

Report No.: FR140145-09

RADIO TEST REPORT

FCC ID : Z8H89FT0069

Equipment : ePMP 6 GHz Force 4600C SM / ePMP 4600L 6 GHz 2x2 Access Point

Brand Name : Cambium Networks

: ePMP 6 GHz Force 4600C SM / ePMP 4600L 6 GHz 2x2 Access Point **Model Name**

Model Number: C068940P151A

Applicant : Cambium Networks Inc.

3800 Golf Road, Suite 360 Rolling Meadows, IL 60008, USA

Manufacturer : Cambium Networks, Ltd.

Ashburton, TQ13 7UP, UK

Standard : 47 CFR FCC Part 15.407

The product was received on May 29, 2024, and testing was started from Jun. 07, 2024 and completed on Jun. 22, 2024. We, Sporton International Inc. Hsinchu Laboratory, would like to declare that the tested sample has been evaluated in accordance with the procedures given in ANSI C63.10-2013 and shown compliance with the applicable technical standards.

The test results in this variant report apply exclusively to the tested model / sample. Without written approval of Sporton International Inc. Hsinchu Laboratory, the test report shall not be reproduced except in full.

Approved by: Rex Liao

Sporton International Inc. Hsinchu Laboratory

No.8, Ln. 724, Bo'ai St., Zhubei City, Hsinchu County 302010, Taiwan (R.O.C.)

TEL: 886-3-656-9065 FAX: 886-3-656-9085

Report Template No.: CB-A12_5 Ver1.1

Page Number : 1 of 27

Issued Date : Aug. 06, 2024

Report Version

Table of Contents

Histo	ory of this test report	3
Sumi	mary of Test Result	4
1	General Description	5
1.1	Information	5
1.2	Applicable Standards	
1.3	Testing Location Information	11
1.4	Measurement Uncertainty	11
2	Test Configuration of EUT	12
2.1	Test Channel Mode	12
2.2	The Worst Case Measurement Configuration	13
2.3	EUT Operation during Test	14
2.4	Accessories	14
2.5	Support Equipment	14
2.6	Test Setup Diagram	15
3	Transmitter Test Result	16
3.1	Emission Bandwidth	16
3.2	Maximum Equivalent Isotopically Radiated Power (E.I.R.P.)	17
3.3	Peak Power Spectral Density (E.I.R.P.)	20
3.4	Unwanted Emissions	
4	Test Equipment and Calibration Data	27

Appendix A. Test Results of Emission Bandwidth

Appendix B. Test Results of Maximum Equivalent Isotopically Radiated Power (E.I.R.P.)

Appendix C. Test Results of Peak Power Spectral Density (E.I.R.P.)

Appendix D. Test Results of Unwanted Emissions

Appendix E. Test Photos

Photographs of EUT v01

TEL: 886-3-656-9065 FAX: 886-3-656-9085 Report Template No.: CB-A12_5 Ver1.1 Page Number : 2 of 27 Issued Date : Aug. 06, 2024

Report No.: FR140145-09

Report Version : 01

History of this test report

Report No.: FR140145-09

Report No.	Version	Description	Issued Date
FR140145-09	01	Initial issue of report	Aug. 06, 2024

TEL: 886-3-656-9065 Page Number : 3 of 27
FAX: 886-3-656-9085 Issued Date : Aug. 06, 2024

Summary of Test Result

Report No.: FR140145-09

Report Clause	Ref Std. Clause	Test Items	Result (PASS/FAIL)	Remark
1.1.2	15.203	Antenna Requirement	PASS	-
3.1	15.407(a)	Emission Bandwidth	PASS	-
3.2	15.407(a)	Maximum Equivalent Isotopically Radiated Power (E.I.R.P.)	PASS	-
3.3	15.407(a)	Peak Power Spectral Density (E.I.R.P.)	PASS	-
3.4	15.407(b)	Unwanted Emissions	PASS	-

Conformity Assessment Condition:

- The test results (PASS/FAIL) with all measurement uncertainty excluded are presented against the regulation limits or in accordance with the requirements stipulated by the applicant/manufacturer who shall bear all the risks of non-compliance that may potentially occur if measurement uncertainty is taken into account.
- 2. The measurement uncertainty please refer to each test result in the chapter "Measurement Uncertainty".

Disclaimer:

The product specifications of the EUT presented in the test report that may affect the test assessments are declared by the manufacturer who shall take full responsibility for the authenticity.

Reviewed by: Sam Chen

Report Producer: Lavender Zeng

TEL: 886-3-656-9065 Page Number : 4 of 27
FAX: 886-3-656-9085 Issued Date : Aug. 06, 2024

1 General Description

1.1 Information

1.1.1 RF General Information

For IEEE:

Frequency Range (MHz)	IEEE Std. 802.11	Ch. Frequency (MHz)	Channel Number
5925-6425	ov (UEW20)	5955-6415	1-93 [24]
6525-6875	ax (HEW20)	6535-6855	117-181 [17]
5925-6425	ov (UEW/40)	5965-6405	3-91 [12]
6525-6875	ax (HEW40)	6565-6845	123-179 [8]
5925-6425	ax (HEW80)	5985-6385	7-87 [6]
6525-6875	ax (HEVVOU)	6625-6785	135-167 [3]
5925-6425	ov (HEW160)	6025-6345	15-79 [3]
6525-6875	ax (HEW160)	6665	143 [1]

Report No.: FR140145-09

Band	Mode	BWch (MHz)	Nant
5.925-6.425GHz	802.11ax HEW20	20	2TX
5.925-6.425GHz	802.11ax HEW40	40	2TX
5.925-6.425GHz	802.11ax HEW80	80	2TX
5.925-6.425GHz	802.11ax HEW160	160	2TX
6.525-6.875GHz	802.11ax HEW20	20	2TX
6.525-6.875GHz	802.11ax HEW40	40	2TX
6.525-6.875GHz	802.11ax HEW80	80	2TX
6.525-6.875GHz	802.11ax HEW160	160	2TX

Note:

• HEW20, HEW40, HEW80 and HEW160 use a combination of OFDMA-BPSK, QPSK, 16QAM, 64QAM, 256QAM, 1024QAM modulation.

• BWch is the nominal channel bandwidth.

TEL: 886-3-656-9065 Page Number : 5 of 27
FAX: 886-3-656-9085 Issued Date : Aug. 06, 2024

For Non IEEE:

Frequency Range (MHz)	Mode	Ch. Frequency (MHz)
6525-6875	80	6835
6525-6875	160	6795

Report No.: FR140145-09

Band	Mode	BWch (MHz)	Nant
6.525-6.875GHz	80	80	2TX
6.525-6.875GHz	160	160	2TX

Note:

- 80 and 160 use a combination of OFDMA-BPSK, QPSK, 16QAM, 64QAM, 256QAM, 1024QAM modulation.
- BWch is the nominal channel bandwidth.

TEL: 886-3-656-9065 Page Number : 6 of 27
FAX: 886-3-656-9085 Issued Date : Aug. 06, 2024

1.1.2 Antenna Information

For Dish Antenna:

Ant.	Port	Brand	Model Name	Antenna Type	Connector	Gain	(dBi)
		Total Moder Name America Typ		7		UNII3	UNII5&7
1	1	Cambium	ePMP 6GHz 2x2 Dish Antenna	Dish (Directional Ant.)	RP-SMA	25.21	28.7
'	2	Cambium	ePMP 6GHz 2x2 Dish Antenna	Dish (Directional Ant.)	RP-SMA	25.21	28.7

Report No.: FR140145-09

Note 1: The Dish antenna is cross polarization.

For Sector Antenna:

Ant.	Ant.		t Brand		_	Connector	Gain (dBi)	
	СН	Port		Model Name	Antenna Type		UNII3&5	UNII7
	0	-	Cambium	ePMP 2x2 6GHz MU-MIMO Sector Antenna	Sector (Directional Ant.)	RP-SMA	18	18.73
4	1	1	Cambium	ePMP 2x2 6GHz MU-MIMO Sector Antenna	Sector (Directional Ant.)	RP-SMA	18	18.73
ı	2	2	Cambium	ePMP 2x2 6GHz MU-MIMO Sector Antenna	Sector (Directional Ant.)	RP-SMA	18	18.73
	3	-	Cambium	ePMP 2x2 6GHz MU-MIMO Sector Antenna	Sector (Directional Ant.)	RP-SMA	18	18.73

Note 2: The Sector antenna has four CH ports. Only two CH ports (CH1 and CH2) were used for the EUT. The Sector antenna is cross polarization: CH 1 is vertical and CH 2 is horizontal.

Note 3: The above information was declared by manufacturer.

