

Report No.: HKEM211100116103 Page: 1 of 28

TEST REPORT

Application No.:	HKEM2111001161AT		
Applicant:	ECOLAB Inc.		
Address of Applicant:	FCC: 1 Ecolab Place, St Paul, Minnesota, United States, 55102		
	IC: Ecolab Schuman Center-F6, 655 Lone Oak Drive, Eagan, MN United States, 55121		
Equipment Under Test (EUT)	:		
EUT Name:	HHCM NEXA POC Holder		
Model No.:	92053075		
Trademark:	EcoLab		
FCC ID:	Z9O-92053075		
IC:	10060A-92053075		
HVIN:	92053075		
Standard(s) :	47 CFR Part 15, Subpart C 15.249		
	RSS-210 Issue 10 December 2019		
	RSS-Gen Issue 5, Amendment 1, March 2019		
Date of Receipt:	2021-12-05		
Date of Test:	2021-12-06 to 2021-12-20		
Date of Issue:	2021-12-28		
Test Result:	Pass*		

* In the configuration tested, the EUT complied with the standards specified above.

Law Man Kit **EMC** Manager

This documents, subject to Terms and Conditions of Service printed overleaf, available on request and accessible at http://www.sgs.com/en/Terms-and-conditions.aspx and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at http://www.sgs.com/en/Terms-and-conditions.aspx Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. The document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law.

Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 30 days only.

SGS Hong Kong Limited Laboratory: Unit 2 and 3, G/F, Block A, Po Lung Centre, 11 Wang Chiu Road, Kowloon Bay, Kowloon, Hong Kong <u>www.sgsgroup.com.hk</u> Office: Units 303 & 305, 3/F, Building 22E, Phase 3, HK Science Park, New Territories, Hong Kong t (852) 2334 4481 f (852) 2764 3126 e <u>mktg.hk@sgs.com</u>

Revision Record				
Version	Chapter	Date	Modifier	Remark
01		2021-12-28		Original

Authorized for issue by:		
	Panny	
	Panny Leung /Project Engineer	Date: 2021-12-28
	Law	
	Law Man Kit	
	/Reviewer	Date: 2021-12-28

2 Test Summary

Radio Spectrum Technical Requirement				
Item	Standard	Method	Requirement	Result
Antenna Requirement	47 CFR Part 15, Subpart C 15.249	N/A	47 CFR Part 15, Subpart C 15.203	Pass

Radio Spectrum Matter Part				
Item	Standard	Method	Requirement	Result
20dB Bandwidth	47 CFR Part 15, Subpart C 15.249	ANSI C63.10 (2013) Section 6.9	47 CFR Part 15, Subpart C 15.215	Pass
Field Strength of the Fundamental Signal (15.249(a))	47 CFR Part 15, Subpart C 15.249	ANSI C63.10 (2013) Section 6.5&6.6	47 CFR Part 15, Subpart C 15.249(a)	Pass
Restricted Band Around Fundamental Frequency	47 CFR Part 15, Subpart C 15.249	ANSI C63.10 (2013) Section 6.4&6.5&6.6	47 CFR Part 15, Subpart C 15.205 & 15.249(d) & 15.209	Pass
Radiated Emissions	47 CFR Part 15, Subpart C 15.249	ANSI C63.10 (2013) Section 6.4&6.5&6.6	47 CFR Part 15, Subpart C 15.209 & 15.249 (a),(d)	Pass

Radio Spectrum Technical Requirement				
Item	Standard	Method	Requirement	Result
Antenna Requirement	RSS-210 Issue 10 December 2019	N/A	RSS-Gen Section 6.8	Pass

