

MRT Technology (Taiwan) Co., Ltd

Phone: +886-3-3288388 Fax: +886-3-3288918 www.mrt-cert.com

Report No.: 2401TW0113-U2 Report Version: Issue Date: 2024-02-23

MEASUREMENT REPORT

FCC ID : Z9G-EDF226

: Edifier International Limited APPLICANT

Application Type: Certification

Product : Wireless Planar Magnetic Headphones

Model No. : EDF200132

Brand Name : EDIFIER . STAX SPIRIT

FCC Classification: (DSS) FCC Part 15 Spread Spectrum Transmitter

FCC Rule Part(s) : Part 15.247

Test Procedure(s): ANSI C63.10-2013

Received Date : January 25, 2024

Test Date : January 29~31, 2024

: Kaunaz Lee **Tested By**

(Kaunaz Lee)

Paddy Chen (Paddy Chen) **Reviewed By**

: am her Approved By

3261

(Chenz Ker)

The test results only relate to the tested sample.

This equipment has been shown to be capable of compliance with the applicable technical standards as indicated in the measurement report and was tested in accordance with the measurement procedures specified in ANSI C63.10-2013. Test results reported herein relate only to the item(s) tested.

The test report shall not be reproduced except in full without the written approval of MRT Technology (Taiwan) Co., Ltd.

Page Number: 1 of 74

Revision History

Report No.	Version	Description	Issue Date	Note
2401TW0113-U2	1.0	Original Report	2024-02-23	

Page Number: 2 of 74



CONTENTS

De	scriptio	on	Page
1.	INTR	ODUCTION	7
	1.1.	Scope	7
	1.2.	MRT Test Location	7
2.	PRO	DUCT INFORMATION	8
	2.1.	Equipment Description	8
	2.2.	Product Specification Subjective to this Standard	8
	2.3.	Test Mode	8
	2.4.	Operation Frequency / Channel List	9
	2.5.	Test Configuration	10
	2.6.	Test Software	10
	2.7.	EMI Suppression Device(s)/Modifications	10
	2.8.	Labeling Requirements	10
	2.9.	Pseudorandom Frequency Hopping Sequence	11
3.	DES	CRIPTION of TEST	12
	3.1.	Evaluation Procedure	12
	3.2.	AC Line Conducted Emissions	12
	3.3.	Radiated Emissions	13
4.	ANTI	ENNA REQUIREMENTS	14
5.	TEST	Γ EQUIPMENT CALIBRATION DATE	15
6.	MEA	SUREMENT UNCERTAINTY	16
7.	TEST	Γ RESULT	17
	7.1.	Summary	17
	7.2.	20dB Bandwidth Measurement	18
	7.2.1.	Test Limit	18
	7.2.2.	Test Procedure used	18
	7.2.3.	Test Setting	18
	7.2.4.	Test Setup	18
	7.2.5.	Test Result	19
	7.3.	Output Power Measurement	21
	7.3.1.	Test Limit	21
	7.3.2.	Test Procedure Used	21
	7.3.3.	Test Setting	22

7.3.4.	Test Setup	22
7.3.5.	Test Result	23
7.4.	Carrier Frequency Separation Measurement	24
7.4.1.	Test Limit	24
7.4.2.	Test Procedure Used	24
7.4.3.	Test Setting	24
7.4.4.	Test Setup	24
7.4.5.	Test Result	25
7.5.	Number of Hopping Channels Measurement	27
7.5.1.	Test Limit	27
7.5.2.	Test Procedure Used	27
7.5.3.	Test Settitng	27
7.5.4.	Test Setup	27
7.5.5.	Test Result	28
7.6.	Time of Occupancy Measurement	30
7.6.1.	Test Limit	30
7.6.2.	Test Procedure Used	30
7.6.3.	Test Settitng	30
7.6.4.	Test Setup	30
7.6.5.	Test Result	31
7.7.	Out-of-Band Spurious Emissions Emissions Measurement	34
7.7.1.	Test Limit	34
7.7.2.	Test Procedure Used	34
7.7.3.	Test Setting	35
7.7.4.	Test Setup	35
7.7.5.	Test Result	36
7.8.	Radiated Spurious Emission Measurement	39
7.8.1.	Test Limit	39
7.8.2.	Test Procedure Used	39
7.8.3.	Test Setting	39
7.8.4.	Test Setup	41
7.8.5.	Test Result	43
7.9.	Radiated Restricted Band Edge Measurement	57
7.9.1.	Test Limit	57
7.9.2.	Test Procedure Used	57
7.9.3.	Test Setting	57
7.9.4.	Test Setup	59
7.9.5.	Test Result	60

	7.10. A	AC Conducted Emissions Measurement	68
	7.10.1.	Test Limit	68
	7.10.2.	Test Setup	68
	7.10.3.	Test Result	69
8.	CONCL	USION	73
App	endix A :	: Test Photograph	74
App	endix B	: EUT Photograph	74
Apr	endix C :	: Internal Photograph	74

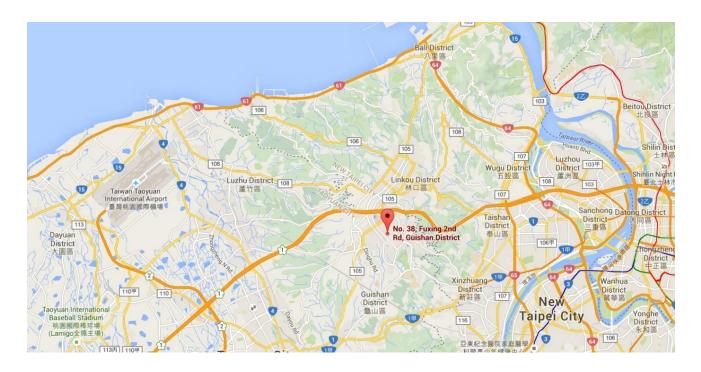
§2.1033 General Information

Applicant	Edifier International Limited				
Applicant Address	P.O. Box 6264 General Post Office Hong Kong				
Manufacturer	Beijing Edifier Technology Co., Ltd.				
Manufacturer Address	815, Floor 8, Shuangqiao Building, No.68, North Fourth Ring West Road, Haidian District, Beijing 100080, P.R.China				
Test Site	MRT Technology (Taiwan) Co., Ltd				
Test Site Address	No. 38, Fuxing Second Rd., Guishan Dist., Taoyuan City 333, Taiwan (R.O.C)				
MRT FCC Registration No.	291082				
FCC Rule Part(s)	Part 15.247				
Test Device Serial No.	#1-1 Production Pre-Production Engineering				

Test Facility / Accreditations

- 1. MRT facility is a FCC registered (Reg. No. 291082) test facility with the site description report on file and is designated by the FCC as an Accredited Test Firm.
- 2. MRT facility is an IC registered (MRT Reg. No. 21723) test laboratory with the site description on file at Industry Canada.
- 3. MRT Lab is accredited to ISO 17025 by the Taiwan Accreditation Foundation (TAF Cert. No. 3261) in EMC, Telecommunications and Radio testing for FCC (Designation Number: TW3261), Industry Canada, EU and TELEC Rules.

Page Number: 6 of 74


1. INTRODUCTION

1.1. Scope

Measurement and determination of electromagnetic emissions (EMC) of radio frequency devices including intentional and/or unintentional radiators for compliance with the technical rules and regulations of the Federal Communications Commission and the Industry Canada Certification and Engineering Bureau.

1.2. MRT Test Location

The map below shows the location of the MRT LABORATORY, its proximity to the Taoyuan City. These measurement tests were conducted at the MRT Technology (Taiwan) Co., Ltd. Facility located at No.38, Fuxing 2nd Rd., Guishan Dist., Taoyuan City 33377, Taiwan (R.O.C).

2. PRODUCT INFORMATION

2.1. Equipment Description

Product Name Wireless Planar Magnetic Headphones			
Model No.	EDF200132		
Cupporto Dadina Chas	WPAN:		
Supports Radios Spec.	Bluetooth Dual Mode: V5.4		

2.2. Product Specification Subjective to this Standard

Operating Frequency	2402~2480MHz
Type of modulation	FHSS (GFSK, π/4 DQPSK,8DPSK)
Data Rate	1Mbps (GFSK), 2Mbps (π/4 DQPSK), 3Mbps (8DPSK)

2.3. Test Mode

Test Mode	Mode 1: Transmit - 1Mbps (GFSK)
Tool Mode	Mode 2: Transmit - 3Mbps (8DPSK)

Note:

- 1. Regarding to the operation frequency, the lowest, middle and highest frequency are selected to perform the test.
- 2. Bluetooth operation was evaluated at both 1Mbps and 3Mbps data rates. Through pre-testing 2Mbps data rate was found, to produce emissions like those for 3Mbps.

