FCC 47 CFR PART 15 SUBPART C ## **TEST REPORT** for **Trailer BOX** Model: Trailer BOX **Brand: Valor/Digitire** Test Report Number: C170428Z08-RP1 Issued for # SHANGHAI BAOLONG AUTOMOTIVE CORPORATION 5500, Shenzhuan Rd., Songjiang District, Shanghai 201619, China Issued By ## Compliance Certification Services (Shenzhen) Inc. No.10-1 Mingkeda Logistics park, No.18 Huanguan South Rd., Guan Lan Town, Baoan District, Shenzhen, China TEL: 86-755-28055000 FAX: 86-755-28055221 E-Mail: service@ccssz.com Issued Date: June 20, 2017 中国认可 国际互认 检测 TESTING CNAS L4818 **Note:** This report shall not be reproduced except in full, without the written approval of Compliance Certification Services (Shenzhen) Inc. This document may be altered or revised by Compliance Certification Services (Shenzhen) Inc. personnel only, and shall be noted in the revision section of the document. The client should not use it to claim product endorsement by TAF, A2LA, NVLAP, NIST or any government agencies. The test result of this report relate only to the tested sample identified in this report. # **Revision History** | Rev. | Issue Date | Revisions | Effect
Page | Revised By | |------|---------------|---------------|----------------|--------------| | 00 | June 20, 2017 | Initial Issue | ALL | Sabrina Wang | | | | | | | | | | | | | | | | | | | ## **TABLE OF CONTENTS** | 1. TE | ST RESULT CERTIFICATION | 4 | |------------|---------------------------------------|----| | 2. EU | IT DESCRIPTION | 5 | | 3. TE | ST METHODOLOGY | 6 | | 3.1 | DESCRIPTION OF TEST MODES | 6 | | 4. FA | CILITIES AND ACCREDITATIONS | 7 | | 4.1 | FACILITIES | | | 4.2
4.3 | ACCREDITATIONSMEASUREMENT UNCERTAINTY | | | 5. SE | TUP OF EQUIPMENT UNDER TEST | 8 | | 5.1 | SETUP CONFIGURATION OF EUT | 8 | | 5.2 | SUPPORT EQUIPMENT | 8 | | 6. FC | C PART 15.231 REQUIREMENTS | 9 | | 6.1 | 20 DB BANDWIDTH | | | 6.2 | ANTENNA GAIN | | | 6.3 | LIMIT OF TRANSMISSION TIME | | | 6.4 | DUTY CYCLE | | | 6.5 | RADIATED EMISSIONS | | | 6.6 | POWERLINE CONDUCTED EMISSIONS | 24 | # 1. TEST RESULT CERTIFICATION | Product | Trailer BOX | |-------------------|---| | Model Trailer BOX | | | Brand | Valor/Digitire | | Tested | April 28~June 20, 2017 | | Applicant | SHANGHAI BAOLONG AUTOMOTIVE CORPORATION 5500, Shenzhuan Rd., Songjiang District, Shanghai 201619, China | | Manufacturer | SHANGHAI BAOLONG AUTOMOTIVE CORPORATION 5500, Shenzhuan Rd., Songjiang District, Shanghai 201619, China | | APPLICABLE STANDARDS | | | | | |--|--|--|--|--| | STANDARD TEST RESULT | | | | | | FCC 47 CFR Part 15 Subpart C No non-compliance noted | | | | | | DEVIATION FROM APPLICABLE STANDARD | | | | | | None | | | | | # We hereby certify that: The above equipment was tested by Compliance Certification Services (Shenzhen) Inc. The test data, data evaluation, test procedures, and equipment configurations shown in this report were made in accordance with the procedures given in ANSI C63.10 and the energy emitted by the sample EUT tested as described in this report is in compliance with conducted and radiated emission limits of FCC Rules Part 15.209 and Part 15.231. The test results of this report relate only to the tested sample identified in this report. Approved by: Reviewed by: Sunday Hu Supervisor of RF Dept. Sunday. Mu Compliance Certification Service (Shenzhen) Inc. **Ruby Zhang** Supervisor of Report Dept. Compliance Certification Service (Shenzhen) Inc. # 2. EUT DESCRIPTION | Product | Trailer BOX | | |----------------------|---|--| | Model | Trailer BOX | | | Brand | Valor/Digitire | | | Model Difference | N/A | | | Power Supply | Supplied by the DC power | | | Frequency Range | 433.92 MHz | | | Transmit Power | Peak: 79.27dBuV/m (Max.)
