

Test Report

Report No.: MTi240305006-01E2

Date of issue: 2024-03-18

Applicant: Edifier International Limited

Product: Wireless Over-Ear Headphones with Active Noise

Cancellation

Model(s): EDF200163

FCC ID: Z9G-EDF236

Shenzhen Microtest Co., Ltd.

http://www.mtitest.com

Instructions

- 1. This test report shall not be partially reproduced without the written consent of the laboratory.
- 2. The test results in this test report are only responsible for the samples submitted
- 3. This test report is invalid without the seal and signature of the laboratory.
- 4. This test report is invalid if transferred, altered, or tampered with in any form without authorization.
- 5. Any objection to this test report shall be submitted to the laboratory within 15 days from the date of receipt of the report.

Table of contents

1	Gen	eral Description	5
	1.1 1.2 1.3 1.4 1.5	Description of the EUT Description of test modes Environmental Conditions Description of support units Measurement uncertainty	5 7 7
2	Sum	nmary of Test Result	8
3	Test	Facilities and accreditations	9
	3.1	Test laboratory	9
4	List	of test equipment	10
5	Eval	luation Results (Evaluation)	11
	5.1	Antenna requirement	11
6	Radi	io Spectrum Matter Test Results (RF)	12
	6.1 6.2 6.3 6.4 6.5 6.6	Occupied Bandwidth	14 15 16 17
Ph	otogr	raphs of the test setup	33
Ph	otogr	raphs of the EUT	34
Аp	pendi	ix A: DTS Bandwidth	35
Аp	pendi	ix B: Maximum conducted output power	38
Аp	pendi	ix C: Maximum power spectral density	41
Аp	pendi	ix D: Band edge measurements	44
Ар	pendi	ix E: Conducted Spurious Emission	46
Δn	nendi	ix F. Duty Cycle	52

Test Result Certification				
Applicant:	Edifier International Limited			
Address:	P.O. Box 6264 General Post Office Hong Kong			
Manufacturer:	Beijing Edifier Technology Co., Ltd.			
Address:	815, Floor 8, Shuangqiao Building, No.68, North Fourth Ring West Road, Haidian District, Beijing 100080, P.R.China			
Product description				
Product name:	Wireless Over-Ear Headphones with Active Noise Cancellation			
Trademark:	EDIFIER			
Model name:	EDF200163			
Series Model(s):	N/A			
Standards:	47 CFR Part 15.247			
Test Method:	KDB 558074 D01 15.247 Meas Guidance v05r02 ANSI C63.10-2020			
Date of Test				
Date of test:	2024-03-14 to 2024-03-18			
Test result:	Pass			

Test Engineer	:	letter.lan.
		(Letter Lan)
Reviewed By	:	leon chen
		(Leon Chen)
Approved By	:	Tom Xue
		(Tom Xue)

1 General Description

1.1 Description of the EUT

Product name:	Wireless Over-Ear Headphones with Active Noise Cancellation
Model name:	EDF200163
Series Model(s):	N/A
Model difference:	N/A
Electrical rating:	Input: 5V = 1A Battery: 3.7V DC 670mAh
Accessories:	USB-A to USB-C cable 1.2m
Hardware version:	V1.0
Software version:	V1.0
Test sample(s) number:	MTi240305006-01S1001
RF specification	
Bluetooth version:	V5.4
Operating frequency range:	2402MHz to 2480MHz
Channel number:	40
Modulation type:	GFSK
Antenna(s) type:	PCB Antenna
Antenna(s) gain:	0.23 dBi

1.2 Description of test modes

No.	Emission test modes
Mode1	TX mode (GFSK-1M)
Mode2	TX mode(GFSK-2M)

1.2.1 Operation channel list

Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)
0	2402	10	2422	20	2442	30	2462
1	2404	11	2424	21	2444	31	2464
2	2406	12	2426	22	2446	32	2466
3	2408	13	2428	23	2448	33	2468
4	2410	14	2430	24	2450	34	2470
5	2412	15	2432	25	2452	35	2472
6	2414	16	2434	26	2454	36	2474
7	2416	17	2436	27	2456	37	2476
8	2418	18	2438	28	2458	38	2478
9	2420	19	2440	29	2460	39	2480

Address: 101, No. 7, Zone 2, Xinxing Industrial Park, Fuhai Avenue, Xinhe Community, Fuhai Street, Bao'an District, Shenzhen, Guangdong, China Tel: (86-755)88850135 Fax: (86-755) 88850136 Web: www.mtitest.com E-mail: mti@51mti.com

Test Channel List

Operation Band: 2400-2483.5 MHz

Bandwidth Lowest Channel (LCH)		Middle Channel (MCH)	Highest Channel (HCH)
(MHz)	(MHz)	(MHz)	(MHz)
2	2402	2440	2480

Note: The test software provided by manufacturer is used to control EUT for working in engineering mode, that enables selectable channel, and capable of continuous transmitting mode.

Test Software: Non Signaling Test Tool

For power setting, refer to below table.

Mode	2402MHz	2440MHz	2480MHz
1M	default	default	default
2M	default	default	default

1.3 Environmental Conditions

During the measurement the environmental conditions were within the listed ranges:

Temperature:	15°C ~ 35°C
Humidity:	20% RH ~ 75% RH
Atmospheric pressure:	98 kPa ~ 101 kPa

1.4 Description of support units

Support equipment list							
Description	Manufacturer						
1	1	1	1				
Support cable list							
Description	Length (m)	From	То				
/	1	1	1				

1.5 Measurement uncertainty

Measurement	Uncertainty
Occupied channel bandwidth	±3 %
RF output power, conducted	±1 dB
Power Spectral Density, conducted	±1 dB
Unwanted Emissions, conducted	±1 dB
Radiated spurious emissions (above 1GHz)	±5.3dB
Radiated spurious emissions (9kHz~30MHz)	±4.3dB
Radiated spurious emissions (30MHz~1GHz)	±4.7dB
Temperature	±1 °C
Humidity	± 5 %

This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

2 Summary of Test Result

No.	Item	Standard	Requirement	Result
1	Antenna requirement	47 CFR Part 15.247	47 CFR 15.203	Pass
2	Occupied Bandwidth	47 CFR Part 15.247	47 CFR 15.247(a)(2)	Pass
3	Maximum Conducted Output Power	47 CFR Part 15.247	47 CFR 15.247(b)(3)	Pass
4	Power Spectral Density	47 CFR Part 15.247	47 CFR 15.247(e)	Pass
5	RF conducted spurious emissions and band edge measurement	47 CFR Part 15.247	47 CFR 15.247(d), 15.209, 15.205	Pass
6	Band edge emissions (Radiated)	47 CFR Part 15.247	47 CFR 15.247(d), 15.209, 15.205	Pass
7	Radiated emissions (below 1GHz)	47 CFR Part 15.247	47 CFR 15.247(d), 15.209, 15.205	Pass
8	Radiated emissions (above 1GHz)	47 CFR Part 15.247	47 CFR 15.247(d), 15.209, 15.205	Pass

Note: Since the EUT cannot be operating while charging, therefore AC power line conducted emissions test is not required.

