RF Exposure

The equipment under test (EUT) is a 3.1CH Soundbar with Wireless Subwoofer with Bluetooth 5.3 (Dual Mode) function operating in 2402-2480MHz. The EUT is powered by AC100-240V $^{\sim}$ 50/60Hz. For more detail information pls. refer to the user manual.

MPE for Bluetooth function:

Bluetooth Version: 5.3 EDR Antenna Type: Integral antenna Antenna Gain: 4.14 dBi max

Modulation Type: GFSK, $\pi/4$ -DQPSK and 8-DPSK

The nominal conducted output power specified: -3.14dBm (+/-2dB). The nominal radiated output power (e.i.r.p) specified: 1dBm (+/- 2dB).

According to the KDB 447498 V06:

The maximun peak radiated emission for the EUT is $97.8 dB\mu V/m$ at 3m in the frequency 2440 MHz

The EIRP = $[(FS*D)^2 / 30]$ mW = 2.57dBm which is within the production variation.

The minimum peak radiated emission for the EUT is $96.9 dB\mu V/m$ at 3m in the frequency 2402 MHz

The EIRP = $[(FS*D)^2 / 30]$ mW = 1.67dBm which is within the production variation.

According to FCC Part 2.1091, this unlicensed transmitting devices is categorically excluded from routine environmental evaluation for RF exposure prior to equipment authorization or use, According to the KDB 447498 V06 and OET 65, the simple calculation as below:

The source-based time averaged maximum radiated power = 3 dBm = 2.0 mW

From above data, the exposed power density at a distance (R) of 20cm from the center of radiation of the antenna for 5.3 EDR mode can be calculated according to OET 65 as follow:

- $= 2.0 \text{ mW} / 4\pi \text{R}^2$
- $= 0.00040 \text{ mW/cm}^2$

<1mW/cm^2

The MPE limit is 1.0 mW/cm^2 for general population and uncontrolled exposure in the Bluetooth frequency range according to FCC Part 1.1310. As the measured power density at 20cm from the transmitter is lower than the MPE limit, the compliance to the MPE limit can be ensured by indicating the minimum 20cm separation between the transmitter's radiating structure and body of the user or nearby persons.

FCC ID: Z8M-HS3100

INTERTEK TESTING SERVICES

MPE for Bluetooth function:

Bluetooth Version: 5.3 BLE

Antenna Type: Integral antenna Antenna Gain: 4.14 dBi max Modulation Type: GFSK

The nominal conducted output power specified: -2.14dBm (+/-3dB). The nominal radiated output power (e.i.r.p) specified: 2dBm (+/- 3dB).

According to the KDB 447498 V06:

The maximun peak radiated emission for the EUT is $99.6dB\mu V/m$ at 3m in the frequency 2480MHz

The EIRP = $[(FS*D)^2 / 30]$ mW = 4.37dBm which is within the production variation.

The minimum peak radiated emission for the EUT is $95.3 dB\mu V/m$ at 3m in the frequency 2440 MHz

The EIRP = $[(FS*D)^2 / 30]$ mW = 0.07dBm which is within the production variation.

According to FCC Part 2.1091, this unlicensed transmitting devices is categorically excluded from routine environmental evaluation for RF exposure prior to equipment authorization or use, According to the KDB 447498 and OET 65, the simple calculation as below:

The source-based time averaged maximum radiated power = 5 dBm = 3.16 mW

From above data, the exposed power density at a distance (R) of 20cm from the center of radiation of the antenna for 5.3 BLE mode can be calculated according to OET 65 as follow:

- $= 3.16 \text{ mW} / 4\pi \text{R}^2$
- $= 0.00063 \text{ mW/cm}^2$
- <1mW/cm^2

The MPE limit is 1.0 mW/cm^2 for general population and uncontrolled exposure in the Bluetooth frequency range according to FCC Part 1.1310. As the measured power density at 20cm from the transmitter is lower than the MPE limit, the compliance to the MPE limit can be ensured by indicating the minimum 20cm separation between the transmitter's radiating structure and body of the user or nearby persons.

FCC ID: Z8M-HS3100