

No. 1 Workshop, M-10, Middle section, Science & Technology Park,

Shenzhen, Guangdong, China 518057

Telephone: +86 (0) 755 2601 2053 Report No.: SZEM170200109102

Fax: +86 (0) 755 2671 0594
Email: ee.shenzhen@sgs.com
Page: 1 of 93

TEST REPORT

Application No.: SZEM1702001091CR **Applicant:** Edifier International Limited

Address of Applicant: Room 2207-9, Tower Two, Lippo Centre 89 Queensway, HongKong

Manufacturer: Beijing Edifier Technology Co., Ltd.

Address of Manufacturer: 8th floor, ZuoAn Building, NO.68 BeiSiHuanXiLu, Haidian District, Beijing

100080, CHINA

Factory: Dongguan Edifier Technology Co., Ltd.

Address of Factory: No.2 Gongyedong Road, Songshan Lake Sci&Tech Industry Park, Dongguan,

Guangdong 523808, PR.China

Equipment Under Test (EUT):

EUT Name: Wireless Stereo Headphones, Headphones

Model No.:W830BTTrade mark:EDIFIERFCC ID:Z9G-EDF40

Standards: 47 CFR Part 15, Subpart C 15.247

 Date of Receipt:
 2017-02-23

 Date of Test:
 2017-02-24

 Date of Issue:
 2017-03-08

Test Result : Pass*

Jack Zhang EMC Laboratory Manager

The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in this report. If the product in this report is used in any configuration other than that detailed in the report, the manufacturer must ensure the new system complies with all relevant standards. Any mention of SGS International Electrical Approvals or testing done by SGS International Electrical Approvals in connection with, distribution or use of the product described in this report must be approved by SGS International Electrical Approvals in writing.

^{*} In the configuration tested, the EUT complied with the standards specified above.

Report No.: SZEM170200109102

Page: 2 of 93

Revision Record						
Version Chapter Date Modifier Remark						
01		2017-03-08		Original		

Authorized for issue by:		
Tested By	Edison Li /Project Engineer	2017-02-24 Date
Checked By	Eric Fu /Reviewer	2017-03-08 Date

Report No.: SZEM170200109102

Page: 3 of 93

2 Test Summary

Radio Spectrum Technical Requirement						
Item	Standard	Method	Requirement	Result		
Antenna Requirement	47 CFR Part 15, Subpart C 15.247	N/A	47 CFR Part 15, Subpart C 15.203 & 15.247(c)	Pass		
Other requirements Frequency Hopping Spread Spectrum System Hopping Sequence	47 CFR Part 15, Subpart C 15.247	N/A	47 CFR Part 15, Subpart C 15.247(a)(1),(g),(h	Pass		

Radio Spectrum Matter Part						
Item	Standard	Method	Requirement	Result		
Conducted Disturbance at AC Power Line (150kHz-30MHz)	47 CFR Part 15, Subpart C 15.247	ANSI C63.10 (2013) Section 6.2	47 CFR Part 15, Subpart C 15.207	Pass		
20dB Bandwidth	47 CFR Part 15, Subpart C 15.247	ANSI C63.10 (2013) Section 7.8.7	47 CFR Part 15, Subpart C 15.247(a)(1)	Pass		
Conducted Peak Output Power	47 CFR Part 15, Subpart C 15.247	ANSI C63.10 (2013) Section 7.8.5	47 CFR Part 15, Subpart C 15.247(b)(1)	Pass		
Carrier Frequencies Separation	47 CFR Part 15, Subpart C 15.247	ANSI C63.10 (2013) Section 7.8.2	47 CFR Part 15, Subpart C 15.247a(1)	Pass		
Hopping Channel Number	47 CFR Part 15, Subpart C 15.247	ANSI C63.10 (2013) Section 7.8.3	47 CFR Part 15, Subpart C 15.247a(1)(iii)	Pass		
Dwell Time	47 CFR Part 15, Subpart C 15.247	ANSI C63.10 (2013) Section 7.8.4	47 CFR Part 15, Subpart C 15.247a(1)(iii)	Pass		
Conducted Spurious Emissions	47 CFR Part 15, Subpart C 15.247	ANSI C63.10 (2013) Section 7.8.8	47 CFR Part 15, Subpart C 15.247(d)	Pass		
Radiated Spurious Emissions	47 CFR Part 15, Subpart C 15.247	ANSI C63.10 (2013) Section 6.4,6.5,6.6	47 CFR Part 15, Subpart C 15.205 & 15.209	Pass		
Radiated Emissions which fall in the restricted bands	47 CFR Part 15, Subpart C 15.247	ANSI C63.10 (2013) Section 6.10.5	47 CFR Part 15, Subpart C 15.205 & 15.209	Pass		
Conducted Band Edges Measurement	47 CFR Part 15, Subpart C 15.247	ANSI C63.10 (2013) Section 7.8.6	47 CFR Part 15, Subpart C 15.247(d)	Pass		

Report No.: SZEM170200109102

Page: 4 of 93

3 Contents

			Page
1	COVI	ER PAGE	1
2	TES1	SUMMARY	
3	CON	TENTS	
4	GENI	ERAL INFORMATION	
•			
		TAILS OF E.U.T	
		ST ENVIRONMENT	
		EASUREMENT UNCERTAINTY	
		ST LOCATION	
	4.6 TE	ST FACILITY	
		VIATION FROM STANDARDS	
		NORMALITIES FROM STANDARD CONDITIONS	
5	FOLI	PMENT LIST	(
9	LQ0.	I MENT EIOT	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
6	RADI	O SPECTRUM TECHNICAL REQUIREMENT	11
	6.1 AN	TENNA REQUIREMENT	1
	6.1.1		
	6.1.2	Conclusion	13
		HER REQUIREMENTS FREQUENCY HOPPING SPREAD SPECTRUM SYSTEM HOPPING SEQUENCE	
	6.2.1	1	
	6.2.2	Conclusion	12
7	RADI	O SPECTRUM MATTER TEST RESULTS	14
	7.1 Co	NDUCTED DISTURBANCE AT AC POWER LINE(150kHz-30MHz)	14
	7.1.1		14
	7.1.2	Test Setup Diagram	14
	7.1.3		
		DB BANDWIDTH	
	7.2.1	•	
	7.2.2	1 5	
	7.2.3		
		NDUCTED PEAK OUTPUT POWER	
	7.3.1 7.3.2		
	7.3.2 7.3.3	, ,	
		RRIER FREQUENCIES SEPARATION	
	7.4 CA 7.4.1	E.U.T. Operation	
	7.4.2		
	7.4.3	Measurement Data	
		PPING CHANNEL NUMBER	
	7.5.1	E.U.T. Operation	
	7.5.2		
	7.5.3	Measurement Data	
		ELL TIME	
	7.6.1	E.U.T. Operation	
	7.6.2	, ,	
	763	Measurement Data	24

Report No.: SZEM170200109102

Page: 5 of 93

	7.7 CON	NDUCTED SPURIOUS EMISSIONS	
	7.7.1	E.U.T. Operation	25
	7.7.2	Test Setup Diagram	25
	7.7.3	Measurement Data	
	7.8 RAD	DIATED SPURIOUS EMISSIONS	26
	7.8.1	E.U.T. Operation	27
	7.8.2	Test Setup Diagram	
	7.8.3	Measurement Data	
	7.9 RAD	DIATED EMISSIONS WHICH FALL IN THE RESTRICTED BANDS	
	7.9.1	E.U.T. Operation	
	7.9.2	Test Setup Diagram	
	7.9.3	Measurement Data	
		CONDUCTED BAND EDGES MEASUREMENT	
	7.10.1	F	
	7.10.2	· · · · · · · · · · · · · · · · · · ·	
	7.10.3	Measurement Data	40
8	PHOT	OGRAPHS	41
	8.1 Con	NDUCTED DISTURBANCE AT AC POWER LINE(150kHz-30MHz) TEST SETUP	41
	8.2 RAD	DIATED SPURIOUS EMISSIONS TEST SETUP	42
	8.3 EU7	T CONSTRUCTIONAL DETAILS	43
9	APPE	NDIX	44
	9.1 App	PENDIX 15.247	44-93

Report No.: SZEM170200109102

Page: 6 of 93

4 General Information

4.1 Details of E.U.T.

Power supply: DC 3.7V, 1500mAh rechargeable battery which charged by USB port

Test voltage: DC 5V, 1A

Cable: USB cable: 78cm unshielded

AUX IN cable: 133cm unshielded

Frequency range: 2402MHz-2480MHz

Bluetooth version: Bluetotoh V4.0

Modulation Type: GFSK, π/4DQPSK, 8DPSK

Number of channels: 79

Antenna type: Integral
Antenna gain: 2.5dBi

Sample type: Portable production

4.2 Description of Support Units

Description	Manufacturer	Model No.	Serial No.
Adapter	Apple	A1357 W010A051	REF. No.SEA0500

4.3 Test Environment

Operating Environment:			
Temperature:	25.0 °C		
Humidity:	55 % RH		
Atmospheric Pressure:	1010 mbar		

Report No.: SZEM170200109102

Page: 7 of 93

4.4 Measurement Uncertainty

No.	Item	Measurement Uncertainty
1	Radio Frequency	7.25 x 10-8
2	Timeout 2s	
3	Duty cycle	0.37%
4	Occupied Bandwidth	3%
5	RF conducted power	0.75dB
6	Conducted Spurious emissions	0.75dB
_	DE Dadista de la compansión de la compan	4.5dB (below 1GHz)
7	RF Radiated power	4.8dB (above 1GHz)
	Dadiated Country and allowed	4.5dB (30MHz-1GHz)
8	Radiated Spurious emission test	4.8dB (1GHz-18GHz)
9	Temperature test	1℃
10	Humidity test	3%
11	Supply voltages	1.5%
12	Time	3%

Report No.: SZEM170200109102

Page: 8 of 93

4.5 Test Location

All tests were performed at:

SGS-CSTC Standards Technical Services Co., Ltd., Shenzhen Branch

No. 1 Workshop, M-10, Middle Section, Science & Technology Park, Shenzhen, Guangdong, China. 518057.

Tel: +86 755 2601 2053 Fax: +86 755 2671 0594

No tests were sub-contracted.

4.6 Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

· CNAS (No. CNAS L2929)

CNAS has accredited SGS-CSTC Standards Technical Services Co., Ltd. Shenzhen Branch EMC Lab to ISO/IEC 17025:2005 General Requirements for the Competence of Testing and Calibration Laboratories (CNAS-CL01 Accreditation Criteria for the Competence of Testing and Calibration Laboratories) for the competence in the field of testing.

A2LA (Certificate No. 3816.01)

SGS-CSTC Standards Technical Services Co., Ltd., Shenzhen EMC Laboratory is accredited by the American Association for Laboratory Accreditation(A2LA). Certificate No. 3816.01.

VCCI

The 10m Semi-anechoic chamber and Shielded Room of SGS-CSTC Standards Technical Services Co., Ltd. have been registered in accordance with the Regulations for Voluntary Control Measures with Registration No.: G-823, R-4188, T-1153 and C-2383 respectively.

• FCC – Registration No.: 556682

SGS-CSTC Standards Technical Services Co., Ltd., Shenzhen EMC Laboratory has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in our files. Registration No.: 556682.

Industry Canada (IC)

Two 3m Semi-anechoic chambers and the 10m Semi-anechoic chamber of SGS-CSTC Standards Technical Services Co., Ltd. Shenzhen Branch EMC Lab have been registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 4620C-1, 4620C-2, 4620C-3.

4.7 Deviation from Standards

None

4.8 Abnormalities from Standard Conditions

None

Report No.: SZEM170200109102

Page: 9 of 93

5 Equipment List

Conducted Emission							
Equipment	Manufacturer	Model No	Inventory No	Cal Date	Cal Due Date		
Shielding Room	ZhongYu Electron	GB-88	SEM001-06	2016-05-13	2017-05-13		
LISN	Rohde & Schwarz	ENV216	SEM007-01	2016-10-09	2017-10-09		
LISN	ETS-LINDGREN	3816/2	SEM007-02	2016-04-25	2017-04-25		
8 Line ISN	Fischer Custom Communications Inc.	FCC-TLISN- T8-02	EMC0120	2016-09-28	2017-09-28		
4 Line ISN	Fischer Custom Communications Inc.	FCC-TLISN- T4-02	EMC0121	2016-09-28	2017-09-28		
2 Line ISN	Fischer Custom	FCC-TLISN- T2-02	EMC0122	2016-09-28	2017-09-28		

RF connected test							
Equipment	Manufacturer	Model No	Inventory No	Cal Date	Cal Due Date		
DC Power Supply	ZhaoXin	RXN-305D	SEM011-02	2016-10-09	2017-10-09		
Spectrum Analyzer	Rohde & Schwarz	FSP	SEM004-06	2016-10-09	2017-10-09		
Signal Generator	Rohde & Schwarz	SML03	SEM006-02	2016-04-25	2017-04-25		
Power Meter	Rohde & Schwarz	NRVS	SEM014-02	2016-10-09	2017-10-09		

RE in Chamber							
Test Equipment	Manufacturer	Model No.	Inventory No.	Cal. date	Cal.Due date (yyyy-mm-dd)		
10m Semi-Anechoic Chamber	SAEMC	FSAC1018	SEM001-03	2016-08-01	2017-08-01		
EMI Test Receiver (9k-3GHz)	Rohde & Schwarz	ESCI	SEM004-01	2016-04-25	2017-04-25		
Trilog-Broadband Antenna(30M-1GHz)	Schwarzbeck	VULB9168	SEM003-17	2017-01-26	2018-01-26		
Pre-amplifier	Sonoma Instrument Co	310N	SEM005-03	2016-04-25	2017-04-25		
Loop Antenna	ETS-Lindgren	6502	SEM003-08	2016-08-14	2017-08-14		

Report No.: SZEM170200109102

Page: 10 of 93

RE in Chamber					
Test Equipment	Manufacturer	Model No.	Inventory No.	Cal. date (yyyy-mm-dd)	Cal.Due date (yyyy-mm-dd)
3m Semi-Anechoic Chamber	AUDIX	N/A	SEM001-02	2016-05-13	2017-05-13
EMI Test Receiver	Rohde & Schwarz	ESIB26	SEM004-04	2016-04-25	2017-04-25
BiConiLog Antenna (26-3000MHz)	ETS-Lindgren	3142C	SEM003-02	2014-11-15	2017-11-15
Amplifier (0.1-1300MHz)	HP	8447D	SEM005-02	2015-10-09	2016-10-09
Horn Antenna (1-18GHz)	Rohde & Schwarz	HF907	SEM003-07	2016-06-14	2017-06-14
Low Noise Amplifier	Black Diamond Series	BDLNA- 0118- 352810	SEM005-05	2015-10-09	2016-10-09
Band filter	Amindeon	Asi 3314	SEM023-01	N/A	N/A
Horn Antenna (18-26GHz)	ETS-LINDGREN	3160	SEL0076	2014-11-24	2017-11-24

General used equipment											
Equipment	Manufacturer	Model No	Inventory No	Cal Date	Cal Due Date						
Humidity/ Temperature Indicator	Shanghai Meteorological Industry Factory	ZJ1-2B	SEM002-03	2016-10-12	2017-10-12						
Humidity/ Temperature Indicator	Shanghai Meteorological Industry Factory	ZJ1-2B	SEM002-04	2016-10-12	2017-10-12						
Humidity/ Temperature Indicator	Mingle	N/A	SEM002-08	2016-10-12	2017-10-12						
Barometer	Changchun Meteorological Industry Factory	DYM3	SEM002-01	2016-05-18	2017-05-18						

Report No.: SZEM170200109102

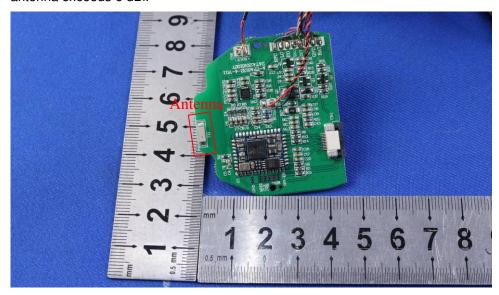
Page: 11 of 93

6 Radio Spectrum Technical Requirement

6.1 Antenna Requirement

6.1.1 Test Requirement:

47 CFR Part 15, Subpart C 15.247


6.1.2 Conclusion

Standard Requirment:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(b) (4) requirement:

The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

EUT Antenna:

The antenna is integrated on the main PCB and no consideration of replacement. The best case gain of the antenna is 2.5dBi.

Report No.: SZEM170200109102

Page: 12 of 93

6.2 Other requirements Frequency Hopping Spread Spectrum System Hopping Sequence

6.2.1 Test Requirement:

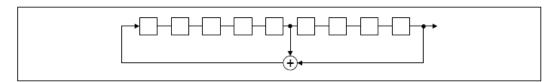
47 CFR Part 15, Subpart C 15.247

6.2.2 Conclusion

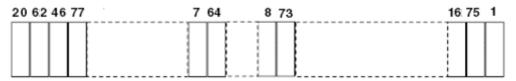
Standard Requirment:

The system shall hop to channel frequencies that are selected at the system hopping rate from a Pseudorandom ordered list of hopping frequencies. Each frequency must be used equally on the average by each transmitter. The system receivers shall have input bandwidths that match the hopping channel bandwidths of their corresponding transmitters and shall shift frequencies in synchronization with the transmitted signals.