Note 4: Directional gain information for Dish antenna

Type	Maximum Output Power	Power Spectral Density
Non-BF	Directional gain = Max.gain + array gain. For power measurements on IEEE 802.11 devices Array Gain = 0 dB (i.e., no array gain) for N ANT ≤ 4	$Directional Gain = 10 \cdot log \left[\frac{\sum_{j=1}^{N_{SS}} \left\{ \sum_{k=1}^{N_{SAMT}} g_{j,k} \right\}^{2}}{N_{ANT}} \right]$
BF	$Directional Gain = 10 \cdot log \left[\frac{\sum_{j=1}^{N_{SS}} \left\{ \sum_{k=1}^{N_{ANT}} g_{j,k} \right\}^{2}}{N_{ANT}} \right]$	$Directional Gain = 10 \cdot log \left[\frac{\sum_{j=1}^{N_{SS}} \left\{ \sum_{k=1}^{N_{ANT}} g_{j,k} \right\}^{2}}{N_{ANT}} \right]$

Ex.

$$\begin{split} & \text{NSS1}(\text{g1,1}) = \ 10^{\text{G1/20}} \ ; \ \text{NSS1}(\text{g1,2}) = \ 10^{\text{G2/20}} \ ; \ \text{NSS1}(\text{g1,2}) = \ 10^{\text{G3/20}}; \ \text{NSS1}(\text{g1,2}) = \ 10^{\text{G4/20}} \\ & \text{gj,k} = & (\text{Nss1}(\text{g1,1}) \ + \ \text{Nss1}(\text{g1,2}) \ + \ \text{Nss1}(\text{g1,3}) \ + \ \text{Nss1}(\text{g1,4}) \)^2 \\ & \text{DG} = & 10 \ \log[(\text{Nss1}(\text{g1,1}) \ + \ \text{Nss1}(\text{g1,2}) \ + \ \text{Nss1}(\text{g1,3}) \ + \ \text{Nss1}(\text{g1,4}))^2 \ / \ \text{N}_{\text{ANT}}] => 10 \\ & \log[(10^{\text{G1/20}} \ + \ 10^{\text{G2/20}} \ + \ 10^{\text{G3/20}} \ + \ 10^{\text{G4/20}} \)^2 \ / \ \text{N}_{\text{ANT}}] \end{split}$$

TEL: 886-3-656-9065 Page Number : 7 of 27
FAX: 886-3-656-9085 Issued Date : Aug. 06, 2024

Where;

Dish ANT

Cross-Polarized Antenna

6G UNII-5 G1= 28.70 dBi ; G2= 28.70 dBi ;DG= 28.70 dBi 6G UNII-7 G1= 28.70 dBi ; G2= 28.70 dBi ;DG= 28.70 dBi

Note 5: For 5GHz function

For IEEE 802.11a/n/ac/ax (2TX/2RX):

Port 1 and Port 2 can be used as transmitting/receiving antenna.

Port 1 and Port 2 could transmit/receive simultaneously.

For 6GHz function

For IEEE 802.11ax (2TX/2RX):

Port 1 and Port 2 can be used as transmitting/receiving antenna.

Port 1 and Port 2 could transmit/receive simultaneously.

1.1.3 Mode Test Duty Cycle

For Dish Antenna:

Mode	DC	DCF (dB)	T (s)	VBW (Hz)_1/T
80_Nss 1,(M0)	0.869	0.61	5.456m	300
160_Nss 1,(M0)	0.854	0.69	5.456m	300

Report No.: FR140145-09

For Sector Antenna:

Mode	DC	DCF (dB)	T (s)	VBW (Hz) ≥ 1/T
80_Nss 1,(M0)	0.853	0.69	5.46m	300
160_Nss 1,(M0)	0.865	0.63	5.46m	300

Note:

- DC is Duty Cycle.
- DCF is Duty Cycle Factor.

TEL: 886-3-656-9065 Page Number : 8 of 27
FAX: 886-3-656-9085 Issued Date : Aug. 06, 2024

1.1.4 EUT Operational Condition

EUT Power Type	From PoE			
Beamforming Function		With beamforming Without beamforming		Without beamforming
		Indoor Access Point		Subordinate
Dovice Type		Indoor Client		Standard Power Access Point
Device Type		Dual Client		Standard Client
	\boxtimes	Fixed Client		
Condition of EUT		Indoor		Outdoor
Channel Puncturing Function		☐ Supported ☐ Unsupported		Unsupported
Support RU	\boxtimes	Full RU Partial RU		Partial RU
Test Software Version	QRCT V4.0.00192.0			

Report No.: FR140145-09

Note: The above information was declared by manufacturer.

1.1.5 Table for Multiple Listing

The two models are identical except for the difference listed below:

EUT	Equipment Name / Model Name	Model Number	WLAN Antenna
1	ePMP 6 GHz Force 4600C SM	C068940P151A	Dish Antenna
2	ePMP 4600L 6 GHz 2x2 Access Point		Sector Antenna

Note: The above information was declared by manufacturer.

1.1.6 Table for EUT Supports Function

Function	5GHz Support Band	6GHz Support Band		Support Non-IEEE Mode in 6GHz		
Mootor	LIMILO	UNII 5	Standard Dower Access Daint (GSD)	X		
Master UNII 3	UNII 7	Standard Power Access Point (6SD)	V			
			LIN	UNII 5	Standard Client (6FX)	X
Client UNII 3	LIMILO	OIVII 3	Fixed Client (6FC)	X		
	UNII 3	UNII 7	Standard Client (6FX)	X		
			Fixed Client (6FC)	V		

Note: The above information was declared by manufacturer.

TEL: 886-3-656-9065 Page Number : 9 of 27
FAX: 886-3-656-9085 Issued Date : Aug. 06, 2024

1.1.7 Table for Permissive Change

This product is an extension of original one reported under Sporton project number: 140145-01 Below is the table for the change of the product with respect to the original one.

Modifications	Performance Checking
	For 6835 MHz and 6795 MHz with 6SD mode:
	Emission Bandwidth
Adding frequencies for 6835 MHz at 80MHz and	Maximum Equivalent Isotopically Radiated
6795 MHz at 160MHz for Non IEEE in UNII 7 for 6SD	Power (E.I.R.P.)
and 6FC modes through SW change.	3. Peak Power Spectral Density (E.I.R.P.)
	4. Unwanted Emissions
	5. Emission Mask

Report No.: FR140145-09

TEL: 886-3-656-9065 Page Number : 10 of 27
FAX: 886-3-656-9085 Issued Date : Aug. 06, 2024

1.2 Applicable Standards

According to the specifications of the manufacturer, the EUT must comply with the requirements of the following standards:

Report No.: FR140145-09

- 47 CFR FCC Part 15.407
- ANSI C63.10-2013
- FCC KDB 789033 D02 v02r01

The following reference test guidance is not within the scope of accreditation of TAF.

- FCC KDB 662911 D01 v02r01
- FCC KDB 987594 D02 v02r01
- FCC KDB 412172 D01 v01r01

1.3 Testing Location Information

	Testing I	Location Information
Test Lab. : Sportor	n International Inc. Hsinchu I	_aboratory
Hsinchu	ADD: No.8, Ln. 724, Bo'a	i St., Zhubei City, Hsinchu County 302010, Taiwan (R.O.C.)
(TAF: 3787)	TEL: 886-3-656-9065	FAX: 886-3-656-9085
	Test site Designation No.	TW3787 with FCC.

Conformity Assessment Body Identifier (CABID) TW3787 with ISED.

Test Condition	Test Site No.	Test Engineer	Test Environment (°C / %)	Test Date
RF Conducted	TH03-CB	Nyle Chnag	23.7~24.1 / 61~65	Jun. 22, 2024
Radiated	03CH02-CB	Jackson Peng	21.8-22.9 / 55-58	Jun. 07, 2024~ Jun. 21, 2024

1.4 Measurement Uncertainty

ISO/IEC 17025 requires that an estimate of the measurement uncertainties associated with the emissions test results be included in the report. The measurement uncertainties given below are based on a 95% confidence level (based on a coverage factor (k=2)

Test Items	Uncertainty	Remark
Radiated Emission (1GHz ~ 18GHz)	4.2 dB	Confidence levels of 95%
Radiated Emission (18GHz ~ 40GHz)	4.0 dB	Confidence levels of 95%
Conducted Emission	3.1 dB	Confidence levels of 95%
Output Power Measurement	0.8 dB	Confidence levels of 95%
Power Density Measurement	3.1 dB	Confidence levels of 95%
Bandwidth Measurement	2.1 %	Confidence levels of 95%

TEL: 886-3-656-9065 Page Number : 11 of 27
FAX: 886-3-656-9085 Issued Date : Aug. 06, 2024

2 Test Configuration of EUT

2.1 Test Channel Mode

For Dish Antenna:

1 of Bioli / titolina.
Mode
80_Nss1,(MCS0)_2TX
6835MHz
160_Nss1,(MCS0)_2TX
6795MHz

Report No.: FR140145-09

For Sector Antenna:

Tot Sector Africania.
Mode
80_Nss1,(MCS0)_2TX
6835MHz
160_Nss1,(MCS0)_2TX
6795MHz

Note: The power of the "Fixed Client" mode is exactly the same as the "Standard power access point" mode.

 TEL: 886-3-656-9065
 Page Number : 12 of 27

 FAX: 886-3-656-9085
 Issued Date : Aug. 06, 2024

2.2 The Worst Case Measurement Configuration

The Worst Case Mode for Following Conformance Tests		
Tests Item	Emission Bandwidth Emission MASK	
Test Condition	Conducted measurement at transmit chains	
Test Mode		
1	EUT 1 + Dish antenna	
2	EUT 2 + Sector antenna	

Report No.: FR140145-09

The Worst Case Mode for Following Conformance Tests		
Tests Item	Maximum Equivalent Isotopically Radiated Power (E.I.R.P.) Peak Power Spectral Density (E.I.R.P.)	
Test Condition	Conducted measurement at transmit chains	
Test Mode		
1	EUT 1 + Dish antenna	

The Worst Case Mode for Following Conformance Tests		
Tests Item	Maximum Equivalent Isotopically Radiated Power (E.I.R.P.) for Phi 30°	
Test Condition Conducted measurement at transmit chains		
Test Mode		
1	EUT 2 + Sector antenna	

TI	The Worst Case Mode for Following Conformance Tests	
Tests Item	Maximum Equivalent Isotopically Radiated Power (E.I.R.P.) for others Peak Power Spectral Density (E.I.R.P.)	
Test Condition	Radiated measurement If EUT consist of multiple antenna assembly (multiple antenna are used in EUT regardless of spatial multiplexing MIMO configuration), the radiated test should be performed with highest antenna gain of each antenna type.	
Test Mode	After evaluating, EUT in Y axis was the worst case, so the measurement will follow this same test configuration.	
1	EUT 2 in Y axis + Sector antenna	

TEL: 886-3-656-9065 Page Number : 13 of 27
FAX: 886-3-656-9085 Issued Date : Aug. 06, 2024