3 Test Facilities and accreditations

3.1 Test laboratory

Test laboratory:	Shenzhen Microtest Co., Ltd.
Test site location:	101, No.7, Zone 2, Xinxing Industrial Park, Fuhai Avenue, Xinhe Community, Fuhai Street, Bao'an District, Shenzhen, Guangdong, China
Telephone:	(86-755)88850135
Fax:	(86-755)88850136
CNAS Registration No.:	CNAS L5868
FCC Registration No.:	448573
IC Registration No.:	21760
CABID:	CN0093

4 List of test equipment

No.	Equipment	Manufacturer	Model	Serial No.	Cal. date	Cal. Due			
Occupied Bandwidth Maximum Conducted Output Power Power Spectral Density RF conducted spurious emissions and band edge measurement									
1	Wideband Radio Communication Tester	Rohde&schwarz	CMW500	149155	2023-04-26	2024-04-25			
2	ESG Series Analog Ssignal Generator	Agilent	E4421B	GB40051240	2023-04-25	2024-04-24			
3	PXA Signal Analyzer	Agilent	N9030A	MY51350296	2023-04-25	2024-04-24			
4	Synthesized Sweeper	Agilent	83752A	3610A01957	2023-04-25	2024-04-24			
5	MXA Signal Analyzer	Agilent	N9020A	MY50143483	2023-04-26	2024-04-25			
6	RF Control Unit	Tonscend	JS0806-1	19D8060152	2023-04-26	2024-04-25			
7	Band Reject Filter Group	Tonscend	JS0806-F	19D8060160	2023-05-05	2024-05-04			
8	ESG Vector Signal Generator	Agilent	N5182A	MY50143762	2023-04-25	2024-04-24			
9	DC Power Supply	Agilent	E3632A	MY40027695	2023-05-05	2024-05-04			
		•	emissions (Radi nissions (above ´	,					
1	EMI Test Receiver	Rohde&schwarz	ESCI7	101166	2023-04-26	2024-04-25			
2	Double Ridged Broadband Horn Antenna	schwarabeck	BBHA 9120 D	2278	2023-06-17	2025-06-16			
3	Amplifier	Agilent	8449B	3008A01120	2023-06-26	2024-06-25			
4	Multi-device Controller	TuoPu	TPMDC	1	2023-05-04	2024-05-03			
5	MXA signal analyzer	Agilent	N9020A	MY54440859	2023-06-01	2024-05-31			
		Radiated em	issions (below	1GHz)					
1	EMI Test Receiver	Rohde&schwarz	ESCI7	101166	2023-04-26	2024-04-25			
2	TRILOG Broadband Antenna	schwarabeck	VULB 9163	9163-1338	2023-06-11	2025-06-10			
3	Active Loop Antenna	Schwarzbeck	FMZB 1519 B	00066	2023-06-11	2025-06-10			
4	Amplifier	Hewlett-Packard	8447F	3113A06184	2023-04-25	2024-04-24			
5	Multi-device Controller	TuoPu	TPMDC	1	2023-05-04	2024-05-03			

5 Evaluation Results (Evaluation)

5.1 Antenna requirement

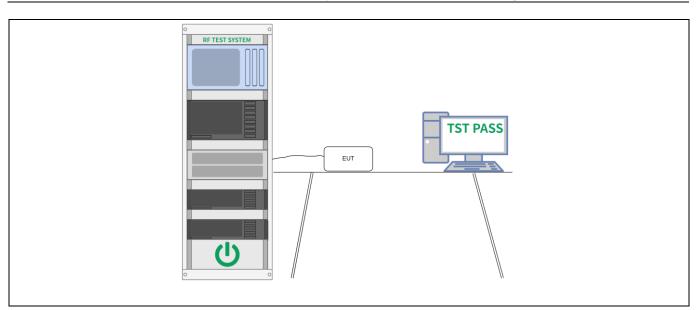
Test Requirement:	Refer to 47 CFR Part 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section.
-------------------	---

5.1.1 Conclusion:

The antenna of the EUT is permanently attached.
The EUT complies with the requirement of FCC PART 15.203.

6 Radio Spectrum Matter Test Results (RF)

6.1 Occupied Bandwidth


Test Requirement:	47 CFR 15.247(a)(2)
Test Limit:	Refer to 47 CFR 15.247(a)(2), Systems using digital modulation techniques may operate in the 902-928 MHz, and 2400-2483.5 MHz bands. The minimum 6 dB bandwidth shall be at least 500 kHz.
Test Method:	ANSI C63.10-2020, section 11.8 KDB 558074 D01 15.247 Meas Guidance v05r02
Procedure:	11.8.1 Option 1 The steps for the first option are as follows: a) Set RBW = shall be in the range of 1% to 5% of the OBW but not less than 100 kHz. b) Set the VBW ≥ [3 × RBW]. c) Detector = peak. d) Trace mode = max-hold. e) Sweep = No faster than coupled (auto) time. f) Allow the trace to stabilize. g) Measure the maximum width of the emission by placing two markers, one at the lowest frequency and the other at the highest frequency of the envelope of the spectral display, such that each marker is at or slightly below the "-6 dB down amplitude". If a marker is below this "-6 dB down amplitude" value, then it shall be as close as possible to this value. 11.8.2 Option 2 The automatic bandwidth measurement capability of an instrument may be employed using the X dB bandwidth mode with X set to 6 dB, if the functionality described in 11.8.1 (i.e., RBW = 100 kHz, VBW ≥ 3 × RBW, and peak detector with maximum hold) is implemented by the instrumentation function. When using this capability, care shall be taken so that the bandwidth measurement is not influenced by any intermediate power nulls in the fundamental emission that might be ≥ 6 dB.

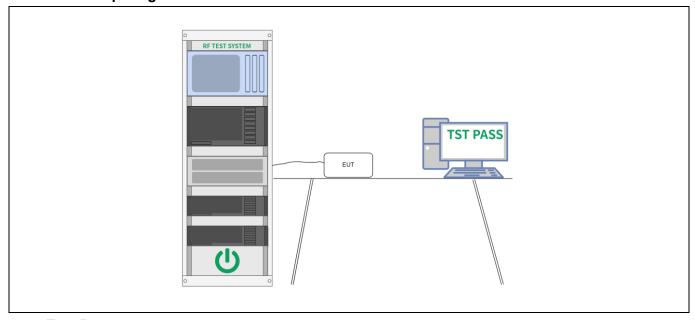
6.1.1 E.U.T. Operation:

Operating Environment:									
Temperature:	Temperature: 16.3 °C Humidity: 51.9 % Atmospheric Pressure: 100 kPa								
Pre test mode:		Mode	e1, Mode2						
Final test mode	e:	Mode	e1, Mode2						

6.1.2 Test Setup Diagram:

o. 1.2 Tool octup Blagiain.		