Average: 57.34dBuV/m (Max.) | | | Modulation Technique | FSK | | | Number of Channels | 1 Channel | | | Antenna Designation | Internal antenna with -3dBi gain (Max) | | | Temperature Range | -40℃~ +70℃ | | | Hardware Version | QYZJ12C1-24-00PB-V04 | | | Software Version | QYZJ12C1-02-02PR-V11 | | **Remark:** This submittal(s) (test report) is intended for FCC ID: <u>Z9F-TPMSTBOX</u>filing to comply with Section 15.209 and 15.231 of the FCC Part 15, Subpart C Rules. # 3. TEST METHODOLOGY ## 3.1 DESCRIPTION OF TEST MODES The EUT has been tested under engineering test mode condition and the EUT staying in continuous transmitting mode. The following test mode(s) were scanned during the preliminary test below 1G: | Test Item | Test mode | Worse mode | |--------------------|--|------------| | Conducted Emission | Not applicable since the EUT supplied by the DC power. | | | Radiated Emission | Mode 1: TX | | Above 1G, TX mode with the highest data rate (worst case) are chosen for full testing. # 4. FACILITIES AND ACCREDITATIONS #### 4.1 FACILITIES All measurement facilities used to collect the measurement data are located at No.10-1, Mingkeda Logistics Park, No.18, Huanguan South Rd., Guan Lan Town, Baoan District, Shenzhen, China The sites are constructed in conformance with the requirements of ANSI C63.10:2013, ANSI C63.7 and CISPR Publication 22. All receiving equipment conforms to CISPR Publication 16-1, "Radio Interference Measuring Apparatus and Measurement Methods." #### 4.2 ACCREDITATIONS Our laboratories are accredited and approved by the following accreditation body according to ISO/IEC 17025. USA A2LA China CNAS The measuring facility of laboratories has been authorized or registered by the following approval agencies. **USA** FCC **Japan** VCCI(C-4815,R-4320,T-2317, G-10624) Canada INDUSTRY CANADA Copies of granted accreditation certificates are available for downloading from our web site, http://www.ccssz.com #### 4.3 MEASUREMENT UNCERTAINTY Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the EUT as specified in CISPR 16-4-2: | Parameter | Uncertainty | |---|-------------| | Radiated Emission, 30 to 200 MHz
Test Site : 966(2) | +/-3.6880dB | | Radiated Emission, 200 to 1000 MHz
Test Site: 966(2) | +/-3.6695dB | | Radiated Emission, 1 to 8 GHz | +/-5.1782dB | | Radiated Emission, 8 to 18 GHz | +/-5.2173dB | | Conducted Emissions | +/-3.6836dB | | Band Width | 178kHz | | Peak Output Power MU | +/-1.906dB | | Band Edge MU | +/-0.182dB | | Channel Separation MU | 416.178Hz | | Duty Cycle MU | 0.054ms | | Frequency Stability MU | 226Hz | This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2. The measured result is above (below) the specification limit by a margin less than the measurement uncertainty; it is therefore not possible to state compliance based on the 95% level of confidence. However, the result indicates that compliance (non-compliance) is more probable than non-compliance) with the specification limit. # 5. SETUP OF EQUIPMENT UNDER TEST ## 5.1 SETUP CONFIGURATION OF EUT See test photographs attached in Appendix 1 for the actual connections between EUT and support equipment. # **5.2 SUPPORT EQUIPMENT** | No | Equipment | Model | Serial No. | FCC ID | Brand | Data Cable | Power Cord | |----|-----------|-------|------------|--------|-------|------------|------------| | 1. | N/A | | | | | | | #### Remark: Grounding was established in accordance with the manufacturer's requirements and conditions for the intended use. 6. FCC PART 15.231 REQUIREMENTS # 6.1 20 DB BANDWIDTH # LIMIT The bandwidth of the emission shall be no wider than 0.25% of the center frequency for devices operating above 70 MHz and below 900 MHz. For devices operating above 900 MHz, the emission shall be no wider than 0.5% of the center frequency. Bandwidth is determined at the points 20 dB down from the modulated carrier. ## **MEASUREMENT EQUIPMENT USED** | Name of
Equipment | Manufacturer | Model | Serial
Number | Last
Calibration | Due
Calibration | |----------------------|--------------|--------|------------------|---------------------|--------------------| | Spectrum Analyzer | Agilent | N9010A | MY55370330 | 02/21/2017 | 02/20/2018 | Remark: Each piece of equipment is scheduled for calibration once a year. #### **Test Configuration** # **TEST PROCEDURE** The transmitter output is connected to the spectrum analyzer. The spectrum analyzer center frequency is set to the transmitter frequency. The RBW is set to 10 kHz and VBW is set 30kHz. # **TEST RESULTS** No non-compliance noted. #### **Test Data** | Frequency (MHz) | 20 dB Bandwidth (MHz) | Limit
(MHz) | Result | |-----------------|-----------------------|----------------|--------| | 433.92 | 0.135 | 1.0848 | PASS | # **Test Plot** # 6.2 ANTENNA GAIN MEASUREMENT The antenna gain of the complete system is calculated by the difference of radiated power in EIRP and the conducted power of the module. # **MEASUREMENT PARAMETERS** | Measurement parameter | | | | |-----------------------|----------|--|--| | Detector | Peak | | | | Sweep time | Auto | | | | Resolution bandwidth | 3 MHz | | | | Video bandwidth | 3 MHz | | | | Trace-Mode | Max hold | | | # **LIMITS** | FCC | IC | | |---------|--------|--| | Antenna | a Gain | | | 6 dBi | | | # **TEST RESULTS** ## 6.3 LIMIT OF TRANSMISSION TIME # LIMIT According to 15.231 (e) Devices operated under the provisions of this paragraph shall be provided with a means for automatically limiting operation so that the duration of each transmission shall not be greater than one second and the silent period between transmissions shall be at least 30 times the duration of the transmission but in no case less than 10 seconds. # **MEASUREMENT EQUIPMENT USED** | Name of
Equipment | Manufacturer | Model | Serial
Number | Last
Calibration | Due
Calibration | |----------------------|--------------|--------|------------------|---------------------|--------------------| | Spectrum Analyzer | Agilent | N9010A | MY55370330 | 02/21/2017 | 02/20/2018 | | Spectrum Analyzer | R&S | FSU | 200409 | 02/21/2016 | 02/20/2017 | Remark: Each piece of equipment is scheduled for calibration once a year. ## **Test Configuration** # **TEST PROCEDURE** The transmitter output is connected to the spectrum analyzer. The spectrum analyzer center frequency is set to the transmitter frequency. The RBW and VBW are set to 1MHz. # **TEST RESULTS** No non-compliance noted #### **Test Data** | Frequency (MHz) | Transmission Time (s) | Limit
(s) | Result | |-----------------|-----------------------|--------------|--------| | 433.92 | 0.300 | 1 | Pass | | Frequency