The Worst Case Mode for Following Conformance Tests		
Tests Item	Unwanted Emissions	
Test Condition	Radiated measurement If EUT consist of multiple antenna assembly (multiple antenna are used in EUT regardless of spatial multiplexing MIMO configuration), the radiated test should be performed with highest antenna gain of each antenna type.	
	СТХ	
Operating Mode > 1GHz	After evaluating, EUT in Y axis was the worst case, so the measurement will follow this same test configuration.	
1	EUT 1 in Y axis + Dish antenna	
2	EUT 2 in Y axis + Sector antenna	

Report No.: FR140145-09

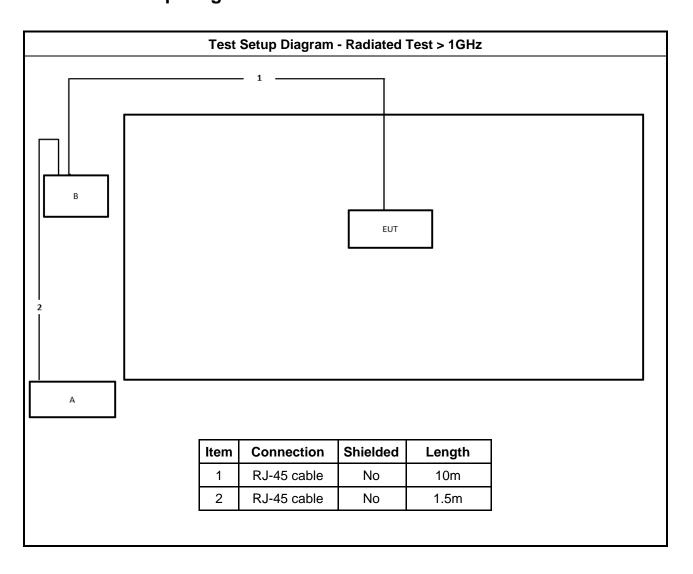
Note: The PoE was for measurement only and would not be marketed. Its information is shown as below:

Equipment	Brand Name	Model Name	FCC ID
PoE	Cambium Networks	NET-P30-56IN	N/A

2.3 EUT Operation during Test

The EUT was programmed to be in continuously transmitting mode.

2.4 Accessories


N/A

2.5 Support Equipment

	Support Equipment			
No.	Equipment	Brand Name	Model Name	FCC ID
Α	Notebook	DELL	E4300	N/A
В	PoE	Cambium Networks	NET-P30-56IN	N/A

TEL: 886-3-656-9065 Page Number : 14 of 27
FAX: 886-3-656-9085 Issued Date : Aug. 06, 2024

2.6 Test Setup Diagram

Report No.: FR140145-09

TEL: 886-3-656-9065 Page Number : 15 of 27
FAX: 886-3-656-9085 Issued Date : Aug. 06, 2024

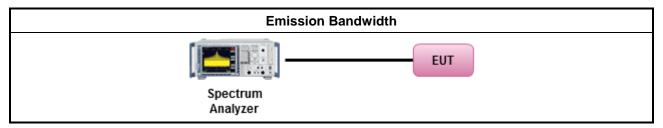
3 Transmitter Test Result

3.1 Emission Bandwidth

3.1.1 Emission Bandwidth Limit

	Emission Bandwidth Limit
UNI	I Devices
	For the 5925-6425 GHz band, N/A
	For the 6425-6525 GHz band, N/A
\boxtimes	For the 6525-6875 GHz band, N/A
	For the 6875-7125 GHz band, N/A
RL	AN Devices
	For the 5925-6425 GHz band, N/A
	For the 6425-6525 GHz band, N/A
	For the 6525-6875 GHz band, N/A
	For the 6875-7125 GHz band, N/A

Report No.: FR140145-09


3.1.2 Measuring Instruments

Refer a test equipment and calibration data table in this test report.

3.1.3 Test Procedures

	Test Method		
•	For the emission bandwidth shall be measured using one of the options below:		
		According to FCC KDB 987594 D02 clause II.C, measurement procedure shall refer to FCC KDB 789033 D02, clause C for EBW and clause D for OBW measurement.	
		Refer as ANSI C63.10, clause 6.9.1 for occupied bandwidth testing.	
		Refer as IC RSS-Gen, clause 4.6 for bandwidth testing.	

3.1.4 Test Setup

3.1.5 Test Result of Emission Bandwidth

Refer as Appendix A

TEL: 886-3-656-9065 Page Number : 16 of 27
FAX: 886-3-656-9085 Issued Date : Aug. 06, 2024

3.2 Maximum Equivalent Isotopically Radiated Power (E.I.R.P.)

Report No.: FR140145-09

3.2.1 Maximum Equivalent Isotopically Radiated Power (E.I.R.P.) Limit

	Maximum Equivalent Isotopically Radiated Power (E.I.R.P.) Limit		
UNI	I Dev	vices	
	For	the 5.925 ~ 6.425 GHz band:	
	•	For standard power access point and fixed client device : e.i.r.p < 36 dBm , For outdoor devices, the maximum e.i.r.p. at any elevation angle above 30 degrees not exceed 125 mW (21 dBm).	
	•	For indoor access point : e.i.r.p < 30 dBm.	
	•	For subordinate device control of an indoor access point : e.i.r.p < 30 dBm.	
	•	For client device control of a standard power access point : e.i.r.p < 30 dBm.	
	•	For client device control of an indoor access point : e.i.r.p < 24 dBm.	
	For	the 6.425 ~ 6.525 GHz band:	
	•	For indoor access point : e.i.r.p < 30 dBm.	
	•	For client device control of an indoor access point : e.i.r.p < 24 dBm.	
\boxtimes	For	the 6.525 ~ 6.875 GHz band:	
	•	For standard power access point and fixed client device : e.i.r.p $<$ 36 dBm , For outdoor devices, the maximum e.i.r.p. at any elevation angle above 30 degrees not exceed 125 mW (21 dBm).	
	•	For indoor access point : e.i.r.p < 30 dBm.	
	•	For subordinate device control of an indoor access point : e.i.r.p < 30 dBm.	
	•	For client device control of a standard power access point : e.i.r.p < 30 dBm.	
	•	For client device control of an indoor access point : e.i.r.p < 24 dBm.	
	For	the 6.875 ~ 7.125 GHz band:	
	•	For indoor access point : e.i.r.p < 30 dBm.	
	•	For client device control of an indoor access point : e.i.r.p < 24 dBm.	
RLA	AN Devices		
	For	the 5.925 ~ 7.125 GHz band:	
	•	For low-power indoor access-points & indoor subordinate devices < 30 dBm .	
	•	For low-power client devices < 24 dBm.	
	For	the 5.925 ~ 6.875 GHz band:	
	•	For standard-power access points & fixed client devices < 36 dBm.	
	•	For standard client devices < 30 dBm.	

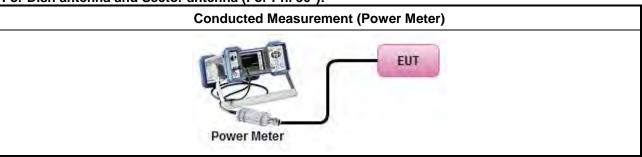
TEL: 886-3-656-9065 Page Number : 17 of 27
FAX: 886-3-656-9085 Issued Date : Aug. 06, 2024

3.2.2 Measuring Instruments

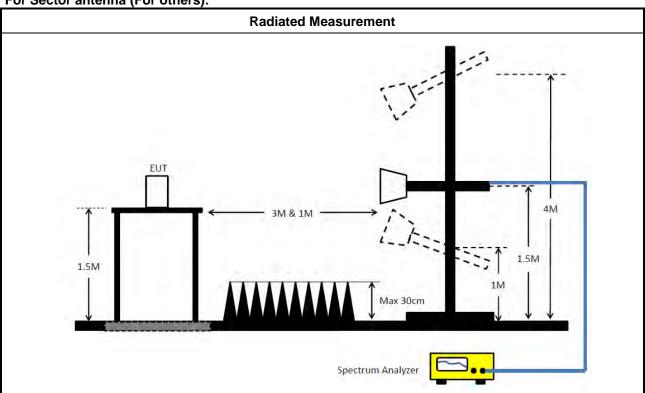
Refer a test equipment and calibration data table in this test report.

3.2.3 Test Procedures

Test Method		
According to FCC KDB 987594 D02 clause II.E, the test measurement procedure shall refer to KDB 789033.		
Ave	rage over on/off periods with duty factor	
	For 6SD mode with Sector antenna (For others): Refer as FCC KDB 789033 D02, clause E Method SA-2 (spectral trace averaging). Spectrum analyzer setting: RBW/VBW: 1/3MHz; Detector: RMS; Trace mode: Average; Sweep Count 100.	
	Refer as FCC KDB 789033 D02, clause E Method SA-2 Alt. (RMS detection with slow sweep speed)	
Wid	eband RF power meter and average over on/off periods with duty factor	
	For 6SD mode with Dish antenna and with Sector antenna (For Phi 30°) and for 6FX mode: Refer as FCC KDB 789033 D02, clause E Method PM-G (using an RF average power meter).	
For conducted measurement: For 6SD mode with Dish antenna and with Sector antenna (For Phi 30°) and for 6FX mode.		
•	If the EUT supports multiple transmit chains using options given below: Refer as FCC KDB 662911, In-band power measurements. Using the measure-and-sum approach, measured all transmit ports individually. Sum the power (in linear power units e.g., mW) of all ports for each individual sample and save them.	
•	If multiple transmit chains, EIRP calculation could be following as methods: $P_{total} = P_1 + P_2 + + P_n$ (calculated in linear unit [mW] and transfer to log unit [dBm]) $EIRP_{total} = P_{total} + DG$	
For	radiated measurement: For 6SD mode with Sector antenna (For others)	
•	Refer as FCC KDB 789033 D02 clause II A.1.F "Antenna-port Conducted versus Radiated Testing"	
•	Refer as ANSI C63.10, clause 6.6 for radiated emissions above 1GHz.	
•	Refer as FCC KDB 412172 D01 clause 2.2 for EIRP calculation.	
	Avei	