Frequency hopping spread spectrum systems are not required to employ all available hopping channels during each transmission. However, the system, consisting of both the transmitter and the receiver, must be designed to comply with all of the regulations in this section should the transmitter be presented with a continuous data (or information) stream. In addition, a system employing short transmission bursts must comply with the definition of a frequency hopping system and must distribute its transmissions over the minimum number of hopping channels specified in this section.


The incorporation of intelligence within a frequency hopping spread spectrum system that permits the system to recognize other users within the spectrum band so that it individually and independently chooses and adapts its hopsets to avoid hopping on occupied channels is permitted. The coordination of frequency hopping systems in any other manner for the express purpose of avoiding the simultaneous occupancy of individual hopping frequencies by multiple transmitters is not permitted.

Compliance for section 15.247(a)(1):


According to Technical Specification, the pseudorandom sequence may be generated in a nine-stage shift register whose 5th and 9th stage outputs are added in a modulo-two addition stage. And the result is fed back to the input of the first stage. The sequence begins with the first ONE of 9 consecutive ONEs; i.e. the shift register is initialized with nine ones.

- > Number of shift register stages: 9
- > Length of pseudo-random sequence: 29 -1 = 511 bits
- > Longest sequence of zeros: 8 (non-inverted signal)

Linear Feedback Shift Register for Generation of the PRBS sequence

An example of Pseudorandom Frequency Hopping Sequence as follow:

Report No.: SZEM170200109102

Page: 13 of 93

Each frequency used equally on the average by each transmitter.

According to Technical Specification, the receivers are designed to have input and IF bandwidths that match the hopping channel bandwidths of any transmitters and shift frequencies in synchronization with the transmitted signals.

Compliance for section 15.247(g):

According to Technical Specification, the system transmits the packet with the pseudorandom hopping frequency with a continuous data and the short burst transmission from the Bluetooth system is also transmitted under the frequency hopping system with the pseudorandom hopping frequency system.

Compliance for section 15.247(h):

According to Bluetooth Core specification, the Bluetooth system incorporates with an adaptive system to detect other user within the spectrum band so that it individually and independently to avoid hopping on the occupied channels.

According to the Bluetooth Core specification, the Bluetooth system is designed not have the ability to coordinated with other FHSS System in an effort to avoid the simultaneous occupancy of individual hopping frequencies by multiple transmitter.

Report No.: SZEM170200109102

Page: 14 of 93

7 Radio Spectrum Matter Test Results

7.1 Conducted Disturbance at AC Power Line(150kHz-30MHz)

Test Requirement: 47 CFR Part 15, Subpart C 15.247
Test Method: ANSI C63.10 (2013) Section 6.2

Limit:

Frequency of emission(MHz)	Conducted limit(dBµV)				
	Quasi-peak	Average			
0.15-0.5	66 to 56*	56 to 46*			
0.5-5	56	46			
5-30	60	50			

^{*}Decreases with the logarithm of the frequency.

7.1.1 E.U.T. Operation

Operating Environment:

Temperature: 25.0 °C Humidity: 55 % RH Atmospheric Pressure: 1020 mbar

Non-hopping transmitting mode with all kind of modulation and all kind of data type at

Test mode: the lowest, middle, high channel.

c: TX mode+ charging, Keep the EUT in transmitting mode and being charging.

The worst case Through Pre-scan, find the DH1 of data type and GFSK modulation at the lowest for final test: channel is the worst case.

c: TX mode+ charging, Keep the EUT in transmitting mode and being charging.

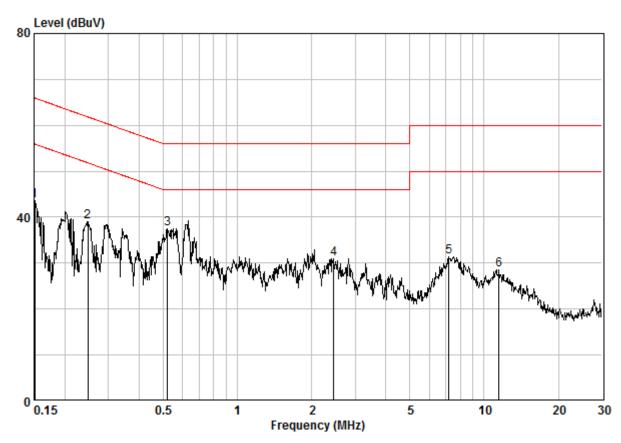
7.1.2 Test Setup Diagram

Report No.: SZEM170200109102

Page: 15 of 93

7.1.3 Measurement Data

1) The mains terminal disturbance voltage test was conducted in a shielded room.

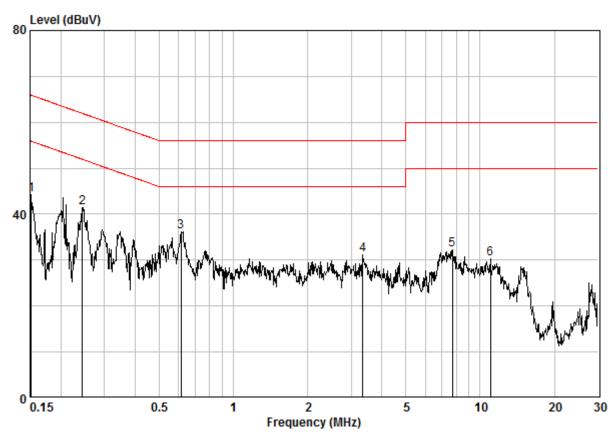

- 2) The EUT was connected to AC power source through a LISN 1 (Line Impedance Stabilization Network) which provides a $50 \text{ohm}/50 \mu\text{H} + 5 \text{ohm}$ linear impedance. The power cables of all other units of the EUT were connected to a second LISN 2, which was bonded to the ground reference plane in the same way as the LISN 1 for the unit being measured. A multiple socket outlet strip was used to connect multiple power cables to a single LISN provided the rating of the LISN was not exceeded.
- 3) The tabletop EUT was placed upon a non-metallic table 0.8m above the ground reference plane. And for floor-standing arrangement, the EUT was placed on the horizontal ground reference plane,
- 4) The test was performed with a vertical ground reference plane. The rear of the EUT shall be 0.4 m from the vertical ground reference plane. The vertical ground reference plane was bonded to the horizontal ground reference plane. The LISN 1 was placed 0.8 m from the boundary of the unit under test and bonded to a ground reference plane for LISNs mounted on top of the ground reference plane. This distance was between the closest points of the LISN 1 and the EUT. All other units of the EUT and associated equipment was at least 0.8 m from the LISN 2.
- 5) In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.10: 2013 on conducted measurement.

Report No.: SZEM170200109102

Page: 16 of 93

Mode:c; Line:Live Line

Site : Shielding Room Condition : CE LINE Job No. : 01091CR Test Mode : c


	From		LISN Factor				Over	Domanic
	rreq	TOSS	ractor	rever	rever	TINE	LIMIC	Kemark
	MHz	dB	dB	dBuV	dBuV	dBuV	dB	
1	0.15080	0.02	9.64	34.03	43.69	55.96	-12.27	Peak
2	0.24814	0.02	9.64	29.46	39.12	51.82	-12.70	Peak
3	0.52099	0.02	9.64	27.73	37.40	46.00	-8.60	Peak
4	2.461	0.03	9.68	21.32	31.03	46.00	-14.97	Peak
5	7.213	0.08	9.79	21.58	31.45	50.00	-18.55	Peak
6	11.498	0.15	9.89	18.56	28.59	50.00	-21.41	Peak

Report No.: SZEM170200109102

Page: 17 of 93

Mode:c; Line:Neutral Line

Site : Shielding Room Condition : CE NEUTRAL Job No. : 01091CR Test Mode : c

	Freq		LISN Factor					Remark
	MHz	dB	dB	dBuV	dBuV	dBuV	dB	
1	0.15160	0.02	9.64	34.52	44.18	55.91	-11.73	Peak
2	0.24422	0.02	9.63	31.76	41.41	51.95	-10.55	Peak
3	0.61400	0.02	9.63	26.62	36.28	46.00	-9.72	Peak
4	3.346	0.02	9.68	21.50	31.20	46.00	-14.80	Peak
5	7.728	0.10	9.79	22.34	32.23	50.00	-17.77	Peak
6	11.021	0.14	9.87	20.39	30.40	50.00	-19.60	Peak

Report No.: SZEM170200109102

Page: 18 of 93

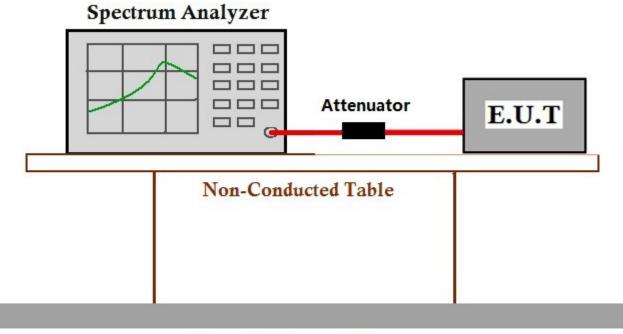
7.2 20dB Bandwidth

Test Requirement: 47 CFR Part 15, Subpart C 15.247(a)(1)
Test Method: ANSI C63.10 (2013) Section 7.8.7

7.2.1 E.U.T. Operation

Operating Environment:

Temperature: 23.0 °C Humidity: 56 % RH Atmospheric Pressure: 1020 mbar


Non-hopping transmitting with all kind of modulation and all kind of data type.

Through Pre-scan, find the DH1 of data type is the worst case of GFSK modulation type, 2-DH1 of data type is the worst case of $\pi/4DQPSK$ modulation type, 3-DH1 of

Test mode: type, 2-DH1 of data type is the worst case of $\pi/4DQPSK$ modulation type.

d: TX mode, Keep the EUT in transmitting mode.

7.2.2 Test Setup Diagram

Ground Reference Plane

7.2.3 Measurement Data

The detailed test data see: Appendix 15.247

Report No.: SZEM170200109102

Page: 19 of 93

7.3 Conducted Peak Output Power

Test Requirement: 47 CFR Part 15, Subpart C 15.247(b)(1)
Test Method: ANSI C63.10 (2013) Section 7.8.5

Limit:

Frequency range(MHz)	Output power of the intentional radiator(watt)
	1w for ≥50 hopping channels
902-928	0.25w for <50 hopping channels
	1 for digital modulation
	1w for ≥75 non-overlapping hopping channels
2400-2483.5	0.125w for all other frequency hopping systems
	1w for digital modulation
5725-5850	1w for frequency hopping systems and digital modulation

Report No.: SZEM170200109102

Page: 20 of 93

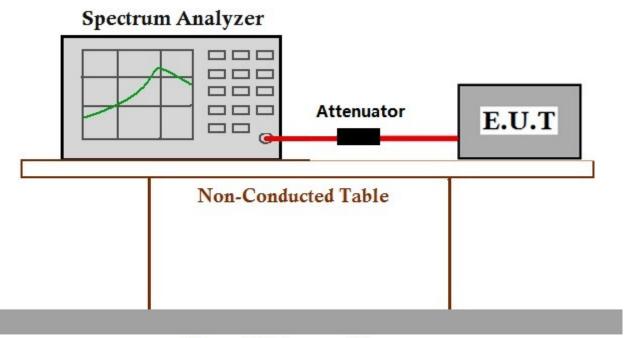
7.3.1 E.U.T. Operation

Test mode:

Operating Environment:

Temperature: 23.0 °C Humidity: 56 % RH Atmospheric Pressure: 1020 mbar

Non-hopping transmitting with all kind of modulation and all kind of data type.


Through Pre-scan, find the DH1 of data type is the worst case of GFSK modulation

type, 2-DH1 of data type is the worst case of $\pi/4$ DQPSK modulation type, 3-DH1 of

data type is the worst case of 8DPSK modulation type.

d: TX mode, Keep the EUT in transmitting mode.

7.3.2 Test Setup Diagram

Ground Reference Plane

7.3.3 Measurement Data

The detailed test data see: Appendix 15.247

Report No.: SZEM170200109102

Page: 21 of 93

7.4 Carrier Frequencies Separation

Test Requirement: 47 CFR Part 15, Subpart C 15.247(a)(1)
Test Method: ANSI C63.10 (2013) Section 7.8.2

Limit: 2/3 of the 20dB bandwidth base on the transmission power is less than

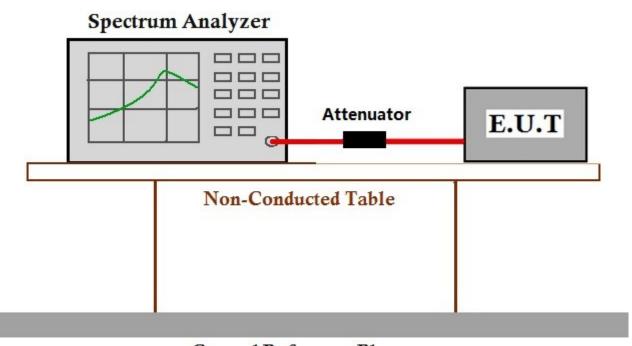
0.125W

7.4.1 E.U.T. Operation

Operating Environment:

Temperature: 23.0 °C Humidity: 56 % RH Atmospheric Pressure: 1020 mbar

Hopping transmitting with all kind of modulation and all kind of data type.


Through Pre-scan, find the DH1 of data type is the worst case of GFSK modulation

Test mode: type, 2-DH1 of data type is the worst case of $\pi/4DQPSK$ modulation type, 3-DH1 of

data type is the worst case of 8DPSK modulation type.

d: TX mode, Keep the EUT in transmitting mode.

7.4.2 Test Setup Diagram

Ground Reference Plane

7.4.3 Measurement Data

The detailed test data see: Appendix 15.247

Report No.: SZEM170200109102

Page: 22 of 93

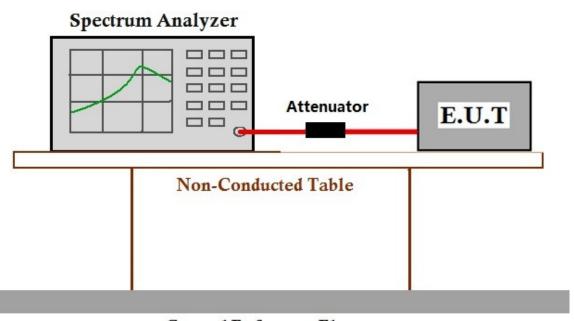
7.5 Hopping Channel Number

Test Requirement: 47 CFR Part 15, Subpart C 15.247(a)(1)
Test Method: ANSI C63.10 (2013) Section 7.8.3

Limit:

Frequency range(MHz)	Channel Number(minimum)		
902-928	50 for 20dB bandwidth <250kHz		
902-920	25 for 20dB bandwidth ≥250kHz		
2400-2483.5	15		
2725-5850	75		

7.5.1 E.U.T. Operation


Operating Environment:

Temperature: 23.0 °C Humidity: 56 % RH Atmospheric Pressure: 1020 mbar

Hopping transmitting with all kind of modulation

Test mode:
d: TX mode, Keep the EUT in transmitting mode.

7.5.2 Test Setup Diagram

Ground Reference Plane

7.5.3 Measurement Data

The detailed test data see: Appendix 15.247

Report No.: SZEM170200109102

Page: 23 of 93

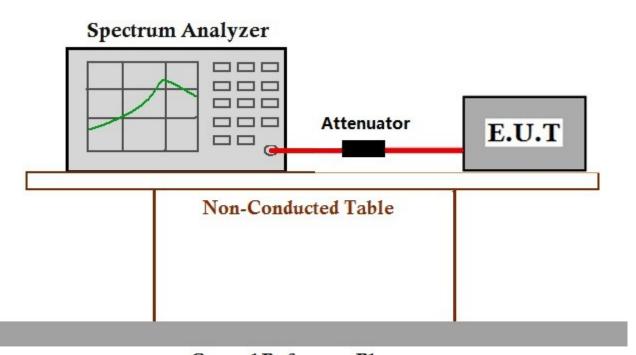
7.6 Dwell Time

Test Requirement: 47 CFR Part 15, Subpart C 15.247(a)(1)
Test Method: ANSI C63.10 (2013) Section 7.8.4

Limit:

Frequency(MHz)	Limit(S)			
002.029	0.4S within a 20S period(20dB bandwidth<250kHz)			
902-928	0.4S within a 10S period(20dB bandwidth≥250kHz)			
2400-2483.5	0.4S within a period of 0.4S			
5725-5850	0.4S within a 30S period			

7.6.1 E.U.T. Operation


Operating Environment:

Temperature: 23.0 °C Humidity: 56 % RH Atmospheric Pressure: 1020 mbar

Hopping transmitting with all kind of modulation and all kind of data type.

Test mode:
d: TX mode, Keep the EUT in transmitting mode.