Radio Spectrum Matter Par

ltem	Standard	Method	Requirement	Result
99% Bandwidth	RSS-210 Issue 10 December 2019	RSS-Gen Section 6.7	RSS-Gen Section 6.7	Pass
Field Strength of the Fundamental Signal	RSS-210 Issue 10 December 2019	ANSI C63.10 (2013) Section 6.5&6.6	RSS-210 B10 (a)	Pass
Restricted Band Around Fundamental Frequency	RSS-210 Issue 10 December 2019	ANSI C63.10 (2013) Section 6.4&6.5&6.6	RSS-Gen Section 8.9 & 8.10	Pass
Radiated Emissions	RSS-210 Issue 10 December 2019	ANSI C63.10 (2013) Section 6.4&6.5&6.6	RSS-Gen Section 8.9 & RSS-210 B10 (b)	Pass
Frequency stability	-	RSS-Gen Section 6.11	RSS-Gen Section 8.11	PASS*

Note: Frequency stability requested in RSS GEN Section 8.1.1 has been complied since the result of band edge can demonstrate.

Declaration of EUT Family Grouping:

None.

Report No.: HKEM211100116103 Page: 4 of 28

Abbreviation:

- Tx: In this whole report Tx (or tx) means Transmitter.
- Rx: In this whole report Rx (or rx) means Receiver.
- RF: In this whole report RF means Radiated Frequency.
- CH: In this whole report CH means channel.
- Volt: In this whole report Volt means Voltage.
- Temp: In this whole report Temp means Temperature.
- Humid: In this whole report Humid means humidity.
- Press: In this whole report Press means Pressure.
- N/A: In this whole report not application.

 Report No.:
 HKEM211100116103

 Page:
 5 of 28

3 Contents

			Page
1	COVE	ER PAGE	1
_			_
2	TEST	SUMMARY	3
3	CON	TENTS	
Ū			
4	GENE	ERAL INFORMATION	6
	4.1	DETAILS OF E.U.T.	6
	4.2	DESCRIPTION OF SUPPORT UNITS	6
	4.3	MEASUREMENT UNCERTAINTY	7
	4.4	TEST LOCATION	8
	4.5	Test Facility	8
	4.6	DEVIATION FROM STANDARDS	8
	4.7	ABNORMALITIES FROM STANDARD CONDITIONS	8
5	EQUI	PMENT LIST	
-			-
6	RADI	O SPECTRUM TECHNICAL REQUIREMENT	11
	6.1	ANTENNA REQUIREMENT	
	6.1.1	Test Requirement:	
	6.1.2	Conclusion	11
7			10
1	KADI	U SPECIRUM MATTER TEST RESULTS	13
	7.1	20dB Bandwidth	13
	7.1.1	E.U.T. Operation	13
	7.1.2	Test Setup Diagram	
	7.1.3	Measurement Procedure and Data	
	1.2	99% BANDWIDTH	
	7.2.1	E.U.I. Operation	
	7.2.2	Test Setup Diagram	
	73	FIELD STRENCTH OF THE FUNDAMENTAL SIGNAL (15.240(A))	
	731	FILT Operation	17
	7.3.2	Test Setun Diagram	
	7.3.3	Measurement Procedure and Data	
	7.4	RESTRICTED BAND AROUND FUNDAMENTAL FREQUENCY	
	7.4.1	E.U.T. Operation	
	7.4.2	Test Setup Diagram	21
	7.4.3	Measurement Procedure and Data	21
	7.5	RADIATED EMISSIONS	23
	7.5.1	E.U.T. Operation	24
	7.5.2	Test Setup Diagram	24
	7.5.3	Measurement Procedure and Data	24
8	PHOT	TOGRAPHS	28

4 General Information

4.1 Details of E.U.T.

Power supply:	DC 3.0 V ('AA' size battery x 2)
Test voltage:	DC 3.0 V
Cable:	N/A
Antenna Gain:	-1dBi
Antenna Type:	Ceramic Chip Antenna
Modulation Type:	GFSK
Number of Channels:	1
Operation Frequency:	917MHz
Series no.:	A1
Hardware Version:	Rev.A
Software Version:	V1.01
	Remark: Power level setting was not adjustable and fixed default through SW Version.

EUT channels and frequencies list:

Channel	Frequency (MHz)
1	917

Test frequencies is 917MHz.