Report No.: FR140145-09

TEL: 886-3-656-9065 Page Number : 18 of 27
FAX: 886-3-656-9085 Issued Date : Aug. 06, 2024


REPORT REPORT Report No. : FR140145-09

3.2.4 Test Setup

For Dish antenna and Sector antenna (For Phi 30°):

For Sector antenna (For others):

3.2.5 Test Result of Maximum Equivalent Isotopically Radiated Power (E.I.R.P)

Refer as Appendix B

TEL: 886-3-656-9065 Page Number : 19 of 27
FAX: 886-3-656-9085 Issued Date : Aug. 06, 2024

3.3 Peak Power Spectral Density (E.I.R.P.)

3.3.1 Peak Power Spectral Density (E.I.R.P.) Limit

		Peak Power Spectral Density (E.I.R.P.) Limit	
UNI	UNII Devices		
	For	the 5.925 ~ 6.425 GHz band:	
	•	For standard power access point and fixed client device : e.i.r.p PSD < 23 dBm/MHz.	
	•	For indoor access point : e.i.r.p PSD < 5 dBm/MHz.	
	•	For subordinate device control of an indoor access point : e.i.r.p PSD < 5 dBm/MHz.	
	•	For client device control of a standard power access point : e.i.r.p PSD < 17 dBm/MHz.	
	•	For client device control of an indoor access point : e.i.r.p PSD < -1 dBm/MHz.	
	For	the 6.425 ~ 6.525 GHz band:	
	•	For indoor access point : e.i.r.p PSD < 5 dBm/MHz.	
		For client device control of an indoor access point : e.i.r.p PSD < -1 dBm/MHz.	
\boxtimes	For	the 6.525 ~ 6.875 GHz band:	
	•	For standard power access point and fixed client device : e.i.r.p PSD < 23 dBm/MHz.	
	•	For indoor access point : e.i.r.p PSD < 5 dBm/MHz.	
	•	For subordinate device control of an indoor access point : e.i.r.p PSD < 5 dBm/MHz.	
	•	For client device control of a standard power access point : e.i.r.p PSD < 17 dBm/MHz.	
	•	For client device control of an indoor access point : e.i.r.p PSD < -1 dBm/MHz.	
	For	the 6.875 ~ 7.125 GHz band:	
	•	For indoor access point : e.i.r.p PSD < 5 dBm/MHz.	
	•	For client device control of an indoor access point : e.i.r.p PSD < -1 dBm/MHz.	
RLA	AN D	evices	
	For	the 5.925 ~ 7.125 GHz band:	
	•	For low-power indoor access-points & indoor subordinate devices < 5 dBm / MHz.	
	•	For low-power client devices < -1 dBm / MHz.	
	For	the 5.925 ~ 6.875 GHz band:	
	•	For standard-power access points & fixed client devices < 23 dBm / MHz.	
	•	For standard client devices < 17 dBm / MHz.	

Report No.: FR140145-09

3.3.2 Measuring Instruments

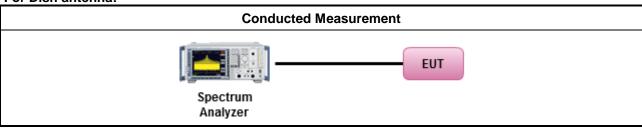
Refer a test equipment and calibration data table in this test report.

TEL: 886-3-656-9065 Page Number : 20 of 27
FAX: 886-3-656-9085 Issued Date : Aug. 06, 2024

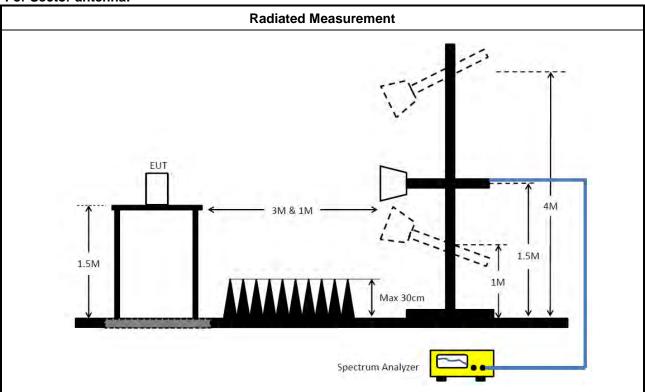
3.3.3 Test Procedures

		Test Method
•	Peak poutput production	ing to FCC KDB 987594 D02 clause II.F, the measurement procedure shall refer to KDB 789033. Ower spectral density procedures that the same method as used to determine the conducted power shall be used to determine the peak power spectral density and use the peak search on the spectrum analyzer to find the peak of the spectrum. For the peak power spectral density measured using below options:
		efer as FCC KDB 789033 D02, F)5) power spectral density can be measured using resolution ndwidths < 1 MHz provided that the results are integrated over 1 MHz bandwidth
	[duty cy	cle ≥ 98% or external video / power trigger]
	⊠ Re	fer as FCC KDB 789033 D02, clause E Method SA-1 (spectral trace averaging).
		efer as FCC KDB 789033 D02, clause E Method SA-1 Alt. (RMS detection with slow sweep eed)
	duty cy	cle < 98% and average over on/off periods with duty factor
	⊠ Re	fer as FCC KDB 789033 D02, clause E Method SA-2 (spectral trace averaging).
		efer as FCC KDB 789033 D02, clause E Method SA-2 Alt. (RMS detection with slow sweep eed)
\boxtimes	For con	ducted measurement: For 6SD mode with Dish antenna and for 6FX mode
	• If t	he EUT supports multiple transmit chains using options given below:
		Option 1: Measure and sum the spectra across the outputs. Refer as FCC KDB 662911, In-band power spectral density (PSD). Sample all transmit ports simultaneously using a spectrum analyzer for each transmit port. Where the trace bin-by-bin of each transmit port summing can be performed. (i.e., in the first spectral bin of output 1 is summed with that in the first spectral bin of output 2 and that from the first spectral bin of output 3, and so on up to the NTX output to obtain the value for the first frequency bin of the summed spectrum.). Add up the amplitude (power) values for the different transmit chains and use this as the new data trace.
		Option 2: Measure and sum spectral maxima across the outputs. With this technique, spectra are measured at each output of the device at the required resolution bandwidth. The maximum value (peak) of each spectrum is determined. These maximum values are then summed mathematically in linear power units across the outputs. These operations shall be performed separately over frequency spans that have different out-of-band or spurious emission limits,
		Option 3: Measure and add 10 log(N) dB, where N is the number of transmit chains. Refer as FCC KDB 662911, In-band power spectral density (PSD). Performed at each transmit chains and each transmit chains shall be compared with the limit have been reduced with 10 log(N). Or each transmit chains shall be add 10 log(N) to compared with the limit.
	PF (ca	multiple transmit chains, EIRP PPSD calculation could be following as methods: PSDtotal = PPSD1 + PPSD2 + + PPSDn alculated in linear unit [mW] and transfer to log unit [dBm]) RPtotal = PPSDtotal + DG

Report No.: FR140145-09


TEL: 886-3-656-9065 Page Number : 21 of 27
FAX: 886-3-656-9085 Issued Date : Aug. 06, 2024

ADIO TEST REPORT Report No. : FR140145-09


- For radiated measurement: For 6SD mode with Sector antenna
 - Refer as FCC KDB 789033 D02 clause II A.1.F "Antenna-port Conducted versus Radiated Testing"
 - Refer as ANSI C63.10, clause 6.6 for radiated emissions above 1GHz.
 - Refer as FCC KDB 412172 D01 clause 2.2 for EIRP calculation.

3.3.4 Test Setup

For Dish antenna:

For Sector antenna:

3.3.5 Test Result of Peak Power Spectral Density (E.I.R.P.)

Refer as Appendix C

TEL: 886-3-656-9065 Page Number : 22 of 27
FAX: 886-3-656-9085 Issued Date : Aug. 06, 2024

3.4 Unwanted Emissions

3.4.1 Transmitter Unwanted Emissions Limit

Unwanted emissions below 1 GHz and restricted band emissions above 1GHz limit				
Frequency Range (MHz)	Field Strength (uV/m)	Field Strength (dBuV/m)	Measure Distance (m)	
0.009~0.490	2400/F(kHz)	48.5 - 13.8	300	
0.490~1.705	24000/F(kHz)	33.8 - 23	30	
1.705~30.0	30	29	30	
30~88	100	40	3	
88~216	150	43.5	3	
216~960	200	46	3	
Above 960	500	54	3	

Report No.: FR140145-09

- Note 1: Test distance for frequencies at or above 30 MHz, measurements may be performed at a distance other than the limit distance provided they are not performed in the near field and the emissions to be measured can be detected by the measurement equipment. When performing measurements at a distance other than that specified, the results shall be extrapolated to the specified distance using an extrapolation factor of 20 dB/decade (inverse of linear distance for field-strength measurements, inverse of linear distance-squared for power-density measurements).
- Note 2: Test distance for frequencies at below 30 MHz, measurements may be performed at a distance closer than the EUT limit distance; however, an attempt should be made to avoid making measurements in the near field. When performing measurements below 30 MHz at a closer distance than the limit distance, the results shall be extrapolated to the specified distance by either making measurements at a minimum of two or more distances on at least one radial to determine the proper extrapolation factor or by using the square of an inverse linear distance extrapolation factor (40 dB/decade). The test report shall specify the extrapolation method used to determine compliance of the EUT.
- Note 3: Using the distance of 1m during the test for above 18 GHz, and the test value to correct for the distance factor at 3m(20 x log (standard distance/ test distance) = 20log(3/1) = 9.54dB.

