.99	-30.01	74	56.06	34.04	12.75	58.86	-	-	Р	V
2440101112		7320	45.83	-28.17	74	52.62	35.68	15.03	57.5	-	-	Р	V
		14499	47.25	-26.75	74	43.51	39.6	21.66	57.52	-	-	Р	V
		15705	48.61	-25.39	74	42.25	40.42	22.41	56.47	-	-	Р	V
		15705	38.21	-15.79	54	31.85	40.42	22.41	56.47	-	-	А	V
		17925	51.05	-22.95	74	41.03	41.43	23.67	55.08	-	-	Р	V
		17925	40.87	-13.13	54	30.85	41.43	23.67	55.08	-	-	А	V
													V
													V
													V
													V
													V

BLE	Note	Frequency	Level	Margin	Limit	Read	Antenna	Path	Preamp	Ant	Table	Peak	Pol.
		· • • • • • •			Line	Level	Factor	Loss	Factor	Pos	Pos	Avg.	
		(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB/m)	(dB)	(dB)	(cm)	(deg)	(P/A)	(H/V)
		4960	41.11	-32.89	74	52.9	34.1	12.82	58.71	-	-	Р -	н
		7440	43.22	-30.78	74	49.96	35.82	15.03	57.59	-	-	P	Н
		14499	46.81	-27.19	74	43.07	39.6	21.66	57.52	-	-	Р	Н
		16005	48.19	-25.81	74	40.57	41.01	22.6	55.99	-	-	Р	Н
		16005	39.18	-14.82	54	31.56	41.01	22.6	55.99	-	-	А	Н
		17700	51.88	-22.12	74	42.02	41.5	23.55	55.19	-	-	Р	Н
		17700	40.69	-13.31	54	30.83	41.5	23.55	55.19	-	-	Α	Н
													Н
													Н
													Н
BLE													Н
BLE													Н
CH 39		4960	43.92	-30.08	74	55.71	34.1	12.82	58.71	-	-	Р	V
2480MHz		7440	44.92	-29.08	74	51.66	35.82	15.03	57.59	-	-	Р	V
		14499	47.38	-26.62	74	43.64	39.6	21.66	57.52	-	-	Р	V
		15690	49.5	-24.5	74	43.21	40.38	22.41	56.5	-	-	Р	V
		15690	38.28	-15.72	54	31.99	40.38	22.41	56.5	-	-	А	V
		17730	50.89	-23.11	74	40.97	41.53	23.56	55.17	-	-	Р	V
		17730	40.75	-13.25	54	30.83	41.53	23.56	55.17	-	-	Α	V
													V
													V
													V
													V
													V
	1. No	o other spuriou	s found.										
	2. Al	l results are PA	.SS against F	Peak and	Average lim	it line.							
Remark	3. Th	e emission pos	sition marked	l as "-" m	eans no sus	pected em	ission foun	d with suf	ficient mar	gin agai	inst limit	line or	noise
	flo	or only.											
	4. Th	e emission lev	el close to 18	BGHz is o	checked that	the avera	ge emissior	n level is	noise floor	only.			

Emission above 18GHz

2.4GHz BLE	(SHF)
------------	-------

вт	Note	Frequency	Level	Margin	Limit	Read	Antenna	Path	Preamp	Ant	Table	Peak	Pol.
					Line	Level	Factor	Loss	Factor	Pos	Pos	Avg.	
		(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB/m)	(dB)	(dB)	(cm)	(deg)	(P/A)	(H/V)
		23635	38.49	-35.51	74	49.43	38.81	8.64	58.39	-	-	Р	Н
													Н
													Н
													Н
													Н
													Н
													Н
													Н
													Н
													Н
2 4 6 4 7													Н
2.40HZ													Н
SHE		23754	38.86	-35.14	74	49.59	38.88	8.69	58.3	-	-	Р	V
••••													V
													V
													V
													V
													V
													V
													V
													V
													V
													V
													V
	1. No	o other spurious	s found.										
Remark	2. All	e emission por	ວວ against li	mit line.	eans no suo	nected or	ission found	hwith ouf	ficient mor	ain agai	net limit	line or	noise
	5. II	or only	Suon markeu	ias - 11	icalis no sus	bected effi		a wiui Suli	illicient mai	yin ayai	1131 111111	in e of	nuise
	10	or only.											