6.1.3 Test Data:


6.2 Maximum Conducted Output Power

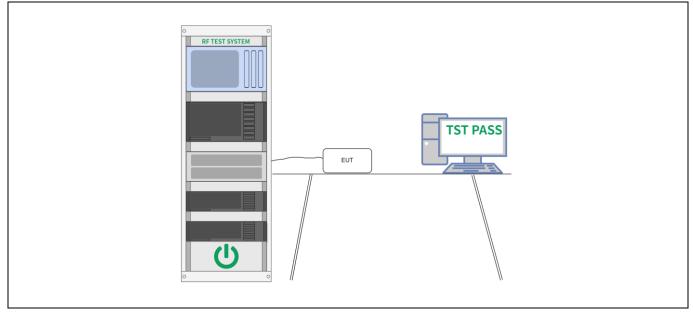
Test Requirement:	47 CFR 15.247(b)(3)
Test Limit:	Refer to 47 CFR 15.247(b)(3), For systems using digital modulation in the 902-928 MHz, 2400-2483.5 MHz, and 5725-5850 MHz bands: 1 Watt. As an alternative to a peak power measurement, compliance with the one Watt limit can be based on a measurement of the maximum conducted output power. Maximum Conducted Output Power is defined as the total transmit power delivered to all antennas and antenna elements averaged across all symbols in the signaling alphabet when the transmitter is operating at its maximum power control level. Power must be summed across all antennas and antenna elements. The average must not include any time intervals during which the transmitter is off or is transmitting at a reduced power level. If multiple modes of operation are possible (e.g., alternative modulation methods), the maximum conducted output power is the highest total transmit power occurring in any mode.
Test Method:	ANSI C63.10-2020 section 11.9.1 KDB 558074 D01 15.247 Meas Guidance v05r02
Procedure:	ANSI C63.10-2020, section 11.9.1 Maximum peak conducted output power

6.2.1 E.U.T. Operation:

Operating Environment:									
Temperature:	16.3 °C		Humidity:	51.9 %	Atmospheric Pressure:	100 kPa			
Pre test mode:		Mode	e1, Mode2						
Final test mode	Final test mode: Mode1, Mode2								

6.2.2 Test Setup Diagram:

6.2.3 Test Data:


6.3 Power Spectral Density

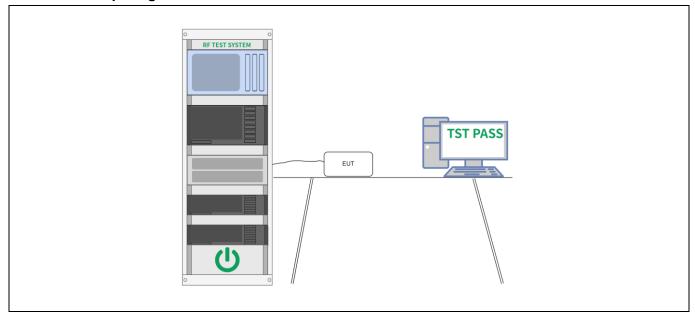
Test Requirement:	47 CFR 15.247(e)
Test Limit:	Refer to 47 CFR 15.247(e), For digitally modulated systems, the power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission. This power spectral density shall be determined in accordance with the provisions of paragraph (b) of this section. The same method of determining the conducted output power shall be used to determine the power spectral density.
Test Method:	ANSI C63.10-2020, section 11.10 KDB 558074 D01 15.247 Meas Guidance v05r02
Procedure:	ANSI C63.10-2020, section 11.10, Maximum power spectral density level in the fundamental emission

6.3.1 E.U.T. Operation:

Operating Environment:									
Temperature:	Temperature: 16.3 °C Humidity: 51.9 % Atmospheric Pressure: 100 kPa								
Pre test mode:	Pre test mode: Mode1, Mode2								
Final test mode: Mode1, Mode2									

6.3.2 Test Setup Diagram:

6.3.3 Test Data:


6.4 RF conducted spurious emissions and band edge measurement

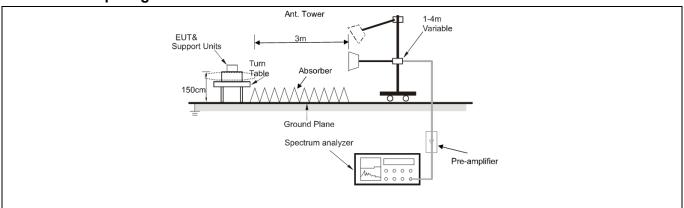
Test Requirement:	47 CFR 15.247(d), 15.209, 15.205
Test Limit:	Refer to 47 CFR 15.247(d), In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in § 15.209(a) is not required.
Test Method:	ANSI C63.10-2020 section 11.11 KDB 558074 D01 15.247 Meas Guidance v05r02
Procedure:	ANSI C63.10-2020 Section 11.11.1, Section 11.11.2, Section 11.11.3

6.4.1 E.U.T. Operation:

Operating Environment:								
Temperature:	Temperature: 16.3 °C Humidity: 51.9 % Atmospheric Pressure: 100 kPa							
Pre test mode: Mode1, Mode2								
Final test mode: Mode1, Mode2								

6.4.2 Test Setup Diagram:

6.4.3 Test Data:


6.5 Band edge emissions (Radiated)

Test Requirement:	restricted bands, as de	7(d), In addition, radiated en fined in § 15.205(a), must al s specified in § 15.209(a)(se	so comply with the
Test Limit:	Frequency (MHz)	Field strength (microvolts/meter)	Measuremen t distance (meters)
	0.009-0.490	2400/F(kHz)	300
	0.490-1.705	24000/F(kHz)	30
	1.705-30.0	30	30
	30-88	100 **	3
	88-216	150 **	3
	216-960	200 **	3
	Above 960	500	3
	intentional radiators op frequency bands 54-72 However, operation wit sections of this part, e. In the emission table a The emission limits she employing a CISPR qu kHz, 110–490 kHz and	n paragraph (g), fundamental perating under this section shown that a property is a property in part of the perating under this section shows the section of the perating of the perating is a property in the above table are boundered as a property in the perating of the perating is a property in the perating in the perating is a property in the perating in the perating is a perating in the perating in the perating in the perating is a perating in the perating in the perating in the perating is a perating in the perating in the perating in the perating is a perating in the perating in the perating in the perating is a perating in the perating in the perating in the perating is a perating in the perating in the perating in the perating is a perating in the perating in the perating in the perating is a perating in the perating in the perating in the perating is a perating in the perati	hall not be located in the MHz or 470-806 MHz. It is permitted under other at the band edges. It is assed on measurements the frequency bands 9–90 emission limits in these
Test Method:	ANSI C63.10-2020 sec KDB 558074 D01 15.2	otion 6.10 47 Meas Guidance v05r02	
Procedure:	ANSI C63.10-2020 sed	ction 6.10.5.2	

6.5.1 E.U.T. Operation:

Operating Envi	ironment	•				
Temperature:	24 °C		Humidity:	54 %	Atmospheric Pressure:	101 kPa
Pre test mode:		Mode	e1, Mode2			
Final test mode	e:			re-test mode w ded in the repo	vere tested, only the data ort	of the worst mode
Note: The amplitude reported.	of spurio	us em	issions whic	ch are attenuat	ed more than 20 dB belov	v the limits are not

6.5.2 Test Setup Diagram:

Address: 101, No. 7, Zone 2, Xinxing Industrial Park, Fuhai Avenue, Xinhe Community, Fuhai Street, Bao'an District, Shenzhen, Guangdong, China Tel: (86-755)88850135 Fax: (86-755) 88850136 Web: www.mtitest.com E-mail: mti@51mti.com

6.5.3 Test Data:

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector
1		2310.000	53.85	-12.83	41.02	74.00	-32.98	peak
2	*	2310.000	42.47	-12.83	29.64	54.00	-24.36	AVG
3		2390.000	51.18	-12.42	38.76	74.00	-35.24	peak
4		2390.000	41.68	-12.42	29.26	54.00	-24.74	AVG