 EX. Above 18GHz emission limit calculation (3m to 1m) = 54dBuV/m at 3m + 9.54dB = 63.54 dBuV/m at 1m.

	Un-restricted band emissions above 1GHz Limit	
Frequency	Limit	
Any outside the 5.945 –	e.i.r.p27 dBm [68.2 dBuV/m@3m]	
7.125 GHz emission	Note 1: Using the distance of 1m during the test for above 18 GHz, and the test value to correct for the distance factor at 3m(20 x log (standard distance/test distance) = 20log(3/1) = 9.54dB. EX. Above 18GHz emission limit calculation (3m to 1m) = 68.2dBuV/m at 3m + 9.54dB = 77.74 dBuV/m at 1m. Note 2:-27 dBm EIRP OOBE is measured RMS which is a deviation from the current 15E rules for 5 GHz bands. In addition, 15.35(b) applies where the peak emissions must be limited to no more than 20 dB above the average limit.	

TEL: 886-3-656-9065 Page Number : 23 of 27
FAX: 886-3-656-9085 Issued Date : Aug. 06, 2024

Frequency **Emission MASK Limit** 5.945 - 7.125 GHz Power spectral density must be suppressed by 20 dB at 1 MHz outside of channel edge, by 28 dB at one channel bandwidth from the channel center, and by 40 dB at one- and one-half times the channel bandwidth away from channel center. At frequencies between one megahertz outside an unlicensed device's channel edge and one channel bandwidth from the center of the channel, the limits must be linearly interpolated between 20 dB and 28 dB suppression, and at frequencies between one and one- and one-half times an unlicensed device's channel bandwidth, the limits must be linearly interpolated between 28 dB and 40 dB suppression. Emissions removed from the channel center by more than one- and one-half times the channel bandwidth must be suppressed by at least 40 dB. Fc - EBW Fc + EBW 20 dB 28 dB 40 dB Fc + 1.5 X EBW 1.5 X EBW EBW/2 EBW/2

- 1MHz

+ 1MHz

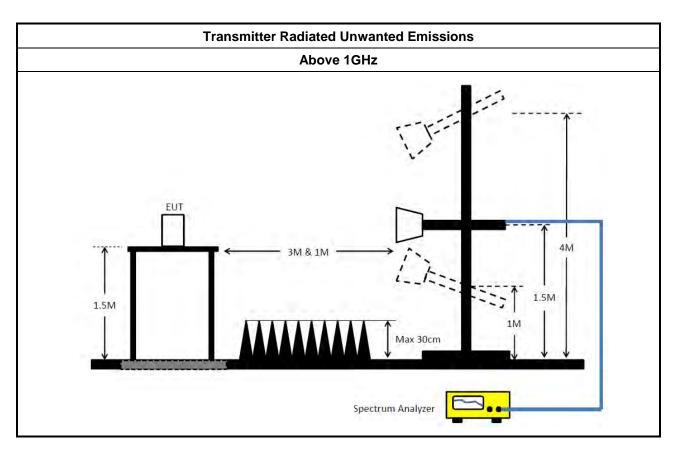
Report No.: FR140145-09

TEL: 886-3-656-9065 Page Number : 24 of 27 FAX: 886-3-656-9085 Issued Date : Aug. 06, 2024

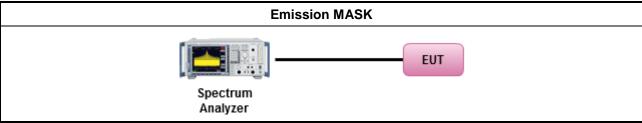
3.4.2 Measuring Instruments

Refer a test equipment and calibration data table in this test report.

3.4.3 Test Procedures


Test Method

Report No.: FR140145-09


- According to FCC KDB 987594 D02 II.G. the unwanted emission measurement procedure shall refer to KDB 789300(except emission MASK).
 - Measurements may be performed at a distance other than the limit distance provided they are not performed in the near field and the emissions to be measured can be detected by the measurement equipment. Measurements shall not be performed at a distance greater than 30 m for frequencies above 30 MHz, unless it can be further demonstrated that measurements at a distance of 30 m or less are impractical. When performing measurements at a distance other than that specified, the results shall be extrapolated to the specified distance using an extrapolation factor of 20 dB/decade (inverse of linear distance for field-strength measurements, inverse of linear distance-squared for power-density measurements).
- The average emission levels shall be measured in [duty cycle ≥ 98 or duty factor].
- For the transmitter unwanted emissions shall be measured using following options below:
 - Refer as FCC KDB 789033 D02, clause G)2) for unwanted emissions into non-restricted bands.
 - Refer as FCC KDB 789033 D02, clause G)1) for unwanted emissions into restricted bands.
 - Refer as FCC KDB 789033 D02, G)6) Method AD (Trace Averaging). (For unrestricted band measurement)
 - Refer as FCC KDB 789033 D02, G)6) Method VB (Reduced VBW).
 - Refer as ANSI C63.10, clause 11.12.2.5.3 (Reduced VBW). VBW ≥ 1/T, where T is pulse time.(For restricted band average measurement)
 - Refer as ANSI C63.10, clause 7.5 average value of pulsed emissions.
 - Refer as FCC KDB 789033 D02, clause G)5) measurement procedure peak limit.
 - Refer as ANSI C63.10, clause 4.1.4.2.2 measurement procedure peak limit.
 - Refer as FCC KDB 789033 D02, clause G)3)d)ii) for Band edge Integration measurements.
- For emission MASK shall be measured using following options below:
 - Refer as FCC KDB 987594 D02, J) In-Band Emissions
- For radiated measurement.
 - Refer as ANSI C63.10, clause 6.4 for radiated emissions below 30 MHz and test distance is 3m.
 - Refer as ANSI C63.10, clause 6.5 for radiated emissions 30 MHz to 1 GHz and test distance is 3m.
 - Refer as ANSI C63.10, clause 6.6 for radiated emissions above 1GHz.
- The any unwanted emissions level shall not exceed the fundamental emission level.
- All amplitude of spurious emissions that are attenuated by more than 20 dB below the permissible value has no need to be reported.

TEL: 886-3-656-9065 Page Number : 25 of 27
FAX: 886-3-656-9085 Issued Date : Aug. 06, 2024

3.4.4 Test Setup

Report No.: FR140145-09

3.4.5 Measurement Results Calculation

The measured Level is calculated using:

Corrected Reading: Antenna factor (AF) + Cable loss (CL) + Read level (Raw) - Preamp factor (PA)(if applicable) = Level

3.4.6 Test Result of Transmitter Unwanted Emissions

Refer as Appendix D

TEL: 886-3-656-9065 Page Number : 26 of 27
FAX: 886-3-656-9085 Issued Date : Aug. 06, 2024

4 Test Equipment and Calibration Data

Instrument	Brand	Model No.	Serial No.	Characteristics	Calibration Date	Calibration Due Date	Remark	
3m Semi Anechoic Chamber VSWR	RIKEN	SAC-3M	03CH02-CB	1GHz ~18GHz	Mar. 24, 2024	Mar. 23, 2025	Radiation (03CH02-CB)	
Horn Antenna	EMCO	3115	9610-4976	1GHz ~ 18GHz	Apr. 12, 2024	Apr. 11, 2025	Radiation (03CH02-CB)	
Horn Antenna	Schwarzbeck	BBHA 9170	BBHA9170252	15GHz ~ 40GHz	Sep. 04, 2023	Sep. 03, 2024	Radiation (03CH02-CB)	
Pre-Amplifier	Agilent	83017A	MY39501305	1GHz ~ 26.5GHz	Jun. 30, 2023	Jun. 29, 2024	Radiation (03CH02-CB)	
Pre-Amplifier	SGH	SGH184	20221107-3	18GHz ~ 40GHz	Nov. 24, 2023	Nov. 23, 2024	Radiation (03CH02-CB)	
Signal Analyzer	R&S	FSV3044	101536	10kHz ~ 44GHz	Jul. 24, 2023	Jul. 23, 2024	Radiation (03CH02-CB)	
RF Cable-high	Woken	RG402	High Cable-18	1GHz ~ 18GHz	Oct. 02, 2023	Oct. 01, 2024	Radiation (03CH02-CB)	
RF Cable-high	Woken	RG402	High Cable-18+19	1GHz ~ 18GHz	Oct. 02, 2023	Oct. 01, 2024	Radiation (03CH02-CB)	
High Cable	Woken	WCA0929M	40G#5+6	1GHz ~ 40 GHz	Jan. 11, 2024	Jan. 10, 2025	Radiation (03CH02-CB)	
Test Software	SPORTON	SENSE	V5.10	-	N.C.R.	N.C.R.	Radiation (03CH02-CB)	
Spectrum analyzer	R&S	FSV40	101028	9kHz~40GHz	Dec. 22, 2023	Dec. 21, 2024	Conducted (TH03-CB)	
Power Sensor	Anritsu	MA2411B	1726195	300MHz~40GHz	Sep. 04, 2023	Sep. 03, 2024	Conducted (TH03-CB)	
Power Meter	Anritsu	ML2495A	1035008	300MHz~40GHz	Sep. 04, 2023	Sep. 03, 2024	Conducted (TH03-CB)	
RF Cable	Woken	RG402	High Cable-11	30MHz –18 GHz	Oct. 02, 2023	Oct. 01, 2024	Conducted (TH03-CB)	
RF Cable	Woken	RG402	High Cable-12	30MHz –18 GHz	Oct. 02, 2023	Oct. 01, 2024	Conducted (TH03-CB)	
RF Cable	Woken	RG402	High Cable-13	30MHz –18 GHz	Oct. 02, 2023	Oct. 01, 2024	Conducted (TH03-CB)	
RF Cable-high	Woken	RG402	High Cable-14	1 GHz –18 GHz	Oct. 02, 2023	Oct. 01, 2024	Conducted (TH03-CB)	
RF Cable-high	Woken	RG402	High Cable-15	1 GHz –18 GHz	Oct. 02, 2023	Oct. 01, 2024	Conducted (TH03-CB)	
Switch	SPTCB	SP-SWI	SWI-03	1 ~26.5 GHz	Oct. 03, 2023	Oct. 02, 2024	Conducted (TH03-CB)	
Band Rejector	MTJ	6G Band Rejector	6G-BRJ-01	1 ~ 18GHz	Oct. 03, 2023	Oct. 02, 2024	Conducted (TH03-CB)	
Band Rejector	MTJ	6G Band Rejector	6G-BRJ-02	1~ 18GHz	Oct. 03, 2023	Oct. 02, 2024	Conducted (TH03-CB)	
Test Software	SPORTON	SENSE	V5.10	-	N.C.R.	N.C.R.	Conducted (TH03-CB)	

Note: Calibration Interval of instruments listed above is one year.