(MHz) | Silent Period
(s) | Limit
(s) | Result | |--------------------|----------------------|--------------|--------| | 433.92 | 20.48 | 10 | Pass | ## **Test Plot** ## 6.4 DUTY CYCLE ## LIMIT Nil (No dedicated limit specified in the Rules) # **MEASUREMENT EQUIPMENT USED** | Name of
Equipment | Manufacturer | Model | Serial
Number | Last Calibration | Due
Calibration | |----------------------|--------------|--------|------------------|------------------|--------------------| | Spectrum Analyzer | Agilent | N9010A | MY55370330 | 02/21/2017 | 02/20/2018 | Remark: Each piece of equipment is scheduled for calibration once a year. ## **Test Configuration** ## **TEST PROCEDURE** - 1. Place the EUT on the table and set it in transmitting mode. - 2. Remove the antenna from the EUT and then connect a low loss RF cable from the antenna port to the spectrum analyzer. - 3. Set center frequency of spectrum analyzer = operating frequency. - 4. Set the spectrum analyzer as RBW, VBW=1MHz, Span = 0Hz, Adjust Sweep = 20ms - 5. Repeat above procedures until all frequency measured were complete. #### **TEST RESULTS** No non-compliance noted #### **Test Data** PDCF=PW/T=100/100=1 PDCFdB = 20* log (PW/T) = 20* log (1/1)=0dB Remark: The ransmission Time is more than 100ms, only 100ms is calculated. # **Test Plot** #### 6.5 RADIATED EMISSIONS # LIMIT According to §15.231 (e) Intentional radiators may operate at a periodic rate exceeding that specified in paragraph (a) of this section and may be employed for any type of operation, including operation prohibited in paragraph (a) of this section, provided the intentional radiator complies with the provisions of paragraphs (b) through (d) of this section, except the field strength table in paragraph (b) of this section is replaced by the following: | Fundamental frequency (MHz) | Field strength of fundamental (microvolts/meter) | Field strength of spurious emission (microvolts/meter) | | |-----------------------------|--|--|--| | 40.66-40.70 | 1,000 | 100 | | | 70-130 | 500 | 50 | | | 130-174 | 500 to 1,500 ¹ | 50 to 150 ¹ | | | 174-260 | 1,500 | 150 | | | 260-470 | 1,500 to 5,000 ¹ | 150 to 500 ¹ | | | Above 470 | 5,000 | 500 | | ^{1. **} linear interpolations [Where F is the frequency in MHz, the formulas for calculating the maximum permitted fundamental field strengths are as follows: for the band 130-174 MHz, uV/m at 3 meters = 56.81818(F) - 6136.3636; for the band 260-470 MHz, uV/m at 3 meters = 41.6667(F) - 7083.3333. The maximum permitted unwanted emission level is 20 dB below the maximum permitted fundamental level.] 2. In the above emission table, the tighter limit applies at the band edges. | Frequency (Hz) | Field Strength
(µV/m at 3-meter) | Field Strength
(dBµV/m at 3-meter) | |----------------|-------------------------------------|---------------------------------------| | 30-88 | 100 | 40 | | 88-216 | 150 | 43.5 | | 216-960 | 200 | 46 | | Above 960 | 500 | 54 | # **MEASUREMENT EQUIPMENT USED** | | Radiated Eı | mission Test S | Site 966 (2) | | | |------------------------------|----------------|----------------|------------------|------------------|--------------------| | Name of Equipment | Manufacturer | Model Number | Serial
Number | Last Calibration | Due