4.2 Description of Support Units

The EUT has been tested as an independent unit.

4.3 Measurement Uncertainty

RF

No.	ltem	Measurement Uncertainty
1	Radio Frequency	± 7.25 x 10 ⁻⁸
2	Duty cycle	± 0.37%
3	Occupied Bandwidth	± 3%
4	RF conducted power (30MHz-40GHz)	1.5dB
5	RF power density	1.5dB
6	Conducted Spurious emissions	1.5dB
		4.4dB (30MHz-1GHz)
7	RF Radiated power &	4.7dB (1GHz-6GHz)
1	Radiated Spurious emission test	4.7dB (6GHz-18GHz)
		5.7dB (18GHz-40GHz)
8	Temperature test	± 1°C
9	Humidity test	± 3%
10	Supply voltages	± 1.5%
11	Time	± 3%

Remark:

The data and results referenced in this document are true and accurate. The reader is cautioned that there may be errors in calibration limits of the equipment and facilities. The measurement uncertainty was calculated for all measurements listed in this test report according to TR-100028-01 "Electromagnetic compatibility and Radio spectrum Matters (ERM);Uncertainties in the measurement of mobile radio equipment characteristics; Part 1" and TR-100028-02 "Electromagnetic compatibility and Radio spectrum Matters (ERM);Uncertainties in the measurement of mobile radio equipment characteristics; Part 1" and TR-100028-02 "Electromagnetic compatibility and Radio spectrum Matters (ERM);Uncertainties in the measurement of mobile radio equipment characteristics; Part 2" and is documented in the test lab quality system according to ISO/IEC 17025. Furthermore, component and process variability of devices similar to that tested may result in additional deviation. The manufacturer has the sole responsibility of continued compliance of the device.

4.4 Test Location

All tests were performed at: SGS Hong Kong Limited Unit 2 and 3, G/F, Block A, Po Lung Centre, 11 Wang Chiu Road, Kowloon Bay, Kowloon, Hong Kong Tel: +852 2305 2570 Fax: +852 2756 4480

No tests were sub-contracted.

4.5 Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

HOKLAS (Lab Code: 009)

SGS Hong Kong Limited has been accepted by HKAS Executive, on the recommendation of the Accreditation Advisory Board, as a HOKLAS Accredited Laboratory, this laboratory meets the requirements of ISO/IEC 17025:2017 an it has been accredited for performing specific test as listed in the scope of accreditation within the test category of Electrical and Electronic Products.

• IAS Accreditation (Lab Code: TL-817)

SGS Hong Kong Limited has met the requirements of AC89, IAS Accreditation Criteria for Testing Laboratories, and has demonstrated compliance with ISO/IEC Standard 17025:2017, General requirements for the competence of testing and calibration laboratories. This organization is accredited to provide the services specified in the scope of accreditation maintained on the IAS website (www.iasonline.org).

The report must not be used by the client to claim product certification, approval, or endorsement by IAS, NIST, or any agency of the Federal Government.

• FCC Recognized Accredited Test Firm(CAB Registration No.: 514599)

SGS Hong Kong Limited has been accredited and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in our files. Designation Number: HK0015, Test Firm Registration Number: 514599.

• Industry Canada (Site Registration No.: 26103; CAB Identifier No.: HK0015)

SGS Hong Kong Limited has been recognized by Department of Innovation, Science and Economic Development (ISED) Canada as a wireless testing laboratory. The acceptance letter from the ISED is maintained in our files. CAB Identifier No: HK0015, Site Registration Number: 26103.