Emission below 1GHz

					-		,				1		
BLE	Note	Frequency	Level	Margin	Limit	Read	Antenna	Path	Preamp	Ant	Table	Peak	Pol.
					Line	Level	Factor	Loss	Factor	Pos	Pos	Avg.	
		(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB/m)	(dB)	(dB)	(cm)	(deg)	(P/A)	(H/V)
		87.78	26.86	-13.14	40	40.81	14.41	1.68	30.04	-	-	Р	Н
		94.8	30.24	-13.26	43.5	43.23	15.26	1.73	29.98	-	-	Ρ	Н
		234.39	36.05	-9.95	46	46.68	16.52	2.62	29.77	-	-	Ρ	Н
		419.7	29.22	-16.78	46	32.76	22.6	3.61	29.75	-	-	Ρ	Н
		848.8	33.85	-12.15	46	29.15	28.63	5.13	29.06	-	-	Ρ	Н
		945.4	34.05	-11.95	46	27.25	29.92	5.54	28.66	-	-	Ρ	Н
													Н
													Н
													Н
													Н
2 4GHz													Н
BI F													Н
LF		30	32.18	-7.82	40	36.71	24.57	1.01	30.11	-	-	Ρ	V
		65.37	31.54	-8.46	40	48.41	11.79	1.37	30.03	-	-	Ρ	V
		82.38	31.97	-8.03	40	46.64	13.73	1.64	30.04	-	-	Ρ	V
		755	30.13	-15.87	46	27.03	27.7	4.81	29.41	-	-	Ρ	V
		891.5	33.05	-12.95	46	27.83	28.67	5.4	28.85	-	-	Р	V
		959.4	34.97	-11.03	46	27.21	30.8	5.58	28.62	-	-	Р	V
													V
													V
													V
													V
													V
													V
	1. No	o other spuriou	s found.										
Remark	2. All	l results are PA	SS against li	mit line.									
	3. Th	e emission pos	sition marked	las"-"m	ieans no sus	pected err	nission foun	d and em	ission leve	el has at	t least 60	dB mai	rgin
	ag	jainst limit or er	mission is no	ise floor	only.								

<2Mbps>

2.4GHz 2400~2483.5MHz

BLE	Note	Frequency	Level	Margin	Limit	Read	Antenna	Path	Preamp	Ant	Table	Peak	Pol.
					Line	Level	Factor	Loss	Factor	Pos	Pos	Avg.	
		(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB/m)	(dB)	(dB)	(cm)	(deg)	(P/A)	(H/V)
		2364.39	53.68	-20.32	74	39.31	31.4	18.38	35.41	394	0	Р	Н
		2384.34	42.93	-11.07	54	28.51	31.4	18.43	35.41	394	0	А	Н
	*	2402	86.54	-	-	72.06	31.42	18.48	35.42	394	0	Р	Н
	*	2402	85.05	-	-	70.57	31.42	18.48	35.42	394	0	А	Н
DI E													Н
													Н
2402MH -		2377.2	53.71	-20.29	74	39.31	31.4	18.41	35.41	393	236	Р	V
2402101112		2384.865	42.93	-11.07	54	28.51	31.4	18.43	35.41	393	236	А	V
	*	2402	84.83	-	-	70.35	31.42	18.48	35.42	393	236	Р	V
	*	2402	83.21	-	-	68.73	31.42	18.48	35.42	393	236	А	V
													V
													V
		2321.06	54.65	-19.35	74	40.29	31.52	18.23	35.39	379	3	Р	Н
		2385.74	42.93	-11.07	54	28.5	31.4	18.44	35.41	379	3	А	Н
	*	2440	85.24	-	-	70.41	31.72	18.54	35.43	379	3	Р	Н
	*	2440	83.78	-	-	68.95	31.72	18.54	35.43	379	3	А	Н
		2491.32	54.32	-19.68	74	39.03	32.13	18.61	35.45	379	3	Р	Н
		2498.88	43.85	-10.15	54	28.49	32.19	18.63	35.46	379	3	А	Н
2440MH 7		2361.8	54.45	-19.55	74	40.09	31.4	18.36	35.4	331	259	Р	V
244010112		2385.74	42.94	-11.06	54	28.51	31.4	18.44	35.41	331	259	А	V
	*	2440	81.22	-	-	66.39	31.72	18.54	35.43	331	259	Р	V
	*	2440	79.62	-	-	64.79	31.72	18.54	35.43	331	259	А	V
		2491.39	53.98	-20.02	74	38.69	32.13	18.61	35.45	331	259	Р	V
		2499.09	43.88	-10.12	54	28.52	32.19	18.63	35.46	331	259	А	V