Calibration | | PSA Series Spectrum Analyzer | Agilent | N9010A | MY52221469 | 02/21/2017 | 02/20/2018 | | EMI TEST RECEIVER | ROHDE&SCHWARZ | ESCI | 100783 | 02/21/2017 | 02/20/2018 | | Amplifier | EMEC | EM330 | 060661 | 03/18/2017 | 03/17/2018 | | High Noise Amplifier | Agilent | 8449B | 3008A01838 | 02/21/2017 | 02/20/2018 | | Loop Antenna | COM-POWER | AL-130 | AL-130 121044 | 09/25/2016 | 09/24/2017 | | Bilog Antenna | SCHAFFNER | CBL6143 | 5082 | 02/21/2017 | 02/20/2018 | | Horn Antenna | SCHWARZBECK | BBHA9120 | D286 | 02/27/2017 | 02/27/2018 | | Board-Band Horn Antenna | Schwarzbeck | BBHA 9170 | 9170-497 | 02/27/2017 | 02/27/2018 | | Turn Table | N/A | N/A | N/A | N.C.R | N.C.R | | Antenna Tower | SUNOL | TLT2 | N/A | N.C.R | N.C.R | | Controller | Sunol Sciences | SC104V | 022310-1 | N.C.R | N.C.R | | Controller | СТ | N/A | N/A | N.C.R | N.C.R | | Temp. / Humidity Meter | Anymetre | JR913 | N/A | 02/21/2017 | 02/20/2018 | | Test S/W | FARAD | | LZ-RF / CC | S-SZ-3A2 | | Remark: Each piece of equipment is scheduled for calibration once a year. # **TEST PROCEDURE** - 1. The EUT is placed on a turntable, which is 0.8m or 1.5m above ground plane. - 2. The turntable shall be rotated for 360 degrees to determine the position of maximum emission level. - 3. EUT is set 3m away from the receiving antenna, which is varied from 1m to 4m to find out the highest emissions. - 4. Maximum procedure was performed on the six highest emissions to ensure EUT compliance. - 5. And also, each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical. - 6. Set the spectrum analyzer in the following setting as: Below 1GHz: RBW=100kHz / VBW=300kHz / Sweep=AUTO Above 1GHz: (a) PEAK: RBW=VBW=1MHz / Sweep=AUTO (b) AVERAGE: RBW=1MHz / VBW=10Hz / Sweep=AUTO 7. Repeat above procedures until the measurements for all frequencies are complete. # **TEST CONFIGURATION** #### **Below 30MHz** #### **Below 1 GHz** #### **Above 1 GHz** For the actual test configuration, please refer to the related item – Photographs of the Test Configuration. # **DATA SAMPLE** #### **Below 1GHz** | | Frequency
(MHz) | Reading
(dBuV) | Correction
Factor
(dB/m) | Result
(dBuV/m) | Limit
(dBuV/m) | Margin
(dB) | Antenna
Pole
(V/H) | Remark | |---|--------------------|-------------------|--------------------------------|--------------------|-------------------|----------------|--------------------------|--------| | Ī | XXX.XXX | 37.47 | -16.41 | 21.06 | 40.00 | -18.94 | V | QP | #### **Above 1GHz** | Frequency
(MHz) | Reading
(dBuV) | Correction
Factor
(dB/m) | Result
(dBuV/m) | Limit
(dBuV/m) | Margin
(dB) | Antenna
Pole
(V/H) | Remark | |--------------------|-------------------|--------------------------------|--------------------|-------------------|----------------|--------------------------|--------| | XXXX.XXXX | 55.54 | 4.56 | 60.10 | 74.00 | -13.90 | V | Peak | | XXXX.XXXX | 29.66 | 4.56 | 34.22 | 54.00 | -19.78 | V | AVG | Frequency (MHz) = Emission frequency in MHz Reading (dBuV) = Uncorrected Analyzer / Receiver reading Correction Factor (dB/m) = Antenna factor + Cable loss – Amplifier gain Result (dBuV/m) = Reading (dBuV) + Corr. Factor (dB/m) Limit (dBuV/m) = Limit stated in standard Margin (dB) = Result (dBuV/m) – Limit (dBuV/m) Q.P. = Quasi-peak Reading Peak = Peak Reading AVG = Average Reading # **TEST RESULTS** Operation Mode: TX Test Date: May 30, 2017 **Temperature:** 24°C **Tested by:** Eve Wang Humidity: 52 % RH Polarity: Ver. / Hor. ## Fundamental: | Frequency