Page Number: 8 of 74

2.4. Operation Frequency / Channel List

Channel Frequency Channel Frequency Channel Frequency 00 2402 MHz 01 2403 MHz 02 2404 MHz 03 2405 MHz 04 2406 MHz 05 2407 MHz 06 2408 MHz 07 2409 MHz 08 2410 MHz 09 2411 MHz 10 2412 MHz 11 2413 MHz 12 2414 MHz 13 2415 MHz 14 2416 MHz 15 2417 MHz 16 2418 MHz 17 2419 MHz 18 2420 MHz 19 2421 MHz 20 2422 MHz 21 2423 MHz 22 2424 MHz 23 2425 MHz 24 2426 MHz 25 2427 MHz 26 2428 MHz 27 2429 MHz 28 2430 MHz 29 2431 MHz 30 2432 MHz 31 2433 MHz 32 2434 MHz 33 2435 MHz 34 2436 MHz 35 2437 MHz<		-				
03 2405 MHz 04 2406 MHz 05 2407 MHz 06 2408 MHz 07 2409 MHz 08 2410 MHz 09 2411 MHz 10 2412 MHz 11 2413 MHz 12 2414 MHz 13 2415 MHz 14 2416 MHz 15 2417 MHz 16 2418 MHz 17 2419 MHz 18 2420 MHz 19 2421 MHz 20 2422 MHz 21 2423 MHz 22 2424 MHz 23 2425 MHz 24 2426 MHz 25 2427 MHz 26 2428 MHz 27 2429 MHz 28 2430 MHz 29 2431 MHz 30 2432 MHz 31 2433 MHz 32 2434 MHz 33 2435 MHz 34 2436 MHz 35 2437 MHz 36 2438 MHz 37 2439 MHz 38 2440 MHz 39 2441 MHz 40 2442 MHz 41 2443 MHz	Channel	Frequency	Channel	Frequency	Channel	Frequency
06 2408 MHz 07 2409 MHz 08 2410 MHz 09 2411 MHz 10 2412 MHz 11 2413 MHz 12 2414 MHz 13 2415 MHz 14 2416 MHz 15 2417 MHz 16 2418 MHz 17 2419 MHz 18 2420 MHz 19 2421 MHz 20 2422 MHz 21 2423 MHz 22 2424 MHz 23 2425 MHz 24 2426 MHz 25 2427 MHz 26 2428 MHz 27 2429 MHz 28 2430 MHz 29 2431 MHz 30 2432 MHz 31 2433 MHz 32 2434 MHz 33 2435 MHz 34 2436 MHz 35 2437 MHz 36 2438 MHz 37 2439 MHz 38 2440 MHz 39 2441 MHz 40 2442 MHz 41 2443 MHz 42 2444 MHz 43 2445 MHz 44 2446 MHz	00	2402 MHz	01	2403 MHz	02	2404 MHz
09 2411 MHz 10 2412 MHz 11 2413 MHz 12 2414 MHz 13 2415 MHz 14 2416 MHz 15 2417 MHz 16 2418 MHz 17 2419 MHz 18 2420 MHz 19 2421 MHz 20 2422 MHz 21 2423 MHz 22 2424 MHz 23 2425 MHz 24 2426 MHz 25 2427 MHz 26 2428 MHz 27 2429 MHz 28 2430 MHz 29 2431 MHz 30 2432 MHz 31 2433 MHz 32 2434 MHz 33 2435 MHz 34 2436 MHz 35 2437 MHz 36 2438 MHz 37 2439 MHz 38 2440 MHz 39 2441 MHz 40 2442 MHz 41 2443 MHz 42 2444 MHz 43 2445 MHz 47 2449 MHz 45 2447 MHz 46 2448 MHz 47 2449 MHz	03	2405 MHz	04	2406 MHz	05	2407 MHz
12 2414 MHz 13 2415 MHz 14 2416 MHz 15 2417 MHz 16 2418 MHz 17 2419 MHz 18 2420 MHz 19 2421 MHz 20 2422 MHz 21 2423 MHz 22 2424 MHz 23 2425 MHz 24 2426 MHz 25 2427 MHz 26 2428 MHz 27 2429 MHz 28 2430 MHz 29 2431 MHz 30 2432 MHz 31 2433 MHz 32 2434 MHz 33 2435 MHz 34 2436 MHz 35 2437 MHz 36 2438 MHz 37 2439 MHz 38 2440 MHz 39 2441 MHz 40 2442 MHz 41 2443 MHz 42 2444 MHz 43 2445 MHz 44 2446 MHz 45 2447 MHz 46 2448 MHz 47 2449 MHz 48 2450 MHz 49 2451 MHz 50 2452 MHz	06	2408 MHz	07	2409 MHz	08	2410 MHz
15 2417 MHz 16 2418 MHz 17 2419 MHz 18 2420 MHz 19 2421 MHz 20 2422 MHz 21 2423 MHz 22 2424 MHz 23 2425 MHz 24 2426 MHz 25 2427 MHz 26 2428 MHz 27 2429 MHz 28 2430 MHz 29 2431 MHz 30 2432 MHz 31 2433 MHz 32 2434 MHz 33 2435 MHz 34 2436 MHz 35 2437 MHz 36 2438 MHz 37 2439 MHz 38 2440 MHz 39 2441 MHz 40 2442 MHz 41 2443 MHz 42 2444 MHz 43 2445 MHz 41 2446 MHz 45 2447 MHz 46 2448 MHz 47 2449 MHz 48 2450 MHz 49 2451 MHz 50 2452 MHz 51 2453 MHz 52 2454 MHz 53 2455 MHz	09	2411 MHz	10	2412 MHz	11	2413 MHz
18 2420 MHz 19 2421 MHz 20 2422 MHz 21 2423 MHz 22 2424 MHz 23 2425 MHz 24 2426 MHz 25 2427 MHz 26 2428 MHz 27 2429 MHz 28 2430 MHz 29 2431 MHz 30 2432 MHz 31 2433 MHz 32 2434 MHz 33 2435 MHz 34 2436 MHz 35 2437 MHz 36 2438 MHz 37 2439 MHz 38 2440 MHz 39 2441 MHz 40 2442 MHz 41 2443 MHz 42 2444 MHz 43 2445 MHz 44 2446 MHz 45 2447 MHz 46 2448 MHz 47 2449 MHz 48 2450 MHz 49 2451 MHz 50 2452 MHz 51 2453 MHz 52 2454 MHz 53 2455 MHz 54 2456 MHz 55 2457 MHz 56 2458 MHz	12	2414 MHz	13	2415 MHz	14	2416 MHz
21 2423 MHz 22 2424 MHz 23 2425 MHz 24 2426 MHz 25 2427 MHz 26 2428 MHz 27 2429 MHz 28 2430 MHz 29 2431 MHz 30 2432 MHz 31 2433 MHz 32 2434 MHz 33 2435 MHz 34 2436 MHz 35 2437 MHz 36 2438 MHz 37 2439 MHz 38 2440 MHz 39 2441 MHz 40 2442 MHz 41 2443 MHz 42 2444 MHz 43 2445 MHz 44 2446 MHz 45 2447 MHz 46 2448 MHz 47 2449 MHz 48 2450 MHz 49 2451 MHz 50 2452 MHz 51 2453 MHz 52 2454 MHz 53 2455 MHz 54 2456 MHz 55 2457 MHz 56 2458 MHz 57 2459 MHz 58 2460 MHz 59 2461 MHz	15	2417 MHz	16	2418 MHz	17	2419 MHz
24 2426 MHz 25 2427 MHz 26 2428 MHz 27 2429 MHz 28 2430 MHz 29 2431 MHz 30 2432 MHz 31 2433 MHz 32 2434 MHz 33 2435 MHz 34 2436 MHz 35 2437 MHz 36 2438 MHz 37 2439 MHz 38 2440 MHz 39 2441 MHz 40 2442 MHz 41 2443 MHz 42 2444 MHz 43 2445 MHz 47 2449 MHz 45 2447 MHz 46 2448 MHz 47 2449 MHz 48 2450 MHz 49 2451 MHz 50 2452 MHz 51 2453 MHz 52 2454 MHz 53 2455 MHz 54 2456 MHz 55 2457 MHz 56 2458 MHz 57 2459 MHz 58 2460 MHz 59 2461 MHz 60 2462 MHz 61 2463 MHz 62 2464 MHz	18	2420 MHz	19	2421 MHz	20	2422 MHz
27 2429 MHz 28 2430 MHz 29 2431 MHz 30 2432 MHz 31 2433 MHz 32 2434 MHz 33 2435 MHz 34 2436 MHz 35 2437 MHz 36 2438 MHz 37 2439 MHz 38 2440 MHz 39 2441 MHz 40 2442 MHz 41 2443 MHz 42 2444 MHz 43 2445 MHz 44 2446 MHz 45 2447 MHz 46 2448 MHz 47 2449 MHz 48 2450 MHz 49 2451 MHz 50 2452 MHz 51 2453 MHz 52 2454 MHz 53 2455 MHz 54 2456 MHz 55 2457 MHz 56 2458 MHz 57 2459 MHz 58 2460 MHz 59 2461 MHz 60 2462 MHz 61 2463 MHz 62 2464 MHz 63 2465 MHz 64 2466 MHz 65 2467 MHz	21	2423 MHz	22	2424 MHz	23	2425 MHz
30 2432 MHz 31 2433 MHz 32 2434 MHz 33 2435 MHz 33 2435 MHz 34 2436 MHz 35 2437 MHz 36 2438 MHz 37 2439 MHz 38 2440 MHz 39 2441 MHz 40 2442 MHz 41 2443 MHz 42 2446 MHz 43 2445 MHz 44 2446 MHz 45 2447 MHz 46 2448 MHz 47 2449 MHz 48 2450 MHz 49 2451 MHz 50 2452 MHz 51 2453 MHz 52 2454 MHz 53 2455 MHz 54 2456 MHz 55 2457 MHz 56 2458 MHz 57 2459 MHz 58 2460 MHz 59 2461 MHz 60 2462 MHz 61 2463 MHz 62 2464 MHz 63 2465 MHz 64 2466 MHz 65 2467 MHz 66 2468 MHz 67 2469 MHz 68 2470 MHz 69 2471 MHz 70 2472 MHz 71 2473 MHz 72 2474 MHz 73 2475 MHz 74 2476 MHz 75 2477 MHz 76 2478 MHz 77 2479 MHz	24	2426 MHz	25	2427 MHz	26	2428 MHz
33 2435 MHz 34 2436 MHz 35 2437 MHz 36 2438 MHz 37 2439 MHz 38 2440 MHz 39 2441 MHz 40 2442 MHz 41 2443 MHz 42 2446 MHz 45 2447 MHz 46 2448 MHz 47 2449 MHz 48 2450 MHz 49 2451 MHz 50 2452 MHz 51 2453 MHz 52 2454 MHz 53 2455 MHz 51 2458 MHz 55 2457 MHz 56 2458 MHz 57 2459 MHz 58 2460 MHz 59 2461 MHz 60 2462 MHz 61 2463 MHz 62 2464 MHz 63 2465 MHz 64 2466 MHz 65 2467 MHz 66 2468 MHz 67 2469 MHz 68 2470 MHz 69 2471 MHz 70 2472 MHz 71 2473 MHz 72 2474 MHz 73 2475 MHz 74 2476 MHz 75 2477 MHz 76 2478 MHz 77 2479 MHz	27	2429 MHz	28	2430 MHz	29	2431 MHz
36 2438 MHz 37 2439 MHz 38 2440 MHz 39 2441 MHz 40 2442 MHz 41 2443 MHz 42 2444 MHz 43 2445 MHz 44 2446 MHz 45 2447 MHz 46 2448 MHz 47 2449 MHz 48 2450 MHz 49 2451 MHz 50 2452 MHz 51 2453 MHz 52 2454 MHz 53 2455 MHz 54 2456 MHz 55 2457 MHz 56 2458 MHz 57 2459 MHz 58 2460 MHz 59 2461 MHz 60 2462 MHz 61 2463 MHz 62 2464 MHz 63 2465 MHz 64 2466 MHz 65 2467 MHz 66 2468 MHz 67 2469 MHz 68 2470 MHz 69 2471 MHz 70 2472 MHz 71 2473 MHz 72 2474 MHz 73 2475 MHz 74 2476 MHz 75 2477 MHz 76 2478 MHz 77 2479 MHz </td <td>30</td> <td>2432 MHz</td> <td>31</td> <td>2433 MHz</td> <td>32</td> <td>2434 MHz</td>	30	2432 MHz	31	2433 MHz	32	2434 MHz
39 2441 MHz 40 2442 MHz 41 2443 MHz 42 2446 MHz 43 2445 MHz 44 2446 MHz 45 2447 MHz 46 2448 MHz 47 2449 MHz 48 2450 MHz 49 2451 MHz 50 2452 MHz 51 2453 MHz 52 2454 MHz 53 2455 MHz 54 2456 MHz 55 2457 MHz 56 2458 MHz 57 2459 MHz 58 2460 MHz 59 2461 MHz 60 2462 MHz 61 2463 MHz 62 2464 MHz 63 2465 MHz 64 2466 MHz 65 2467 MHz 66 2468 MHz 67 2469 MHz 68 2470 MHz 69 2471 MHz 70 2472 MHz 71 2473 MHz 72 2474 MHz 73 2475 MHz 74 2476 MHz 75 2477 MHz 76 2478 MHz 77 2479 MHz	33	2435 MHz	34	2436 MHz	35	2437 MHz
42 2444 MHz 43 2445 MHz 44 2446 MHz 45 2447 MHz 46 2448 MHz 47 2449 MHz 48 2450 MHz 49 2451 MHz 50 2452 MHz 51 2453 MHz 52 2454 MHz 53 2455 MHz 54 2456 MHz 55 2457 MHz 56 2458 MHz 57 2459 MHz 58 2460 MHz 59 2461 MHz 60 2462 MHz 61 2463 MHz 62 2464 MHz 63 2465 MHz 64 2466 MHz 65 2467 MHz 66 2468 MHz 67 2469 MHz 68 2470 MHz 69 2471 MHz 70 2472 MHz 71 2473 MHz 72 2474 MHz 73 2475 MHz 74 2476 MHz 75 2477 MHz 76 2478 MHz 77 2479 MHz	36	2438 MHz	37	2439 MHz	38	2440 MHz
45 2447 MHz 46 2448 MHz 47 2449 MHz 48 2450 MHz 49 2451 MHz 50 2452 MHz 51 2453 MHz 52 2454 MHz 53 2455 MHz 54 2456 MHz 55 2457 MHz 56 2458 MHz 57 2459 MHz 58 2460 MHz 59 2461 MHz 60 2462 MHz 61 2463 MHz 62 2464 MHz 63 2465 MHz 64 2466 MHz 65 2467 MHz 66 2468 MHz 67 2469 MHz 68 2470 MHz 69 2471 MHz 70 2472 MHz 71 2473 MHz 72 2474 MHz 73 2475 MHz 74 2476 MHz 75 2477 MHz 76 2478 MHz 77 2479 MHz	39	2441 MHz	40	2442 MHz	41	2443 MHz
48 2450 MHz 49 2451 MHz 50 2452 MHz 51 2453 MHz 52 2454 MHz 53 2455 MHz 54 2456 MHz 55 2457 MHz 56 2458 MHz 57 2459 MHz 58 2460 MHz 59 2461 MHz 60 2462 MHz 61 2463 MHz 62 2464 MHz 63 2465 MHz 64 2466 MHz 65 2467 MHz 66 2468 MHz 67 2469 MHz 68 2470 MHz 69 2471 MHz 70 2472 MHz 71 2473 MHz 72 2474 MHz 73 2475 MHz 74 2476 MHz 75 2477 MHz 76 2478 MHz 77 2479 MHz	42	2444 MHz	43	2445 MHz	44	2446 MHz
51 2453 MHz 52 2454 MHz 53 2455 MHz 54 2456 MHz 55 2457 MHz 56 2458 MHz 57 2459 MHz 58 2460 MHz 59 2461 MHz 60 2462 MHz 61 2463 MHz 62 2464 MHz 63 2465 MHz 64 2466 MHz 65 2467 MHz 66 2468 MHz 67 2469 MHz 68 2470 MHz 69 2471 MHz 70 2472 MHz 71 2473 MHz 72 2474 MHz 73 2475 MHz 74 2476 MHz 75 2477 MHz 76 2478 MHz 77 2479 MHz	45	2447 MHz	46	2448 MHz	47	2449 MHz
54 2456 MHz 55 2457 MHz 56 2458 MHz 57 2459 MHz 58 2460 MHz 59 2461 MHz 60 2462 MHz 61 2463 MHz 62 2464 MHz 63 2465 MHz 64 2466 MHz 65 2467 MHz 66 2468 MHz 67 2469 MHz 68 2470 MHz 69 2471 MHz 70 2472 MHz 71 2473 MHz 72 2474 MHz 73 2475 MHz 74 2476 MHz 75 2477 MHz 76 2478 MHz 77 2479 MHz	48	2450 MHz	49	2451 MHz	50	2452 MHz
57 2459 MHz 58 2460 MHz 59 2461 MHz 60 2462 MHz 61 2463 MHz 62 2464 MHz 63 2465 MHz 64 2466 MHz 65 2467 MHz 66 2468 MHz 67 2469 MHz 68 2470 MHz 69 2471 MHz 70 2472 MHz 71 2473 MHz 72 2474 MHz 73 2475 MHz 74 2476 MHz 75 2477 MHz 76 2478 MHz 77 2479 MHz	51	2453 MHz	52	2454 MHz	53	2455 MHz
60 2462 MHz 61 2463 MHz 62 2464 MHz 63 2465 MHz 64 2466 MHz 65 2467 MHz 66 2468 MHz 67 2469 MHz 68 2470 MHz 69 2471 MHz 70 2472 MHz 71 2473 MHz 72 2474 MHz 73 2475 MHz 74 2476 MHz 75 2477 MHz 76 2478 MHz 77 2479 MHz	54	2456 MHz	55	2457 MHz	56	2458 MHz
63 2465 MHz 64 2466 MHz 65 2467 MHz 66 2468 MHz 67 2469 MHz 68 2470 MHz 69 2471 MHz 70 2472 MHz 71 2473 MHz 72 2474 MHz 73 2475 MHz 74 2476 MHz 75 2477 MHz 76 2478 MHz 77 2479 MHz	57	2459 MHz	58	2460 MHz	59	2461 MHz
66 2468 MHz 67 2469 MHz 68 2470 MHz 69 2471 MHz 70 2472 MHz 71 2473 MHz 72 2474 MHz 73 2475 MHz 74 2476 MHz 75 2477 MHz 76 2478 MHz 77 2479 MHz	60	2462 MHz	61	2463 MHz	62	2464 MHz
69 2471 MHz 70 2472 MHz 71 2473 MHz 72 2474 MHz 73 2475 MHz 74 2476 MHz 75 2477 MHz 76 2478 MHz 77 2479 MHz	63	2465 MHz	64	2466 MHz	65	2467 MHz
72 2474 MHz 73 2475 MHz 74 2476 MHz 75 2477 MHz 76 2478 MHz 77 2479 MHz	66	2468 MHz	67	2469 MHz	68	2470 MHz
75 2477 MHz 76 2478 MHz 77 2479 MHz	69	2471 MHz	70	2472 MHz	71	2473 MHz
	72	2474 MHz	73	2475 MHz	74	2476 MHz
78 2480 MHz N/A N/A N/A N/A	75	2477 MHz	76	2478 MHz	77	2479 MHz
	78	2480 MHz	N/A	N/A	N/A	N/A

Page Number: 9 of 74

2.5. Test Configuration

This device was tested per the guidance of ANSI C63.10-2013. ANSI C63.10-2013 was used to reference the appropriate EUT setup for radiated spurious emissions testing and AC line conducted testing.

2.6. Test Software

The test utility software used during testing was "Bluetest3 v3.3.7".

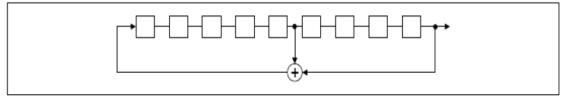
2.7. EMI Suppression Device(s)/Modifications

No EMI suppression device(s) were added and/or no modifications were made during testing.

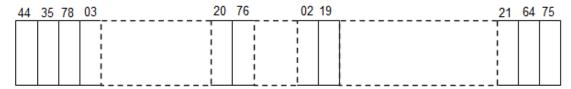
2.8. Labeling Requirements

Per 2.1074 & 15.19; Docket 95-19

The label shall be permanently affixed at a conspicuous location on the device; instruction manual or pamphlet supplied to the user and be readily visible to the purchaser at the time of purchase. However, when the device is so small wherein placement of the label with specified statement is not practical, only the FCC ID must be displayed on the device per Section 15.19(a)(5). Please see attachment for FCC ID label and label location.


Page Number: 10 of 74

2.9. Pseudorandom Frequency Hopping Sequence


The pseudorandom sequence may be generated in a nine-stage shift register whose 5th and 9th stage outputs are added in a modulo-two addition stage. And the result is fed back to the input of the first stage. The sequence begins with the first ONE of 9 consecutive ONEs; i.e. the shift register is initialized with nine ones.

- Number of shift register stages: 9
- Length of pseudo-random sequence: 29 1 = 511 bits
- Longest sequence of zeros: 8 (non-inverted signal)

Linear Feedback Shift Register for Generation of the PRBS sequence

An example of Pseudorandom Frequency Hopping Sequence as follow:

Each frequency used equally on the average by each transmitter.

The system receivers have input bandwidths that match the hopping channel bandwidths of their Corresponding transmitters and shift frequencies in synchronization with the transmitted signals.

3. DESCRIPTION of TEST

3.1. Evaluation Procedure

The measurement procedures described in the American National Standard for Testing Unlicensed Wireless Devices (ANSI C63.10-2013) were used in the measurement of the **Wireless Planar Magnetic Headphones**.

Deviation from measurement procedure......None

3.2. AC Line Conducted Emissions

The line-conducted facility is located inside an 9'x4'x3' shielded enclosure. A 1m x 2m wooden table 80cm high is placed 40cm away from the vertical wall and 80cm away from the sidewall of the shielded room. Two 10kHz-30MHz, $50\Omega/50uH$ Line-Impedance Stabilization Networks (LISNs) are bonded to the shielded room floor. Power to the LISNs is filtered by external high-current high-insertion loss power line filters. These filters attenuate ambient signal noise from entering the measurement lines. These filters are also bonded to the shielded enclosure.