N.C.R means Non-Calibration required.

TEL: 886-3-656-9065 FAX: 886-3-656-9085

Report Template No.: CB-A12_5 Ver1.1

Page Number : 27 of 27

Issued Date : Aug. 06, 2024

Report No.: FR140145-09

Report Version : 01

EBW_Dish Antenna

Appendix A.1

Summary

Mode	Max-N dB	Max-OBW	ITU-Code	Min-N dB	Min-OBW
	(Hz)	(Hz)		(Hz)	(Hz)
6.525-6.875GHz	-	-	-	-	-
80_Nss1,(MCS0)_2TX	81.18M	77.417M	77M4D1D	80.08M	77.126M
160_Nss1,(MCS0)_2TX	161.92M	155.139M	155MD1D	161.92M	154.116M

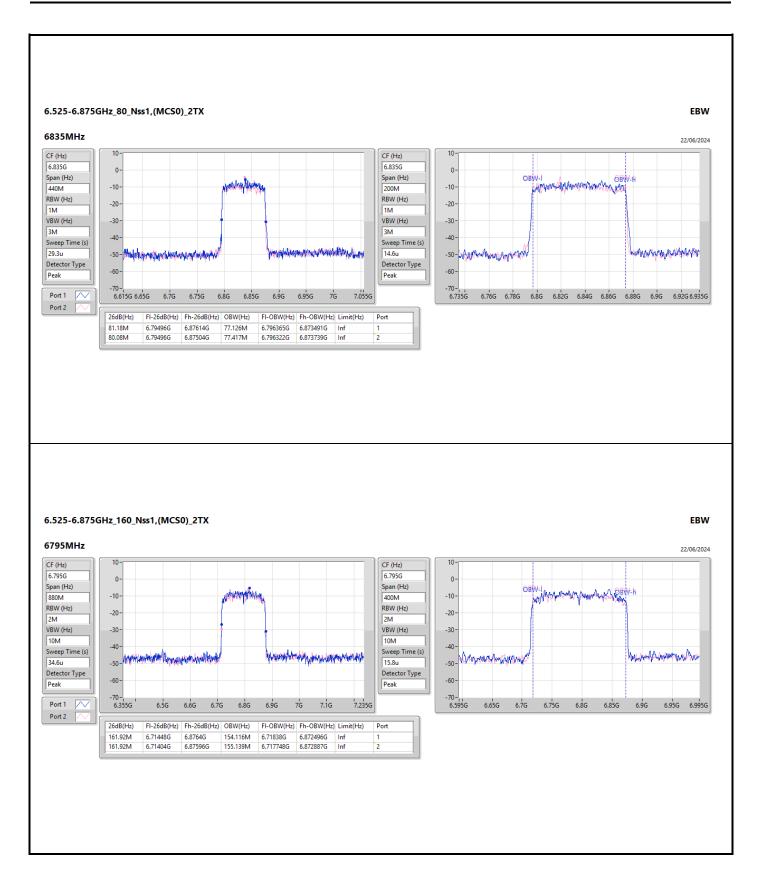
 $\label{eq:max-NdB} Max - N \ dB = Maximum \ 6dB \ down \ bandwidth \ for \ 5.725-5.85 \ GHz \ band \ / \ Maximum \ 26dB \ down \ bandwidth \ for \ other \ band; \\ Max - OBW = Maximum \ 99\% \ occupied \ bandwidth; \\ Min - N \ dB = Minimum \ 6dB \ down \ bandwidth \ for \ 5.725-5.85 \ GHz \ band \ / \ Maximum \ 26dB \ down \ bandwidth \ for \ other \ band; \\ Min - OBW = Minimum \ 99\% \ occupied \ bandwidth \ for \ other \ band; \\ Min - OBW = Minimum \ 99\% \ occupied \ bandwidth \ for \ other \ band; \\ Min - OBW = Minimum \ 99\% \ occupied \ bandwidth \ for \ other \ band; \\ Min - OBW = Minimum \ 99\% \ occupied \ bandwidth \ for \ other \ bandwidth \ for \ other$

Sporton International Inc. Hsinchu Laboratory

: 1 of 3 Page No.

Report No. : FR140145-09

EBW_Dish Antenna


Appendix A.1

Result

Mode	Result	Limit	Port 1-N dB	Port 1-OBW	Port 2-N dB	Port 2-OBW
		(Hz)	(Hz)	(Hz)	(Hz)	(Hz)
80_Nss1,(MCS0)_2TX	-	1	=	=	-	=
6835MHz	Pass	Inf	81.18M	77.126M	80.08M	77.417M
160_Nss1,(MCS0)_2TX	-	-	-	-	-	-
6795MHz	Pass	Inf	161.92M	154.116M	161.92M	155.139M

Port X-N dB = Port X 6dB down bandwidth for 5.725-5.85GHz band / 26dB down bandwidth for other band Port X-OBW = Port X 99% occupied bandwidth

Page No. : 2 of 3 Report No. : FR140145-09

EBW_Sector Antenna

Appendix A.2

Summary

Mode	Max-N dB (Hz)	Max-OBW (Hz)	ITU-Code	Min-N dB (Hz)	Min-OBW (Hz)
6.525-6.875GHz	-	-	-	-	-
80_Nss1,(MCS0)_2TX	80.74M	77.056M	77M1D1D	80.08M	76.875M
160_Nss1,(MCS0)_2TX	161.92M	155.772M	156MD1D	161.48M	154.67M

 $\label{eq:max-NdB} \mbox{ Asximum 6dB down bandwidth for 5.725-5.85GHz band / Maximum 26dB down bandwidth for other band;} \mbox{ Max-OBW = Maximum 99% occupied bandwidth;} \mbox{ Min-N dB = Minimum 6dB down bandwidth for 5.725-5.85GHz band / Maximum 26dB down bandwidth for other band;} \mbox{ Min-OBW = Minimum 99% occupied bandwidth} \mbox{ } \mbox{ Coupled bandwidth for other band;} \mbox{ Min-OBW = Minimum 99% occupied bandwidth} \mbox{ } \mbox{ Coupled bandwidth for other band;} \mbox{ } \mbox{ }$

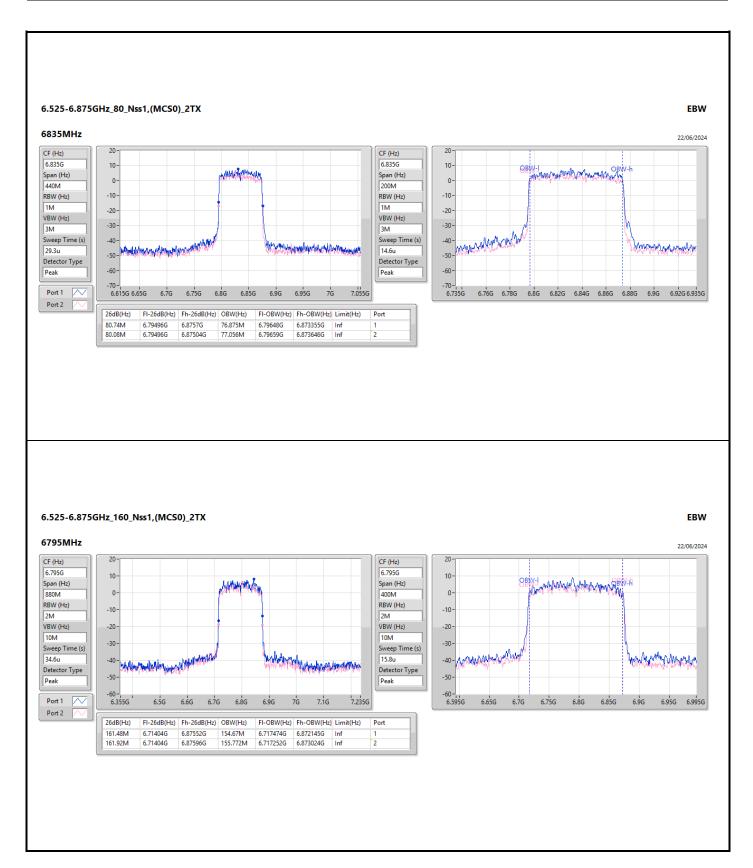
Sporton International Inc. Hsinchu Laboratory

: 1 of 3 Page No.

Report No. : FR140145-09

EBW_Sector Antenna

Appendix A.2


Result

Mode	Result	Limit	Port 1-N dB	Port 1-OBW	Port 2-N dB	Port 2-OBW
		(Hz)	(Hz)	(Hz)	(Hz)	(Hz)
80_Nss1,(MCS0)_2TX	-	-	-	-	-	-
6835MHz	Pass	Inf	80.74M	76.875M	80.08M	77.056M
160_Nss1,(MCS0)_2TX	-	-	-	-	-	-
6795MHz	Pass	Inf	161.48M	154.67M	161.92M	155.772M

Port X-N dB = Port X 6dB down bandwidth for 5.725-5.85GHz band / 26dB down bandwidth for other band Port X-OBW = Port X 99% occupied bandwidth

Page No. : 2 of 3 Report No. : FR140145-09

Page No. : 3 of 3 Report No. : FR140145-09

Average Power_Dish Antenna

Appendix B.1

Summary

Mode	Total Power Total Power		EIRP	EIRP
	(dBm)	(W)	(dBm)	(W)
6.525-6.875GHz	-	-	-	-
80_Nss1,(MCS0)_2TX	7.24	0.00530	35.94/9.26	3.92645/0.008433
160_Nss1,(MCS0)_2TX	7.22	0.00527	35.92/9.24	3.90841/0.008395

: 1 of 2 : FR140145-09 Sporton International Inc. Hsinchu Laboratory Page No. Report No.