(MHz) | Reading
(dBuV) | Correction
Factor
(dB/m) | Result
(dBuV/m) | Limit
(dBuV/m) | Margin
(dB) | Antenna
Pole
(V/H) | Remark | |--------------------|-------------------|--------------------------------|--------------------|-------------------|----------------|--------------------------|--------| | 433.92 | 76.52 | -5.57 | 70.95 | 92.87 | -21.92 | V | Peak | | 433.92 | 76.52 | -5.57 | 70.95 | 72.87 | -1.92 | ٧ | AVG | | 433.92 | 77.53 | -5.57 | 71.96 | 92.87 | -20.91 | Н | Peak | | 433.92 | 77.53 | -5.57 | 71.96 | 72.87 | -0.91 | Н | AVG | | Frequency
(MHz) | Reading
(dBuV) | Correction
Factor
(dB/m) | Result
(dBuV/m) | Limit
(dBuV/m) | Margin
(dB) | Antenna
Pole
(V/H) | Remark | |--------------------|-------------------|--------------------------------|--------------------|-------------------|----------------|--------------------------|--------| | 868.0800 | 48.13 | -2.50 | 45.63 | 72.87 | -27.24 | V | peak | | 868.0800 | 48.13 | -2.50 | 45.63 | 52.87 | -7.24 | V | AVG | | 868.0800 | 54.20 | -2.50 | 51.70 | 72.87 | -21.17 | Н | peak | | 868.0800 | 54.20 | -2.50 | 51.70 | 52.87 | -1.17 | Н | AVG | | Frequency
(MHz) | Reading
(dBuV) | Correction
Factor
(dB/m) | Result
(dBuV/m) | Limit
(dBuV/m) | Margin
(dB) | Antenna
Pole
(V/H) | Remark | |--------------------|-------------------|--------------------------------|--------------------|-------------------|----------------|--------------------------|--------| | 50.3700 | 40.95 | -18.76 | 22.19 | 40.00 | -17.81 | V | QP | | 112.4500 | 35.89 | -14.42 | 21.47 | 43.50 | -22.03 | V | QP | | 291.9000 | 31.79 | -8.34 | 23.45 | 46.00 | -22.55 | V | QP | | 380.1700 | 35.00 | -7.12 | 27.88 | 46.00 | -18.12 | V | QP | | 611.0300 | 32.84 | -3.88 | 28.96 | 46.00 | -17.04 | V | QP | | | | | | | | | | | 63.9500 | 39.87 | -17.41 | 22.46 | 40.00 | -17.54 | Н | QP | | 145.4300 | 40.59 | -12.64 | 27.95 | 43.50 | -15.55 | Н | QP | | 400.5400 | 34.47 | -6.47 | 28.00 | 46.00 | -18.00 | Н | QP | | 485.9000 | 32.60 | -5.83 | 26.77 | 46.00 | -19.23 | Н | QP | | 696.3900 | 27.08 | -2.21 | 24.87 | 46.00 | -21.13 | Н | QP | | 907.8500 | 27.51 | -1.70 | 25.81 | 46.00 | -20.19 | Н | QP | Remark: AVG = peak - duty factor Remark: - 1. Measuring frequencies from 30 MHz to the 1GHz. - 2. Radiated emissions measured in frequency range from 30 MHz to 1000MHz were made with an instrument using Peak detector mode. - 3. Data of measurement within this frequency range shown " --- " in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured. - 4. The IF bandwidth of SPA between 30MHz to 1GHz was 100kHz. ### Vertical #### Horizontal #### **Above 1 GHz** Operation Mode: TX Test Date: May 30, 2017 **Temperature:** 24°C **Humidity:** 52 % RH Tested by: Eve Wang | Frequency
(MHz) | Reading
(dBuV) | Correction
Factor
(dB/m) | Result
(dBuV/m) | Limit
(dBuV/m) | Margin
(dB) | Antenna
Pole