The EUT is powered from one LISN and the support equipment is powered from the second LISN. All interconnecting cables more than 1 meter were shortened to a 1 meter length by non-inductive bundling (serpentine fashion) and draped over the back edge of the test table. All cables were at least 40cm above the horizontal reference ground-plane. Power cables for support equipment were routed down to the second LISN while ensuring that that cables were not draped over the second LISN.

Sufficient time for the EUT, support equipment, and test equipment was allowed in order for them to warm up to their normal operating condition. The RF output of the LISN was connected to the receiver and exploratory measurements were made to determine the frequencies producing the maximum emission from the EUT. The receiver was scanned from 150kHz to 30MHz. The detector function was set to peak mode for exploratory measurements while the bandwidth of the analyzer was set to 9kHz. The EUT, support equipment, and interconnecting cables were arranged and manipulated to maximize each emission. Each emission was also maximized by varying: power lines, the mode of operation or data exchange speed, or support equipment whichever determined the worst-case emission. Once the worst case emissions have been identified, the one EUT cable configuration/arrangement and mode of operation that produced these emissions were used for final measurements on the same test site. The analyzer is set to CISPR quasi-peak and average detectors with a 9kHz resolution bandwidth for final measurements.

An extension cord was used to connect to a single LISN which powered by EUT. The extension cord was calibrated with LISN, the impedance and insertion loss are compliance with the requirements as stated in ANSI C63.10-2013.

Line conducted emissions test results are shown in Section 7.10.

3.3. Radiated Emissions

The radiated test facilities consisted of an indoor 3 meter semi-anechoic chamber used for final measurements and exploratory measurements, when necessary. The measurement area is contained within the semi-anechoic chamber which is shielded from any ambient interference. For measurements above 1GHz absorbers are arranged on the floor between the turn table and the antenna mast in such a way so as to maximize the reduction of reflections. For measurements below 1GHz, the absorbers are removed. An MF Model 210SS turntable is used for radiated measurement. It is a continuously rotatable, remote controlled, metallic turntable and 2 meters (6.56 ft.) in diameter. The turn table is flush with the raised floor of the chamber in order to maintain its function as a ground plane. An 80cm high PVC support structure is placed on top of the turntable. For all measurements, the spectrum was scanned through all EUT azimuths and from 1 to 4 meter receive antenna height using a broadband antenna from 30MHz up to the upper frequency shown in 15.33(b)(1) depending on the highest frequency generated or used in the device or on which the device operates or tunes. For frequencies above 1GHz, linearly polarized double ridge horn antennas were used. For frequencies below 30MHz, a calibrated loop antenna was used. When exploratory measurements were necessary, they were performed at 1 meter test distance inside the semi-anechoic chamber using broadband antennas, broadband amplifiers, and spectrum analyzers to determine the frequencies and modes producing the maximum emissions. Sufficient time for the EUT, support equipment, and test equipment was allowed in order for them to warm up to their normal operating condition. The test set-up for frequencies below 1GHz was placed on top of the 0.8 meter high, 1 x 1.5 meter table; and test set-up for frequencies 1-40GHz was placed on top of the 1.5 meter high, 1 x 1.5 meter table. The EUT, support equipment, and interconnecting cables were arranged and manipulated to maximize each emission. Appropriate precaution was taken to ensure that all emissions from the EUT were maximized and investigated. The system configuration, clock speed, mode of operation or video resolution, if applicable, turntable azimuth, and receive antenna height was noted for each frequency found.

Final measurements were made in the semi-anechoic chamber using calibrated, linearly polarized broadband and horn antennas. The test setup was configured to the setup that produced the worst case emissions. The spectrum analyzer was set to investigate all frequencies required for testing to compare the highest radiated disturbances with respect to the specified limits. The turntable containing the EUT was rotated through 360 degrees and the height of the receive antenna was varied 1 to 4 meters and stopped at the azimuth and height producing the maximum emission. Each emission was maximized by changing the orientation of the EUT through three orthogonal planes and changing the polarity of the receive antenna, whichever produced the worst-case emissions. According to 3dB Beamwidth of horn antenna, the horn antenna should be always directed to the EUT when rising height.

Radiated emissions test results are shown in Section 7.8 & 7.9

4. ANTENNA REQUIREMENTS

Excerpt from §15.203 of the FCC Rules/Regulations:

"An intentional radiator antenna shall be designed to ensure that no antenna other than that furnished by the responsible party can be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section."

- The antenna of the Wireless Planar Magnetic Headphones, is permanently attached.
- There are no provisions for connection to an external antenna.

Conclusion:

The EUT unit complies with the requirement of §15.203.

Antenna List

No.	Manufacturer	Part No.	Antenna Type	Peak Gain
1	Hongji Wireless Communication (Shenzhen) Co., LTD	S 5	FPCB	-0.45dBi

Page Number: 14 of 74

5. TEST EQUIPMENT CALIBRATION DATE

Conducted Emissions –SR2

Instrument	Manufacturer	Type No.	Asset No.	Cali. Interval	Cali. Due Date
Two-Line V-Network	R&S	ENV216	MRTTWA00019	1 year	2024/3/7
Cabla	Daniel	N1C50-RG400-	MOTTIMECOOAC	1 year	2024/6/15
Cable	Rosnol	B1C50-500CM	MRTTWE00013		
EMI Test Receiver	R&S	ESR3	MRTTWA00009	1 year	2024/3/8

Radiated Emissions - AC1

Instrument	Manufacturer	Type No.	Asset No.	Cali. Interval	Cali. Due Date
Acitve Loop Antenna	SCHWARZBECK	FMZB 1519B	MRTTWA00002	1 year	2024/5/22
Broadband TRILOG Antenna	SCHWARZBECK	VULB 9162	MRTTWA00001	1 year	2024/10/31
Broadband Hornantenna	SCHWARZBECK	BBHA 9120D	MRTTWA00003	1 year	2024/3/24
Broadband Preamplifier	SCHWARZBECK	BBV 9718	MRTTWA00005	1 year	2024/3/24
Breitband Hornantenna	SCHWARZBECK	BBHA 9170	MRTTWA00004	1 year	2024/3/20
Broadband Amplifier	SCHWARZBECK	BBV 9721	MRTTWA00006	1 year	2024/3/27
EMI Test Receiver	R&S	ESR3	MRTTWA00009	1 year	2024/3/8
Signal Analyzer	R&S	FSV40	MRTTWA00007	1 year	2024/3/14
Antenna Cable	HUBERSUHNER	SF106	MRTTWE00010	1 year	2024/6/13
Cabla	Dannel	K1K50-UP0264-	MOTTWEOOAA	4	2024/6/40
Cable	Rosnol	K1K50-4M	MRTTWE00012	1 year	2024/6/18
Temperature/Humidity Meter	TFA	35.1078.10.IT	MRTTWA00032	1 year	2024/6/4

Conducted Test Equipment – SR6

Instrument	Manufacturer	Type No.	Asset No.	Cali. Interval	Cali. Due Date
EXA Signal Analyzer	KEYSIGHT	N9010A	MRTTWA00012	1 year	2024/10/17
EXA Signal Analyzer	KEYSIGHT	N9010B	MRTTWA00074	1 year	2024/7/19
USB Wideband Power Sensor	KEYSIGHT	U2021XA	MRTTWA00015	1 year	2024/3/16

Test Software

Software	Version	Function
e3	9.160520a	EMI Test Software
ЕМІ	V3	EMI Test Software

Page Number: 15 of 74

6. MEASUREMENT UNCERTAINTY

Where relevant, the following test uncertainty levels have been estimated for tests performed on the EUT as specified in CISPR 16-4-2. This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k = 2.

Conducted Emission- Power Line

Measuring Uncertainty for a Level of Confidence of 95% (U=2Uc(y)): ± 2.53dB

Radiated Spurious Emission

Measuring Uncertainty for a Level of Confidence of 95% (U=2Uc(y)): ± 3.92dB (Below 30M)

Measuring Uncertainty for a Level of Confidence of 95% (U=2Uc(y)): ± 4.25dB (30M~1G)

Measuring Uncertainty for a Level of Confidence of 95% (U=2Uc(y)): ± 4.40dB (1G~18G)

Measuring Uncertainty for a Level of Confidence of 95% (U=2Uc(y)): ± 4.45dB (18G~40G)

Frequency Error

Measuring Uncertainty for a Level of Confidence of 95% (U=2Uc(y)): ±78.4Hz

Conducted Power

Measuring Uncertainty for a Level of Confidence of 95% (U=2Uc(y)): ± 0.84dB

Conducted Spurious Emission

Measuring Uncertainty for a Level of Confidence of 95% (U=2Uc(y)):± 2.65 dB

Occupied Bandwidth

Measuring Uncertainty for a Level of Confidence of 95% (U=2Uc(y)): ±3.3%

Temp. / Humidity

Measuring Uncertainty for a Level of Confidence of 95% (U=2Uc(y)): ±0.82°C/ ±3%

DC Voltage

Measuring Uncertainty for a Level of Confidence of 95% (U=2Uc(y)): ±0.3%

Page Number: 16 of 74

7. TEST RESULT

7.1. Summary

Product Name: Wireless Planar Magnetic Headphones

FCC Classification: (DSS) FCC Part 15 Spread Spectrum Transmitter

FCC Part Section(s)	Test Description	Test Limit	Test Condition	Test Result	Reference
15.247(a)(1)	20dB Bandwidth	N/A		PASS	Section 7.2
15.247(b)(1)	Output Power	<1 Watt if > 75 non- overlapping channels used		PASS	Section 7.3
15.247(a)(1)	Carrier Frequency Separation	25KHz or 20 dB BW for systems with Output Power < 125mW	Conducted	PASS	Section 7.4
15.247(a)(1)(iii)	Number of Hopping Channels	> 15 Channels		PASS	Section 7.5
15.247(a)(1)(iii)	Time of Occupancy	< 0.4 sec in 31.6 sec period		PASS	Section 7.6
15.247(d)	Out-of-Band Emissions	Conducted ≥ 20dBc		PASS	Section 7.7
15.205 15.209	Spurious Emission	< FCC 15.209 limits	Radiated	PASS	Section 7.8
15.205 15.209	Band Edge Measurement	≤ 74dBuV/m(Peak)≤ 54dBuV/m(Average)	Radiated	PASS	Section 7.9
15.207	AC Conducted Emissions 150kHz - 30MHz	< FCC 15.207 limits	Line Conducted	N/A	Section 7.10

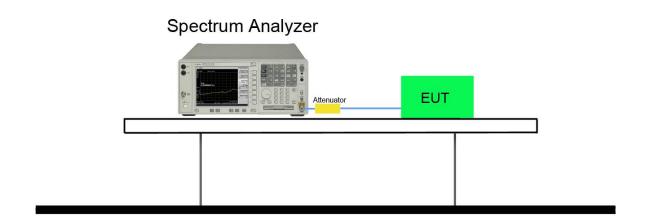
Note:

- Determining compliance is based on the test results met the regulation limits or requirements
 declared by clients, and the test results don't take into account the value of measurement uncertainty.
- 2) All modes of operation and data rates were investigated. For radiated emission test, every axis (X, Y, Z) was also verified. The test results shown in the following sections represent the worst case emissions.
- 3) The analyzer plots shown in this section were all taken with a correction table loaded into the analyzer. The correction table was used to account for the losses of the cables and attenuators used as part of the system to connect the EUT to the analyzer at all frequencies of interest.
- 4) All antenna port conducted emissions testing was performed on a test bench with the antenna port of the EUT connected to the spectrum analyzer through calibrated cables and attenuators.

7.2. 20dB Bandwidth Measurement

7.2.1. Test Limit

N/A

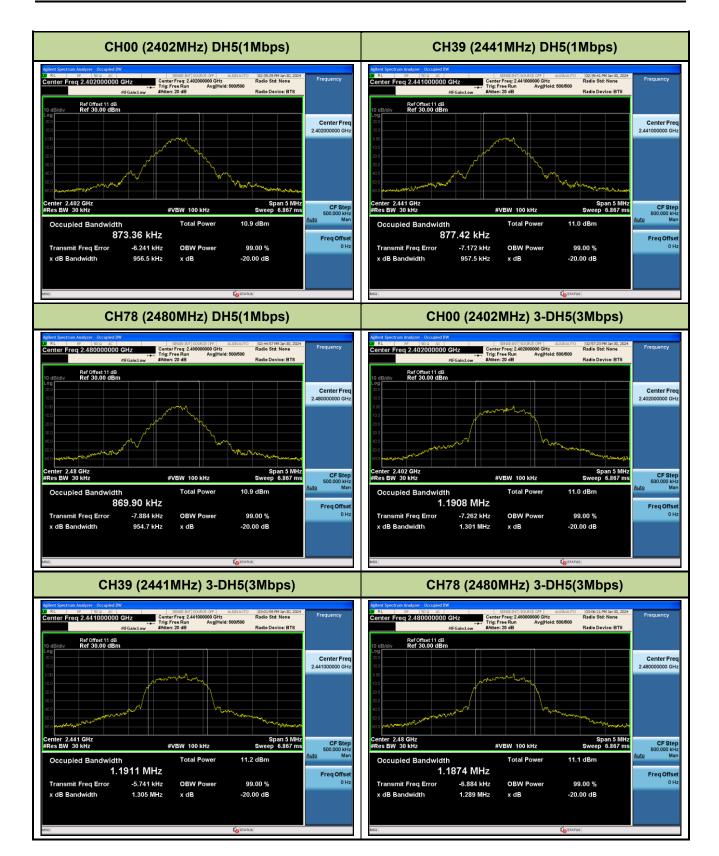

7.2.2. Test Procedure used

ANSI C63.10-2013 - Section 6.9.2

7.2.3. Test Setting

- 1. Set RBW ≥ 1%~5% of the 20dB bandwidth
- 2. VBW ≥ 3 x RBW
- 3. Span = approximately 2 to 5 times the 20dB bandwidth, centered on a hopping channel
- 4. Detector = Peak
- 5. Trace mode = max hold
- 6. Sweep = auto couple
- 7. Allow the trace to stabilize
- 8. Measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 20 dB relative to the maximum level measured in the fundamental emission.

7.2.4. Test Setup



7.2.5. Test Result

Test Mode	Channel No.	Frequency (MHz)	20dB Bandwidth (kHz)	Result
DH5	00	2402	956.457	Pass
DH5	39	2441	957.541	Pass
DH5	78	2480	954.672	Pass
3-DH5	00	2402	1300.626	Pass
3-DH5	39	2441	1304.620	Pass
3-DH5	78	2480	1288.597	Pass

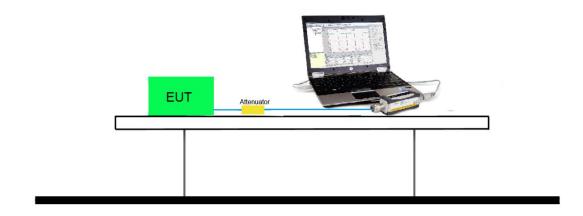
7.3. Output Power Measurement

7.3.1. Test Limit

For frequency hopping systems operating in the 2400-2483.5MHz band employing at least 75 non-overlapping hopping channels: 1watt (30dBm). For all other frequency hopping systems in the 2400 - 2483.5MHz band: 0.125 watt (21dBm).

For FHSs operating in the band 2400-2483.5 MHz, the maximum peak conducted output power shall not exceed 1.0 W and the e.i.r.p. shall not exceed 4 W if the hopset uses 75 or more hopping channels.