Average Power_Dish Antenna

Appendix B.1

Result

Mode	Result	DG[Power] / DG [Phi 30]	Port 1	Port 2	Total Power	Power Limit	EIRP / EIRP [Phi 30°]	EIRP Limit / EIRP Limit [Phi 30°]
		(dBi)	(dBm)	(dBm)	(dBm)	(dBm)	(dBm)	(dBm)
80_Nss1,(MCS0)_2TX	-	-	i	-	-	-	-	-
6835MHz	Pass	28.70/2.02	4.74	3.64	7.24	Inf	35.94/9.26	36.00/21.00
160_Nss1,(MCS0)_2TX	-	-	-	-	-	-	-	-
6795MHz	Pass	28.70/2.02	4.63	3.74	7.22	Inf	35.92/9.24	36.00/21.00

DG = Directional Gain; Port X = Port X output power

Sporton International Inc. Hsinchu Laboratory

Page No. : 2 of 2 Report No. : FR140145-09

Average Power-E.I.R.P_Sector Antenna

Appendix B.2

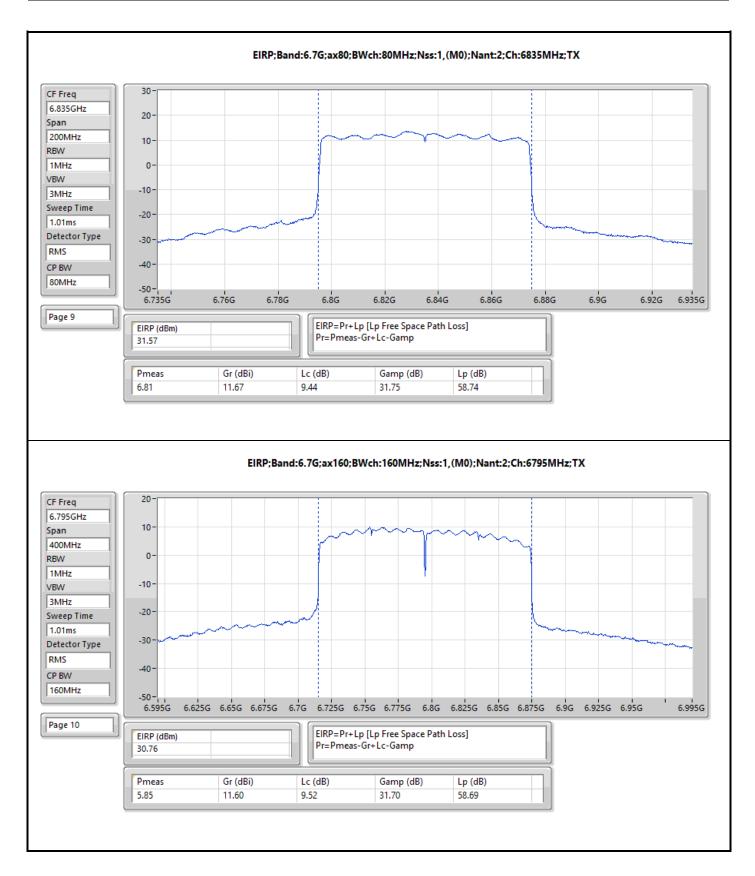
Summary

Mode	EIRP	EIRP
	(dBm)	(W)
6.525-6.875GHz	=	-
80_Nss1,(MCS0)_2TX	31.57	1.43549
160_Nss1,(MCS0)_2TX	30.76	1.19124

Page No. : 1 of 3 Report No. : FR140145-09

Average Power-E.I.R.P_Sector Antenna

Appendix B.2


Result

Mode	Result	EIRP	EIRP Limit
		(dBm)	(dBm)
80_Nss1,(MCS0)_2TX	=	=	=
6835MHz	Pass	31.57	36.00
160_Nss1,(MCS0)_2TX	-	-	-
6795MHz	Pass	30.76	36.00

DG = Directional Gain; Port X = Port X output power Inf = There's no restriction for the limit.

Page No. : 2 of 3 Report No. : FR140145-09

Page No. : 3 of 3

Report No. : FR140145-09

Average Power-E.I.R.P. at any elevation angle above 30 degrees_Sector Antenna

Appendix B.3

Summary

Mode	Total Power	Total Power	EIRP	EIRP
	(dBm)	(W)	(dBm)	(W)
6.525-6.875GHz	=	=	-	-
80_Nss1,(MCS0)_2TX	19.66	0.09247	20.64	0.115878
160_Nss1,(MCS0)_2TX	19.99	0.09977	20.97	0.125026

Sporton International Inc. Hsinchu Laboratory Page No. : 1 of 2 Report No. : FR140145-09

Average Power-E.I.R.P. at any elevation angle above 30 degrees_Sector Antenna

Appendix B.3

Result

Mode	Result	DG [Phi 30°]	Port 1	Port 2	Total Power	EIRP [Phi 30°]	EIRP Limit [Phi 30°]
		(dBi)	(dBm)	(dBm)	(dBm)	(dBm)	(dBm)
80_Nss1,(MCS0)_2TX	-	=	1	-	=	-	-
6835MHz	Pass	0.98	17.52	15.56	19.66	20.64	21.00
160_Nss1,(MCS0)_2TX	-	=	1	-	-	•	=
6795MHz	Pass	0.98	17.72	16.09	19.99	20.97	21.00

DG = Directional Gain; Port X = Port X output power

Sporton International Inc. Hsinchu Laboratory

Page No. : 2 of 2 Report No. : FR140145-09

PSD_Dish Antenna

Appendix C.1

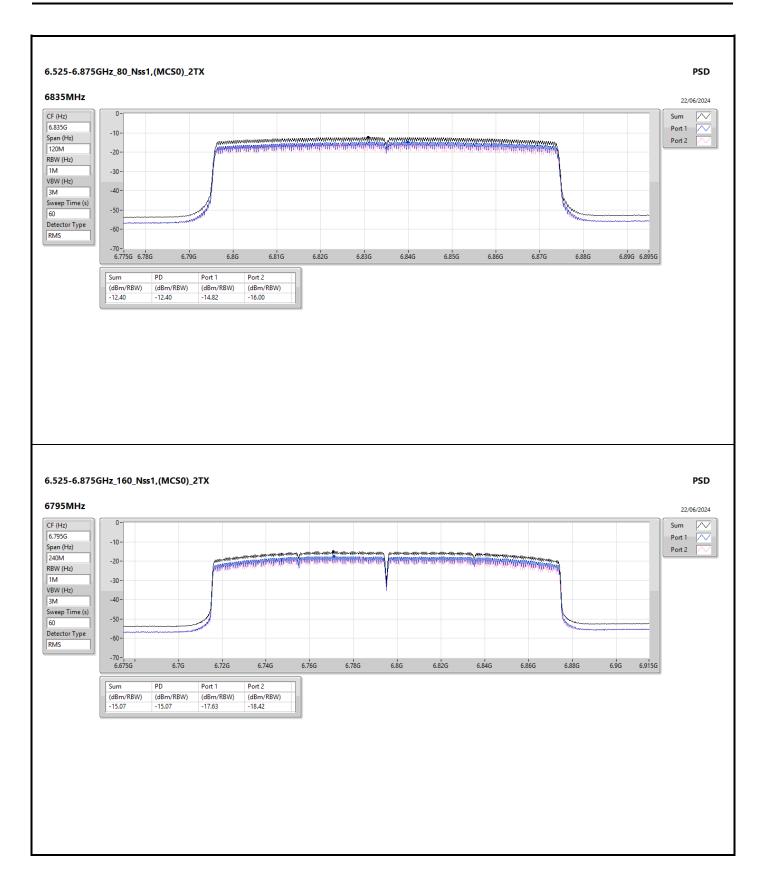
Summary

Mode	PD	EIRP PD
	(dBm/RBW)	(dBm/RBW)
6.525-6.875GHz	-	-
80_Nss1,(MCS0)_2TX	-12.40	16.30
160_Nss1,(MCS0)_2TX	-15.07	13.63

RBW = 500kHz for 5.725-5.85GHz band / 1MHz for other band;

Page No. : 1 of 3 Report No. : FR140145-09

PSD_Dish Antenna


Appendix C.1

Result

Mode	Result	DG	Port 1	Port 2	PD	PD Limit	EIRP PD	EIRP PD Limit
		(dBi)	(dBm/RBW)	(dBm/RBW)	(dBm/RBW)	(dBm/RBW)	(dBm/RBW)	(dBm/RBW)
80_Nss1,(MCS0)_2TX	-	-	-	=	=	=	-	-
6835MHz	Pass	28.70	-14.82	-16.00	-12.40	Inf	16.30	23.00
160_Nss1,(MCS0)_2TX	-	-	-	-	-	-	-	-
6795MHz	Pass	28.70	-17.63	-18.42	-15.07	Inf	13.63	23.00

Page No. : 2 of 3 Report No. : FR140145-09

DG = Directional Gain; RBW = 500kHz for 5.725-5.85GHz band / 1MHz for other band; PD = trace bin-by-bin of each transmits port summing can be performed maximum power density; Port X = Port X Power Density;