No	. Mk	. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector
1		2310.000	52.18	-12.83	39.35	74.00	-34.65	peak
2		2310.000	42.64	-12.83	29.81	54.00	-24.19	AVG
3		2390.000	52.15	-12.42	39.73	74.00	-34.27	peak
4	*	2390.000	42.48	-12.42	30.06	54.00	-23.94	AVG

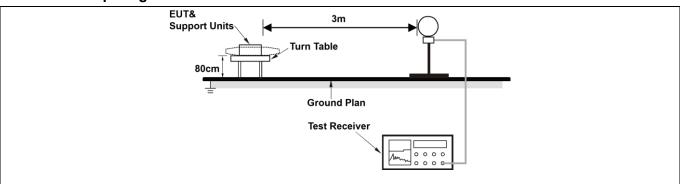
No	. Mk.		Level	Factor	ment	Limit	Over	
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector
1		2483.500	51.74	-12.44	39.30	74.00	-34.70	peak
2	2	2483.500	41.95	-12.44	29.51	54.00	-24.49	AVG
3	3	2500.000	50.74	-12.35	38.39	74.00	-35.61	peak
	∤ *	2500.000	42.01	-12.35	29.66	54.00	-24.34	AVG

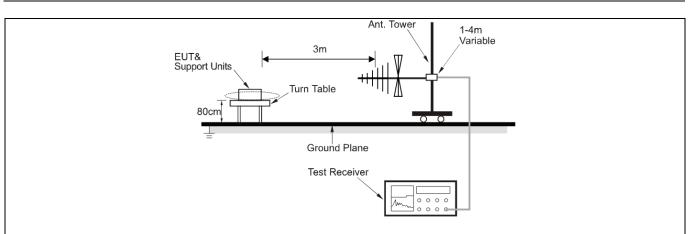
No	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector
1		2483.500	52.04	-12.44	39.60	74.00	-34.40	peak
2	*	2483.500	42.37	-12.44	29.93	54.00	-24.07	AVG
3		2500.000	51.81	-12.35	39.46	74.00	-34.54	peak
4		2500.000	41.81	-12.35	29.46	54.00	-24.54	AVG

6.6 Radiated emissions (below 1GHz)

Test Requirement:	restricted bands, as de	7(d), In addition, radiated em fined in § 15.205(a), must als s specified in § 15.209(a)(se	so comply with the
Test Limit:	Frequency (MHz)	Field strength (microvolts/meter)	Measuremen t distance (meters)
	0.009-0.490	2400/F(kHz)	300
	0.490-1.705	24000/F(kHz)	30
	1.705-30.0	30	30
	30-88	100 **	3
	88-216	150 **	3
	216-960	200 **	3
	Above 960	500	3
	intentional radiators op frequency bands 54-72 However, operation wit sections of this part, e. In the emission table a The emission limits sho employing a CISPR qu kHz, 110–490 kHz and	n paragraph (g), fundamental erating under this section shown that the section shown the section shown the section shown the section shown the section that the section is section as a section in the section shown in the section except for above 1000 MHz. Radiated on measurements employin	all not be located in the MHz or 470-806 MHz. s permitted under other at the band edges. ased on measurements the frequency bands 9–90 emission limits in these
Test Method:	ANSI C63.10-2020 sec KDB 558074 D01 15.2	tion 6.6.4 47 Meas Guidance v05r02	
Procedure:	ANSI C63.10-2020 sec	tion 6.6.4	

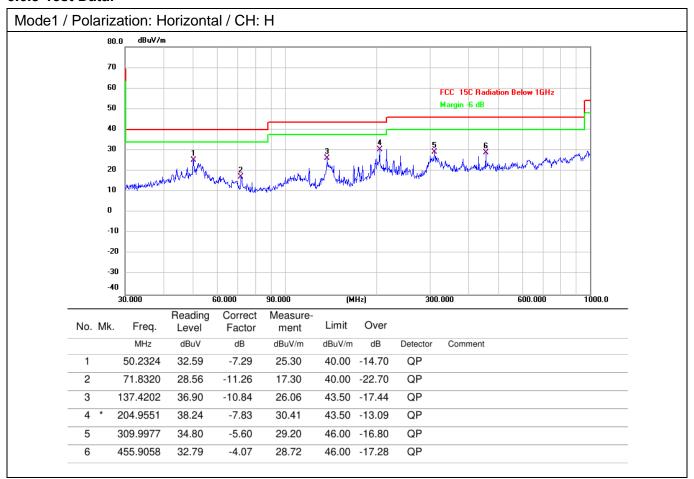
6.6.1 E.U.T. Operation:


Operating Envi	ronment:					
Temperature:	24 °C		Humidity:	54 %	Atmospheric Pressure:	101 kPa
Pre test mode:		Mode	e1, Mode2			
Final test mode):			re-test mode w ded in the repo	rere tested, only the data ort	of the worst mode


Note:

The amplitude of spurious emissions which are attenuated more than 20 dB below the limits are not reported.

All modes of operation of the EUT were investigated, and only the worst-case results are reported. There were no emissions found below 30MHz within 20dB of the limit.


6.6.2 Test Setup Diagram:

6.6.3 Test Data:

239.9874

332.5187

455.9058

4 5

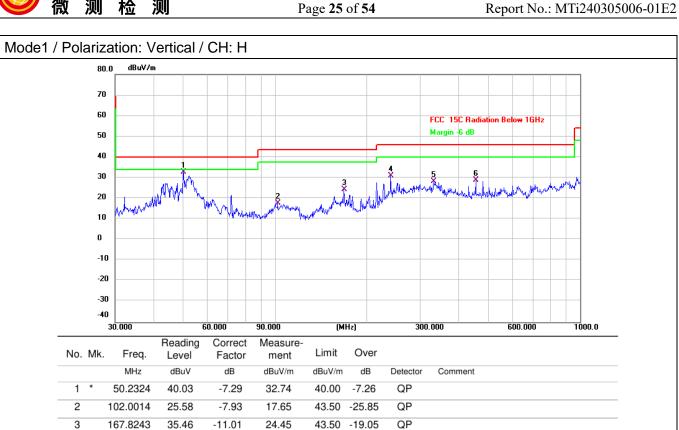
6

37.91

32.94

32.94

-6.89


-4.74

-4.07

31.02

28.20

28.87

46.00 -14.98

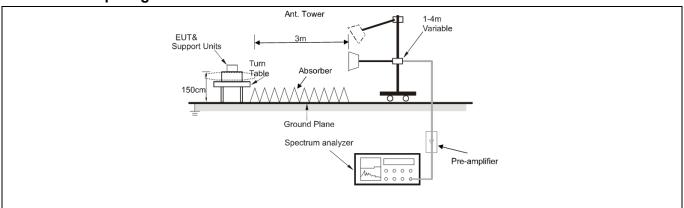
46.00 -17.80

46.00 -17.13

QP

QP

QP


6.7 Radiated emissions (above 1GHz)

Test Requirement:		nissions which fall in the rest comply with the radiated em 5(c)).`	•
Test Limit:	Frequency (MHz)	Field strength (microvolts/meter)	Measuremen t distance (meters)
	0.009-0.490	2400/F(kHz)	300
	0.490-1.705	24000/F(kHz)	30
	1.705-30.0	30	30
	30-88	100 **	3
	88-216	150 **	3
	216-960	200 **	3
	Above 960	500	3
	intentional radiators op frequency bands 54-72 However, operation wit sections of this part, e. In the emission table a The emission limits she employing a CISPR qu kHz, 110–490 kHz and	n paragraph (g), fundamental perating under this section shown that the section shows the section shows the section shows the section shows the section of the section in the section in the above table are because the section above 1000 MHz. Radiated on measurements employing	all not be located in the MHz or 470-806 MHz. s permitted under other at the band edges. ased on measurements the frequency bands 9–9 emission limits in these
Test Method:	ANSI C63.10-2020 sec KDB 558074 D01 15.2	ction 6.6.4 47 Meas Guidance v05r02	
Procedure:	ANSI C63.10-2020 sed	ction 6.6.4	