7.3.2. Test Procedure Used


ANSI C63.10-2013 - Section 7.8.5

7.3.3. Test Setting

- 1. Set RBW ≥ the 20 dB bandwidth of the emission being measured.
- 2. VBW ≥ 3 x RBW
- 3. Span = approximately 2 to 3 times the 20dB bandwidth, centered on a hopping channel
- 4. Detector = Peak
- 5. Trace mode = max hold
- 6. Sweep = auto couple
- 7. Allow the trace to stabilize, Use the marker-to-peak function to set the marker to the peak of the emission. The indicated level is the peak output power (don't forget added the external attenuation and cable loss)
- 8. Note: A peak responding power meter may be used, where the power meter and sensor system video bandwidth is greater than the occupied bandwidth of the unlicensed wireless device, rather than a spectrum analyzer.

7.3.4. Test Setup

7.3.5. Test Result

Test Mode	Channel No.	Frequency (MHz)	Total Average Power (dBm)	Peak Power (dBm) [Report only]	Peak Power Limit (dBm)
DH5	00	2402	3.76	4.49	< 21
DH5	39	2441	4.00	4.73	< 21
DH5	78	2480	3.94	4.65	< 21
2DH5	00	2402	3.80	6.71	< 21
2DH5	39	2441	4.03	6.83	< 21
2DH5	78	2480	3.94	6.77	< 21
3DH5	00	2402	3.71	7.15	< 21
3DH5	39	2441	3.97	7.42	< 21
3DH5	78	2480	3.90	7.28	< 21

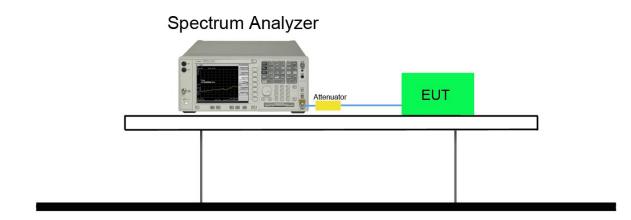
Note:

- 1. The peak power of all test modes is less than 21dBm(125mW).
- 2. Peak Power Output Value =Reading value on power meter + cable loss.
- 3. Duty cycle: DH5 is 77.33%, 2DH5 is 40.96%, 3DH5 is 28.99%

7.4. Carrier Frequency Separation Measurement

7.4.1. Test Limit

The minimum permissible channel separation for this system is 2/3 the value of the 20dB BW.

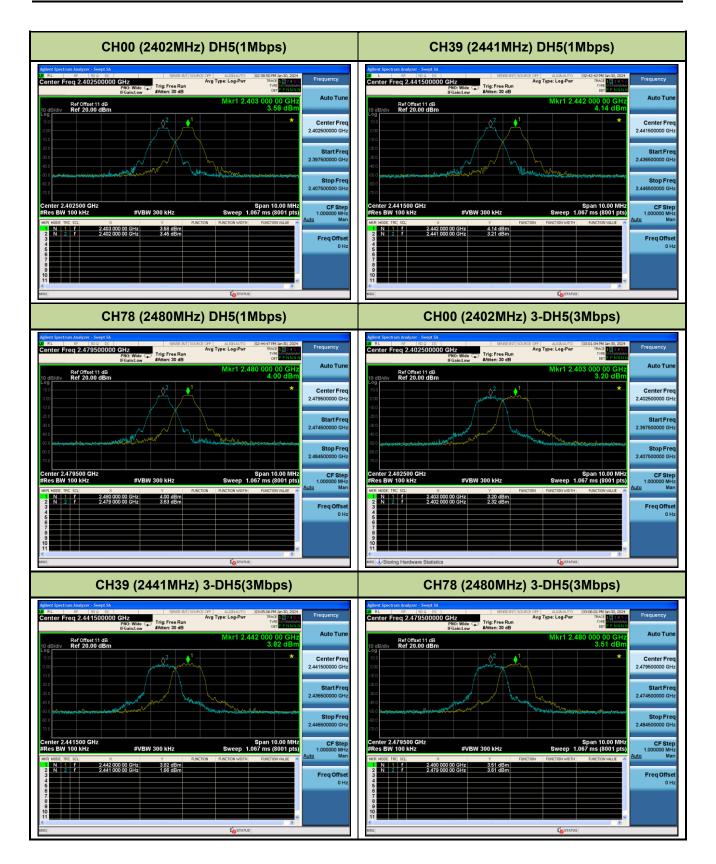

7.4.2. Test Procedure Used

ANSI C63.10-2013 - Section 7.8.2

7.4.3. Test Setting

- 1. Span = wide enough to capture the peaks of two adjacent channels.
- 2. RBW ≥ 1 % of the span
- 3. VBW ≥ RBW
- 4. Detector = peak
- 5. Sweep time = auto couple
- 6. Trace mode = max hold
- 7. Trace was allowed to stabilize

7.4.4. Test Setup


7.4.5. Test Result

Test Mode	Channel No.	Frequency (MHz)	Channel Separation (MHz)	Limit (kHz)	Limit of 2/3*20dB Bandwidth (kHz)	Result
DH5	00	2402	1.00	25	637.638	Pass
DH5	39	2441	1.00	25	638.361	Pass
DH5	78	2480	1.00	25	636.448	Pass
3-DH5	00	2402	1.00	25	867.084	Pass
3-DH5	39	2441	1.00	25	869.747	Pass
3-DH5	78	2480	1.00	25	859.065	Pass

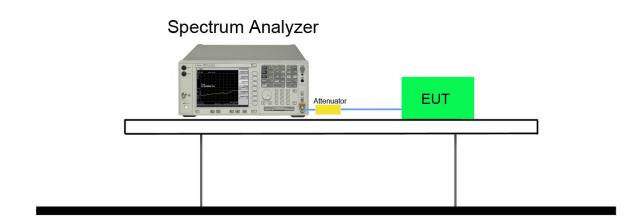
Note:

- 1. The limit is 25 kHz or 2/3 the value of the 20dB bandwidth of the hopping channel, whichever is greater.
- 2. The 20dB Bandwidth is refer to section 7.2.

7.5. Number of Hopping Channels Measurement

7.5.1. Test Limit

This frequency hopping system must employ a minimum of 15 hopping channels.


7.5.2. Test Procedure Used

ANSI C63.10-2013 - Section 7.8.3

7.5.3. Test Settitng

- 1. Span = the frequency band of operation.
- 2. RBW ≥ 1 % of the span
- 3. VBW ≥ RBW
- 4. Detector = Peak
- 5. Trace mode = max hold
- 6. Sweep time = auto couple
- 7. The trace was allowed to stabilize

7.5.4. Test Setup

7.5.5. Test Result

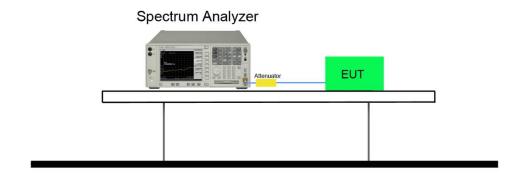
Test Mode (Hopping)	Channel Numbers	Frequency (MHz)	Limit (Hopping Channels)	Result
DH5	79	2402~2480	≥ 15	Pass
3DH5	79	2402~2480	≥ 15	Pass

7.6. Time of Occupancy Measurement

7.6.1. Test Limit

The maximum permissible time of occupancy is 400ms within a period of 400ms multiplied by the number of hopping channels employed.

7.6.2. Test Procedure Used


ANSI C63.10-2013 - Section 7.8.4

7.6.3. Test Settitng

- 1. Span = zero span, centered on a hopping channel.
- 2. RBW = 1MHz
- 3. VBW ≥ RBW
- 4. Sweep time = as necessary to capture the entire dwell time per hopping channel
- 5. Detector = Peak
- 6. Trace mode = max hold

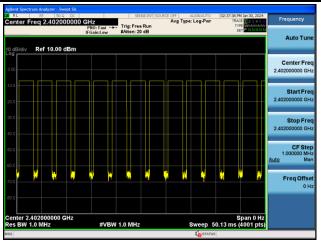
If possible, use the marker-delta function to determine the dwell time. If this value varies with different modes of operation (data rate, modulation format, etc.), repeat this test for each variation. An oscilloscope may be used instead of a spectrum analyzer. The EUT shall show compliance with the appropriate regulatory limit for the number of hopping channels. A plot of the data shall be included in the test report.

7.6.4. Test Setup

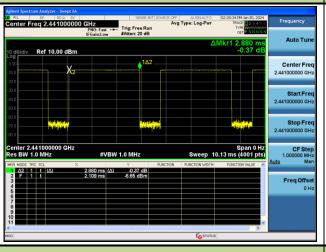
7.6.5. Test Result

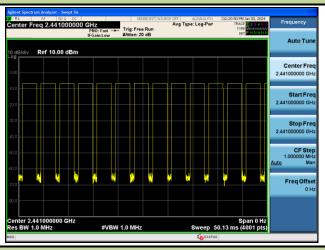
Test Mode	Frequency (MHz)	Time of Occupancy (ms)	Hopping of Numbers	Sweep time (ms)	Duty cycle	Dwell Time (Sec)	Limit (Sec)	Result
	2402	2.877	13	50	0.75	0.30	0.4	Pass
DH5	2441	2.880	13	50	0.75	0.30	0.4	Pass
	2480	2.880	13	50	0.75	0.30	0.4	Pass
	2402	1.064	13	50	0.28	0.11	0.4	Pass
3-DH5	2441	1.059	13	50	0.28	0.11	0.4	Pass
	2480	1.067	13	50	0.28	0.11	0.4	Pass

Note:

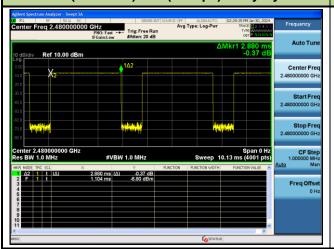

- 1. Duty cycle = ((Time slot length (ms)*Hopping of Number) / Sweep time (ms)
- 2. Dwell time = ((Duty cycle *(Time Period <0.4*79>)) / (Total Hopping of Number<79>)) \circ
- 3. The dwell times of the packet type of DH1, DH3, and DH5 are tested. Only the worst case is shown on the report.

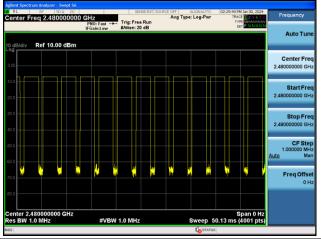
CH00 (2402MHz) DH5(1 Mbps)- Duty Cycle


CH00 (2402MHz) DH5(1 Mbps)- Dwell time



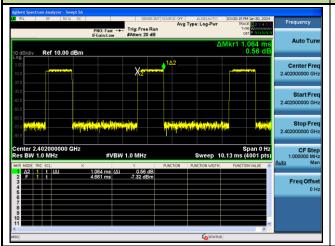
CH39 (2441MHz) DH5(1 Mbps)- Duty Cycle

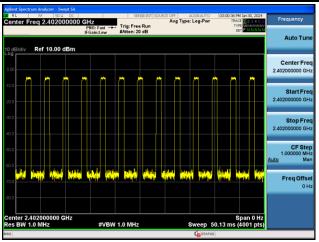

CH39 (2441MHz) DH5(1 Mbps)- Dwell time



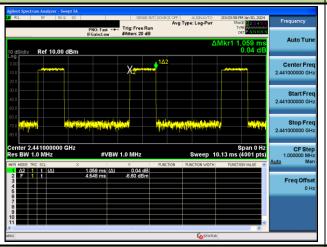
CH78 (2480MHz) DH5(1 Mbps)- Duty Cycle

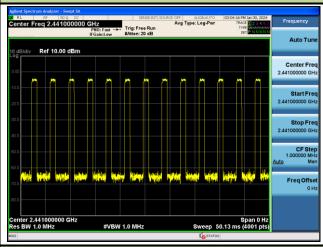
CH78 (2480MHz) DH5(1 Mbps)- Dwell time



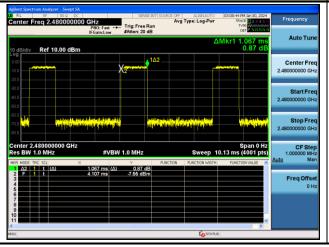


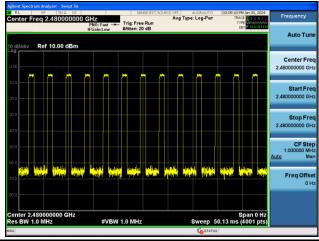
CH00 (2402MHz) 3DH5(3 Mbps)- Duty Cycle


CH00 (2402MHz) 3DH5(3 Mbps)- Dwell time



CH39 (2441MHz) 3DH5(3 Mbps)- Duty Cycle


CH39 (2441MHz) 3DH5(3 Mbps)- Dwell time



CH78 (2480MHz) 3DH5(3 Mbps)- Duty Cycle

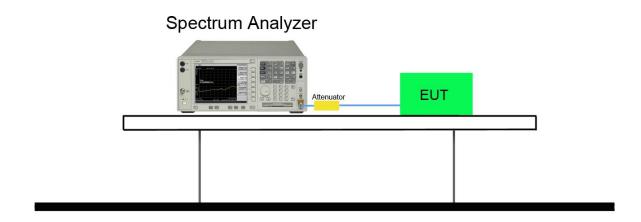
CH78 (2480MHz) 3DH5(3 Mbps)- Dwell time

7.7. Out-of-Band Spurious Emissions Emissions Measurement

7.7.1. Test Limit

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, the attenuation required under this paragraph shall be 30 dB instead of 20 dB.

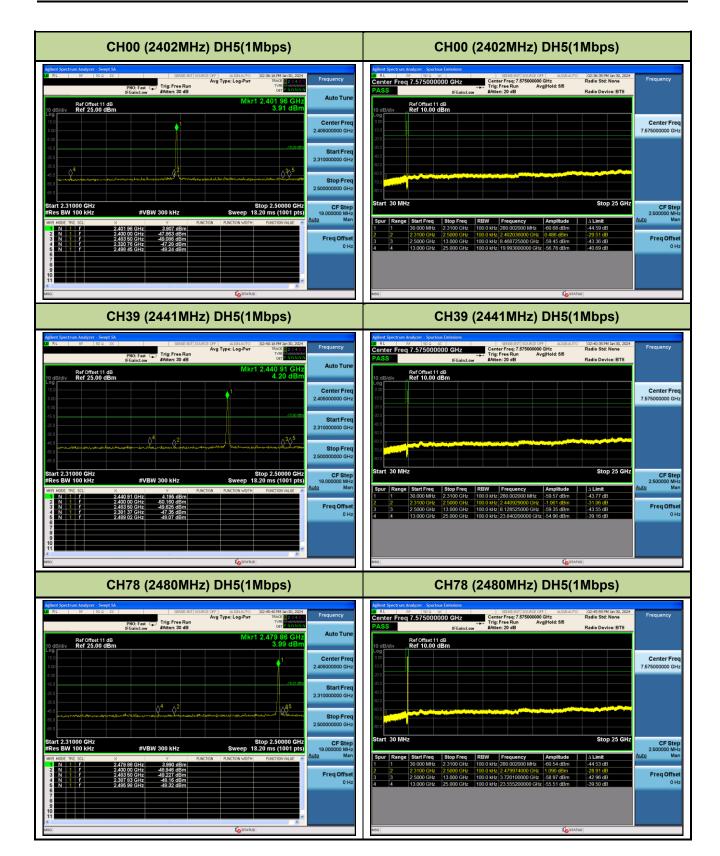
7.7.2. Test Procedure Used

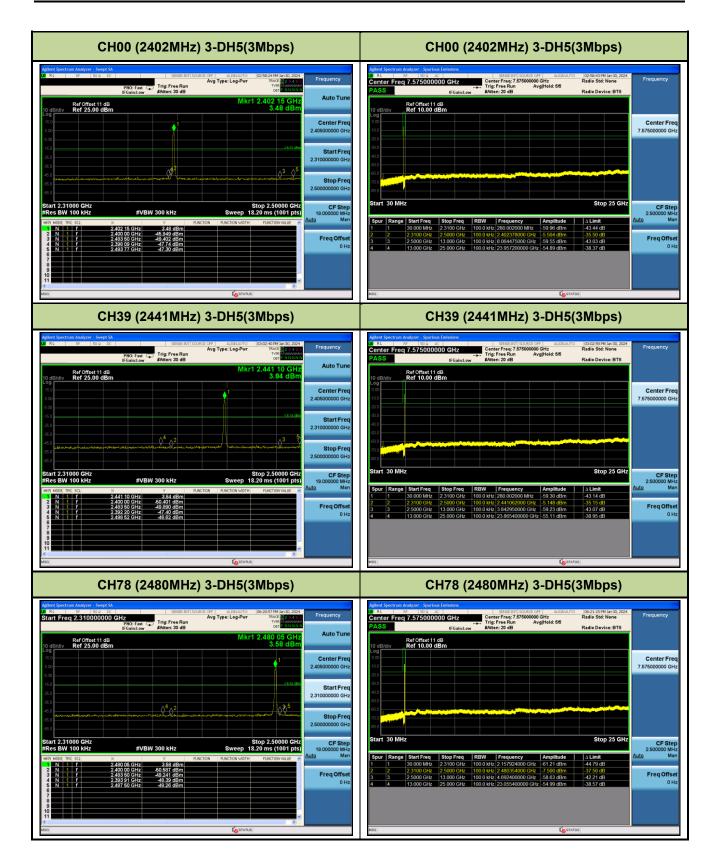

ANSI C63.10-2013 - Section 7.8.8

7.7.3. Test Setting

- Span = wide enough to capture the peak level of the in-band emission and all spurious
 emissions (e.g., harmonics) from the lowest frequency generated in the EUT up through the
 10th harmonic. Typically, several plots are required to cover this entire span.
- 2. RBW = 100 KHz
- 3. VBW ≥ RBW
- 4. Detector = peak
- 5. Sweep time = auto couple
- 6. Trace mode = max hold
- 7. Trace was allowed to stabilize
 Set the marker on the peak of any spurious emission recorded. The level displayed must comply with the limit specified in this section.