7.6.2 Test Setup Diagram

Ground Reference Plane

Report No.: SZEM170200109102

Page: 24 of 93

7.6.3 Measurement Data

The detailed test data see: Appendix 15.247

Report No.: SZEM170200109102

Page: 25 of 93

7.7 Conducted Spurious Emissions

Test Requirement: 47 CFR Part 15, Subpart C 15.247(d)
Test Method: 47 CFR Part 15, Subpart C 15.247(d)
ANSI C63.10 (2013) Section 7.8.8

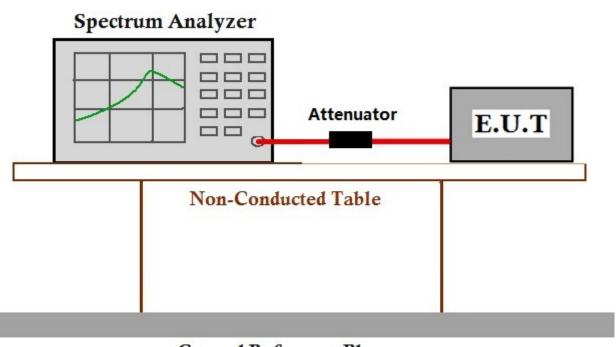
Limit: In any 100 kHz bandwidth outside the frequency band in which the spread

spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.

7.7.1 E.U.T. Operation

Operating Environment:

Temperature: 23.0 °C Humidity: 56 % RH Atmospheric Pressure: 1020 mbar


Non-hopping transmitting with all kind of modulation and all kind of data type

Through Pre-scan, find the DH1 of data type is the worst case of GFSK modulation type, 2-DH1 of data type is the worst case of $\pi/4DQPSK$ modulation type, 3-DH1 of

Test mode: type, 2-DH1 of data type is the worst case of $\pi/4DQPSK$ data type is the worst case of 8DPSK modulation type.

d: TX mode, Keep the EUT in transmitting mode.

7.7.2 Test Setup Diagram

Ground Reference Plane

7.7.3 Measurement Data

The detailed test data see: Appendix 15.247

Report No.: SZEM170200109102

Page: 26 of 93

7.8 Radiated Spurious Emissions

Test Requirement: 47 CFR Part 15C Section 15.209 and 15.205
Test Method: ANSI C63.10 (2013) Section 6.4,6.5,6.6

Measurement Distance: 3m

Limit:

Frequency(MHz)	Field strength(microvolts/meter)	Measurement distance(meters)
0.009-0.490	2400/F(kHz)	300
0.490-1.705	24000/F(kHz)	30
1.705-30.0	30	30
30-88	100	3
88-216	150	3
216-960	200	3
Above 960	500	3

Remark: The emission limits shown in the above table are based on measurements employing a CISPR quasi-peak detector except for the frequency bands 9-90kHz, 110-490kHz and above 1000 MHz. Radiated emission limits in these three bands are based on measurements employing an average detector, the peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation.

Report No.: SZEM170200109102

Page: 27 of 93

7.8.1 E.U.T. Operation

Operating Environment:

Temperature: 25.0 °C Humidity: 50 % RH Atmospheric Pressure: 1020 mbar

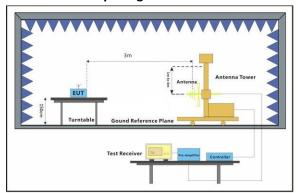
d: TX mode, Keep the EUT in transmitting mode.

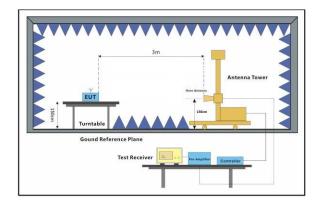
Pretest these mode to find the

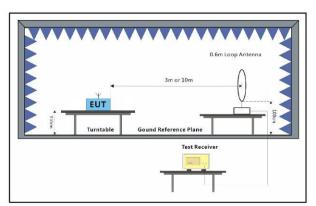
Non-hopping transmitting mode with all kind of modulation and all kind of data type

mode to find the worst case:

c: TX mode+ charging, Keep the EUT in transmitting mode and being charging.


The worst case


Through Pre-scan, find the DH1 of data type and GFSK modulation is the worst


for final test: case

c: TX mode+ charging, Keep the EUT in transmitting mode and being charging.

7.8.2 Test Setup Diagram

Report No.: SZEM170200109102

Page: 28 of 93

7.8.3 Measurement Data

- a. For below 1GHz, the EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 or 10 meter semi-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. For above 1GHz, the EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter fully-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.
- c. The EUT was set 3 or 10 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- d. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- e. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- f. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
- g. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.
- h. Test the EUT in the lowest channel (2402MHz),the middle channel (2441MHz),the Highest channel (2480MHz)
- i. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is the worst case.
- j. Repeat above procedures until all frequencies measured was complete.

Report No.: SZEM170200109102

Page: 29 of 93

Mode:c; Polarization:Horizontal; Modulation Type:GFSK; Channel:Low

Frequency (MHz)	Antenna factors (dB/m)	Cable Loss (dB)	Preamp Gain (dB)	Reading Level (dBmV)	Level (dBmV/m)	Limit (dBmV/m)	Over limit (dB)
3825.521	33.13	7.75	37.98	44.90	47.80	74.00	-26.20
4804.000	34.16	8.87	38.40	46.83	51.46	74.00	-22.54
5778.052	34.57	9.94	38.34	45.52	51.69	74.00	-22.31
7206.000	36.42	10.68	37.11	41.11	51.10	74.00	-22.90
9608.000	37.52	12.50	35.10	37.31	52.23	74.00	-21.77
12085.370	38.65	14.49	35.80	36.59	53.93	74.00	-20.07

Mode:c; Polarization:Vertical; Modulation Type:GFSK; Channel:Low

Frequency (MHz)	Antenna factors (dB/m)	Cable Loss (dB)	Preamp Gain (dB)	Reading Level (dBmV)	Level (dBmV/m)	Limit (dBmV/m)	Over limit (dB)
3636.612	32.60	7.68	37.96	45.05	47.37	74.00	-26.63
4804.000	34.16	8.87	38.40	46.95	51.58	74.00	-22.42
5778.052	34.57	9.94	38.34	44.64	50.81	74.00	-23.19
7206.000	36.42	10.68	37.11	46.65	56.64	74.00	-17.36
9608.000	37.52	12.50	35.10	37.87	52.79	74.00	-21.21
11860.170	38.46	14.41	35.57	36.24	53.54	74.00	-20.46

Frequency (MHz)	Antenna factors (dB/m)	Cable Loss (dB)	Preamp Gain (dB)	Reading Level (dBmV)	Level (dBmV/m)	Limit (dBmV/m)	Over limit (dB)
7206.000	36.42	10.68	37.11	40.15	50.14	54.00	-3.86

Report No.: SZEM170200109102

Page: 30 of 93

Mode:c; Polarization:Horizontal; Modulation Type:GFSK; Channel:middle

Frequency (MHz)	Antenna factors (dB/m)	Cable Loss (dB)	Preamp Gain (dB)	Reading Level (dBmV)	Level (dBmV/m)	Limit (dBmV/m)	Over limit (dB)
3647.151	32.63	7.69	37.96	45.28	47.64	74.00	-26.36
4882.000	34.30	8.98	38.44	45.78	50.62	74.00	-23.38
5990.888	34.69	10.53	38.30	44.22	51.14	74.00	-22.86
7323.000	36.37	10.72	37.01	47.23	57.31	74.00	-16.69
9764.000	37.55	12.58	35.02	37.55	52.66	74.00	-21.34
12050.440	38.63	14.52	35.72	35.76	53.19	74.00	-20.81

	Frequency (MHz)	Antenna factors (dB/m)	Cable Loss (dB)	Preamp Gain (dB)	Reading Level (dBmV)	Level (dBmV/m)	Limit (dBmV/m)	Over limit (dB)
ľ	7323.000	36.37	10.72	37.01	40.31	50.39	54.00	-3.61

Report No.: SZEM170200109102

Page: 31 of 93

Mode:c; Polarization:Vertical; Modulation Type:GFSK; Channel:middle

	Antenna	Cable	_	Reading			Over
Frequency	factors	Loss	Preamp	Level	Level	Limit	limit
(MHz)	(dB/m)	(dB)	Gain (dB)	(dBmV)	(dBmV/m)	(dBmV/m)	(dB)
3797.945	33.06	7.74	37.98	45.05	47.87	74.00	-26.13
4882.000	34.30	8.98	38.44	45.68	50.52	74.00	-23.48
5990.888	34.69	10.53	38.30	44.01	50.93	74.00	-23.07
7323.000	36.37	10.72	37.01	47.67	57.75	74.00	-16.25
9764.000	37.55	12.58	35.02	37.70	52.81	74.00	-21.19
12208.390	38.73	14.39	36.10	36.63	53.65	74.00	-20.35

á	rvarage.							
	Frequency (MHz)	Antenna factors (dB/m)	Cable Loss (dB)	Preamp Gain (dB)	Reading Level (dBmV)	Level (dBmV/m)	Limit (dBmV/m)	Over limit (dB)
	7323.000	36.37	10.72	37.01	40.28	50.36	54.00	-3.64

Report No.: SZEM170200109102

Page: 32 of 93

Mode:c; Polarization:Horizontal; Modulation Type:GFSK; Channel:High

Frequency (MHz)	Antenna factors (dB/m)	Cable Loss (dB)	Preamp Gain (dB)	Reading Level (dBmV)	Level (dBmV/m)	Limit (dBmV/m)	Over limit (dB)
3721.784	32.84	7.71	37.97	44.00	46.58	74.00	-27.42
4960.000	34.43	9.09	38.48	43.18	48.22	74.00	-25.78
6025.661	34.72	10.53	38.27	44.86	51.84	74.00	-22.16
7440.000	36.32	10.77	36.90	47.68	57.87	74.00	-16.13
9920.000	37.58	12.67	34.94	36.89	52.20	74.00	-21.80
12155.510	38.69	14.43	35.97	36.53	53.68	74.00	-20.32

Frequency (MHz)	Antenna factors (dB/m)	Cable Loss (dB)	Preamp Gain (dB)	Reading Level (dBmV)	Level (dBmV/m)	Limit (dBmV/m)	Over limit (dB)
7440.000	36.32	10.77	36.90	39.85	50.04	54.00	-3.96

Report No.: SZEM170200109102

Page: 33 of 93

Mode:c; Polarization:Vertical; Modulation Type:GFSK; Channel:High

Frequency (MHz)	Antenna factors (dB/m)	Cable Loss (dB)	Preamp Gain (dB)	Reading Level (dBmV)	Level (dBmV/m)	Limit (dBmV/m)	Over limit (dB)
3792.453	33.04	7.74	37.98	44.22	47.02	74.00	-26.98
4960.000	34.43	9.09	38.48	43.38	48.42	74.00	-25.58
6051.874	34.74	10.49	38.25	44.13	51.11	74.00	-22.89
7440.000	36.32	10.77	36.90	46.56	56.75	74.00	-17.25
9920.000	37.58	12.67	34.94	37.01	52.32	74.00	-21.68
12102.870	38.66	14.47	35.85	36.02	53.30	74.00	-20.70

Avarage:

Frequency (MHz)	Antenna factors (dB/m)	Cable Loss (dB)	Preamp Gain (dB)	Reading Level (dBmV)	Level (dBmV/m)	Limit (dBmV/m)	Over limit (dB)
7440.000	36.32	10.77	36.90	39.94	50.13	54.00	-3.87

Remark:

1) The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

Final Test Level =Receiver Reading + Antenna Factor + Cable Factor - Preamplifier Factor

- 2) Scan from 9kHz to 25GHz, the disturbance above 13GHz and below 30MHz was very low, and the above harmonics were the highest point could be found when testing, so only the above harmonics had been displayed. The amplitude of spurious emissions from the radiator which are attenuated more than 20dB below the limit need not be reported.
- 3) As shown in this section, for frequencies above 1GHz, the field strength limits are based on average limits. However, the peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation. So, only the above measurement data were shown in the report.

Report No.: SZEM170200109102

Page: 34 of 93

7.9 Radiated Emissions which fall in the restricted bands

Test Requirement: 47 CFR Part 15C Section 15.209 and 15.205

Test Method: ANSI C63.10 (2013) Section 6.10.5

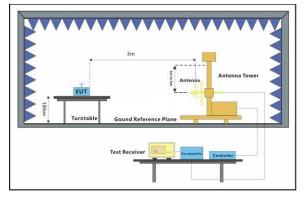
Measurement Distance: 3m

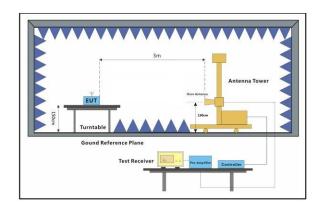
7.9.1 E.U.T. Operation

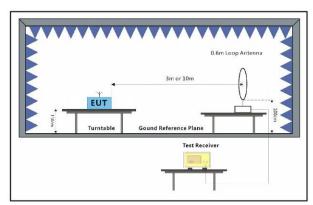
Operating Environment:

Temperature: 23.0 °C Humidity: 54 % RH Atmospheric Pressure: 1020 mbar

Pretest these mode to find the Non-hopping transmitting mode with all kind of modulation and all kind of data type c: TX mode+ charging, Keep the EUT in transmitting mode and being charging.


worst case: d: TX mode, Keep the EUT in transmitting mode.


The worst case Through Pre-scan, find the DH5 of data type and GFSK modulation is the worst


for final test: case.

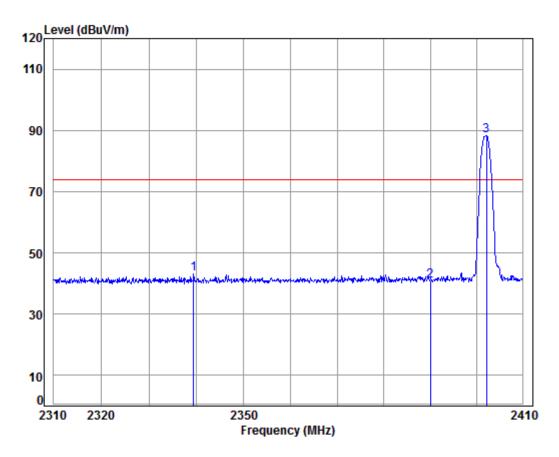
c: TX mode+ charging, Keep the EUT in transmitting mode and being charging.

7.9.2 Test Setup Diagram

Report No.: SZEM170200109102

Page: 35 of 93

7.9.3 Measurement Data


- a. For below 1GHz, the EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 or 10 meter semi-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. For above 1GHz, the EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter fully-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.
- c. The EUT was set 3 or 10 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- d. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- e. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- f. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
- g. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.
- h. Test the EUT in the lowest channel (2402MHz),the middle channel (2441MHz),the Highest channel (2480MHz)
- i. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is the worst case.
- j. Repeat above procedures until all frequencies measured was complete.

Report No.: SZEM170200109102

Page: 36 of 93

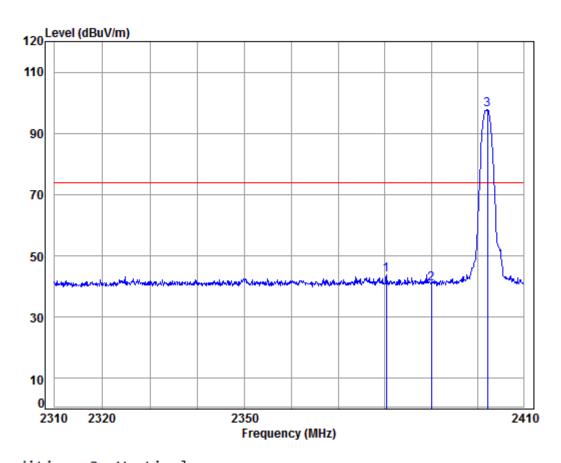
Mode:c; Polarization:Horizontal; Modulation Type:GFSK; ; Channel:Low

Condition: 3m HORIZONTAL

Job No: : 1091CR

Mode: : 2402 Bandedge

: BT


		Freq			Preamp Factor					Remark
	-	MHz	dB	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB	
1		2339.457	5.30	28.92	37.97	46.84	43.09	74.00	-30.91	
2		2390.000	5.34	29.08	37.96	44.42	40.88	74.00	-33.12	
3	pp	2402.148	5.35	29.11	37.96	91.78	88.28	74.00	14.28	

Report No.: SZEM170200109102

Page: 37 of 93

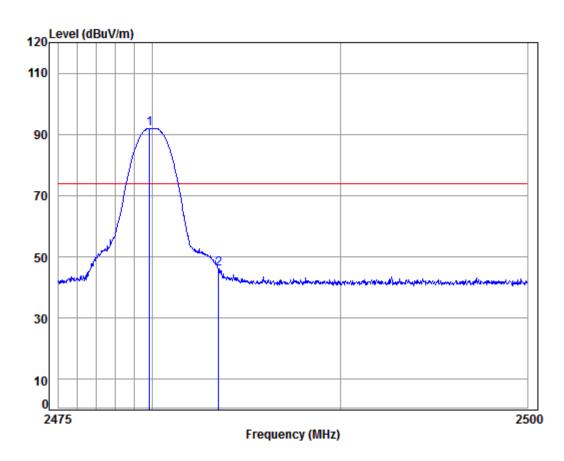
Mode:c; Polarization:Vertical; Modulation Type:GFSK; ; Channel:Low

Condition: 3m Vertical

Job No: : 1091CR

Mode: : 2402 Bandedge

: BT


		Freq				Read Level				Remark
	-	MHz	dB	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB	
1		2380.361	5.33	29.05	37.96	47.40	43.82	74.00	-30.18	
2		2390.000	5.34	29.08	37.96	44.29	40.75	74.00	-33.25	
3	pp	2402.148	5.35	29.11	37.96	101.18	97.68	74.00	23.68	