	*	2480	83.22	-	-	68.03	32.04	18.6	35.45	361	0	Ρ	Н
	*	2480	81.63	-	-	66.44	32.04	18.6	35.45	361	0	А	Н
		2492.2	54.74	-19.26	74	39.45	32.14	18.61	35.46	361	0	Ρ	Н
BLE CH 39 2480MHz		2499.36	43.88	-10.12	54	28.52	32.19	18.63	35.46	361	0	А	Н
													Н
													Н
	*	2480	79.48	-	-	64.29	32.04	18.6	35.45	362	259	Ρ	V
	*	2480	77.75	-	-	62.56	32.04	18.6	35.45	362	259	А	V
		2487.24	54.75	-19.25	74	39.5	32.1	18.6	35.45	362	259	Ρ	V
		2500	43.86	-10.14	54	28.5	32.2	18.62	35.46	362	259	А	V
													V
													V
	1. N	o other spurious	s found.										
Remark	2. A	ll results are PA	SS against l	Peak and	Average lim	it line.							

					•	<u> </u>	,						
BLE	Note	Frequency	Level	Margin	Limit	Read	Antenna	Path	Preamp	Ant	Table	Peak	Pol.
	ļ				Line	Level	Factor	Loss	Factor	Pos	Pos	Avg.	
		(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB/m)	(dB)	(dB)	(cm)	(deg)	(P/A)	(H/V)
		4804	40.99	-33.01	74	53.28	34.01	12.7	59	-	-	Р	Н
		14499	47.28	-26.72	74	43.54	39.6	21.66	57.52	-	-	Р	Н
		16020	48.78	-25.22	74	41.12	41.04	22.62	56	-	-	Р	Н
		16020	39.13	-14.87	54	31.47	41.04	22.62	56	-	-	А	Н
		17880	50.17	-23.83	74	40.19	41.44	23.65	55.11	-	-	Р	Н
		17880	40.69	-13.31	54	30.71	41.44	23.65	55.11	-	-	А	Н
													Н
													Н
													Н
													Н
													Н
BLE													Н
CH 00		4804	42.91	-31.09	74	55.2	34.01	12.7	59	-	-	Р	V
240210112		14499	47.47	-26.53	74	43.73	39.6	21.66	57.52	-	-	Р	V
		15840	48.46	-25.54	74	41.43	40.78	22.5	56.25	-	-	Ρ	V
		15840	38.61	-15.39	54	31.58	40.78	22.5	56.25	-	-	А	V
		17730	51.13	-22.87	74	41.21	41.53	23.56	55.17	-	-	Ρ	V
		17730	40.55	-13.45	54	30.63	41.53	23.56	55.17	-	-	А	V
													V
													V
													V
													V
													V
													V
	1	1	i.	÷		÷	÷		1 ·	÷			

BLE (Harmonic @ 3m)

BLE	Note	Frequency	Level	Margin	Limit	Read	Antenna	Path	Preamp	Ant	Table	Peak	Pol.
		(MHz)	(dBµV/m)	(dB)	Line (dBµV/m)	Level (dBµV)	Factor (dB/m)	Loss (dB)	Factor (dB)	Pos (cm)	Pos (deg)	Avg. (P/A)	(H/V)
		4880	41.39	-32.61	74	53.46	34.04	12.75	58.86	-	-	Р	н
		7320	44.49	-29.51	74	51.28	35.68	15.03	57.5	-	-	Р	н
		14499	47.74	-26.26	74	44	39.6	21.66	57.52	-	-	Р	н
		15870	48.63	-25.37	74	41.47	40.84	22.52	56.2	-	-	Р	н
		15870	38.41	-15.59	54	31.25	40.84	22.52	56.2	-	-	А	н
		17760	50.69	-23.31	74	40.72	41.56	23.57	55.16	-	-	Р	Н
		17760	40.64	-13.36	54	30.67	41.56	23.57	55.16	-	-	А	Н
													Н
													Н
													Н
													н
BLE													н
CH 19		4880	44.26	-29.74	74	56.33	34.04	12.75	58.86	-	-	Р	V
2440IVIHZ		7320	46.37	-27.63	74	53.16	35.68	15.03	57.5	-	-	Р	V
		14499	46.64	-27.36	74	42.9	39.6	21.66	57.52	-	-	Р	V
		16125	48.38	-25.62	74	40.58	41.2	22.67	56.07	-	-	Р	V
		16125	31.34	-22.66	54	23.54	41.2	22.67	56.07	-	-	Α	V
		17760	50.69	-23.31	74	40.72	41.56	23.57	55.16	-	-	Р	V
		17760	40.55	-13.45	54	30.58	41.56	23.57	55.16	-	-	Α	V
													V
													V
													V
													V
													V