7.7.4. Test Setup




7.7.5. Test Result

Test Mode	Channel No.	Frequency (MHz)	Limit (MHz)	Result
DH5	00	2402	20dBc	Pass
DH5	39	2441	20dBc	Pass
DH5	78	2480	20dBc	Pass
3DH5	00	2402	20dBc	Pass
3DH5	39	2441	20dBc	Pass
3DH5	78	2480	20dBc	Pass

7.8. Radiated Spurious Emission Measurement

7.8.1. Test Limit

All out of band emissions appearing in a restricted band as specified in Section 15.205 of the Title 47 CFR must not exceed the limits shown in Table per Section 15.209.

TO THE MILE OF CACCOUNTIES CHOWN HIS TUDIO POS COCUMENTO. 200.							
FCC	C Part 15 Subpart C Paragrapl	າ 15.209					
Frequency [MHz]	Field Strength [V/m]	Measured Distance [Meters]					
0.009 - 0.490	2400/F (kHz)	300					
0.490 - 1.705	24000/F (kHz)	30					
1.705 – 30	30	30					
30 – 88	100	3					
88 – 216	150	3					
216 – 960	200	3					
Above 960	500	3					

7.8.2. Test Procedure Used

ANSI C63.10-2013 - Section 11.12.1

7.8.3. Test Setting

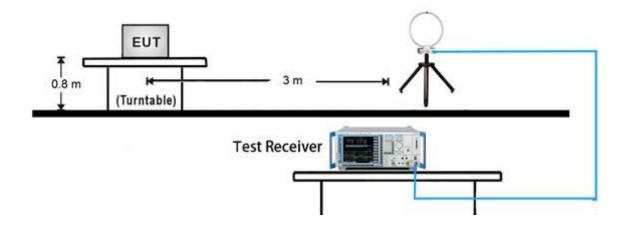
Peak Field Strength Measurements

- Analyzer center frequency was set to the frequency of the radiated spurious emission of interest
- 2. RBW = as specified in Table 1
- 3. VBW = 3 * RBW
- 4. Detector = peak
- 5. Sweep time = auto couple
- 6. Trace mode = max hold

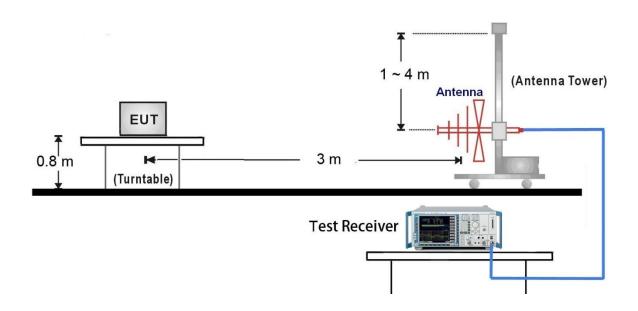
7. Trace was allowed to stabilize

Table 1 - RBW as a function of frequency

Frequency	RBW			
9 ~ 150 kHz	200 ~ 300 Hz			
0.15 ~ 30 MHz	9 ~ 10 kHz			
30 ~ 1000 MHz	100 ~ 120 kHz			
> 1000 MHz	1 MHz			

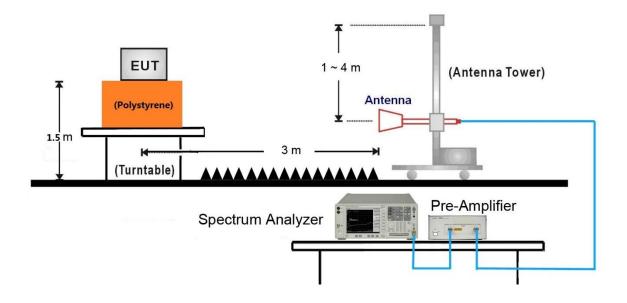

Average Field Strength Measurements

- Analyzer center frequency was set to the frequency of the radiated spurious emission of interest
- 2. RBW = 1MHz
- 3. VBW ≥ 1/T
- 4. De As an alternative, the instrument may be set to linear detector mode. Ensure that video filtering is applied in linear voltage domain (rather than in a log or dB domain). Some instruments require linear display mode in order to accomplish this. Others have a setting for Average-VBW Type, which can be set to "Voltage" regardless of the display mode
- 5. Detector = Peak
- 6. Sweep time = auto
- 7. Trace mode = max hold
- 8. Allow max hold to run for at least 50 times (1/duty cycle) traces

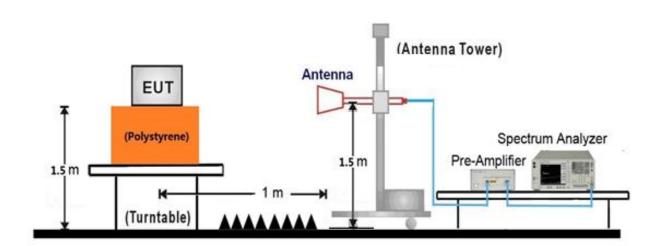


7.8.4. Test Setup

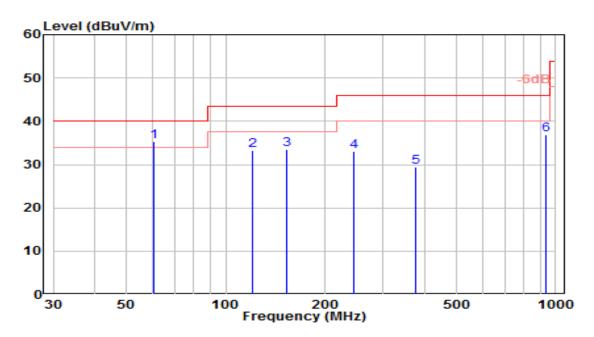
9kHz ~ 30MHz Test Setup:



30MHz ~ 1GHz Test Setup:

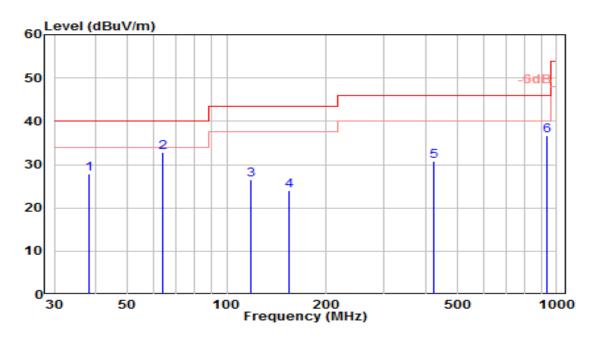


1GHz ~ 18GHz Test Setup:


18GHz ~40GHz Test Setup:

7.8.5. Test Result

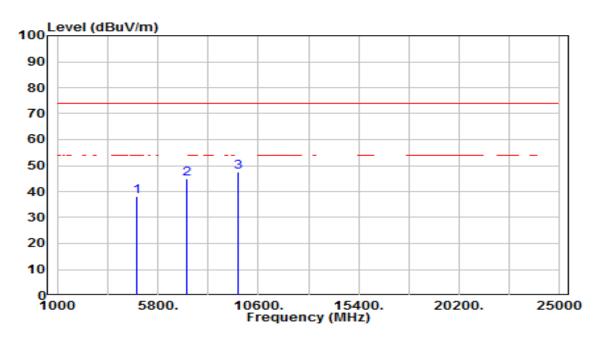
EUT	Wireless Planar Magnetic Headphones	Date of Test	2024-01-29
Factor	VULB 9162	Temp. / Humidity	22°C /62%
Polarity	Horizontal	Site / Test Engineer	AC1 / Todd
Test Mode	BT_TX_DH5_CH 39	Test Voltage	AC 120V/60Hz



No		Frequency	Reading	C.F	Measurement	Margin	Limit	Height	Angle	Remark
INO		(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dB)	(dBuV/m)	(cm)	(deg)	(QP/PK/AV)
1	*	60.495	16.08	19.23	35.31	-4.69	40.00	150	5	QP
2		120.817	16.35	16.85	33.20	-10.30	43.50	150	170	QP
3		153.682	18.09	15.42	33.51	-9.99	43.50	150	275	QP
4		245.069	13.15	19.87	33.02	-12.98	46.00	100	295	QP
5		375.876	6.38	23.16	29.54	-16.46	46.00	100	85	QP
6		934.689	5.44	31.47	36.91	-9.09	46.00	100	120	QP

- 1. " *", means this data is the worst emission level.
- 2. C.F (Correction Factor) = Antenna Factor (dB/m)+ Cable Loss (dB).
- 3. Measurement (dBuV/m) = Reading(dBuV) + C.F (Correction Factor).
- 4. The emission levels of other frequencies are very lower than the limit and not show in test report.

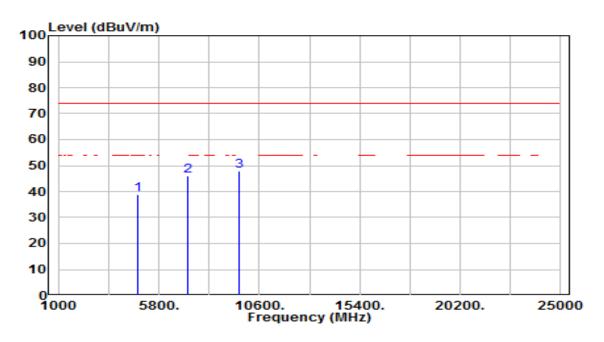
EUT	Wireless Planar Magnetic Headphones	Date of Test	2024-01-29
Factor	VULB 9162	Temp. / Humidity	22°C /62%
Polarity	Vertical	Site / Test Engineer	AC1 / Todd
Test Mode	BT_TX_DH5_CH 39	Test Voltage	AC 120V/60Hz



No		Frequency	Reading	C.F	Measurement	Margin	Limit	Height	Angle	Remark
INO		(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dB)	(dBuV/m)	(cm)	(deg)	(QP/PK/AV)
1		38.219	8.69	19.11	27.80	-12.20	40.00	100	55	QP
2	*	64.124	14.84	17.90	32.74	-7.26	40.00	100	280	QP
3		118.668	9.33	17.19	26.52	-16.98	43.50	150	250	QP
4		155.087	8.49	15.46	23.95	-19.55	43.50	150	220	QP
5		424.606	7.02	23.85	30.87	-15.13	46.00	100	215	QP
6		935.043	5.31	31.48	36.78	-9.22	46.00	100	215	QP

- 1. " *", means this data is the worst emission level.
- 2. C.F (Correction Factor) = Antenna Factor (dB/m)+ Cable Loss (dB).
- 3. Measurement (dBuV/m) = Reading(dBuV) + C.F (Correction Factor).
- 4. The emission levels of other frequencies are very lower than the limit and not show in test report.

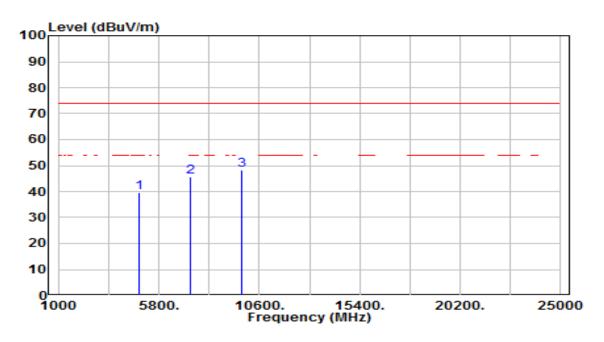
EUT	Wireless Planar Magnetic Headphones	Date of Test	2024-01-31
Factor	BBHA 9120D & BBHA 9170	Temp. / Humidity	22°C /62%
Polarity	Horizontal	Site / Test Engineer	AC1 / Todd
Test Mode	BT_TX_DH5_CH 0	Test Voltage	AC 120V/60Hz



No	Frequency (MHz)	Reading (dBuV)	C.F (dB/m)	Measurement (dBuV/m)	Margin (dB)	Limit (dBuV/m)	Height (cm)	Angle (deg)	Remark (QP/PK/AV)
1	4804.000	34.63	3.62	38.25	-35.75	74.00	200	156	Peak
2	7206.000	33.55	11.47	45.02	-28.98	74.00	200	74	Peak
3	* 9608.000	31.98	15.47	47.45	-26.55	74.00	200	290	Peak

- 1. " *", means this data is the worst emission level.
- 2. C.F (Correction Factor) = Antenna Factor (dB/m)+ Cable Loss (dB) Preamplifier(dB).
- 3. Measurement (dBuV/m) = Reading(dBuV) + C.F (Correction Factor).
- 4. The emission levels of other frequencies are very lower than the limit and not show in test report.

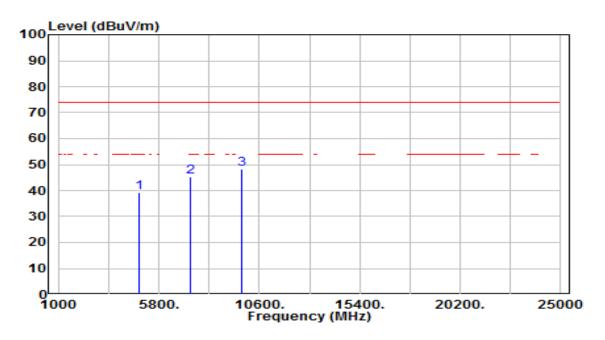
EUT	Wireless Planar Magnetic Headphones	Date of Test	2024-01-31
Factor	BBHA 9120D & BBHA 9170	Temp. / Humidity	22°C /62%
Polarity	Vertical	Site / Test Engineer	AC1 / Todd
Test Mode	BT_TX_DH5_CH 0	Test Voltage	AC 120V/60Hz



No		Frequency (MHz)	Reading (dBuV)	C.F (dB/m)	Measurement (dBuV/m)	Margin (dB)	Limit (dBuV/m)	Height (cm)	Angle (deg)	Remark (QP/PK/AV)
1		4804.000	35.31	3.62	38.93	-35.07	74.00	200	281	Peak
2		7206.000	34.55	11.47	46.02	-27.98	74.00	200	271	Peak
3	*	9608.000	32.51	15.47	47.97	-26.03	74.00	200	62	Peak

- 1. " *", means this data is the worst emission level.
- 2. C.F (Correction Factor) = Antenna Factor (dB/m)+ Cable Loss (dB) Preamplifier(dB).
- 3. Measurement (dBuV/m) = Reading(dBuV) + C.F (Correction Factor).
- 4. The emission levels of other frequencies are very lower than the limit and not show in test report.