Report No.: SZEM170200109102

Page: 38 of 93

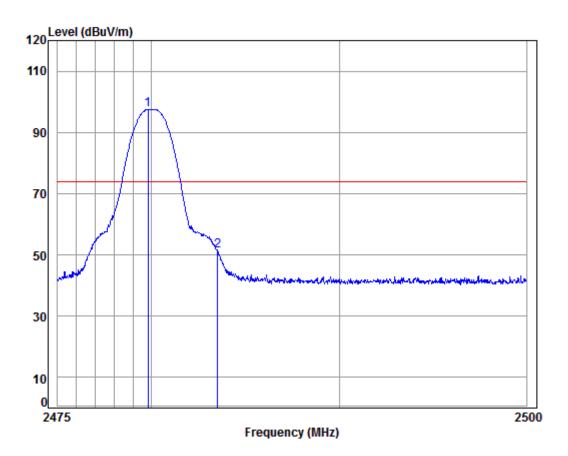
Mode:c; Polarization:Horizontal; Modulation Type:GFSK; ; Channel:High

Condition: 3m HORIZONTAL

Job No: : 1091CR

Mode: : 2480 Bandedge

: BT


	Freq			Preamp Factor					
-	MHz	dB	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB	
	2479.830 2483.500								

Report No.: SZEM170200109102

Page: 39 of 93

Mode:c; Polarization:Vertical; Modulation Type:GFSK; ; Channel:High

Condition: 3m VERTICAL

Job No: : 1091CR

Mode: : 2480 Bandedge

: BT

	Freq						Limit Line		Remark
-	MHz	dB	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB	
	2479.805 2483.500								

Report No.: SZEM170200109102

Page: 40 of 93

7.10 Conducted Band Edges Measurement

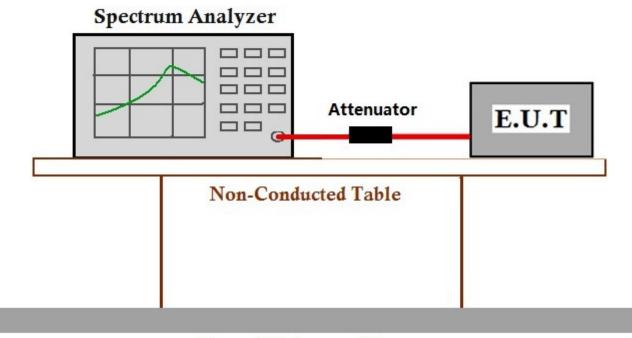
47 CFR Part 15C Section 15.247 (d) Test Requirement: Test Method: ANSI C63.10 (2013) Section 7.8.6

7.10.1 E.U.T. Operation

Operating Environment:

56 % RH Atmospheric Pressure: 1020 mbar 23.0 °C Humidity: Temperature:

Hopping and Non-hopping transmitting with all kind of modulation and all kind of data


Through Pre-scan, find the DH1 of data type is the worst case of GFSK modulation Test mode:

type, 2-DH1 of data type is the worst case of $\pi/4DQPSK$ modulation type, 3-DH1 of

data type is the worst case of 8DPSK modulation type.

d: TX mode, Keep the EUT in transmitting mode.

7.10.2Test Setup Diagram

Ground Reference Plane

7.10.3 Measurement Data

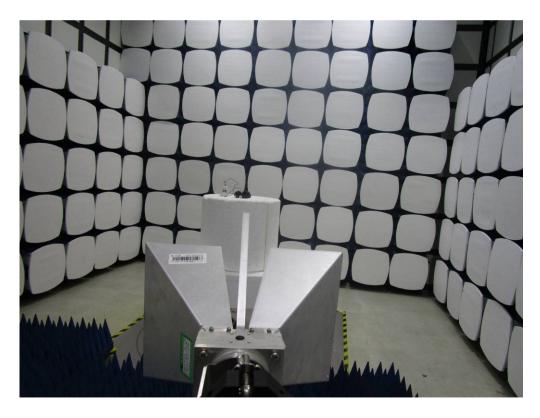
The detailed test data see: Appendix 15.247

Report No.: SZEM170200109102

Page: 41 of 93

8 Photographs

8.1 Conducted Disturbance at AC Power Line(150kHz-30MHz) Test Setup



Report No.: SZEM170200109102

Page: 42 of 93

8.2 Radiated Spurious Emissions Test Setup

Report No.: SZEM170200109102

Page: 43 of 93

8.3 EUT Constructional Details

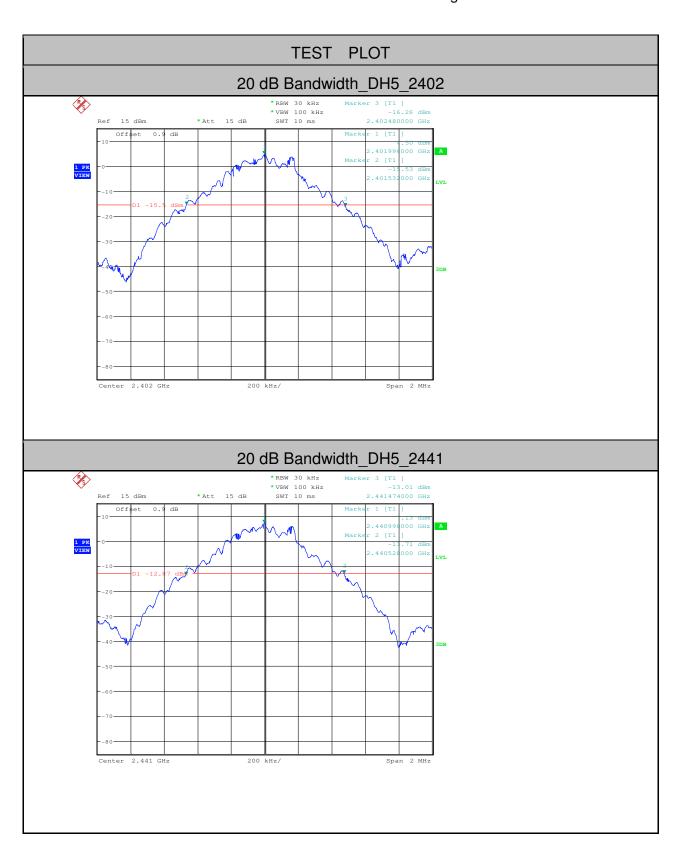
Refer to Appendix A - Photographs of EUT Constructional Details for SZEM1702001091CR.

Report No.: SZEM170200109102

Page: 44 of 93

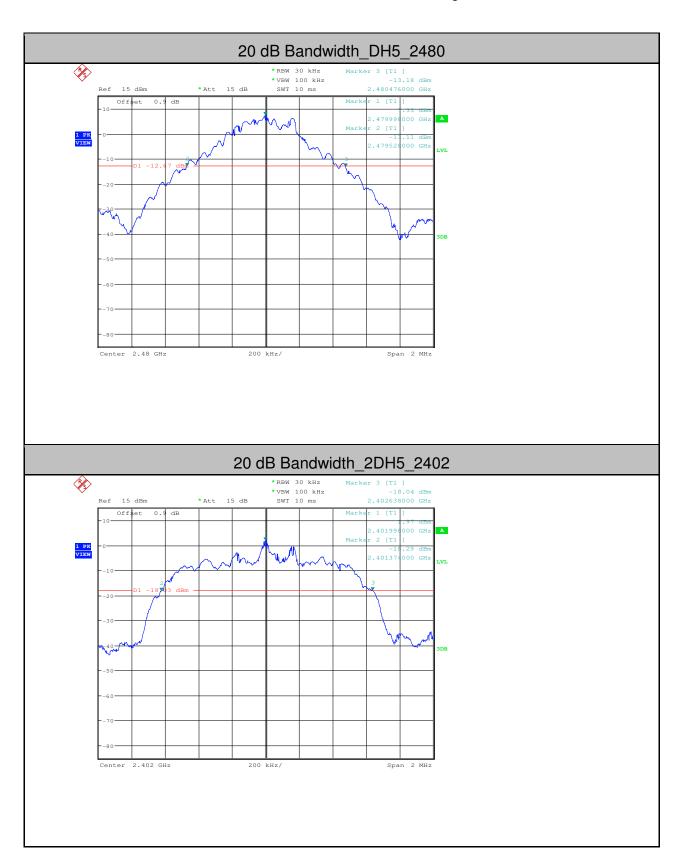
9 Appendix

9.1 Appendix 15.247

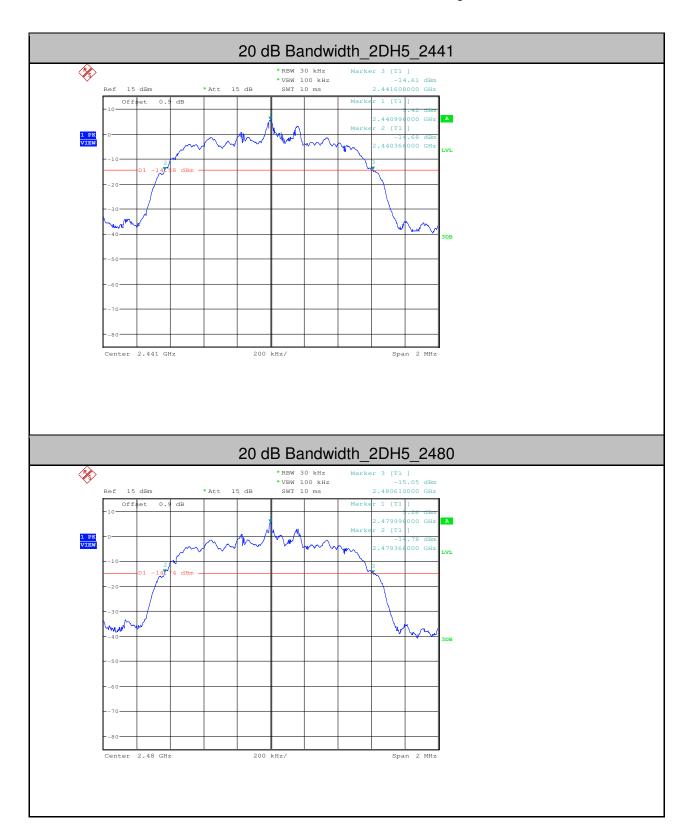

1.20 dB Bandwidth

Test Mode	Test Channel	EBW[MHz]	Limit[MHz]	Verdict
DH5	2402	0.948		PASS
DH5	2441	0.946		PASS
DH5	2480	0.948		PASS
2DH5	2402	1.264		PASS
2DH5	2441	1.242		PASS
2DH5	2480	1.244		PASS
3DH5	2402	1.280		PASS
3DH5	2441	1.272		PASS
3DH5	2480	1.268		PASS

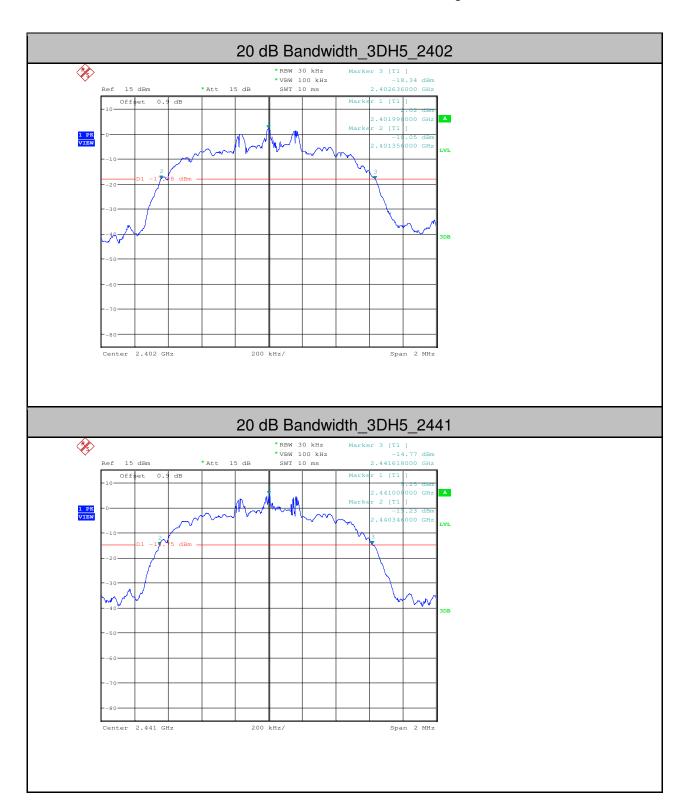
Report No.: SZEM170200109102


Page: 45 of 93

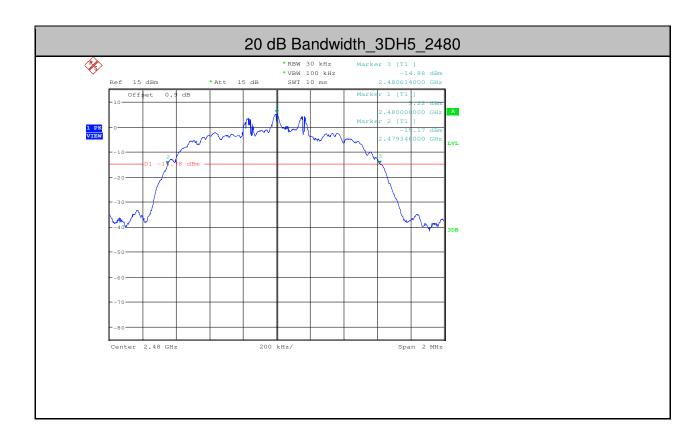
Report No.: SZEM170200109102


Page: 46 of 93

Report No.: SZEM170200109102


Page: 47 of 93

Report No.: SZEM170200109102

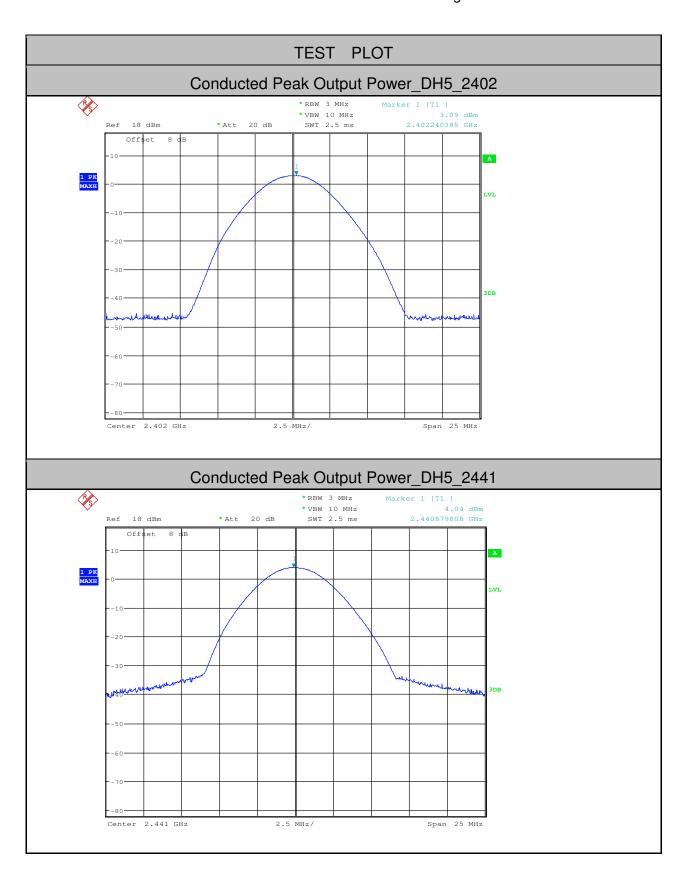

Page: 48 of 93

Report No.: SZEM170200109102

Page: 49 of 93

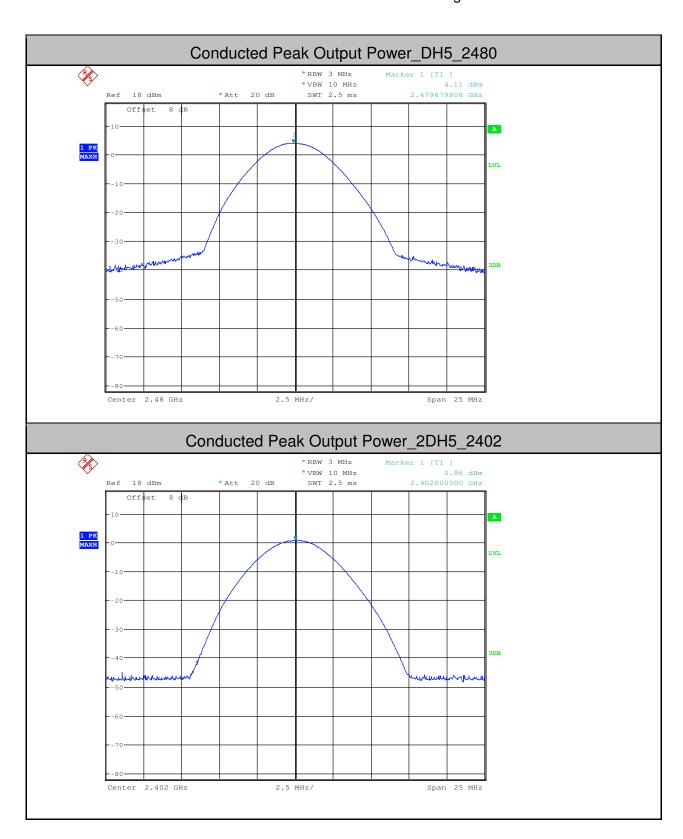
Report No.: SZEM170200109102

Page: 50 of 93

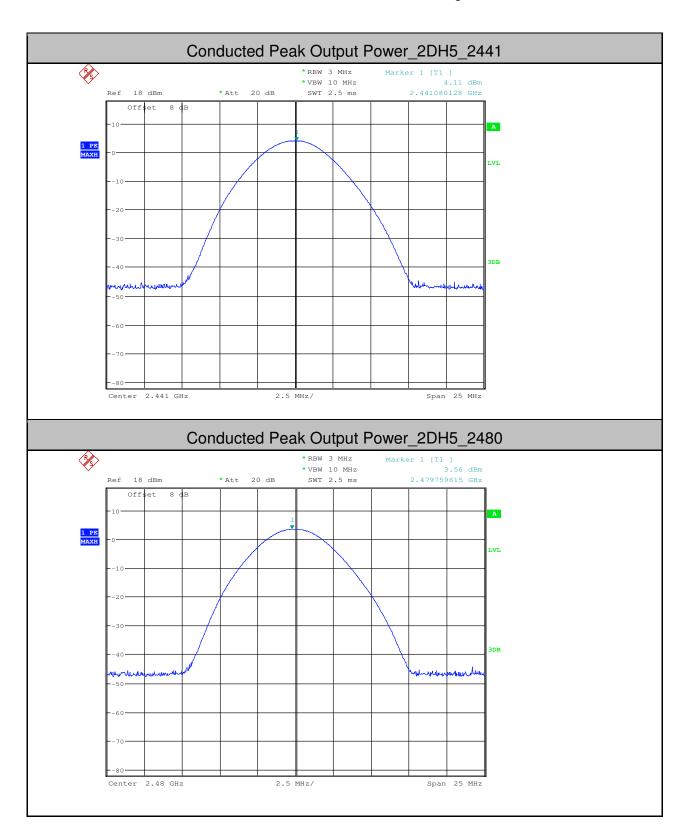

2. Conducted Peak Output Power

Test Mode	Test Channel	Power[dBm]	Limit[dBm]	Verdict
DH5	2402	3.09	<30	PASS
DH5	2441	4.04	<30	PASS
DH5	2480	4.11	<30	PASS
2DH5	2402	0.86	<20.97	PASS
2DH5	2441	4.11	<20.97	PASS
2DH5	2480	3.56	<20.97	PASS
3DH5	2402	1.50	<20.97	PASS
3DH5	2441	3.85	<20.97	PASS
3DH5	2480	3.99	<20.97	PASS