BLE	Note	Frequency	Level	Margin	Limit	Read	Antenna	Path	Preamp	Ant	Table	Peak	Pol.
					Line	Level	Factor	Loss	Factor	Pos	Pos	Avg.	
		(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB/m)	(dB)	(dB)	(cm)	(deg)	(P/A)	(H/V)
		4960	40.8	-33.2	74	52.59	34.1	12.82	58.71	-	-	Р	н
		7440	42.37	-31.63	74	49.11	35.82	15.03	57.59	-	-	Р	Н
		14499	47.28	-26.72	74	43.54	39.6	21.66	57.52	-	-	Р	Н
		16170	48.66	-25.34	74	40.87	41.2	22.69	56.1	-	-	Р	Н
		16170	38.42	-15.58	54	30.63	41.2	22.69	56.1	-	-	А	Н
		17760	50.98	-23.02	74	41.01	41.56	23.57	55.16	-	-	Р	Н
		17760	40.39	-13.61	54	30.42	41.56	23.57	55.16	-	-	А	Н
													Н
													Н
													Н
BIE													Н
													Н
CH 39		4960	44.31	-29.69	74	56.1	34.1	12.82	58.71	-	-	Р	V
240010172		7440	45.7	-28.3	74	52.44	35.82	15.03	57.59	-	-	Ρ	V
		14499	46.86	-27.14	74	43.12	39.6	21.66	57.52	-	-	Р	V
		15825	48.75	-25.25	74	41.79	40.75	22.49	56.28	-	-	Р	V
		15825	37.78	-16.22	54	30.82	40.75	22.49	56.28	-	-	А	V
		17715	50.75	-23.25	74	40.87	41.51	23.55	55.18	-	-	Р	V
		17715	40.34	-13.66	54	30.46	41.51	23.55	55.18	-	-	А	V
													V
													V
													V
													V
													V
	1. No	o other spuriou	s found.										
	2. Al	l results are PA	SS against F	Peak and	Average lim	iit line.							
Remark	3. Th	ne emission pos	sition marked	l as "-" m	eans no sus	pected em	ission found	d with suf	ficient mar	gin agai	inst limit	line or	noise
	flo	or only.											
	4. Th	ne emission lev	el close to 18	3GHz is o	checked that	the avera	ge emissior	n level is	noise floor	only.			

Note symbol

*	Fundamental Frequency which can be ignored. However, the level of any unwanted emissions						
	shall not exceed the level of the fundamental frequency.						
!	Test result is over limit line.						
P/A	Peak or Average						
H/V	Horizontal or Vertical						

A calculation example for radiated spurious emission is shown as below:

BLE	Note	Frequency	Level	Over	Limit	Read	Antenna	Path	Preamp	Ant	Table	Peak	Pol.
				Limit	Line	Level	Factor	Loss	Factor	Pos	Pos	Avg.	
		(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB/m)	(dB)	(dB)	(cm)	(deg)	(P/A)	(H/V)
BLE		2390	55.45	-18.55	74	54.51	32.22	4.58	35.86	103	308	Р	н
CH 00 2402MHz		2390	43.54	-10.46	54	42.6	32.22	4.58	35.86	103	308	A	Н

- 1. Path Loss(dB) = Cable loss(dB) + Filter loss(dB) + Attenuator loss(dB)
- 2. Level(dBµV/m) =

Antenna Factor(dB/m) + Path Loss(dB) + Read Level(dBµV) - Preamp Factor(dB)

3. Over $Limit(dB) = Level(dB\mu V/m) - Limit Line(dB\mu V/m)$

For Peak Limit @ 2390MHz:

- 1. Level(dB μ V/m)
- = Antenna Factor(dB/m) + Path Loss(dB) + Read Level(dBµV) Preamp Factor(dB)
- = 32.22(dB/m) + 4.58(dB) + 54.51(dBµV) 35.86 (dB)
- = 55.45 (dBµV/m)
- 2. Over Limit(dB)
- = Level(dBµV/m) Limit Line(dBµV/m)
- $= 55.45(dB\mu V/m) 74(dB\mu V/m)$
- = -18.55(dB)

For Average Limit @ 2390MHz:

- 1. Level(dBµV/m)
- = Antenna Factor(dB/m) + Path Loss(dB) + Read Level(dBµV) Preamp Factor(dB)
- = 32.22(dB/m) + 4.58(dB) + 42.6(dBµV) 35.86 (dB)
- = 43.54 (dBµV/m)
- 2. Over Limit(dB)
- = Level(dB μ V/m) Limit Line(dB μ V/m)
- $= 43.54(dB\mu V/m) 54(dB\mu V/m)$
- = -10.46(dB)

Both peak and average measured complies with the limit line, so test result is "PASS".