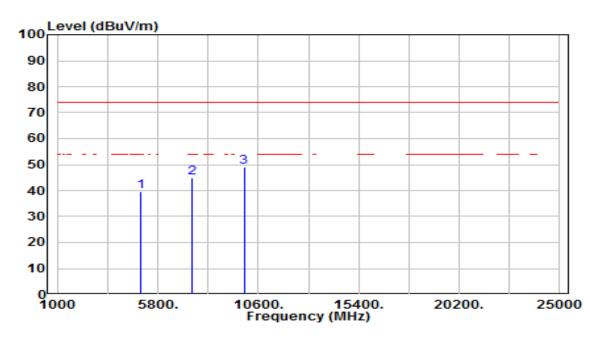
EUT	Wireless Planar Magnetic Headphones	Date of Test	2024-01-31
Factor	BBHA 9120D & BBHA 9170	Temp. / Humidity	22°C /62%
Polarity	Horizontal	Site / Test Engineer	AC1 / Todd
Test Mode	BT_TX_DH5_CH 39	Test Voltage	AC 120V/60Hz



No	Frequency (MHz)	Reading (dBuV)	C.F (dB/m)	Measurement (dBuV/m)	Margin (dB)	Limit (dBuV/m)	Height (cm)	Angle (deg)	Remark (QP/PK/AV)
1	4882.000	35.89	3.79	39.68	-34.32	74.00	200	160	Peak
2	7323.000	33.67	11.88	45.55	-28.45	74.00	200	248	Peak
3	* 9764.000	32.36	15.81	48.17	-25.83	74.00	200	128	Peak

- 1. " *", means this data is the worst emission level.
- 2. C.F (Correction Factor) = Antenna Factor (dB/m)+ Cable Loss (dB) Preamplifier(dB).
- 3. Measurement (dBuV/m) = Reading(dBuV) + C.F (Correction Factor).
- 4. The emission levels of other frequencies are very lower than the limit and not show in test report.

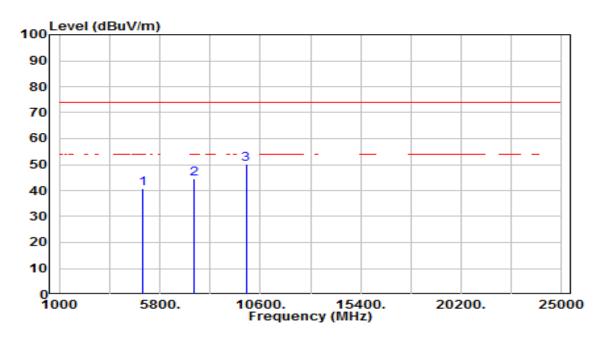
EUT	Wireless Planar Magnetic Headphones	Date of Test	2024-01-31
Factor	BBHA 9120D & BBHA 9170	Temp. / Humidity	22°C /62%
Polarity	Vertical	Site / Test Engineer	AC1 / Todd
Test Mode	BT_TX_DH5_CH 39	Test Voltage	AC 120V/60Hz



No	Frequency	Reading	C.F	Measurement	Margin	Limit	Height	Angle	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dB)	(dBuV/m)	(cm)	(deg)	(QP/PK/AV)
1	4882.000	35.49	3.79	39.28	-34.72	74.00	200	298	Peak
2	7323.000	33.51	11.88	45.39	-28.61	74.00	200	148	Peak
3	* 9764.000	32.63	15.81	48.44	-25.56	74.00	200	62	Peak

- 1. " *", means this data is the worst emission level.
- 2. C.F (Correction Factor) = Antenna Factor (dB/m)+ Cable Loss (dB) Preamplifier(dB).
- 3. Measurement (dBuV/m) = Reading(dBuV) + C.F (Correction Factor).
- 4. The emission levels of other frequencies are very lower than the limit and not show in test report.

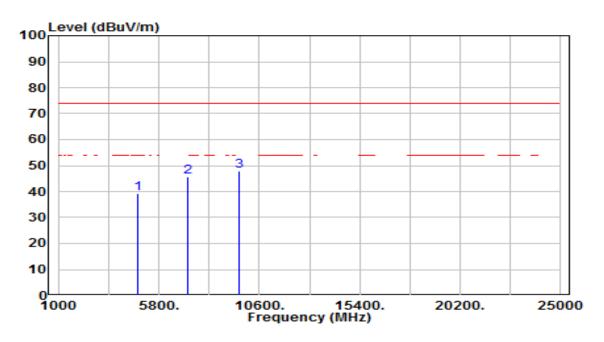
EUT	Wireless Planar Magnetic Headphones	Date of Test	2024-01-31
Factor	BBHA 9120D & BBHA 9170	Temp. / Humidity	22°C /62%
Polarity	Horizontal	Site / Test Engineer	AC1 / Todd
Test Mode	BT_TX_DH5_CH 78	Test Voltage	AC 120V/60Hz



No	Frequency (MHz)	Reading (dBuV)	C.F (dB/m)	Measurement (dBuV/m)	Margin (dB)	Limit (dBuV/m)	Height (cm)	Angle (deg)	Remark (QP/PK/AV)
1	4960.000	35.64	3.96	39.60	-34.40	74.00	200	360	Peak
2	7440.000	32.47	12.29	44.76	-29.24	74.00	200	223	Peak
3	* 9920.000	32.91	16.16	49.07	-24.93	74.00	200	64	Peak

- 1. " *", means this data is the worst emission level.
- 2. C.F (Correction Factor) = Antenna Factor (dB/m)+ Cable Loss (dB) Preamplifier(dB).
- 3. Measurement (dBuV/m) = Reading(dBuV) + C.F (Correction Factor).
- 4. The emission levels of other frequencies are very lower than the limit and not show in test report.

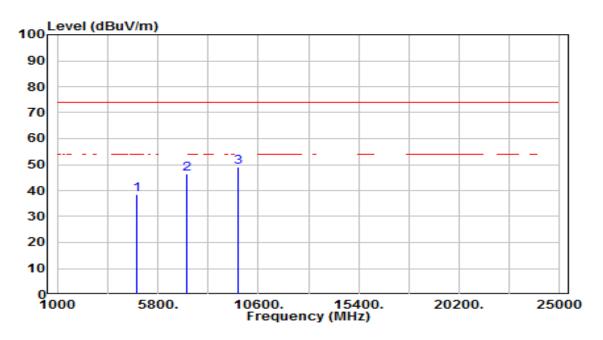
EUT	Wireless Planar Magnetic Headphones	Date of Test	2024-01-31
Factor	BBHA 9120D & BBHA 9170	Temp. / Humidity	22°C /62%
Polarity	Vertical	Site / Test Engineer	AC1 / Todd
Test Mode	BT_TX_DH5_CH 78	Test Voltage	AC 120V/60Hz



No	Frequency (MHz)	Reading (dBuV)	C.F (dB/m)	Measurement (dBuV/m)	Margin (dB)	Limit (dBuV/m)	Height (cm)	Angle (deg)	Remark (QP/PK/AV)
1	4960.000	36.78	3.96	40.74	-33.26	74.00	200	130	Peak
2	7440.000	32.36	12.29	44.65	-29.35	74.00	200	133	Peak
3	* 9920.000	34.20	16.16	50.37	-23.63	74.00	200	204	Peak

- 1. " *", means this data is the worst emission level.
- 2. C.F (Correction Factor) = Antenna Factor (dB/m)+ Cable Loss (dB) Preamplifier(dB).
- 3. Measurement (dBuV/m) = Reading(dBuV) + C.F (Correction Factor).
- 4. The emission levels of other frequencies are very lower than the limit and not show in test report.

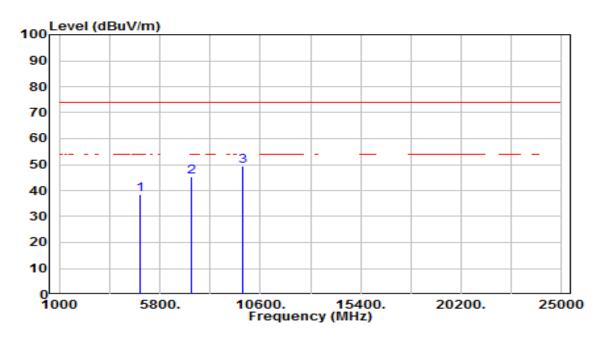
EUT	Wireless Planar Magnetic Headphones	Date of Test	2024-01-31
Factor	BBHA 9120D & BBHA 9170	Temp. / Humidity	22°C /62%
Polarity	Horizontal	Site / Test Engineer	AC1 / Todd
Test Mode	BT_TX_3DH5_CH 0	Test Voltage	AC 120V/60Hz



No	Frequency (MHz)	Reading (dBuV)	C.F (dB/m)	Measurement (dBuV/m)	Margin (dB)	Limit (dBuV/m)	Height (cm)	Angle (deg)	Remark (QP/PK/AV)
1	4804.000	35.68	3.62	39.30	-34.70	74.00	200	137	Peak
2	7206.000	34.37	11.47	45.84	-28.16	74.00	200	360	Peak
3	* 9608.000	32.57	15.47	48.04	-25.96	74.00	200	308	Peak

- 1. " *", means this data is the worst emission level.
- 2. C.F (Correction Factor) = Antenna Factor (dB/m)+ Cable Loss (dB) Preamplifier(dB).
- 3. Measurement (dBuV/m) = Reading(dBuV) + C.F (Correction Factor).
- 4. The emission levels of other frequencies are very lower than the limit and not show in test report.

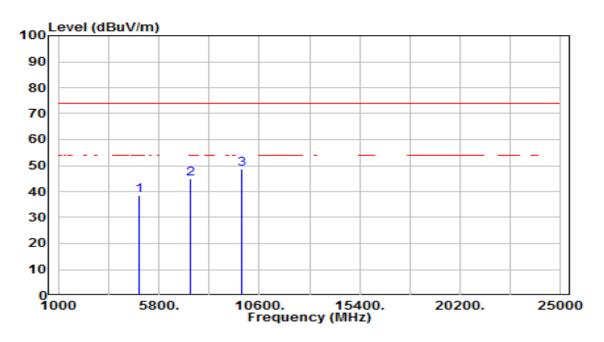
EUT	Wireless Planar Magnetic Headphones	Date of Test	2024-01-31
Factor	BBHA 9120D & BBHA 9170	Temp. / Humidity	22°C /62%
Polarity	Vertical	Site / Test Engineer	AC1 / Todd
Test Mode	BT_TX_3DH5_CH 0	Test Voltage	AC 120V/60Hz



No	Frequency (MHz)	Reading (dBuV)	C.F (dB/m)	Measurement (dBuV/m)	Margin (dB)	Limit (dBuV/m)	Height (cm)	Angle (deg)	Remark (QP/PK/AV)
1	4804.000	34.78	3.62	38.40	-35.60	74.00	200	249	Peak
2	7206.000	34.91	11.47	46.38	-27.62	74.00	200	274	Peak
3	* 9608.000	33.45	15.47	48.91	-25.09	74.00	200	13	Peak

- 1. " *", means this data is the worst emission level.
- 2. C.F (Correction Factor) = Antenna Factor (dB/m)+ Cable Loss (dB) Preamplifier(dB).
- 3. Measurement (dBuV/m) = Reading(dBuV) + C.F (Correction Factor).
- 4. The emission levels of other frequencies are very lower than the limit and not show in test report.

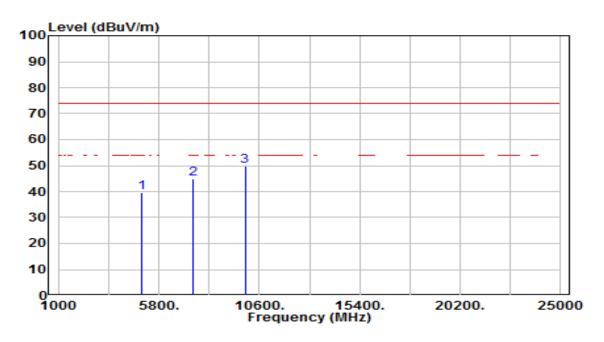
EUT	Wireless Planar Magnetic Headphones	Date of Test	2024-01-31
Factor	BBHA 9120D & BBHA 9170	Temp. / Humidity	22°C /62%
Polarity	Horizontal	Site / Test Engineer	AC1 / Todd
Test Mode	BT_TX_3DH5_CH 39	Test Voltage	AC 120V/60Hz



	اما	Frequency	Reading	C.F	Measurement	Margin	Limit	Height	Angle	Remark
No	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dB)	(dBuV/m)	(cm)	(deg)	(QP/PK/AV)	
	1	4882.000	34.86	3.79	38.65	-35.35	74.00	200	184	Peak
	2	7323.000	33.47	11.88	45.34	-28.66	74.00	200	290	Peak
	3	* 9764.000	33.46	15.81	49.28	-24.72	74.00	200	142	Peak

- 1. " *", means this data is the worst emission level.
- 2. C.F (Correction Factor) = Antenna Factor (dB/m)+ Cable Loss (dB) Preamplifier(dB).
- 3. Measurement (dBuV/m) = Reading(dBuV) + C.F (Correction Factor).
- 4. The emission levels of other frequencies are very lower than the limit and not show in test report.

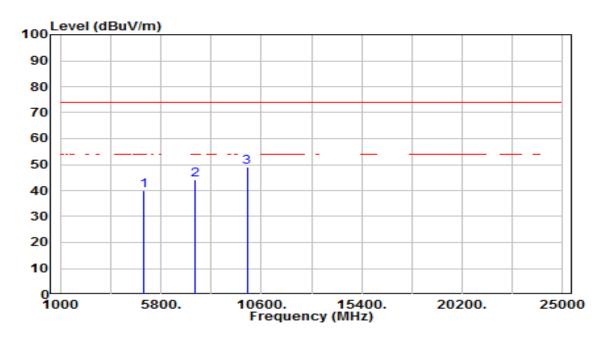
EUT	Wireless Planar Magnetic Headphones	Date of Test	2024-01-31
Factor	BBHA 9120D & BBHA 9170	Temp. / Humidity	22°C /62%
Polarity	Vertical	Site / Test Engineer	AC1 / Todd
Test Mode	BT_TX_3DH5_CH 39	Test Voltage	AC 120V/60Hz



No	Frequency (MHz)	Reading (dBuV)	C.F (dB/m)	Measurement (dBuV/m)	Margin (dB)	Limit (dBuV/m)	Height (cm)	Angle (deg)	Remark (QP/PK/AV)
1	4882.000	34.87	3.79	38.66	-35.34	74.00	200	116	Peak
2	7323.000	33.22	11.88	45.09	-28.91	74.00	200	348	Peak
3	* 9764.000	32.76	15.81	48.57	-25.43	74.00	200	285	Peak

- 1. " *", means this data is the worst emission level.
- 2. C.F (Correction Factor) = Antenna Factor (dB/m)+ Cable Loss (dB) Preamplifier(dB).
- 3. Measurement (dBuV/m) = Reading(dBuV) + C.F (Correction Factor).
- 4. The emission levels of other frequencies are very lower than the limit and not show in test report.