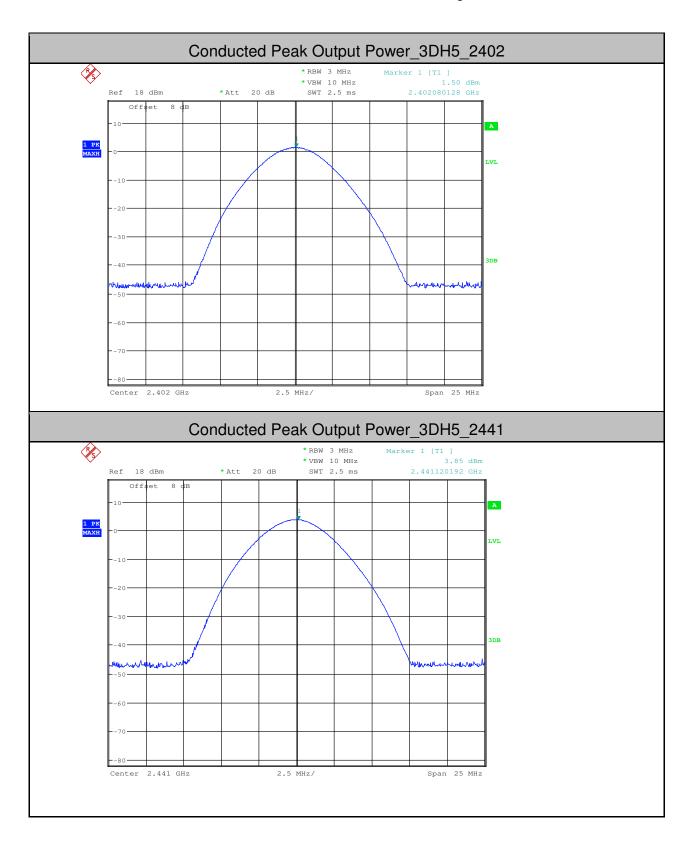
Report No.: SZEM170200109102


Page: 51 of 93

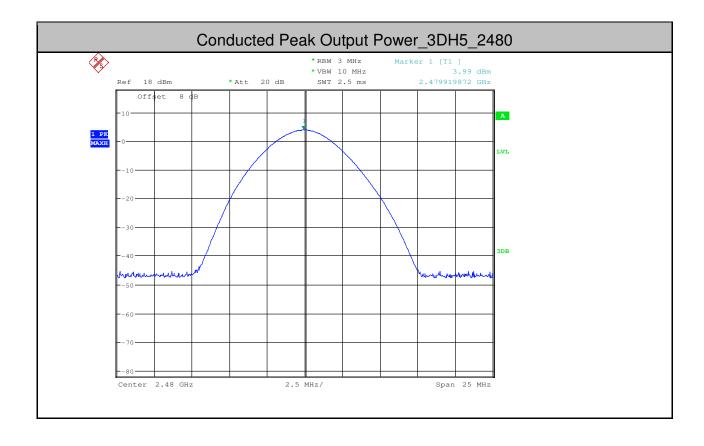
Report No.: SZEM170200109102


Page: 52 of 93

Report No.: SZEM170200109102


Page: 53 of 93

Report No.: SZEM170200109102

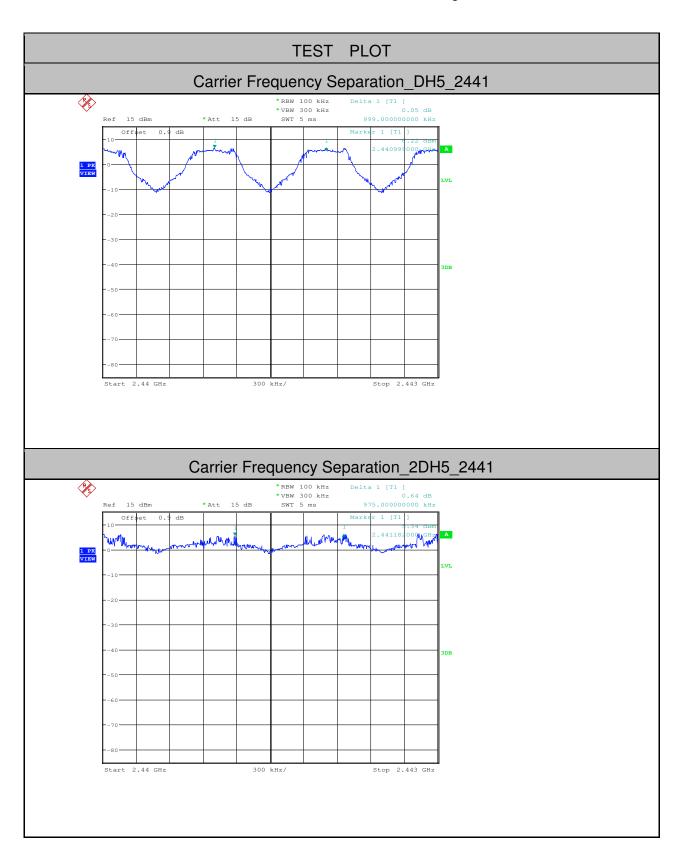

Page: 54 of 93

Report No.: SZEM170200109102

Page: 55 of 93

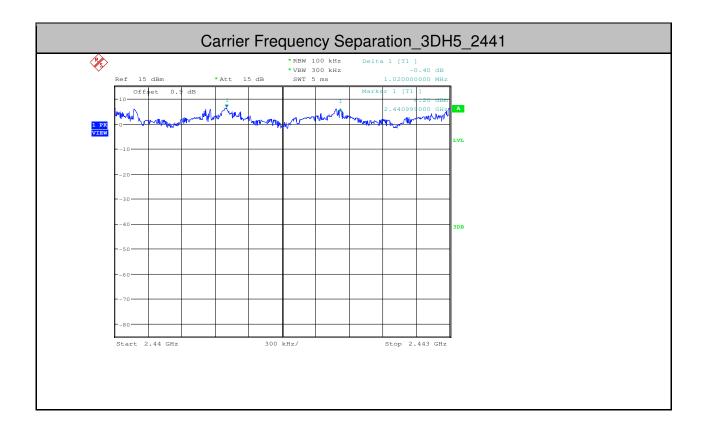
Report No.: SZEM170200109102

Page: 56 of 93


3. Carrier Frequency Separation

Test Mode	Test Channel	Result[MHz]	Limit[MHz]	Verdict
DH5	2441	0.999	>=0.025	PASS
2DH5	2441	0.975	>=0.025	PASS
3DH5	2441	1.02	>=0.025	PASS

Report No.: SZEM170200109102

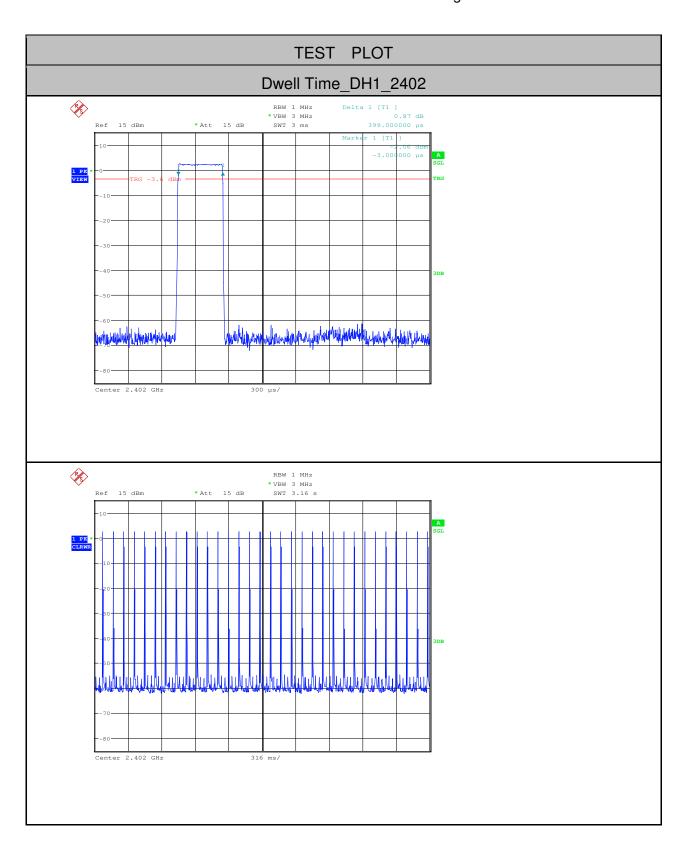

Page: 57 of 93

Report No.: SZEM170200109102

Page: 58 of 93

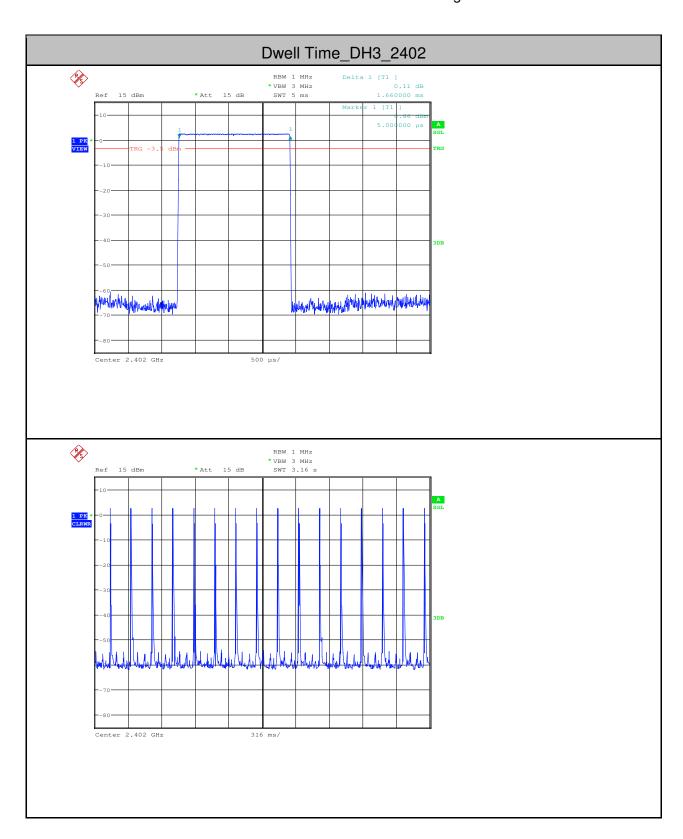
Report No.: SZEM170200109102

Page: 59 of 93

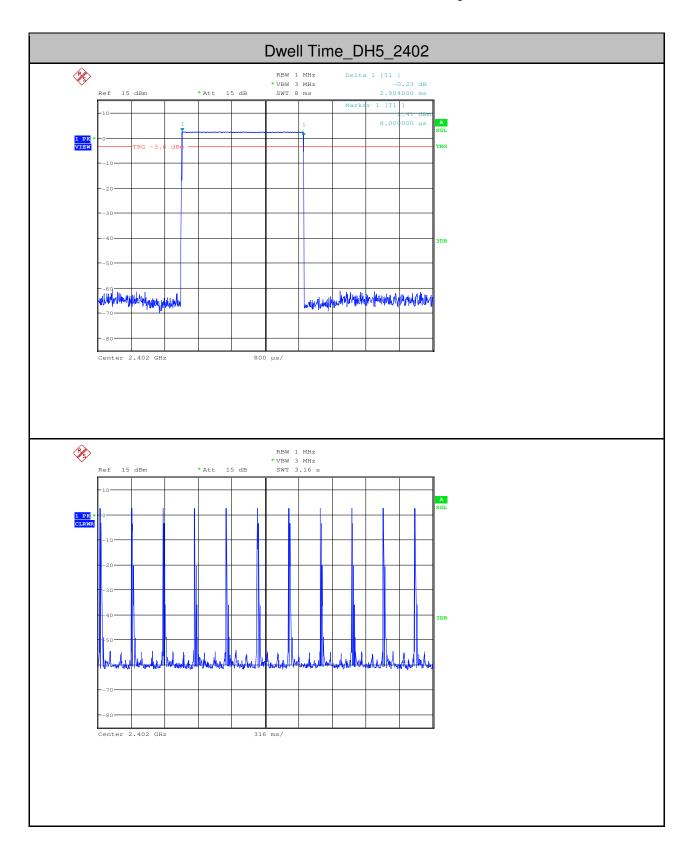

4. Dwell Time

Test Mode	Test Channel	Burst Width[ms/hop/ch]	Total Hops[hop*ch]	Dwell Time[s]	Limit[s]	Verdict
DH1	2402	0.4	320	0.128	<0.4	PASS
DH3	2402	1.66	160	0.266	<0.4	PASS
DH5	2402	2.9	110	0.319	<0.4	PASS
2DH1	2402	0.41	320	0.131	<0.4	PASS
2DH3	2402	1.67	160	0.267	<0.4	PASS
2DH5	2402	2.91	110	0.32	<0.4	PASS
3DH1	2402	0.41	320	0.131	<0.4	PASS
3DH3	2402	1.67	160	0.267	<0.4	PASS
3DH5	2402	2.91	100	0.291	<0.4	PASS