6.7.1 E.U.T. Operation:

Operating Envi	ronment:					
Temperature:	24 °C		Humidity:	54 %	Atmospheric Pressure:	101 kPa
Pre test mode:		Mode	e1, Mode2			
Final test mode	e:			re-test mode w ded in the repo	ere tested, only the data ort	of the worst mode
attenuated moi	re than 20	dB b	elow the lim	its are not repo	itude of spurious emission orted. d only the worst-case resu	

6.7.2 Test Setup Diagram:

6.7.3 Test Data:

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector
1		4804.000	49.35	-7.40	41.95	74.00	-32.05	peak
2		4804.000	42.76	-7.40	35.36	54.00	-18.64	AVG
3		7206.000	46.46	0.96	47.42	74.00	-26.58	peak
4		7206.000	40.35	0.96	41.31	54.00	-12.69	AVG
5		9608.000	48.86	2.16	51.02	74.00	-22.98	peak
6	*	9608.000	42.96	2.16	45.12	54.00	-8.88	AVG

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector
1		4804.000	49.15	-7.40	41.75	74.00	-32.25	peak
2		4804.000	42.66	-7.40	35.26	54.00	-18.74	AVG
3		7206.000	46.65	0.96	47.61	74.00	-26.39	peak
4		7206.000	40.39	0.96	41.35	54.00	-12.65	AVG
5		9608.000	49.90	2.16	52.06	74.00	-21.94	peak
6	*	9608.000	44.18	2.16	46.34	54.00	-7.66	AVG

1 4880.000 49.60 -7.45 42.15 74.00 -31.85 peak 2 4880.000 43.69 -7.45 36.24 54.00 -17.76 AVG 3 7320.000 46.32 0.77 47.09 74.00 -26.91 peak 4 7320.000 40.48 0.77 41.25 54.00 -12.75 AVG 5 9760.000 47.86 3.11 50.97 74.00 -23.03 peak	No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
2 4880.000 43.69 -7.45 36.24 54.00 -17.76 AVG 3 7320.000 46.32 0.77 47.09 74.00 -26.91 peak 4 7320.000 40.48 0.77 41.25 54.00 -12.75 AVG 5 9760.000 47.86 3.11 50.97 74.00 -23.03 peak			MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector
3 7320.000 46.32 0.77 47.09 74.00 -26.91 peak 4 7320.000 40.48 0.77 41.25 54.00 -12.75 AVG 5 9760.000 47.86 3.11 50.97 74.00 -23.03 peak	1		4880.000	49.60	-7.45	42.15	74.00	-31.85	peak
4 7320.000 40.48 0.77 41.25 54.00 -12.75 AVG 5 9760.000 47.86 3.11 50.97 74.00 -23.03 peak	2		4880.000	43.69	-7.45	36.24	54.00	-17.76	AVG
5 9760.000 47.86 3.11 50.97 74.00 -23.03 peak	3		7320.000	46.32	0.77	47.09	74.00	-26.91	peak
part of the second of the seco	4		7320.000	40.48	0.77	41.25	54.00	-12.75	AVG
6 * 9760 000 41 58 3 11 44 69 54 00 -9 31 AVG	5		9760.000	47.86	3.11	50.97	74.00	-23.03	peak
0 0700.000 41.00 0.11 44.00 04.00 9.01 AVG	6	*	9760.000	41.58	3.11	44.69	54.00	-9.31	AVG

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector
1		4880.000	50.13	-7.45	42.68	74.00	-31.32	peak
2		4880.000	43.70	-7.45	36.25	54.00	-17.75	AVG
3		7320.000	47.07	0.77	47.84	74.00	-26.16	peak
4		7320.000	40.61	0.77	41.38	54.00	-12.62	AVG
5		9760.000	47.96	3.11	51.07	74.00	-22.93	peak
6	*	9760.000	42.27	3.11	45.38	54.00	-8.62	AVG

Mode1 / Polarization: Horizontal / CH: H Reading Correct Measure-Limit Over No. Mk. Freq. Level Factor ment dBuV dΒ dBuV/m dΒ MHz dBuV/m Detector 4960.000 50.64 -7.2043.44 74.00 -30.56 1 peak 2 44.76 -7.2037.56 -16.44 AVG 4960.000 54.00 3 47.79 48.77 -25.23 7440.000 0.98 74.00 peak 4 7440.000 41.70 0.98 42.68 54.00 -11.32 AVG 5 9920.000 48.06 3.02 51.08 74.00 -22.92 peak 42.36 3.02 45.38 54.00 AVG 6 9920.000 -8.62

1 4960.000 50.23 -7.20 43.03 74.00 -30.97 2 4960.000 44.46 -7.20 37.26 54.00 -16.74	etector peak
2 4960.000 44.46 -7.20 37.26 54.00 -16.74	neak
	poun
2 7440,000 40,00 0.00 47,04 74,00 00,00	AVG
3 7440.000 46.66 0.98 47.64 74.00 -26.36	peak
4 7440.000 40.28 0.98 41.26 54.00 -12.74	AVG
5 9920.000 48.02 3.02 51.04 74.00 -22.96	peak
6 * 9920.000 42.65 3.02 45.67 54.00 -8.33	AVG