EUT	Wireless Planar Magnetic Headphones	Date of Test	2024-01-31
Factor	BBHA 9120D & BBHA 9170	Temp. / Humidity	22°C /62%
Polarity	Horizontal	Site / Test Engineer	AC1 / Todd
Test Mode	BT_TX_3DH5_CH 78	Test Voltage	AC 120V/60Hz



No	Frequency (MHz)	Reading (dBuV)	C.F (dB/m)	Measurement (dBuV/m)	Margin (dB)	Limit (dBuV/m)	Height (cm)	Angle (deg)	Remark (QP/PK/AV)
1	4960.000	35.78	3.96	39.74	-34.26	74.00	200	192	Peak
2	7440.000	32.78	12.29	45.07	-28.93	74.00	200	312	Peak
3	* 9920.000	33.49	16.16	49.65	-24.35	74.00	200	273	Peak

- 1. " *", means this data is the worst emission level.
- 2. C.F (Correction Factor) = Antenna Factor (dB/m)+ Cable Loss (dB) Preamplifier(dB).
- 3. Measurement (dBuV/m) = Reading(dBuV) + C.F (Correction Factor).
- 4. The emission levels of other frequencies are very lower than the limit and not show in test report.

		•	
EUT	Wireless Planar Magnetic Headphones	Date of Test	2024-01-31
Factor	BBHA 9120D & BBHA 9170	Temp. / Humidity	22°C /62%
Polarity	Vertical	Site / Test Engineer	AC1 / Todd
Test Mode	BT_TX_3DH5_CH 78	Test Voltage	AC 120V/60Hz

	No		Frequency	Reading	C.F	Measurement	Margin	Limit	Height	Angle	Remark
•			(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dB)	(dBuV/m)	(cm)	(deg)	(QP/PK/AV)
	1		4960.000	36.05	3.96	40.01	-33.99	74.00	200	126	Peak
	2		7440.000	32.02	12.29	44.31	-29.69	74.00	200	122	Peak
	3	*	9920.000	32.86	16.16	49.02	-24.98	74.00	200	115	Peak

- 1. " *", means this data is the worst emission level.
- 2. C.F (Correction Factor) = Antenna Factor (dB/m)+ Cable Loss (dB) Preamplifier(dB).
- 3. Measurement (dBuV/m) = Reading(dBuV) + C.F (Correction Factor).
- 4. The emission levels of other frequencies are very lower than the limit and not show in test report.

7.9. Radiated Restricted Band Edge Measurement

7.9.1. Test Limit

All out of band emissions appearing in a restricted band as specified in Section 15.205 of the Title 47 CFR must not exceed the limits shown in Table per Section 15.209.

FCC	FCC Part 15 Subpart C Paragraph 15.209							
Frequency [MHz]	Field Strength [V/m]	Measured Distance [Meters]						
0.009 - 0.490	2400/F (kHz)	300						
0.490 - 1.705	24000/F (kHz)	30						
1.705 – 30	30	30						
30 – 88	100	3						
88 – 216	150	3						
216 – 960	200	3						
Above 960	500	3						

7.9.2. Test Procedure Used

ANSI C63.10-2013 - Section 11.12.1

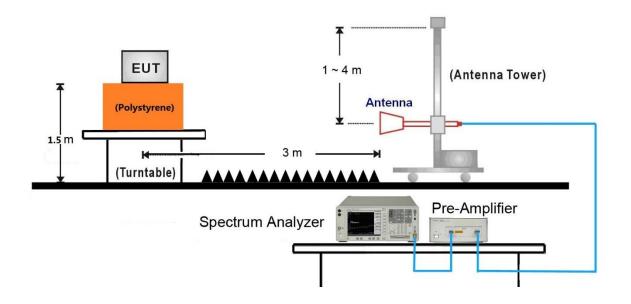
7.9.3. Test Setting

Peak Field Strength Measurements

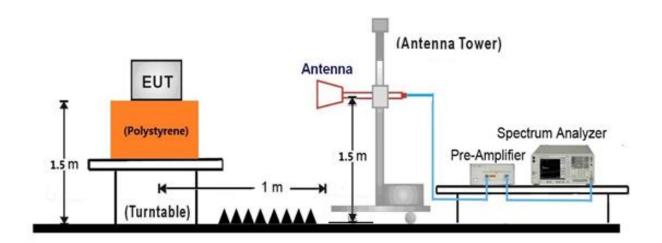
- Analyzer center frequency was set to the frequency of the radiated spurious emission of interest
- 9. RBW = as specified in Table 1
- 10. VBW = 3 * RBW
- 11. Detector = peak
- 12. Sweep time = auto couple
- 13. Trace mode = max hold
- 14. Trace was allowed to stabilize

Table 1 - RBW as a function of frequency

Frequency	RBW
9 ~ 150 kHz	200 ~ 300 Hz
0.15 ~ 30 MHz	9 ~ 10 kHz
30 ~ 1000 MHz	100 ~ 120 kHz
> 1000 MHz	1 MHz

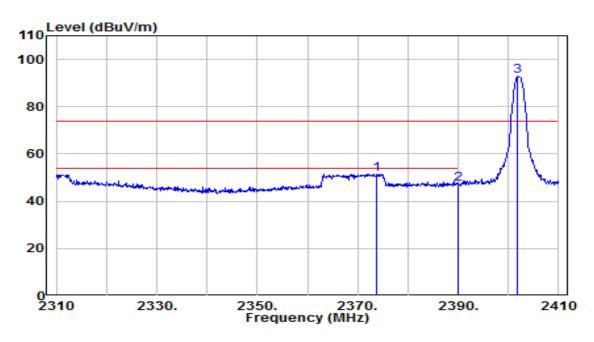

Average Field Strength Measurements

- Analyzer center frequency was set to the frequency of the radiated spurious emission of interest
- 10. RBW = 1MHz
- 11. VBW ≥ 1/T
- 12. De As an alternative, the instrument may be set to linear detector mode. Ensure that video filtering is applied in linear voltage domain (rather than in a log or dB domain). Some instruments require linear display mode in order to accomplish this. Others have a setting for Average-VBW Type, which can be set to "Voltage" regardless of the display mode
- 13. Detector = Peak
- 14. Sweep time = auto
- 15. Trace mode = max hold
- 16. Allow max hold to run for at least 50 times (1/duty cycle) traces



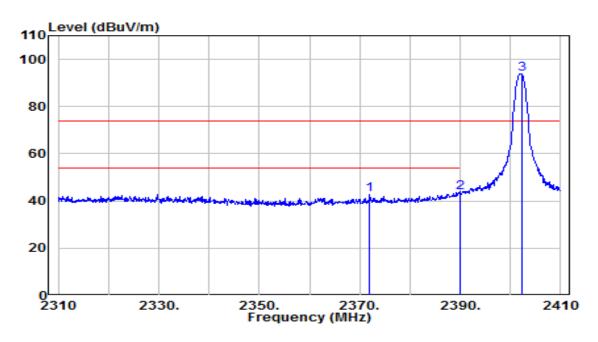
7.9.4. Test Setup

1GHz ~ 18GHz Test Setup:


18GHz ~40GHz Test Setup:

7.9.5. Test Result

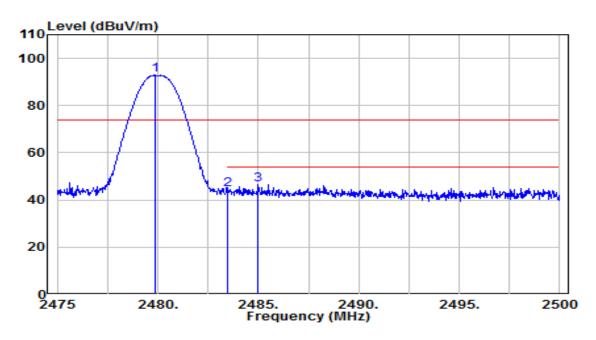
EUT	Wireless Planar Magnetic Headphones	Date of Test	2024-01-31
Factor	BBHA 9120D	Temp. / Humidity	22°C /62%
Polarity	Horizontal	Site / Test Engineer	AC1 / Todd
Test Mode	BT_TX_DH5_CH 0	Test Voltage	AC 120V/60Hz



No		Frequency (MHz)	Reading (dBuV)	C.F (dB/m)	Measurement (dBuV/m)	Margin (dB)	Limit (dBuV/m)	Height (cm)	Angle (deg)	Remark (QP/PK/AV)
1	*	2373.800	53.65	-2.14	51.51	-22.49	74.00	215	310	Peak
2		2390.000	49.60	-2.09	47.51	-26.49	74.00	215	310	Peak
3		2401.900	95.05	-2.05	93.00	N/A	N/A	215	310	Peak

- 1. " *", means this data is the worst emission level.
- 2. C.F (Correction Factor) = Antenna Factor (dB/m)+ Cable Loss (dB) Preamplifier(dB).
- 3. Measurement (dBuV/m) = Reading(dBuV) + C.F (Correction Factor).
- 4. The emission levels of other frequencies are very lower than the limit and not show in test report.

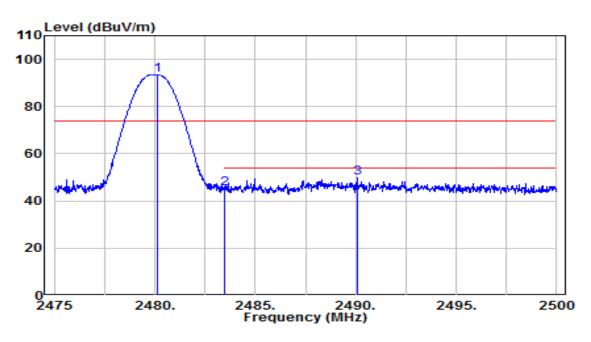
EUT	Wireless Planar Magnetic Headphones	Date of Test	2024-01-31
Factor	BBHA 9120D	Temp. / Humidity	22°C /62%
Polarity	Vertical	Site / Test Engineer	AC1 / Todd
Test Mode	BT_TX_DH5_CH 0	Test Voltage	AC 120V/60Hz



No		Frequency (MHz)	Reading (dBuV)	C.F (dB/m)	Measurement (dBuV/m)	Margin (dB)	Limit (dBuV/m)	Height (cm)	Angle (deg)	Remark (QP/PK/AV)
1		2372.000	45.04	-2.14	42.89	-31.11	74.00	215	205	Peak
2	*	2390.000	45.60	-2.09	43.51	-30.49	74.00	215	205	Peak
3		2402.200	95.75	-2.05	93.70	N/A	N/A	215	205	Peak

- 1. " *", means this data is the worst emission level.
- 2. C.F (Correction Factor) = Antenna Factor (dB/m)+ Cable Loss (dB) Preamplifier(dB).
- 3. Measurement (dBuV/m) = Reading(dBuV) + C.F (Correction Factor).
- 4. The emission levels of other frequencies are very lower than the limit and not show in test report.

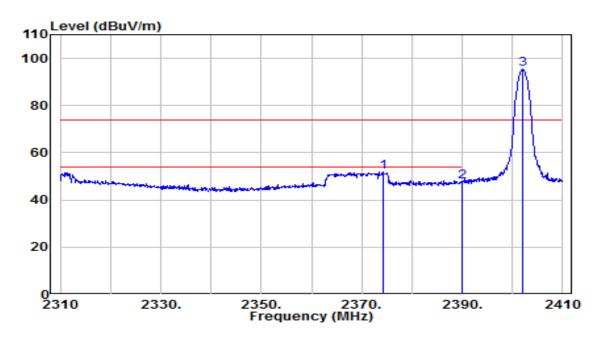
EUT	Wireless Planar Magnetic Headphones	Date of Test	2024-01-31
Factor	BBHA 9120D	Temp. / Humidity	22°C /62%
Polarity	Horizontal	Site / Test Engineer	AC1 / Todd
Test Mode	BT_TX_DH5_CH 78	Test Voltage	AC 120V/60Hz



No	Frequency	Reading	C.F	Measurement	Margin	Limit	Height	Angle	Remark
INO	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dB)	(dBuV/m)	(cm)	(deg)	(QP/PK/AV)
1	2479.850	94.61	-1.81	92.80	N/A	N/A	170	120	Peak
2	2483.500	46.23	-1.80	44.43	-29.57	74.00	170	120	Peak
3	* 2485.000	48.46	-1.80	46.67	-27.33	74.00	170	120	Peak

- 1. " *", means this data is the worst emission level.
- 2. C.F (Correction Factor) = Antenna Factor (dB/m)+ Cable Loss (dB) Preamplifier(dB).
- 3. Measurement (dBuV/m) = Reading(dBuV) + C.F (Correction Factor).
- 4. The emission levels of other frequencies are very lower than the limit and not show in test report.

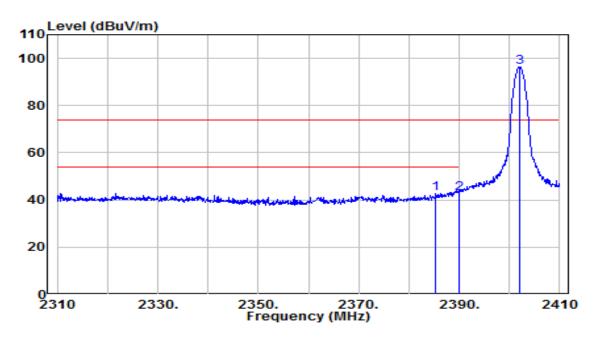
EUT	Wireless Planar Magnetic Headphones	Date of Test	2024-01-31
Factor	BBHA 9120D	Temp. / Humidity	22°C /62%
Polarity	Vertical	Site / Test Engineer	AC1 / Todd
Test Mode	BT_TX_DH5_CH 78	Test Voltage	AC 120V/60Hz



No	Frequency (MHz)	Reading (dBuV)	C.F (dB/m)	Measurement (dBuV/m)	Margin (dB)	Limit (dBuV/m)	Height (cm)	Angle (deg)	Remark (QP/PK/AV)
1	2480.125	95.23	-1.81	93.42	N/A	N/A	180	205	Peak
2	2483.500	47.08	-1.80	45.28	-28.72	74.00	180	205	Peak
3	* 2490.075	51.44	-1.78	49.66	-24.34	74.00	180	205	Peak

- 1. " *", means this data is the worst emission level.
- 2. C.F (Correction Factor) = Antenna Factor (dB/m)+ Cable Loss (dB) Preamplifier(dB).
- 3. Measurement (dBuV/m) = Reading(dBuV) + C.F (Correction Factor).
- 4. The emission levels of other frequencies are very lower than the limit and not show in test report.

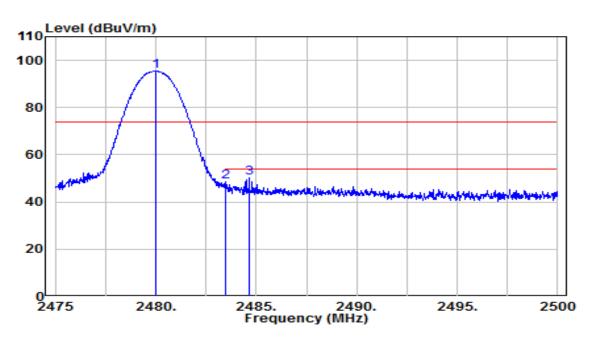
EUT	Wireless Planar Magnetic Headphones	Date of Test	2024-01-31
Factor	BBHA 9120D	Temp. / Humidity	22°C /62%
Polarity	Horizontal	Site / Test Engineer	AC1 / Todd
Test Mode	BT_TX_3DH5_CH 0	Test Voltage	AC 120V/60Hz



No		Frequency	Reading	C.F	Measurement	Margin	Limit	Height	Angle	Remark
NO		(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dB)	(dBuV/m)	(cm)	(deg)	(QP/PK/AV)
1	*	2374.400	54.03	-2.14	51.90	-22.10	74.00	215	310	Peak
2		2390.000	49.78	-2.09	47.69	-26.31	74.00	215	310	Peak
3		2402.000	97.32	-2.05	95.27	N/A	N/A	215	310	Peak

- 1. " *", means this data is the worst emission level.
- 2. C.F (Correction Factor) = Antenna Factor (dB/m)+ Cable Loss (dB) Preamplifier(dB).
- 3. Measurement (dBuV/m) = Reading(dBuV) + C.F (Correction Factor).
- 4. The emission levels of other frequencies are very lower than the limit and not show in test report.