4.6 Deviation from Standards

None

4.7 Abnormalities from Standard Conditions

None

5 Equipment List

99% Bandwidth, 20dB Bandwidth					
Equipment	Manufacturer	Model No	Inventory No	Cal Date	Cal Due Date
SMBV100A VECTOR SIGNAL GENERATOR	Rohde & Schwarz	SMBV100A	E234	2021/08/17	2022/08/16
FSV40 SIGNAL ANALYZER 40GHz	Rohde & Schwarz	FSV40	E235	2021/08/17	2022/08/16
Wireless Conn. Tester (CMW)	Rohde & Schwarz	CMW270	E240	2021/08/20	2022/08/19
OSP	Rohde & Schwarz	OSP-B157W8	E242	2021/04/20	2022/04/19
Cable	Rohde & Schwarz	J12J103539- 00-2	E239	2021/09/17	2022/09/16
Cable	Rohde & Schwarz	J12J103539- 00-2	E239	2021/09/17	2022/09/16

Radiated Spurious Emissions (30MHz-1GHz)						
Equipment	Manufacturer	Model No	Inventory No	Cal Date	Cal Due Date	
3m Semi-Anechoic Chamber	ChamPro	N/A	E229	2021/08/09	2022/08/08	
Coaxial Cable	SGS	N/A	E167	2021/07/15	2022/07/14	
EMI Test Receiver	Pobdo & Schwarz	ESP7 / 102208	E21/	2021/04/26	2022/04/25	
9kHz to 7GHz	Ronue & Schwarz	ESR// 102290	E314	2021/04/20	2022/04/23	
TRILOG Super Broadb.	Sobwarzback	0169 1110	E211	2020/02/12	2022/02/12	
(25) 30-1000 MHz	Schwarzbeck	9100-1110	LOIT	2020/02/13	2022/02/12	
EMC32 Test software	Rohde & Schwarz	Version 10	N/A	N/A	N/A	
Boresight Mast Controller	ChamPro	AM-BS-4500-E	E237	N/A	N/A	
Turntable with Controller	ChamPro	EM1000	E238	N/A	N/A	

Radiated Spurious Emissions (above 1GHz)					
Equipment	Manufacturer	Model No	Inventory No	Cal Date	Cal Due Date
3m Semi-Anechoic Chamber	ChamPro	N/A	E229	2021/08/09	2022/08/08
Coaxial Cable	SGS	N/A	E167	2021/07/15	2022/07/14
EMI Test Receiver 9kHz to 7GHz	Rohde & Schwarz	ESR7 / 102298	E314	2021/04/26	2022/04/25
TRILOG Super Broadb. Test Antenna, (25) 30-1000 MHz	Schwarzbeck	9168-1110	E311	2020/02/13	2022/02/12
Signal and Spectrum Analyzer 2Hz - 26.5GHz	Rohde & Schwarz	FSW26	E296	2021/09/17	2022/09/16
Spectrum Analyzer 9kHz - 30GHz	Rohde & Schwarz	FSP30	E204	2020/03/11	2022/03/10
Horn Antenna 1 - 18GHz	Schwarzbeck	BBHA9120D	E211	2020/01/29	2022/01/28

Report No.: HKEM211100116103 Page: 10 of 28

Horn Antenna 15 - 40GHz	Schwarzbeck	BBHA9170	E212	2020/01/29	2022/01/28
Preamplifier 33dB, 1 - 18GHz	Schwarzbeck	BBV9718	E214	2019/04/24	2022/04/23
Preamplifier 33dB, 18 - 26.5GHz	Schwarzbeck	BBV9719	E215	2020/09/21	2022/09/20
Broadband Coaxial Preamplifier typ. 30 dB, 18-40GHz	Schwarzbeck	BBV 9721	E266	2021/09/17	2022/09/16
Band Reject Filter 2.4 -2.5GHz	MICRO-TRONICS	BRM50702	E324	2021/09/17	2022/09/16
RF cable SMA to SMA 10000mm	HUBER+SUHNER	SF104- 26.5/2*11SMA 45	E207-1	2021/09/17	2022/09/16
Boresight Mast Controller	ChamPro	AM-BS-4500-E	E237	N/A	N/A
Turntable with Controller	ChamPro	EM1000	E238	N/A	N/A