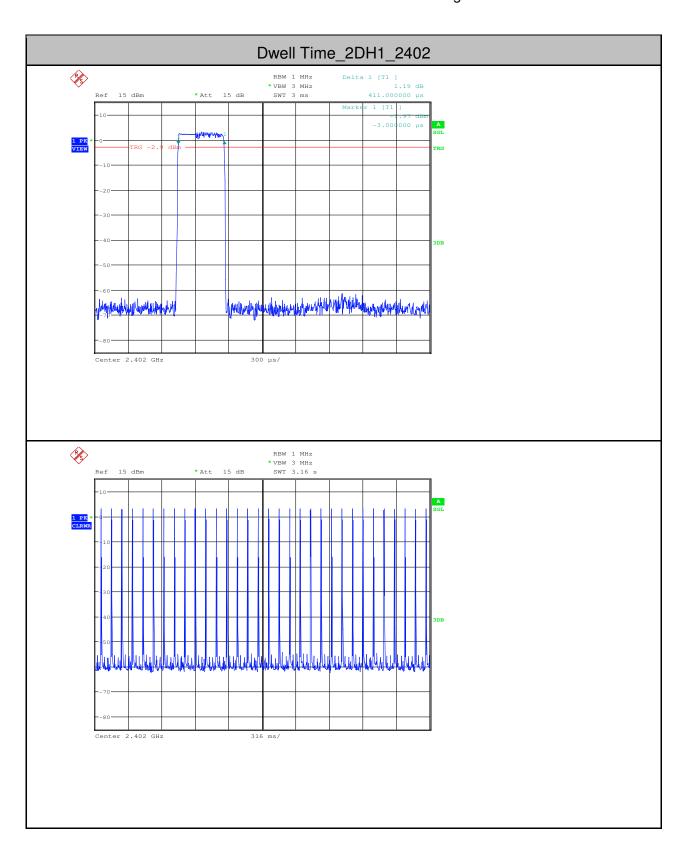
Report No.: SZEM170200109102


Page: 60 of 93

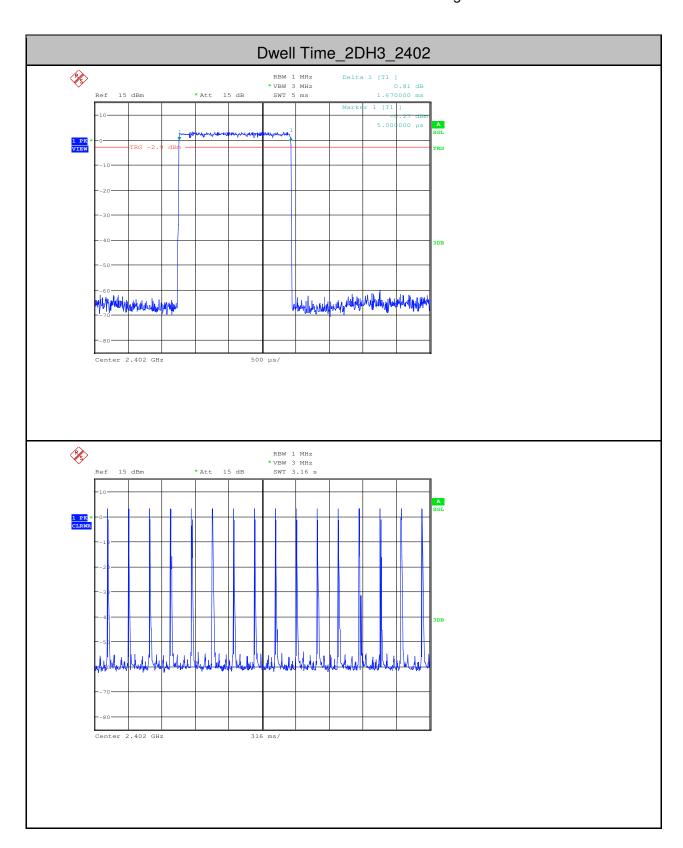
Report No.: SZEM170200109102


Page: 61 of 93

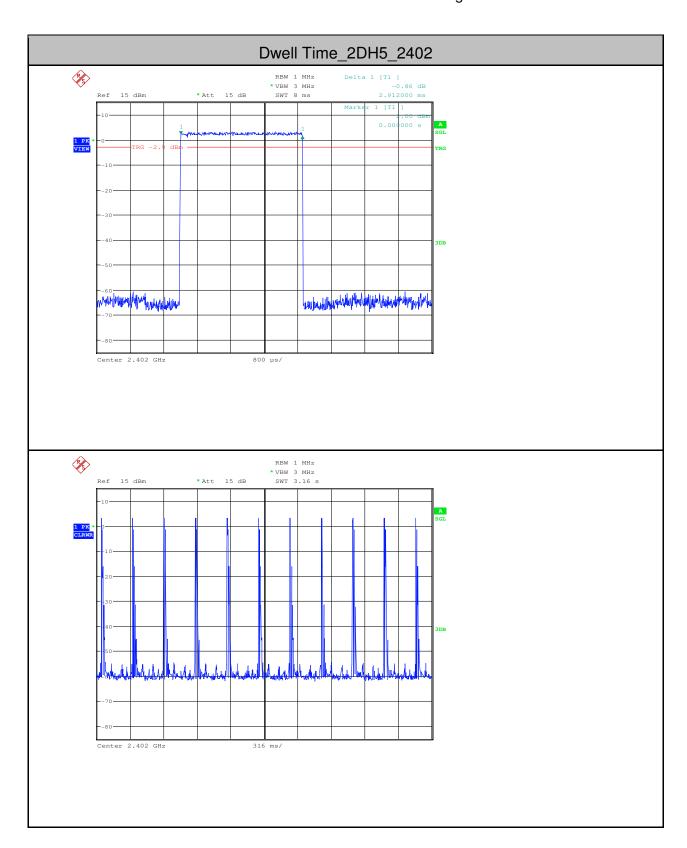
Report No.: SZEM170200109102


Page: 62 of 93

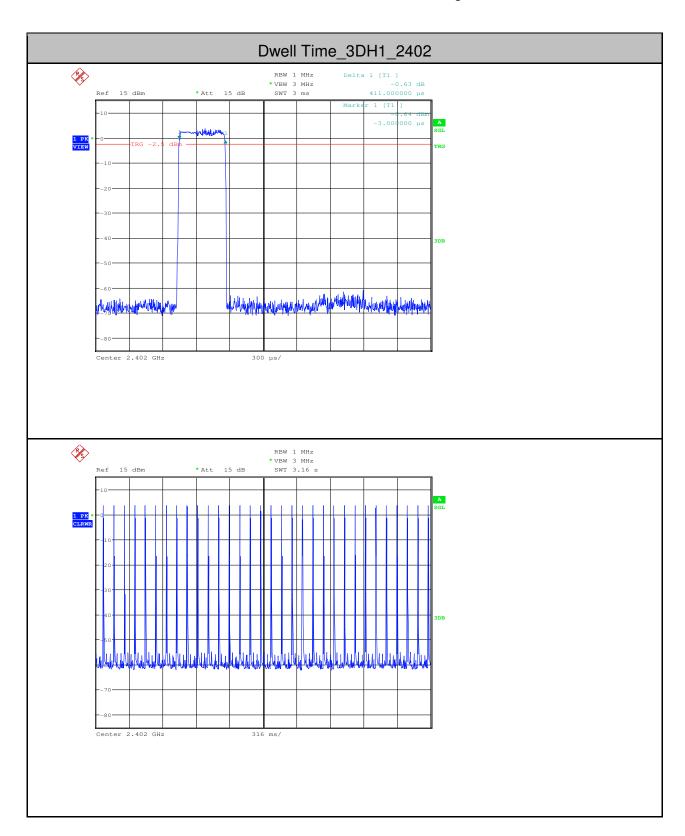
Report No.: SZEM170200109102


Page: 63 of 93

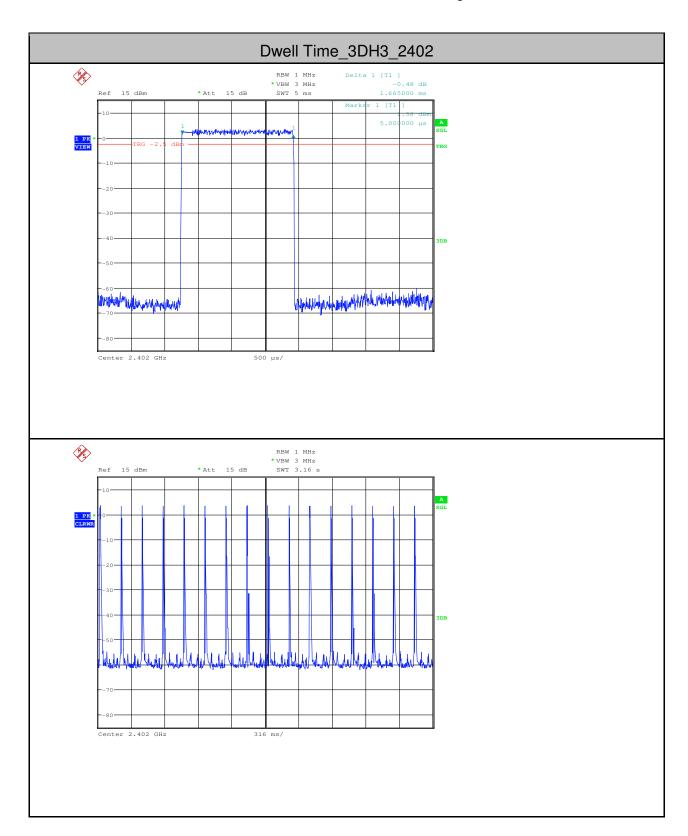
Report No.: SZEM170200109102


Page: 64 of 93

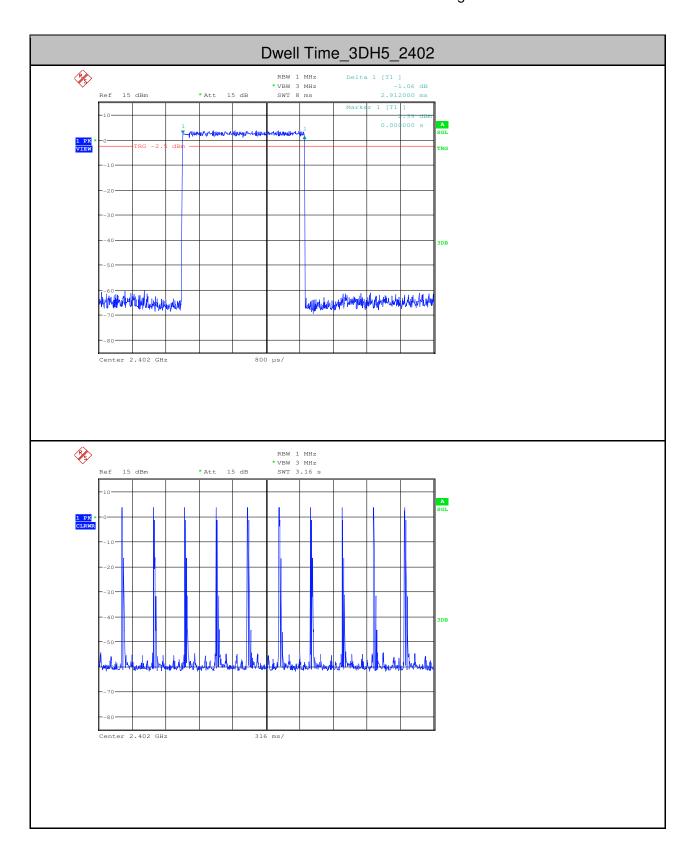
Report No.: SZEM170200109102


Page: 65 of 93

Report No.: SZEM170200109102


Page: 66 of 93

Report No.: SZEM170200109102

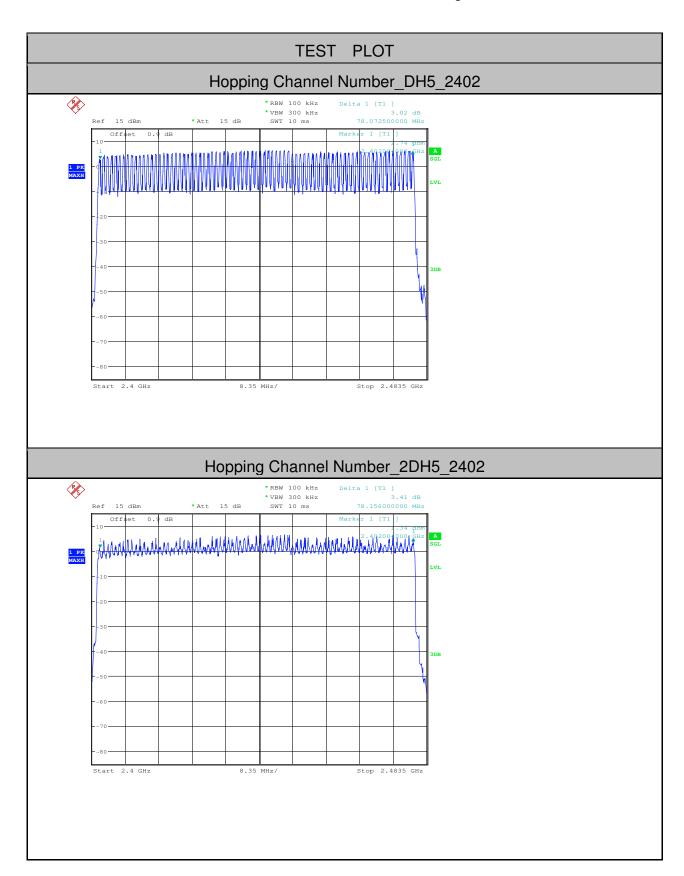

Page: 67 of 93

Report No.: SZEM170200109102

Page: 68 of 93

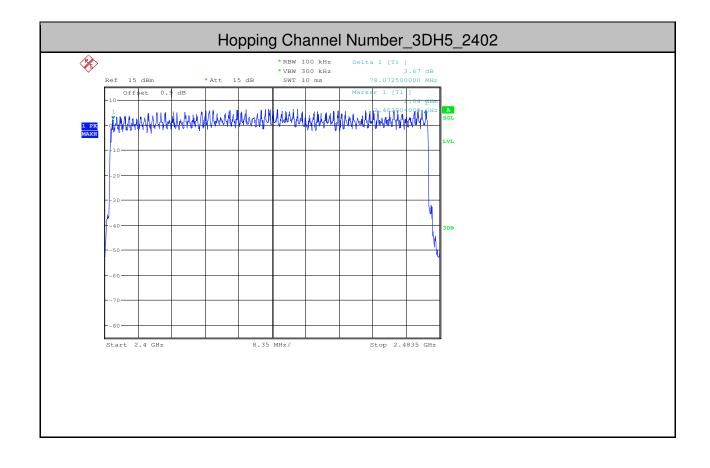
Report No.: SZEM170200109102

Page: 69 of 93


5. Hopping Channel Number

	T . O	N		
Test Mode	Test Channel	Number of Hopping Channel[N]	Limit[N]	Verdict
DH5	2402	79	>=15	PASS
2DH5	2402	79	>=15	PASS
3DH5	2402	79	>=15	PASS