Appendix F. Cabinet Radiated Spurious Emission Plots

Toot Engineer .	Jassa Wang, Stan Usiah and Kan Wu	Temperature :	23~26.2°C	
Test Engineer :	Jesse wang, Stan Fisien and Ken wu	Relative Humidity :	55.3~61%	

Note symbol

-L	Low channel location
-R	High channel location

<1Mbps>

2.4GHz 2400~2483.5MHz

BLE	2.4GHz 2400~2483.5MHz Band Edge @ 3m						
	BLE CH19 2	2440MHz - R					
	Horizontal	Fundamental					
Peak	Image: energitativity Det: 202.26.17 I	Left blank					
Avg.	Image: contract of the second seco	Left blank					

BLE	2.4GHz 2400~2483.5MHz Band Edge @ 3m								
	BLE CH19 2	BLE CH19 2440MHz - R							
	Vertical	Fundamental							
Peak	Image: contractivity Dest: 202-26-12 I	Left blank							
Avg.	Image: set of the latence of the l	Left blank							

BLE (Harmonic @ 3m)

Emission above 18GHz

2.4GHz BLE (SHF @ 1m)

Emission below 1GHz

2.4GHz BLE (LF)

<2Mbps>

2.4GHz 2400~2483.5MHz

BLE	2.4GHz 2400~2483.5MHz Band Edge @ 3m				
	BLE CH19 2440MHz - R				
	Horizontal	Fundamental			
Peak	Image: set (div/m) Det: 202.06.11 Image: set (div/m) De: 202.06.11 Image: set (div/m)	Left blank			
Avg.	main sector with the sector wit	Left blank			

BLE	2.4GHz 2400~2483.5MHz Band Edge @ 3m				
	BLE CH19 2440MHz - R				
	Vertical	Fundamental			
Peak	100 100 200 200 200 100 100 100 100 100 100 100 100 100 100 100 200 200 100 100 100 100 100 100 200 200 100 100 200 200 200 200 200 200 100 100 200 200 200 200 200 200 100 100 200 200 200 200 200 200	Left blank			
Avg.	Image: contracting in the second s	Left blank			

2.4GHz 2400~2483.5MHz

BLE (Harmonic @ 3m)

Appendix G. Duty Cycle Plots

Band	Duty Cycle(%)	T(us)	1/T(kHz)	VBW Setting
Bluetooth –LE for 1Mbps	100.00	-	-	10kHz
Bluetooth –LE for 2Mbps	100.00	-	-	10kHz

Bluetooth –LE for 1Mbps		Bluetooth –LE for 2Mbps		
Agilent Spectrum Analyzer - Swept SA		Agilent Spectrum Analyzer - Swept SA		
Marker 1 13.1700 ms PN0: Fast	3:48:59 PM May 11, 2022 TRACE 1 2 3 4 5 6 TYPE MUMUUM	M RL RF SO Q Selection Allowantic DUM State Marker Marker 1 3.55500 ms Free Run Avg Type: RMS Trace Field State Marker		
iiGainit.ov #Atten: 10 dB	kr1 13.17 ms On Off 68.457 dBµV 0n 0ff	ifGaint.cov #Atten: 10 dB Output Marker Table 10 dB/div Ref 106.99 dBµV 68.499 dBµV 0n Off		
97.0	Marker Count	2:0 Marker Count, [07]		
870	Couple Markers On <u>Off</u>	87.0 77.0		
67.0				
47.0				
97.0	All Markers Off	27.0 All Markers Off		
17.0	Span 0 Hz 2 of 2	17.0 More 2480000000 CHz Snan 0 Hz 2 of 2		
Res BW 8 MHz #VBW 8.0 MHz Sweep 15.0	0 ms (1001 pts)	Res BW 8 MHz #VBW 8.0 MHz Sweep 15.00 ms (1001 pts)		