General used equipmen	t				
Equipment	Manufacturer	Model No	Inventory No	Cal Date	Cal Due Date
Digital temperature & humidity data logger	SATO	SK-L200TH II	E232	2021/08/16	2022/08/15
Electronic Digital Thermometer with Hygrometer	nil	2074/2075	E159	2021/08/16	2022/08/15
Barometer with digital thermometer	SATO	7612-00	E218	2021/03/29	2022/03/28
Conditional Chamber	Zhong Zhi Testing Instruments	CZ-E-608D	E216	2021/08/17	2022/08/16

Report No.: HKEM211100116103 Page: 11 of 28

6 Radio Spectrum Technical Requirement

6.1 Antenna Requirement

6.1.1 Test Requirement:

RSS-Gen Section 6.8; 47 CFR Part 15, Subpart C 15.203 Limit:

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

6.1.2 Conclusion

The applicant for equipment certification, as per RSP-100, must provide a list of all antenna types that may be used with the licence-exempt transmitter, indicating the maximum permissible antenna gain (in dBi) and the required impedance for each antenna.

Licence-exempt transmitters that have received equipment certification may operate with different types of antennas. However, it is not permissible to exceed the maximum equivalent isotropically radiated power (e.i.r.p.) limits specified in the applicable standard (RSS) for the licence-exempt apparatus.

Testing shall be performed using the highest gain antenna of each combination of licence-exempt transmitter and antenna type, with the transmitter output power set at the maximum level.9 When a measurement at the antenna connector is used to determine RF output power, the effective gain of the device's antenna shall be stated, based on a measurement or on data from the antenna manufacturer.

User manuals for transmitters equipped with detachable antennas shall also contain the following notice in a conspicuous location:

This radio transmitter (identify the device by certification number) has been approved by Industry Canada to operate with the antenna types listed below with the maximum permissible gain indicated. Antenna types not included in this list, having a gain greater than the maximum gain indicated for that type, are strictly prohibited for use with this device.

Immediately following the above notice, the manufacturer shall provide a list of all antenna types approved for use with the transmitter, indicating the maximum permissible antenna gain (in dBi).

Standard Requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently

attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

EUT Antenna:

The antenna is integrated on the main PCB and no consideration of replacement. The best case gain of the antenna is -1dBi.

Photo of antenna refer to Appendix – Internal photo.

Report No.: HKEM211100116103 Page: 13 of 28

7 Radio Spectrum Matter Test Results

7.1 20dB Bandwidth

Test Requirement	47 CFR Part 15, Subpart C 15.215
Test Method:	ANSI C63.10 (2013) Section 6.9
Limit:	N/A

7.1.1 E.U.T. Operation

Operating Environr	ment:			
Temperature:	22.5 °C	Humidity:	49.2 % RH	:
Test mode	a:TX mode_Kee	ep the EUT i	n transmitting with	n modulation mode.

7.1.2 Test Setup Diagram

Ground Reference Plane

7.1.3 Measurement Procedure and Data

Mode:a;

20dB Bandwidth = 61.07kHz

7.2 99% Bandwidth

Test Requirement	RSS-Gen Section 6.7
Test Method:	RSS-Gen Section 6.7
Limit:	N/A

7.2.1 E.U.T. Operation

Operating Environment:

Temperature: 25 °C Humidity: 50 % RH :

Test mode a:TX mode_Keep the EUT in transmitting with modulation mode.

7.2.2 Test Setup Diagram

Ground Reference Plane

7.2.3 Measurement Procedure and Data

Mode:a;

99% Bandwidth = 62.52kHz

7.3 Field Strength of the Fundamental Signal (15.249(a))

Test Requirement	47 CFR Part 15, Subpart C 15.249(a)
Test Method:	ANSI C63.10 (2013) Section 6.5&6.6
Measurement Distance:	3m
Limit:	

Fundamental frequency(MHz)	Field strength of fundamental(millivolts/meter)	Field strength of harmonics(microvolts/meter)
902-928	50	500
2400-2483.5	50	500
5725-5875	50	500
24000-24250	250	2500

Remark: The frequencies above 1000MHz are based on average limits. However, the peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation.