Report No.: SZEM170200109102

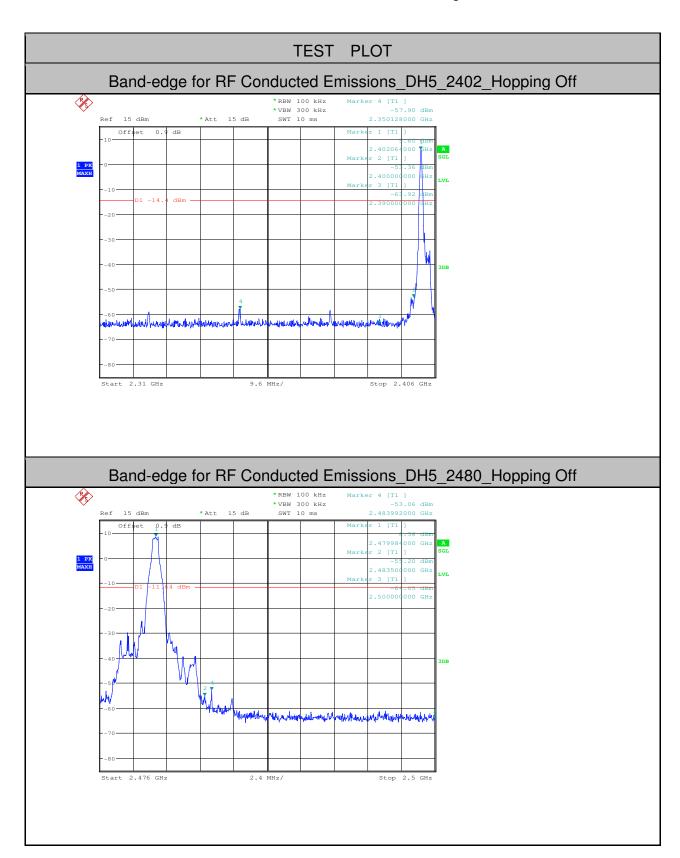

Page: 70 of 93

Report No.: SZEM170200109102

Page: 71 of 93

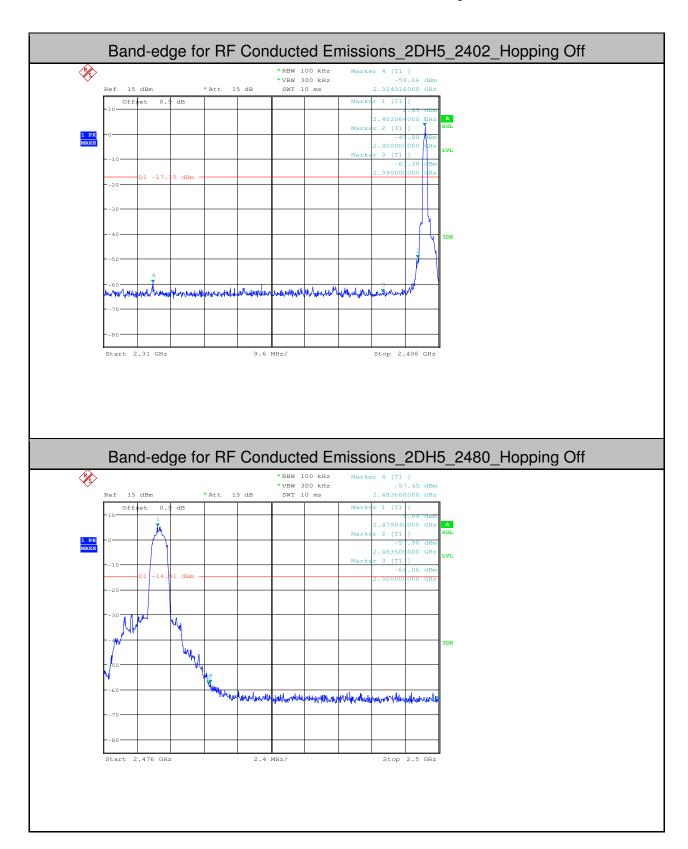
Report No.: SZEM170200109102

Page: 72 of 93

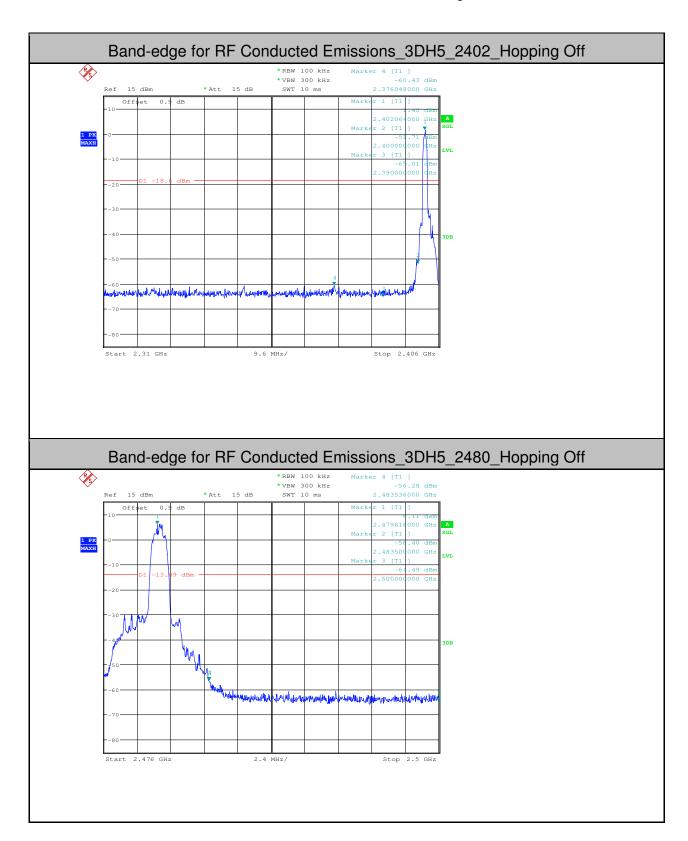

6. Band-edge for RF Conducted Emissions

or Barra oa	ge ioi iii ooi	iddottod L				
Test Mode	Test Channel	Hopping	Carrier Power[dBm]	Max. Spurious Level [dBm]	Limit[dBm]	Verdict
DH5	2402	Off	5.600	-57.905	<-14.4	PASS
DH5	2480	Off	8.360	-53.059	<-11.64	PASS
2DH5	2402	Off	2.850	-59.658	<-17.15	PASS
2DH5	2480	Off	5.090	-57.445	<-14.91	PASS
3DH5	2402	Off	1.400	-60.428	<-18.6	PASS
3DH5	2480	Off	6.110	-56.277	<-13.89	PASS
DH5	2402	On	4.350	-54.484	<-15.65	PASS
DH5	2480	On	5.310	-51.211	<-14.69	PASS
2DH5	2402	On	1.650	-55.235	<-18.35	PASS
2DH5	2480	On	5.880	-51.541	<-14.12	PASS
3DH5	2402	On	3.120	-55.241	<-16.88	PASS
3DH5	2480	On	5.810	-50.792	<-14.19	PASS

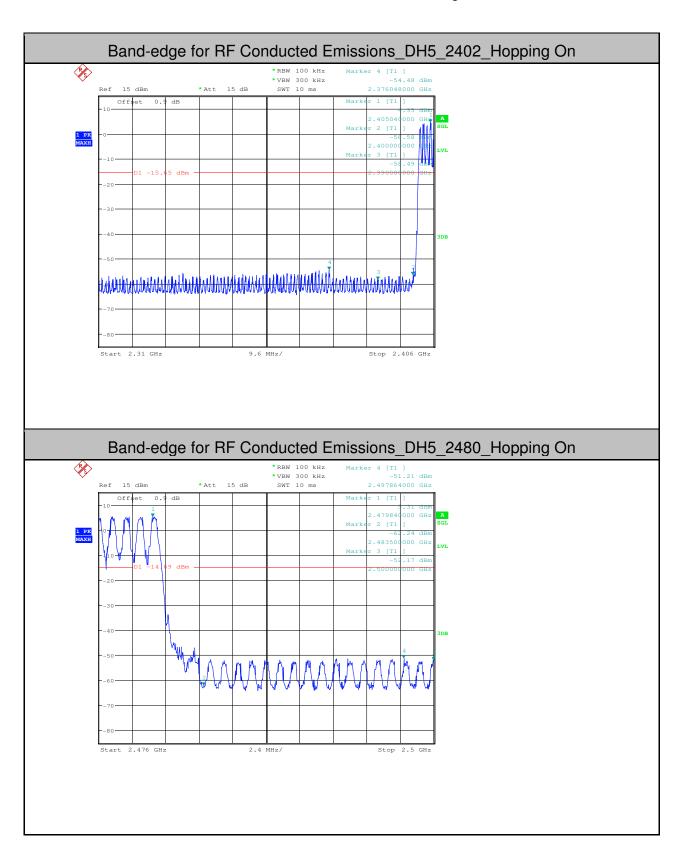
Report No.: SZEM170200109102


Page: 73 of 93

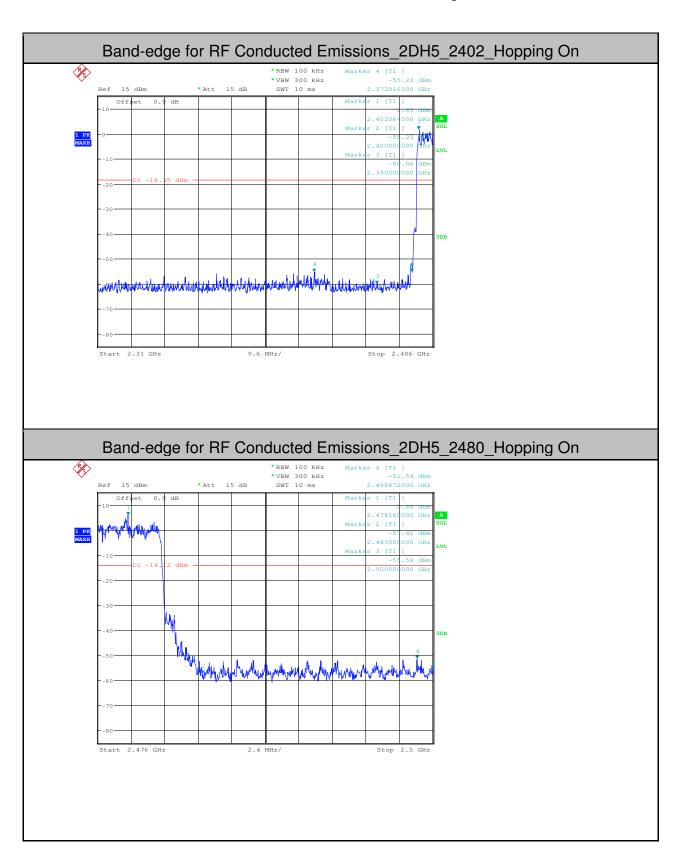
Report No.: SZEM170200109102


Page: 74 of 93

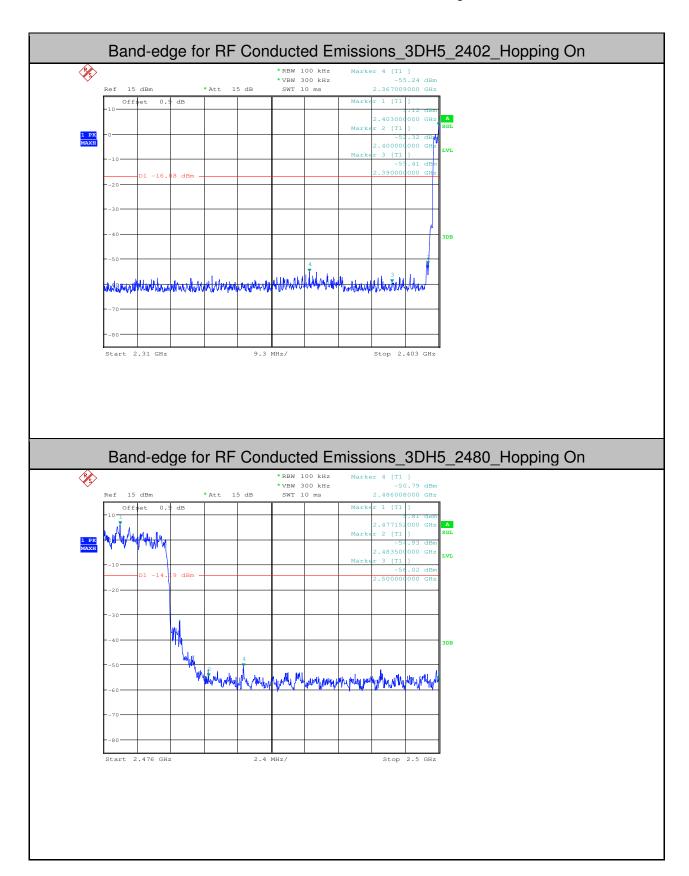
Report No.: SZEM170200109102


Page: 75 of 93

Report No.: SZEM170200109102


Page: 76 of 93

Report No.: SZEM170200109102

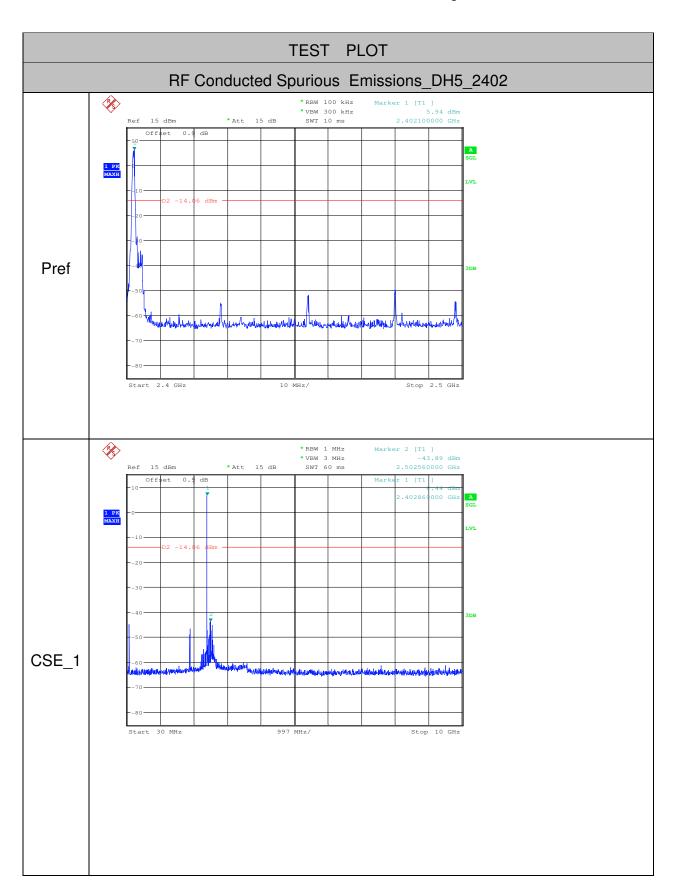

Page: 77 of 93

Report No.: SZEM170200109102

Page: 78 of 93

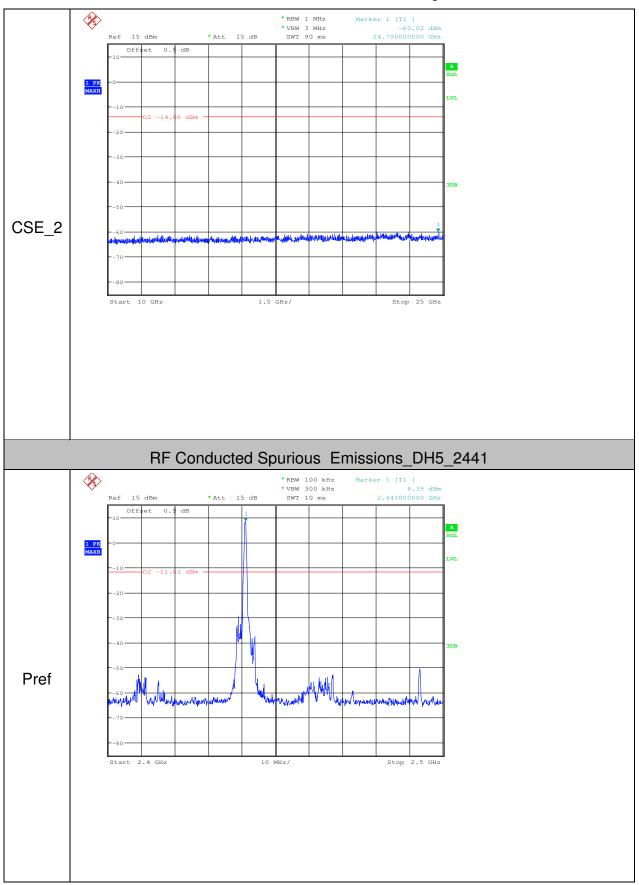
Report No.: SZEM170200109102

Page: 79 of 93

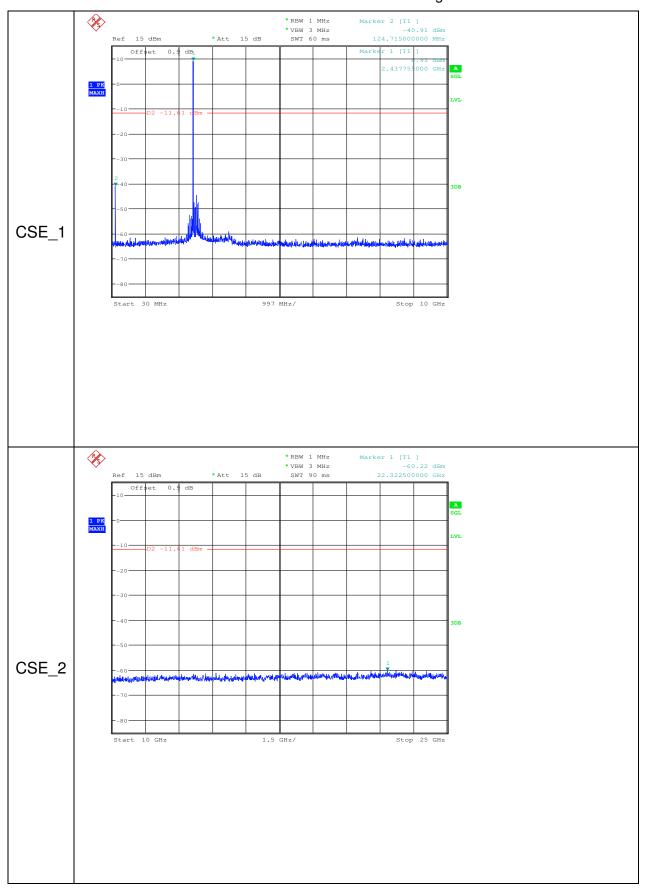

7. RF Conducted Spurious Emissions

Test Mode	Test Channel	StartFre [MHz]	StopFre [MHz]	RBW [kHz]	VBW [kHz]	Pref[dBm]	Max. Level [dBm]	Limit [dBm]	Verdict
DH5	2402	30	10000	1000	3000	5.94	-43.890	<-14.06	PASS
DH5	2402	10000	25000	1000	3000	5.94	-60.020	<-14.06	PASS
DH5	2441	30	10000	1000	3000	8.39	-40.910	<-11.61	PASS
DH5	2441	10000	25000	1000	3000	8.39	-60.220	<-11.61	PASS
DH5	2480	30	10000	1000	3000	8.6	-39.860	<-11.4	PASS
DH5	2480	10000	25000	1000	3000	8.6	-60.250	<-11.4	PASS
2DH5	2402	30	10000	1000	3000	2.81	-45.110	<-17.19	PASS
2DH5	2402	10000	25000	1000	3000	2.81	-60.200	<-17.19	PASS
2DH5	2441	30	10000	1000	3000	6.04	-43.910	<-13.96	PASS
2DH5	2441	10000	25000	1000	3000	6.04	-59.940	<-13.96	PASS
2DH5	2480	30	10000	1000	3000	5.52	-43.890	<-14.48	PASS
2DH5	2480	10000	25000	1000	3000	5.52	-59.870	<-14.48	PASS
3DH5	2402	30	10000	1000	3000	2.48	-45.480	<-17.52	PASS
3DH5	2402	10000	25000	1000	3000	2.48	-60.030	<-17.52	PASS
3DH5	2441	30	10000	1000	3000	6.38	-44.400	<-13.62	PASS
3DH5	2441	10000	25000	1000	3000	6.38	-60.250	<-13.62	PASS
3DH5	2480	30	10000	1000	3000	6.16	-42.970	<-13.84	PASS
3DH5	2480	10000	25000	1000	3000	6.16	-59.880	<-13.84	PASS