Photographs of the test setup

Refer to Appendix - Test Setup Photos

Photographs of the EUT

Refer to Appendix - EUT Photos

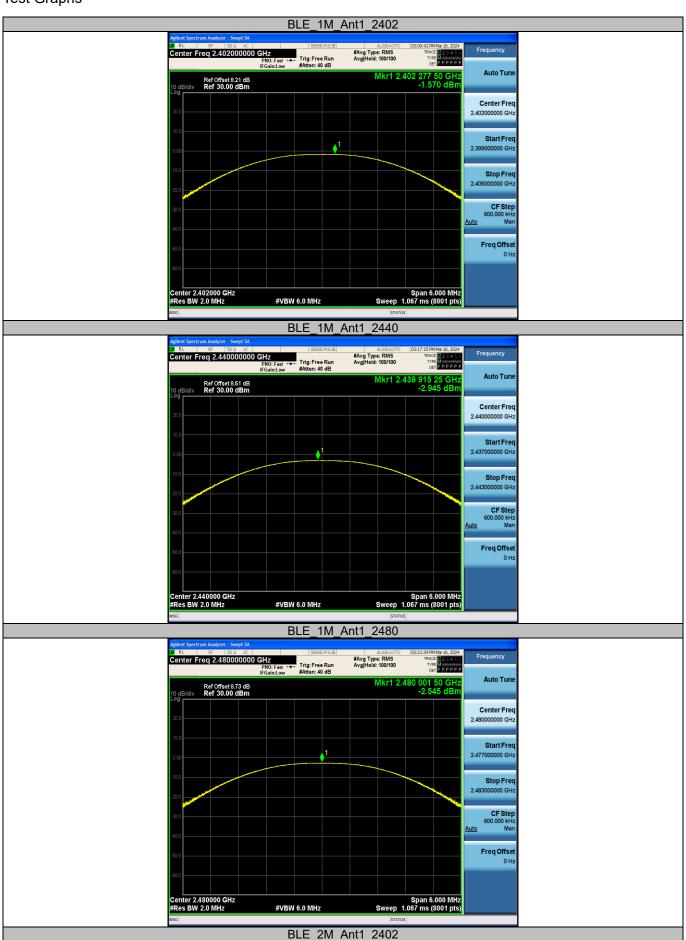
Appendix

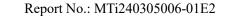
Appendix A: DTS Bandwidth

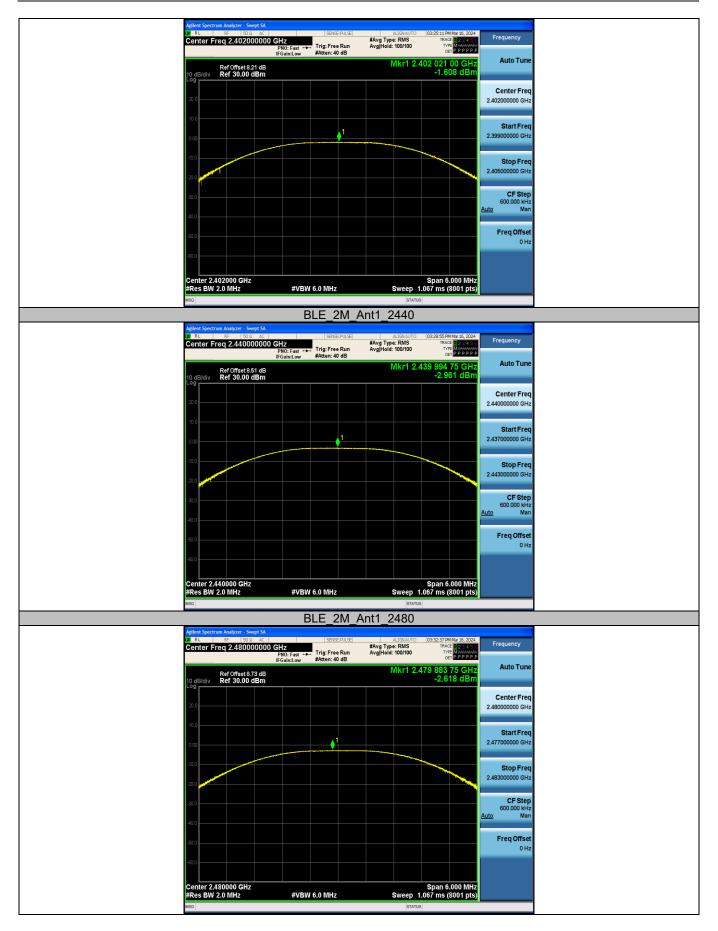
Test Result

Test Mode	Antenna	Frequency [MHz]	DTS BW [MHz]	Limit [MHz]	Verdict
BLE_1M		2402	0.628	0.5	PASS
	Ant1	2440	0.628	0.5	PASS
		2480	0.640	0.5	PASS
BLE_2M		2402	1.076	0.5	PASS
	Ant1	2440	1.092	0.5	PASS
		2480	1.204	0.5	PASS