For fundamental frequency in "902-928MHz", the field strength of fundamental is based on Quasi-Peak.

7.3.1 E.U.T. Operation

Operating Environment:

Temperature:

22.5 °C

Humidity: 51 % RH

Test mode a:TX mode_Keep the EUT in transmitting with modulation mode.

7.3.2 Test Setup Diagram

30MHz-1GHz

Above 1GHz

7.3.3 Measurement Procedure and Data

a. For below 1GHz, the EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 or 10 meter semi-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.

b. For above 1GHz, the EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter fully-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.

c. The EUT was set 3 or 10 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.

d. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.

e. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.

f. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.

g. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.

h. Test the EUT in the lowest channel, the middle channel, the Highest channel.

i. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is the worst case.

j. Repeat above procedures until all frequencies measured was complete.

Remark: Level= Read Level+ Cable Loss+ Antenna Factor- Preamp Factor

Mode:a

Frequency	QP	Pol.	Corr.	QP Margin	QP Limit	Result
(MHz)	(dBµV/m)		(dB/m)	(dB)	(dBµV/m)	
917.000000	82.5	н	26.5	11.5	94.0	Pass
917.000000	65.7	v	26.5	28.3	94.0	Pass

7.4 Restricted Band Around Fundamental Frequency

Test Requirement	47 CFR Part 15, Subpart C 15.205 & 15.249(d) & 15.209
Test Method:	ANSI C63.10 (2013) Section 6.4&6.5&6.6
Measurement Distance:	3m
Limit:	

Frequency	Limit (dBuV/m @3m)	Remark			
30MHz-88MHz	40.0	Quasi-peak Value			
88MHz-216MHz	43.5	Quasi-peak Value			
216MHz-960MHz	46.0	Quasi-peak Value			
960MHz-1GHz	54.0	Quasi-peak Value			
Above 1GHz	54.0	Average Value			
Above 1GHz 74.0 Peak Value		Peak Value			
Emission radiated outside of the specified frequency bands, except for harmonics, shall					

Emission radiated outside of the specified frequency bands, except for harmonics, shall be attenuated by at least 50 dB below the level of the fundamental or to the general radiated emission limits in Section 15.209, whichever is the lesser attenuation.

7.4.1 E.U.T. Operation

Operating Environment:

Temperature:

: 22.5 °C

Humidity: 51.2 % RH

Test mode a:TX mode_Keep the EUT in transmitting with modulation mode.

7.4.2 Test Setup Diagram

30MHz-1GHz

Above 1GHz

7.4.3 Measurement Procedure and Data

a. For below 1GHz, the EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 or 10 meter semi-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.

b. For above 1GHz, the EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter fully-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.

c. The EUT was set 3 or 10 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.

d. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.

e. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.

f. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.

g. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.

h. Test the EUT in the lowest channel, the middle channel, the Highest channel.

i. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is the worst case.

j. Repeat above procedures until all frequencies measured was complete.

Remark: Level= Read Level+ Cable Loss+ Antenna Factor- Preamp Factor

Mode:a;

Frequency	Antenna	Emission Le	vel (dBµV/m)	Limit (dBµV/m)	Bomork
(MHz)	Polarization	QP	Average	QP	Remark
902.000	Н	27.8	/	54.0	Pass
928.000	Н	26.4	/	54.0	Pass
902.000	V	26.0	/	54.0	Pass
928.000	V	26.2	/	54.0	Pass

7.5 Radiated Emissions

Test Requirement47 CFR Part 15, Subpart C 15.209 & 15.249 (a),(d)Test Method:ANSI C63.10 (2013) Section 6.4&6.5&6.6Measurement Distance:3mLimit:

Frequency(MHz)	Field strength (microvolts/meter)	Limit (dBuV/m)	Detector	Measurement Distance (meters)
0.009-0.490	2400/F(kHz)	-	-	300
0.490-1.705	24000/F(kHz)	-	-	30
1.705-30	30	-	-	30
30-88	100	40.0	QP	3
88-216	150	43.5	QP	3
216-960	200	46.0	QP	3
960-1000	500	54.0	QP	3
Above 1000	500	54.0	AV	3

7.5.1 E.U.T. Operation

Operating Environment:

Temperature:

Test mode

22.5 °C Humidity: 51 a:TX mode Keep the EUT in transmitting with modulation mode.