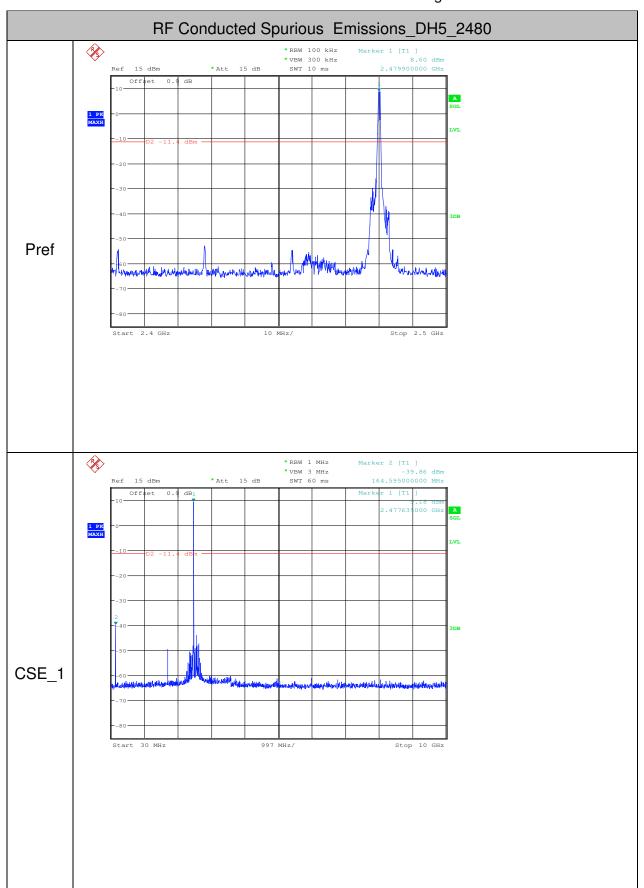
Report No.: SZEM170200109102


Page: 80 of 93

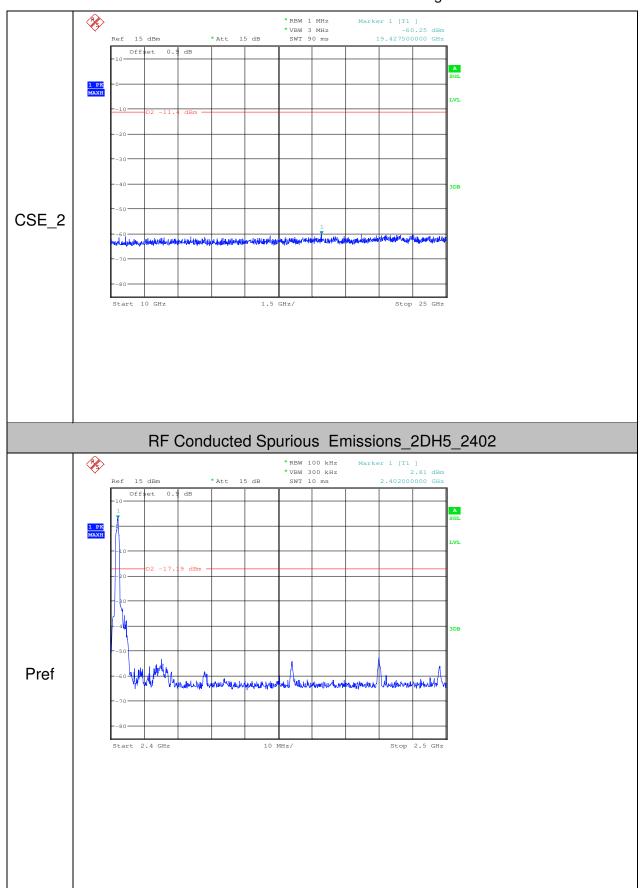
Report No.: SZEM170200109102


Page: 81 of 93

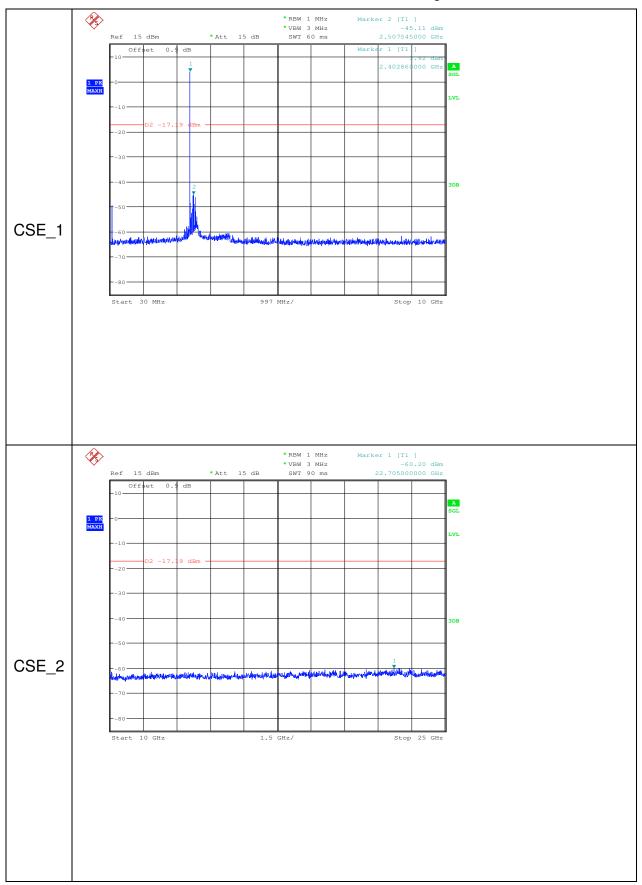
Report No.: SZEM170200109102


Page: 82 of 93

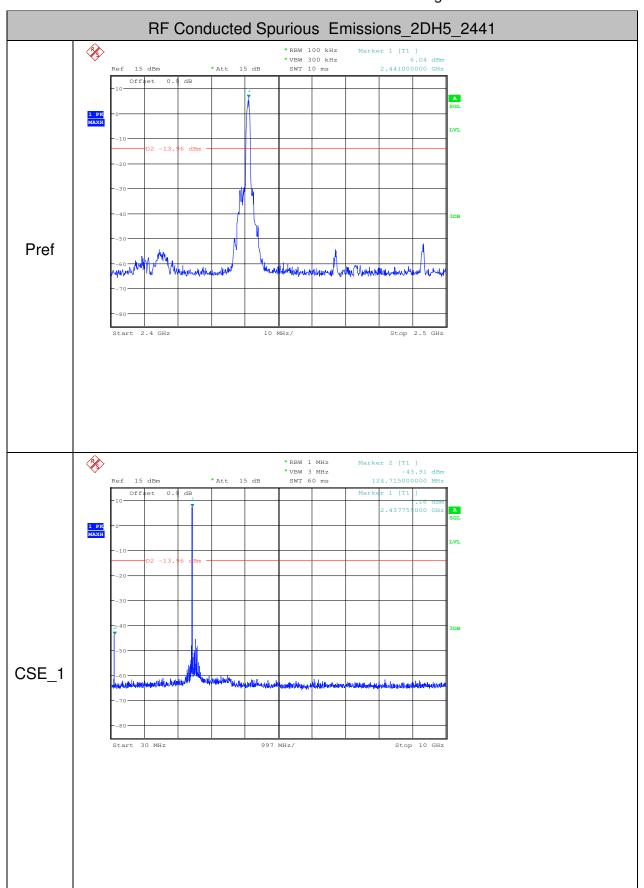
Report No.: SZEM170200109102


Page: 83 of 93

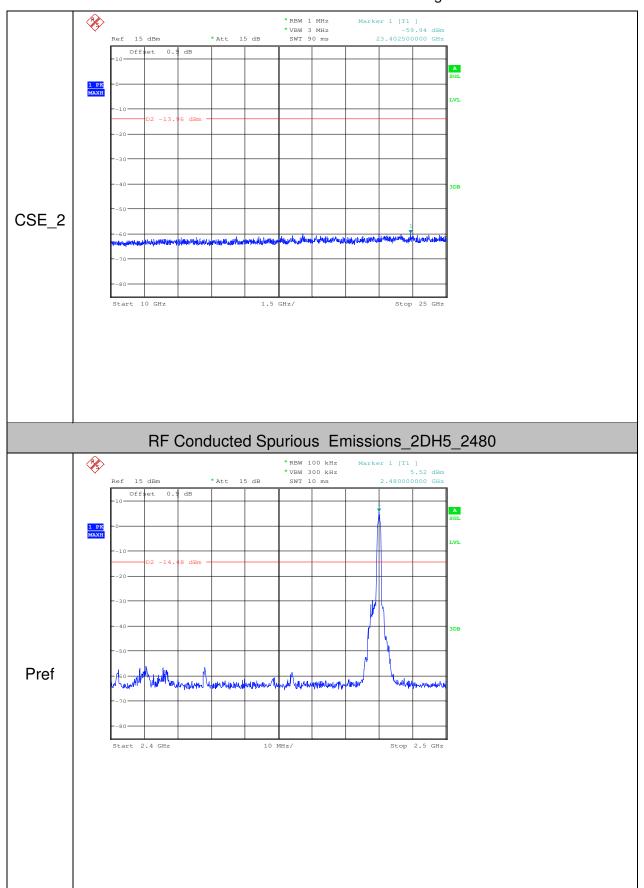
Report No.: SZEM170200109102


Page: 84 of 93

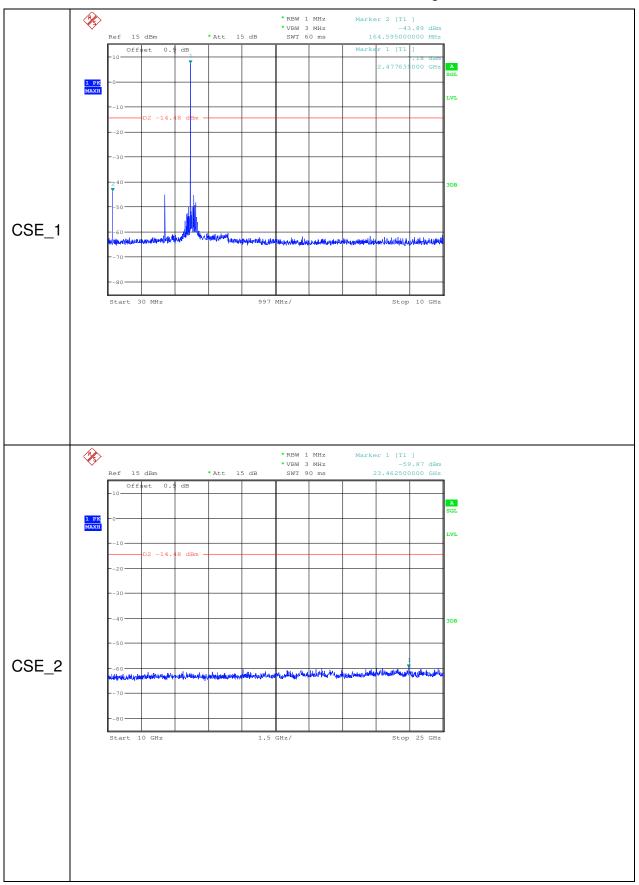
Report No.: SZEM170200109102


Page: 85 of 93

Report No.: SZEM170200109102


Page: 86 of 93

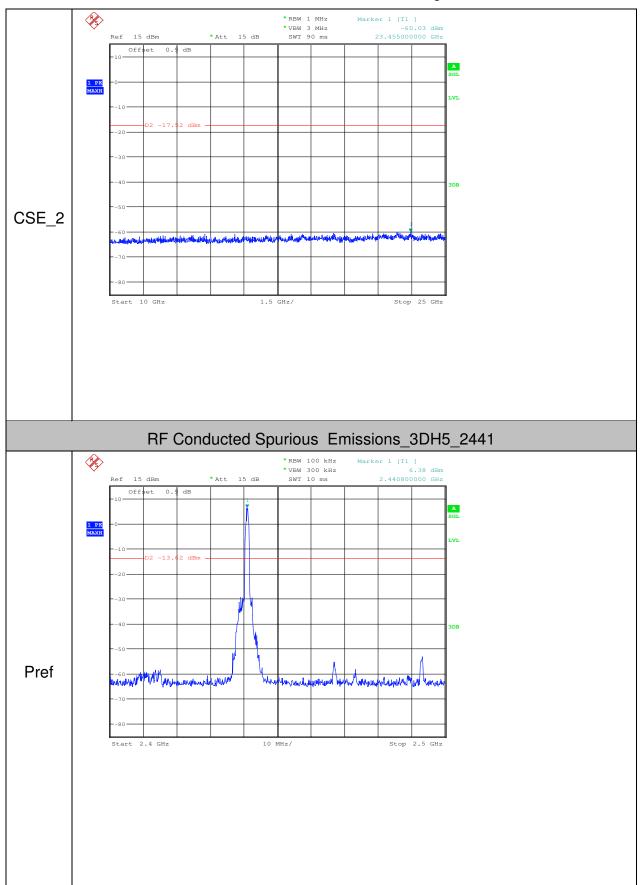
Report No.: SZEM170200109102


Page: 87 of 93

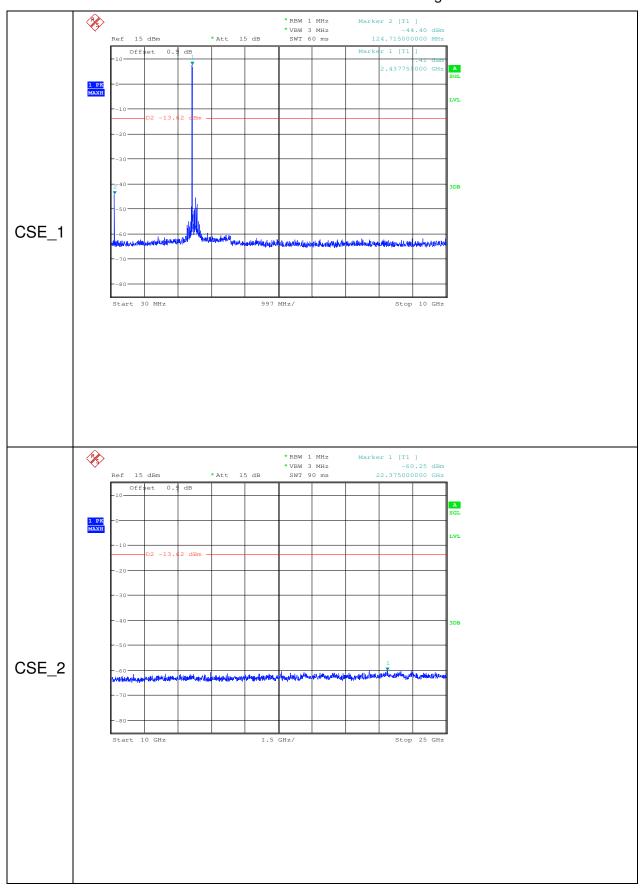
Report No.: SZEM170200109102

Page: 88 of 93

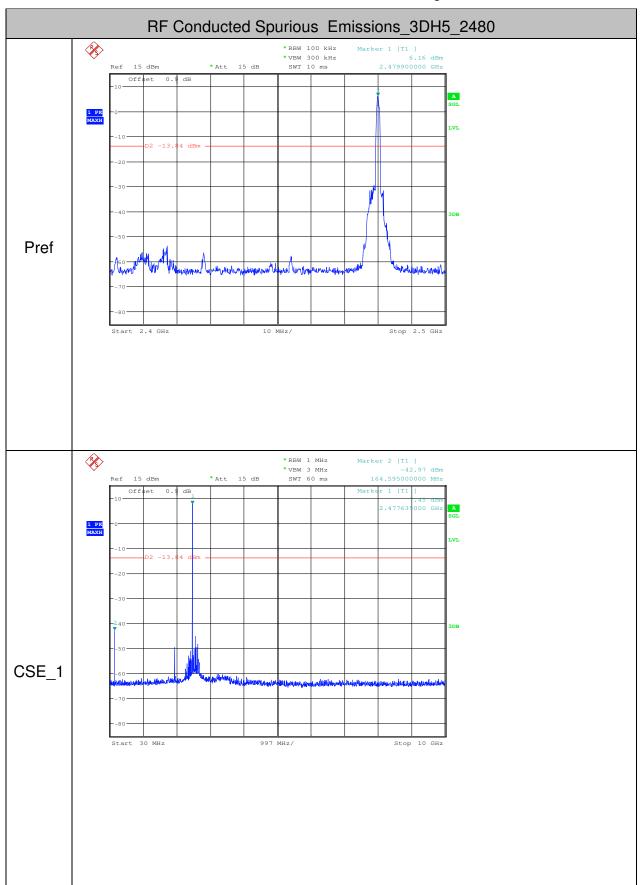
Report No.: SZEM170200109102


Page: 89 of 93

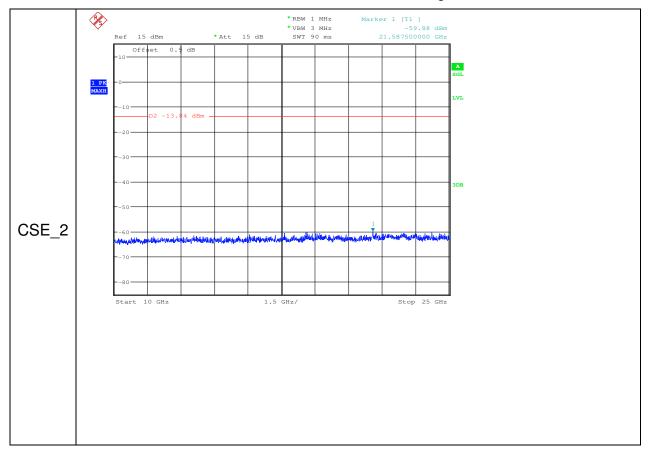
Report No.: SZEM170200109102


Page: 90 of 93

Report No.: SZEM170200109102


Page: 91 of 93

Report No.: SZEM170200109102


Page: 92 of 93

Report No.: SZEM170200109102

Page: 93 of 93