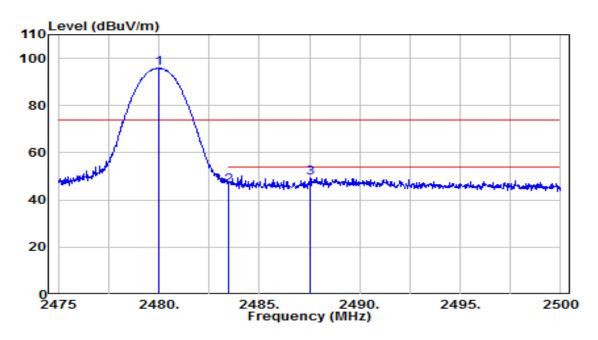
EUT	Wireless Planar Magnetic Headphones	Date of Test	2024-01-31
Factor	BBHA 9120D	Temp. / Humidity	22°C /62%
Polarity	Vertical	Site / Test Engineer	AC1 / Todd
Test Mode	BT_TX_3DH5_CH 0	Test Voltage	AC 120V/60Hz



No		Frequency	Reading	C.F	Measurement	Margin	Limit	Height	Angle	Remark
		(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dB)	(dBuV/m)	(cm)	(deg)	(QP/PK/AV)
1	*	2385.300	45.03	-2.10	42.93	-31.07	74.00	215	205	Peak
2		2390.000	44.83	-2.09	42.74	-31.26	74.00	215	205	Peak
3		2402.100	98.44	-2.05	96.39	N/A	N/A	215	205	Peak

- 1. " *", means this data is the worst emission level.
- 2. C.F (Correction Factor) = Antenna Factor (dB/m)+ Cable Loss (dB) Preamplifier(dB).
- 3. Measurement (dBuV/m) = Reading(dBuV) + C.F (Correction Factor).
- 4. The emission levels of other frequencies are very lower than the limit and not show in test report.

EUT	Wireless Planar Magnetic Headphones	Date of Test	2024-01-31
Factor	BBHA 9120D	Temp. / Humidity	22°C /62%
Polarity	Horizontal	Site / Test Engineer	AC1 / Todd
Test Mode	BT_TX_3DH5_CH 78	Test Voltage	AC 120V/60Hz



No		Frequency	Reading	C.F	Measurement	Margin	Limit	Height	Angle	Remark
140	INU	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dB)	(dBuV/m)	(cm)	(deg)	(QP/PK/AV)
1		2479.975	97.41	-1.81	95.60	N/A	N/A	170	120	Peak
2		2483.500	50.43	-1.80	48.62	-25.38	74.00	170	120	Peak
3	*	2484.650	51.83	-1.80	50.04	-23.96	74.00	170	120	Peak

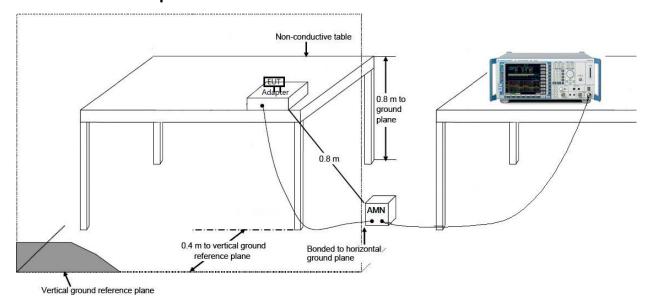
- 1. " *", means this data is the worst emission level.
- 2. C.F (Correction Factor) = Antenna Factor (dB/m)+ Cable Loss (dB) Preamplifier(dB).
- 3. Measurement (dBuV/m) = Reading(dBuV) + C.F (Correction Factor).
- 4. The emission levels of other frequencies are very lower than the limit and not show in test report.

EUT	Wireless Planar Magnetic Headphones	Date of Test	2024-01-31		
Factor	BBHA 9120D	Temp. / Humidity	22°C /62%		
Polarity	Vertical	Site / Test Engineer	AC1 / Todd		
Test Mode	BT_TX_3DH5_CH 78	Test Voltage	AC 120V/60Hz		

No	Frequency (MHz)	Reading (dBuV)	C.F (dB/m)	Measurement (dBuV/m)	Margin (dB)	Limit (dBuV/m)	Height (cm)	Angle (deg)	Remark (QP/PK/AV)
1	2479.975	97.77	-1.81	95.96	N/A	N/A	180	205	Peak
2	2483.500	47.71	-1.80	45.91	-28.09	74.00	180	205	Peak
3	* 2487.525	51.32	-1.79	49.53	-24.47	74.00	180	205	Peak

- 1. " *", means this data is the worst emission level.
- 2. C.F (Correction Factor) = Antenna Factor (dB/m)+ Cable Loss (dB) Preamplifier(dB).
- 3. Measurement (dBuV/m) = Reading(dBuV) + C.F (Correction Factor).
- 4. The emission levels of other frequencies are very lower than the limit and not show in test report.

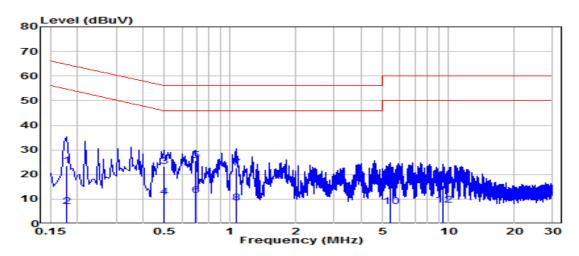
7.10. AC Conducted Emissions Measurement


7.10.1. Test Limit

FCC Part 15 Subpart C Paragraph 15.207 / RSS-Gen Limits								
Frequency (MHz)	QP (dBµV)	Average (dBμV)						
0.15 - 0.50	66 - 56	56 - 46						
0.50 - 5.0	56	46						
5.0 - 30	60	50						

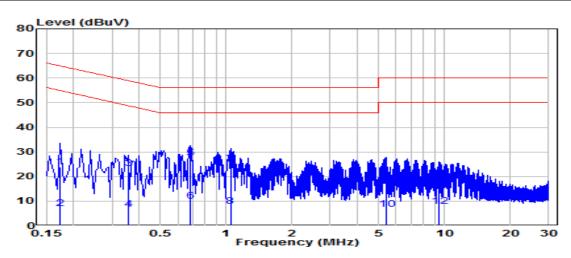
Note 1: The lower limit shall apply at the transition frequencies.

Note 2: The limit decreases linearly with the logarithm of the frequency in the range 0.15MHz to 0.5MHz.


7.10.2. Test Setup

7.10.3. Test Result

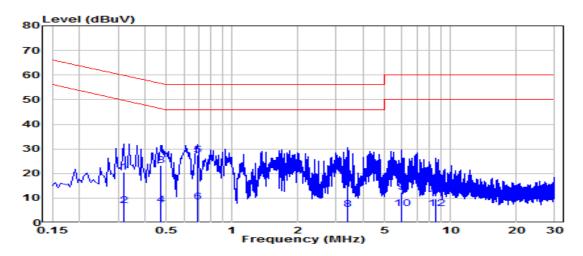
EUT	Wireless Planar Magnetic Headphones	Date of Test	2024-01-30
Factor	CE_ENV216-L1 (Filter ON)	Temp. / Humidity	22°C /60%
Polarity	Line1	Site / Test Engineer	SR2 / Bob
Test Mode	BT_TX_DH5_CH 39	Test Voltage	AC 120V/60Hz



No		Frequency	Reading	C.F	Measurement	Margin	Limit	Remark
No		(MHz)	(dBuV)	(dB)	(dBuV)	(dB)	(dBuV)	(QP/PK/AV)
1		0.177	13.82	9.62	23.45	-41.18	64.63	QP
2		0.177	-2.55	9.62	7.07	-47.55	54.63	Average
3		0.496	13.63	9.64	23.27	-32.79	56.06	QP
4		0.496	1.31	9.64	10.95	-35.11	46.06	Average
5	*	0.690	16.13	9.65	25.78	-30.22	56.00	QP
6	*	0.690	1.78	9.65	11.43	-34.57	46.00	Average
7		1.072	12.82	9.67	22.49	-33.51	56.00	QP
8		1.072	-1.15	9.67	8.52	-37.48	46.00	Average
9		5.392	5.05	9.75	14.80	-45.20	60.00	QP
10		5.392	-2.89	9.75	6.87	-43.13	50.00	Average
11		9.487	5.63	9.85	15.48	-44.52	60.00	QP
12		9.487	-2.41	9.85	7.43	-42.57	50.00	Average

- 1. " *", means this data is the worst emission level.
- 2. C.F (Correction Factor) = LISN Factor (dB)+ Cable Loss (dB).
- 3. Measurement (dBuV) = Reading(dBuV) + C.F (Correction Factor).

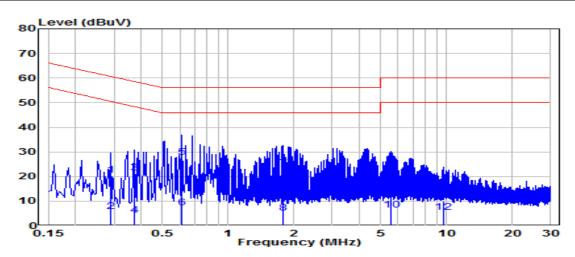
EUT	Wireless Planar Magnetic Headphones	Date of Test	2024-01-30
Factor	CE_ENV216-N (Filter ON)	Temp. / Humidity	22°C /60%
Polarity	Neutral	Site / Test Engineer	SR2 / Bob
Test Mode	BT_TX_DH5_CH 39	Test Voltage	AC 120V/60Hz



No		Frequency	Reading	C.F	Measurement	Margin	Limit	Remark
INO		(MHz)	(dBuV)	(dB)	(dBuV)	(dB)	(dBuV)	(QP/PK/AV)
1		0.172	14.18	9.62	23.80	-41.03	64.84	QP
2		0.172	-2.79	9.62	6.83	-48.01	54.84	Average
3		0.357	13.50	9.63	23.13	-35.67	58.80	QP
4		0.357	-3.01	9.63	6.62	-42.18	48.80	Average
5	*	0.681	17.87	9.65	27.52	-28.48	56.00	QP
6	*	0.681	0.16	9.65	9.82	-36.18	46.00	Average
7		1.045	15.47	9.67	25.14	-30.86	56.00	QP
8		1.045	-1.95	9.67	7.72	-38.28	46.00	Average
9		5.392	7.94	9.76	17.70	-42.30	60.00	QP
10		5.392	-2.97	9.76	6.79	-43.21	50.00	Average
11		9.482	8.19	9.86	18.05	-41.95	60.00	QP
12		9.482	-2.09	9.86	7.77	-42.23	50.00	Average

- 1. " *", means this data is the worst emission level.
- 2. C.F (Correction Factor) = LISN Factor (dB)+ Cable Loss (dB).
- 3. Measurement (dBuV) = Reading(dBuV) + C.F (Correction Factor).

EUT	Wireless Planar Magnetic Headphones	Date of Test	2024-01-30
Factor	CE_ENV216-L1 (Filter ON)	Temp. / Humidity	22°C /60%
Polarity	Line1	Site / Test Engineer	SR2 / Bob
Test Mode	BT_TX_DH5_CH 39	Test Voltage	AC 240V/60Hz



No		Frequency	Reading	C.F	Measurement	Margin	Limit	Remark
No		(MHz)	(dBuV)	(dB)	(dBuV)	(dB)	(dBuV)	(QP/PK/AV)
1		0.321	10.91	9.63	20.54	-39.14	59.68	QP
2		0.321	-2.75	9.63	6.88	-42.80	49.68	Average
3		0.469	13.50	9.64	23.14	-33.38	56.52	QP
4		0.469	-2.54	9.64	7.10	-39.42	46.52	Average
5	*	0.690	17.76	9.65	27.41	-28.59	56.00	QP
6	*	0.690	-1.22	9.65	8.43	-37.57	46.00	Average
7		3.358	5.86	9.72	15.57	-40.43	56.00	QP
8		3.358	-4.22	9.72	5.50	-40.50	46.00	Average
9		5.941	2.62	9.77	12.38	-47.62	60.00	QP
10		5.941	-4.06	9.77	5.71	-44.29	50.00	Average
11		8.537	-0.15	9.83	9.67	-50.33	60.00	QP
12		8.537	-4.23	9.83	5.59	-44.41	50.00	Average

- 1. " *", means this data is the worst emission level.
- 2. C.F (Correction Factor) = LISN Factor (dB)+ Cable Loss (dB).
- 3. Measurement (dBuV) = Reading(dBuV) + C.F (Correction Factor).

EUT	Wireless Planar Magnetic Headphones	Date of Test	2024-01-30
Factor	CE_ENV216-N (Filter ON)	Temp. / Humidity	22°C /60%
Polarity	Neutral	Site / Test Engineer	SR2 / Bob
Test Mode	BT_TX_DH5_CH 39	Test Voltage	AC 240V/60Hz

No		Frequency	Reading	C.F	Measurement	Margin	Limit	Remark
INO		(MHz)	(dBuV)	(dB)	(dBuV)	(dB)	(dBuV)	(QP/PK/AV)
1		0.289	10.78	9.63	20.41	-40.13	60.54	QP
2		0.289	-3.94	9.63	5.69	-44.85	50.54	Average
3		0.370	11.88	9.63	21.51	-36.98	58.49	QP
4		0.370	-5.27	9.63	4.36	-44.13	48.49	Average
5	*	0.613	18.11	9.65	27.76	-28.24	56.00	QP
6	*	0.613	-2.53	9.65	7.12	-38.88	46.00	Average
7		1.783	13.47	9.69	23.15	-32.85	56.00	QP
8		1.783	-4.45	9.69	5.23	-40.77	46.00	Average
9		5.536	10.38	9.76	20.14	-39.86	60.00	QP
10		5.536	-3.34	9.76	6.42	-43.58	50.00	Average
11		9.631	0.15	9.86	10.02	-49.98	60.00	QP
12		9.631	-4.28	9.86	5.58	-44.42	50.00	Average

- 1. " *", means this data is the worst emission level.
- 2. C.F (Correction Factor) = LISN Factor (dB)+ Cable Loss (dB).
- 3. Measurement (dBuV) = Reading(dBuV) + C.F (Correction Factor).

8. CONCLUSION

The data collected relate only the item(s) tested and show that the **Wireless Planar Magnetic Headphones** is in compliance with Part 15C of the FCC Rules.

Appendix A : Test Photograph

Refer to "2401TW0113-UT" file.

Appendix	В	:	EU	T F	h	ot	0	gra	p	h
-----------------	---	---	----	-----	---	----	---	-----	---	---

Refer to "2401TW0113-UE" file.

A	ppe	ndix	C	:	Internal	P	Photo	gra	pł	1
---	-----	------	---	---	----------	---	-------	-----	----	---

Refer to "2401TW0113-UI" file.		
	- The End	