Test Graphs

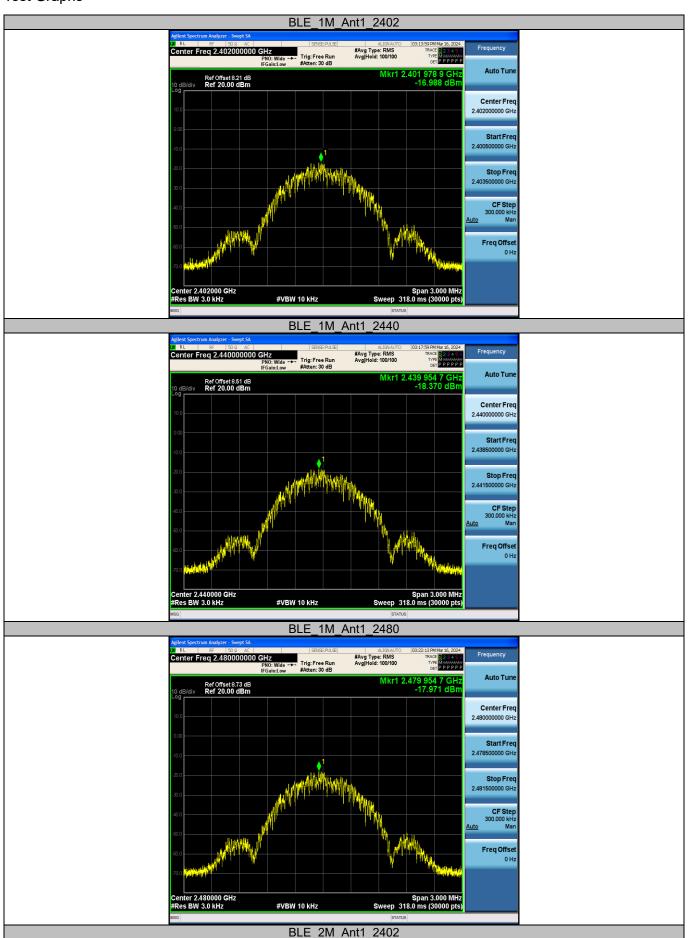


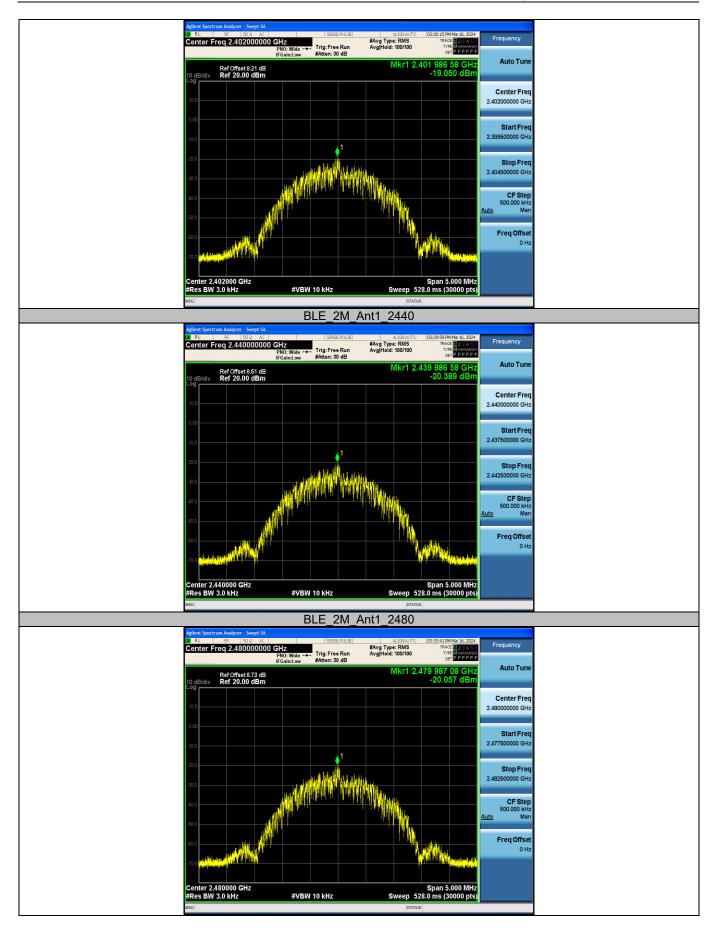



Appendix B: Maximum conducted output power

Test Result-Peak

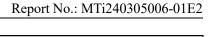
Test Mode	Antenna	Frequency [MHz]	Conducted Peak Power [dBm]	Limit [dBm]	Verdict
BLE_1M	Ant1	2402	-1.57	≤30	PASS
		2440	-2.95	≤30	PASS
		2480	-2.55	≤30	PASS
BLE_2M	Ant1	2402	-1.61	≤30	PASS
		2440	-2.96	≤30	PASS
		2480	-2.62	≤30	PASS

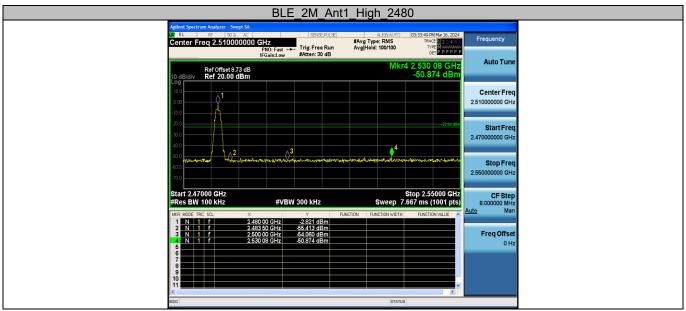



Appendix C: Maximum power spectral density

Test Result

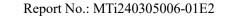
Test Mode	Antenna	Frequency [MHz]	Result [dBm/3kHz]	Limit [dBm/3kHz]	Verdict
BLE_1M	Ant1	2402	-16.99	≤8.00	PASS
		2440	-18.37	≤8.00	PASS
		2480	-17.97	≤8.00	PASS
BLE_2M	Ant1	2402	-19.05	≤8.00	PASS
		2440	-20.39	≤8.00	PASS
		2480	-20.06	≤8.00	PASS