7.5.2 Test Setup Diagram

% RH

÷

7.5.3 Measurement Procedure and Data

For testing performed with the loop antenna, the center of the loop was positioned 1 m above the ground and positioned with its plane vertical at the specified distance from the EUT. During testing the loop was rotated about its vertical axis for maximum response at each azimuth and also investigated with the loop positioned in the horizontal plane. Only the worst position of vertical was shown in the report.

Above 1GHz

Report No.: HKEM211100116103 Page: 25 of 28

Radiated emission below 1GHz

Horizontal

Frequency	QuasiPeak	Pol.	Corr.	Margin	Limit	Descrit
(MHz)	(dBµV/m)		(dB/m)	(dB)	(dBµV/m)	Result
50.716429	12.7	Н	14.2	27.3	40.0	Pass
166.077143	13.0	Н	14.3	30.5	43.5	Pass
401.440714	16.6	Н	17.5	29.4	46.0	Pass
670.546429	22.6	н	22.7	23.4	46.0	Pass
794.845000	24.9	Н	24.8	21.1	46.0	Pass
889.766429	25.8	Н	25.5	20.3	46.0	Pass

Remark:

- 1. All readings are Quasi-Peak values.
- 2. Correction Factor = Antenna Factor + Cable Loss.
- 3. Pol. = antenna polarization

Vertical

Frequency	QuasiPeak	Pol.	Corr.	Margin	Limit	Decult
(MHz)	(dBµV/m)		(dB/m)	(dB)	(dBµV/m)	Result
46.975000	13.1	V	14.2	26.9	40.0	Pass
170.580714	12.8	v	14.1	30.7	43.5	Pass
363.402857	15.2	v	16.5	30.8	46.0	Pass
553.800000	20.3	v	20.5	25.7	46.0	Pass
710.108571	23.6	v	23.5	22.5	46.0	Pass
845.700714	25.6	V	25.4	20.4	46.0	Pass

Remark:

- 1. All readings are Quasi-Peak values.
- 2. Correction Factor = Antenna Factor + Cable Loss.
- 3. Pol. = antenna polarization

Above 1GHz

Channel: Low

Frequency	Antenna	Emission Level (dBµV/m)		Limit (c	Bomork	
(MHz)	Polarizati on	Peak	Average	Peak	Average	Remark
1634.625	Н	36.5	/	74.0	54.0	Pass
2474.125	Н	33.2	/	74.0	54.0	Pass
3822.870	Н	43.9	/	74.0	54.0	Pass
4912.000	Н	47.1	/	74.0	54.0	Pass
7709.500	Н	56.1	42.3	74.0	54.0	Pass
9711.750	Н	61.2	45.3	74.0	54.0	Pass

Channel: High

Frequency	Antenna	Emission Level (dBµV/m)		Limit (c	Bomark	
(MHz)	Polarizati on	Peak	Average	Peak	Average	Remark
1398.125	V	35.1	/	74.0	54.0	Pass
2082.000	V	38.9	/	74.0	54.0	Pass
3142.500	V	43.8	/	74.0	54.0	Pass
4312.250	V	43.6	/	74.0	54.0	Pass
7191.500	V	52.2	/	74.0	54.0	Pass
9551.250	V	61.6	44.4	74.0	54.0	Pass

Report No.: HKEM211100116103 Page: 28 of 28

8 Photographs

Remark: Photos refer to Appendix: External Photo, Internal Photo and setup Photo.

- End of the Report -