(V/H) | Remark | |--------------------|-------------------|--------------------------------|--------------------|-------------------|----------------|--------------------------|--------| | 1736.000 | 48.88 | -6.41 | 42.47 | 74.00 | -31.53 | V | peak | | 2172.000 | 47.52 | -4.06 | 43.46 | 74.00 | -30.54 | V | peak | | 3036.000 | 42.17 | -1.30 | 40.87 | 74.00 | -33.13 | V | peak | | 3252.000 | 42.98 | -0.94 | 42.04 | 74.00 | -31.96 | V | peak | | 3472.000 | 42.13 | -0.57 | 41.56 | 74.00 | -32.44 | V | peak | | 4340.000 | 38.67 | 2.79 | 41.46 | 74.00 | -32.54 | V | peak | | | | | | | | | | | 1736.000 | 47.88 | -6.41 | 41.47 | 74.00 | -32.53 | Н | peak | | 2172.000 | 48.02 | -4.06 | 43.96 | 74.00 | -30.04 | Н | peak | | 2640.000 | 42.53 | -2.01 | 40.52 | 74.00 | -33.48 | Н | peak | | 3252.000 | 43.98 | -0.94 | 43.04 | 74.00 | -30.96 | Н | peak | | 4104.000 | 39.31 | 1.96 | 41.27 | 74.00 | -32.73 | Н | peak | | 4572.000 | 39.04 | 3.58 | 42.62 | 74.00 | -31.38 | Н | peak | #### Remark: - 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency. - 2. Measurements above show only up to 6 maximum emissions noted, or would be lesser if no specific emissions from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor. - 3. Radiated emissions measured in frequency above 1000MHz were made with an instrument using Peak detector mode and average detector mode of the emission shown in Actual FS column. - 4. Spectrum setting: - a. Spectrum Peak Setting 1GHz 26GHz, RBW = 1MHz, VBW = 1MHz, Sweep time = 200 ms. - b. AVG=peak- duty factor. 6.6 POWERLINE CONDUCTED EMISSIONS # LIMIT For an intentional radiator which is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies within the band 150 kHz to 30 MHz shall not exceed 250 microvolts (The limit decreases linearly with the logarithm of the frequency in the range 0.15 MHz to 0.50 MHz). The limits at specific frequency range is listed as follows: | Eroguanov Banga (MHz) | Limits (dBµV) | | | | |-----------------------|---------------|----------|--|--| | Frequency Range (MHz) | Quasi-peak | Average | | | | 0.15 to 0.50 | 66 to 56 | 56 to 46 | | | | 0.50 to 5 | 56 | 46 | | | | 5 to 30 | 60 | 50 | | | Compliance with this provision shall be based on the measurement of the radio frequency voltage between each power line (LINE and NEUTRAL) and ground at the power terminals. ## **MEASUREMENT EQUIPMENT USED** | Conducted Emission Test Site | | | | | | | | | | | |------------------------------|---------------|--------------|----------------|------------------|--------------------|--|--|--|--|--| | Name of Equipment | Manufacturer | Model Number | Serial Number | Last Calibration | Due
Calibration | | | | | | | EMI TEST RECEIVER | ROHDE&SCHWARZ | ESCI | 100783 | 02/11/2017 | 02/10/2018 | | | | | | | LISN(EUT) | ROHDE&SCHWARZ | ENV216 | 101543-WX | 02/11/2017 | 02/10/2018 | | | | | | | LISN | EMCO | 3825/2 | 8901-1459 | 02/12/2017 | 02/11/2018 | | | | | | | Temp. / Humidity Meter | VICTOR | HTC-1 | N/A | 02/15/2017 | 02/14/2018 | | | | | | | Test S/W | FARAD | | EZ-EMC/ CCS-3A | 1-CE | | | | | | | Remark: Each piece of equipment is scheduled for calibration once a year. # **TEST CONFIGURATION** See test photographs attached in Appendix 1 for the actual connections between EUT and support equipment. # **TEST PROCEDURE** - The EUT was placed on a table, which is 0.8m above ground plane. - 2. Maximum procedure was performed on the six highest emissions to ensure EUT compliance. - 3. Repeat above procedures until all frequency measured were complete. # **TEST RESULTS** Not applicable (Since the EUT supply by the DC power)