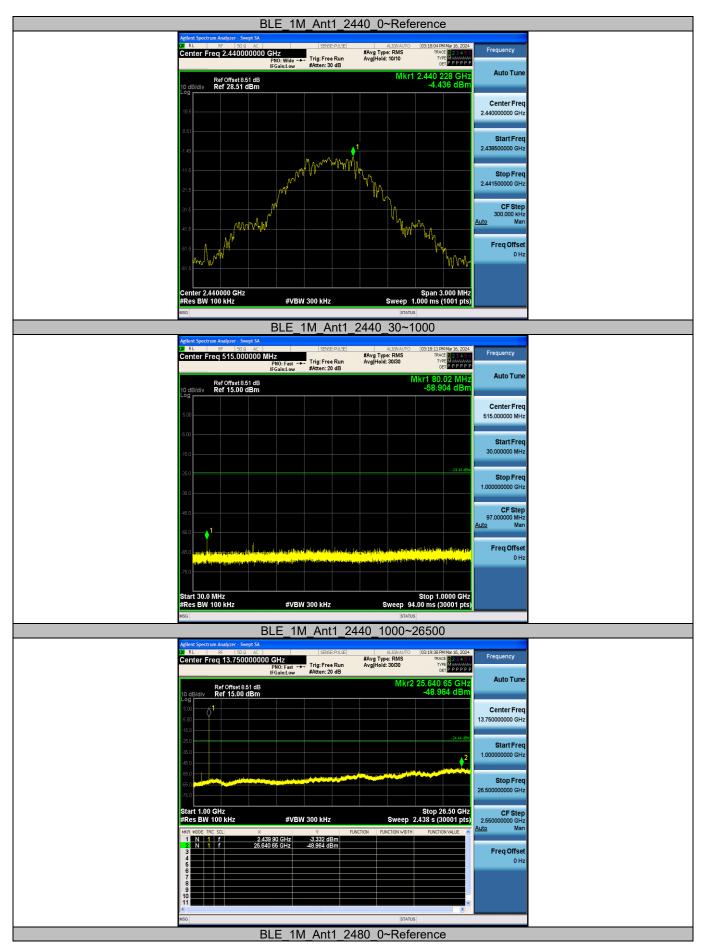


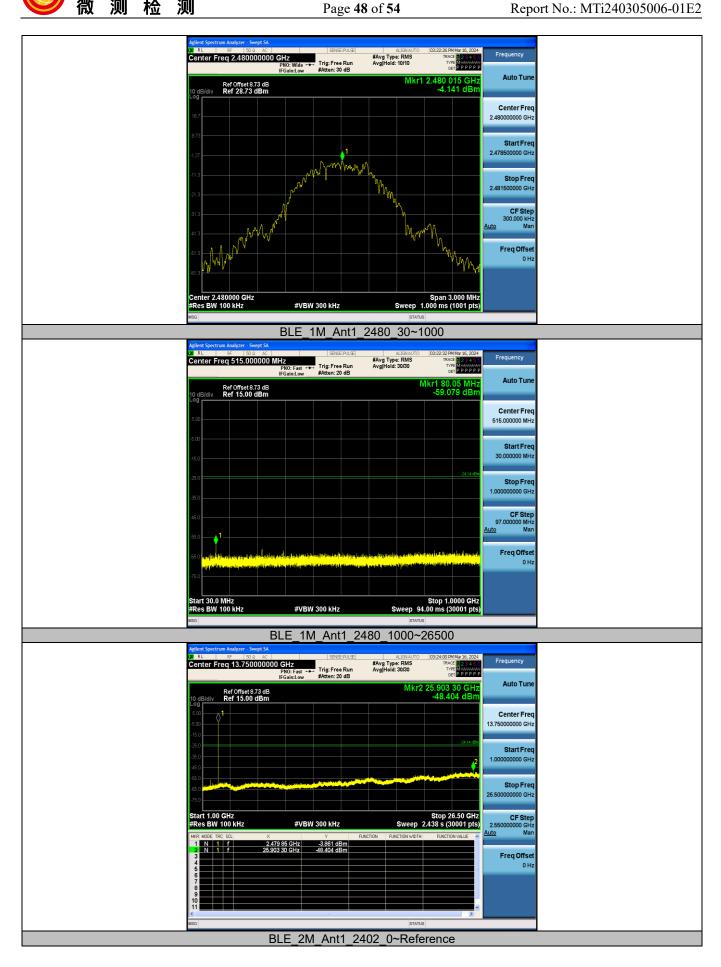


Appendix D: Band edge measurements

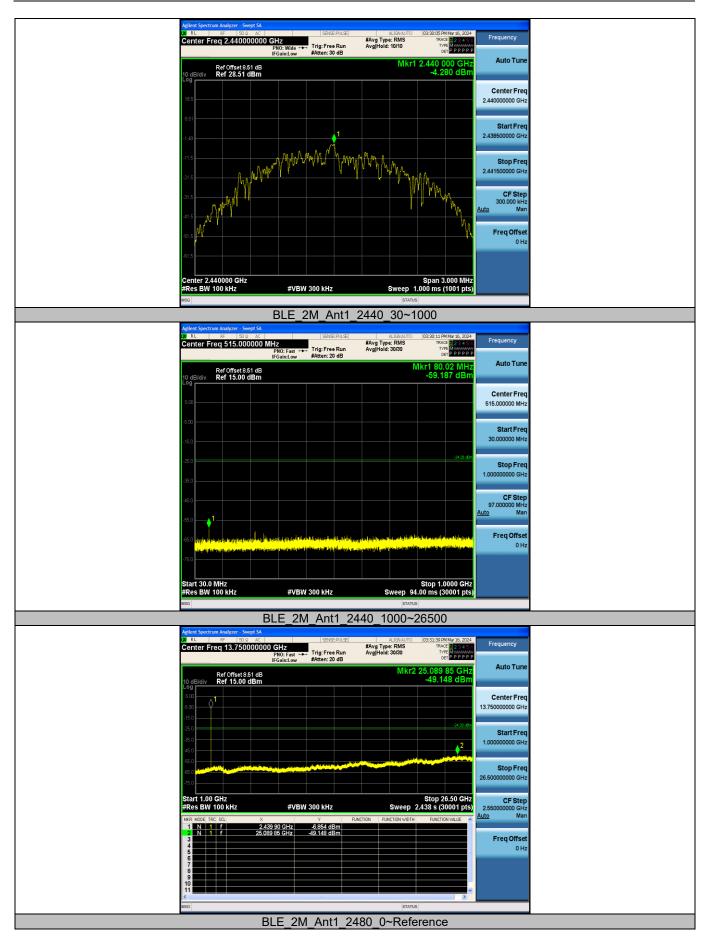


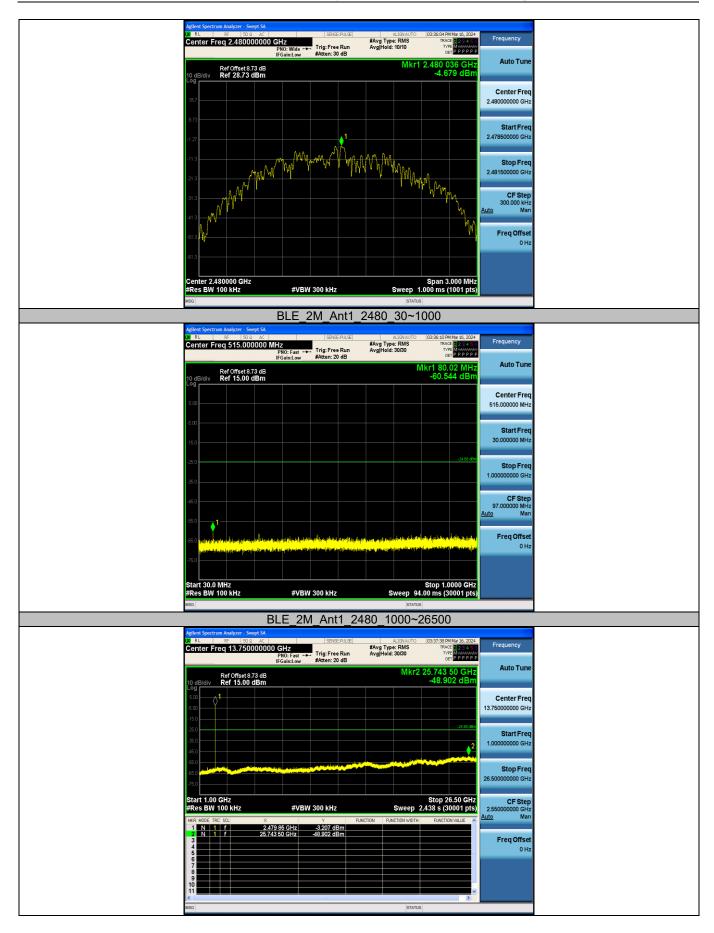


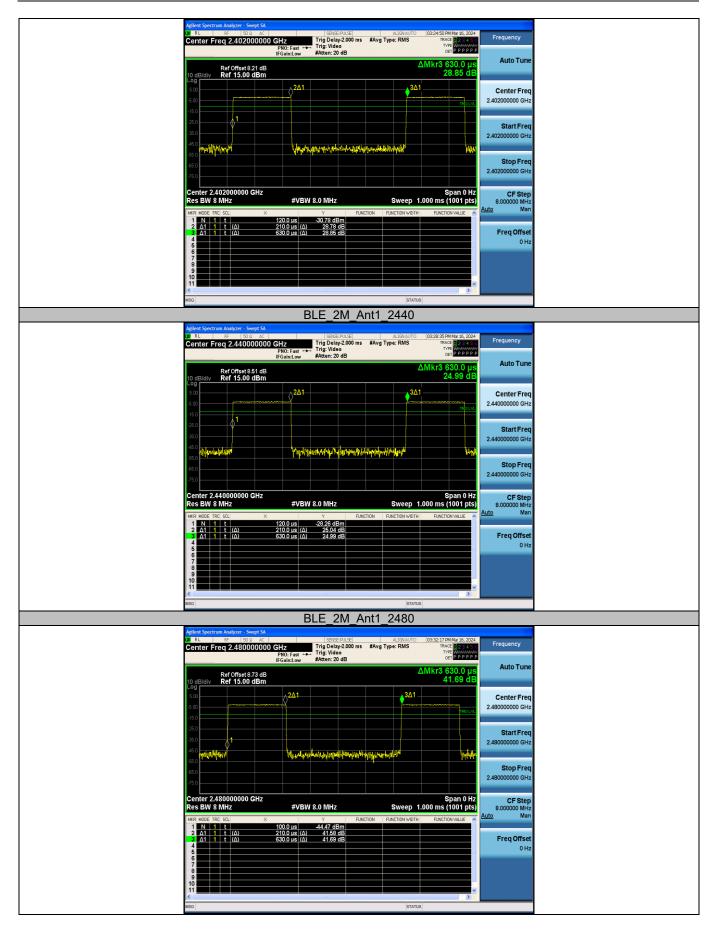





Appendix E: Conducted Spurious Emission







Appendix F: Duty Cycle

Test Result

Test Mode	Antenna	Frequency	ON Time	Period	Duty Cycle	Duty Cycle
		[MHz]	[ms]	[ms]	[%]	Factor[dB]
BLE_1M	Ant1	2402	0.40	0.63	63.49	1.97
		2440	0.40	0.63	63.49	1.97
		2480	0.40	0.63	63.49	1.97
BLE_2M	Ant1	2402	0.21	0.63	33.33	4.77
		2440	0.21	0.63	33.33	4.77
		2480	0.21	0.63	33.33	4.77

----End of Report----