Page No. : 3 of 3

Report No. : FR140145-09

PSD_Sector Antenna

Appendix C.2

Summary

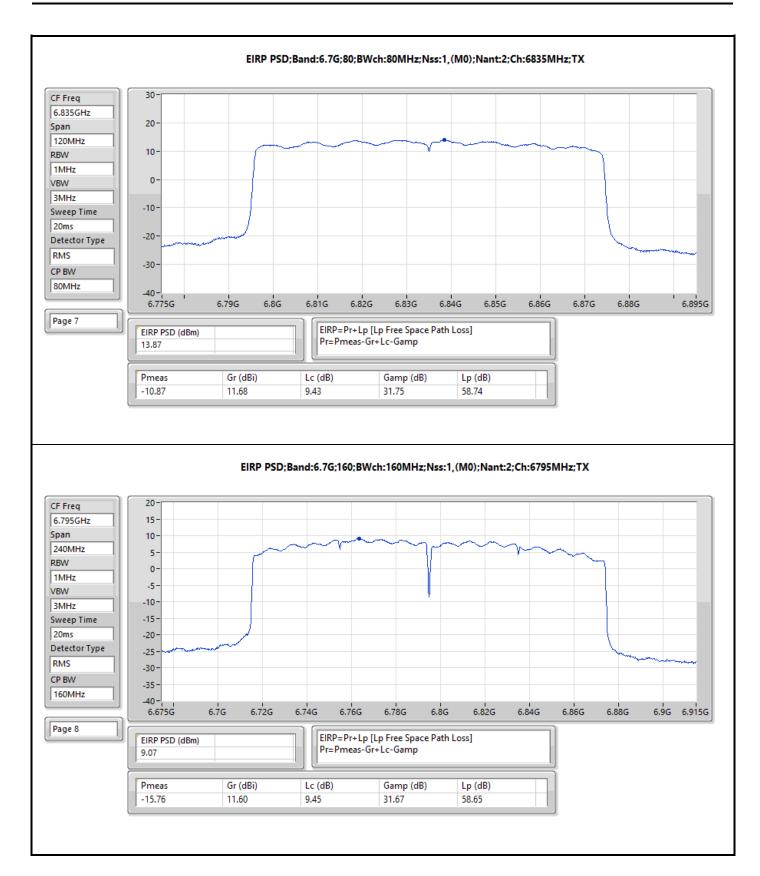
Mode	EIRP PD (dBm/RBW)
6.525-6.875GHz	-
80_Nss1,(MCS0)_2TX	13.87
160_Nss1,(MCS0)_2TX	9.07

RBW = 500kHz for 5.725-5.85GHz band / 1MHz for other band;

Page No. : 1 of 3 Report No. : FR140145-09

PSD_Sector Antenna

Appendix C.2


Result

Mode	Result	EIRP PD	EIRP PD Limit
		(dBm/RBW)	(dBm/RBW)
80_Nss1,(MCS0)_2TX	=	-	-
6835MHz	Pass	13.87	23.00
160_Nss1,(MCS0)_2TX	=	-	-
6795MHz	Pass	9.07	23.00

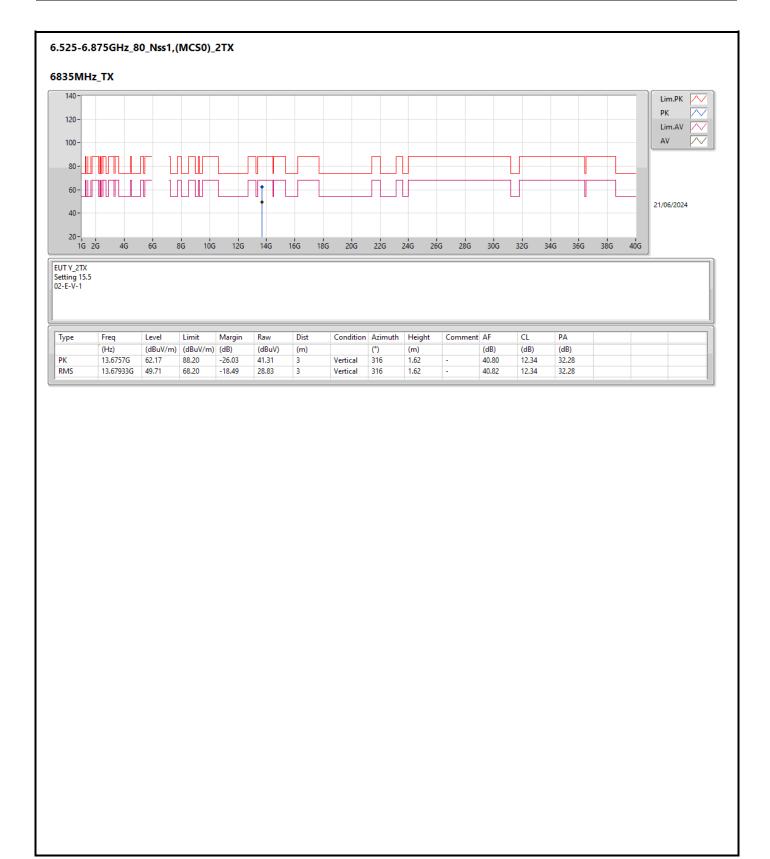
Page No. : 2 of 3

Report No. : FR140145-09

DG = Directional Gain; RBW = 500kHz for 5.725-5.85GHz band / 1MHz for other band; PD = trace bin-by-bin of each transmits port summing can be performed maximum power density; Port X = Port X Power Density; Inf = There's no restriction for the limit.

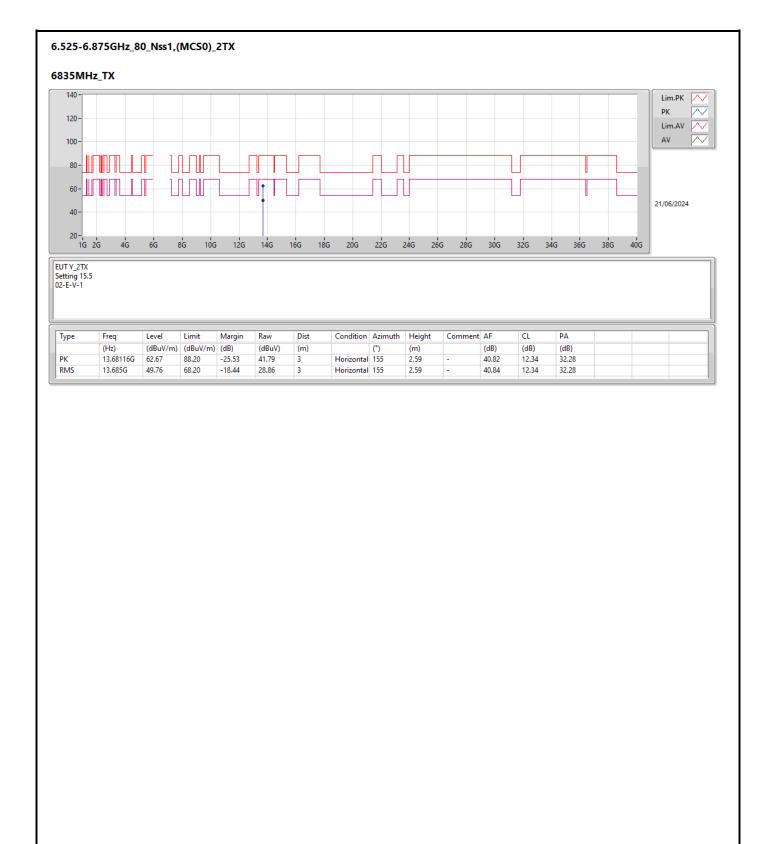
RSE TX above 1GHz_Dish Antenna

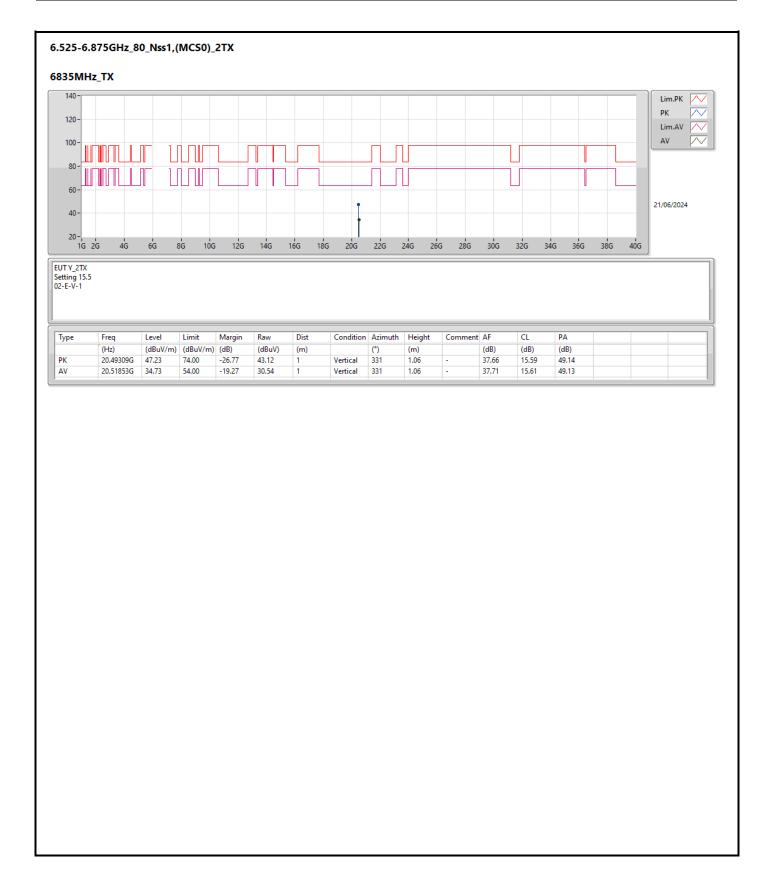
Appendix D.1

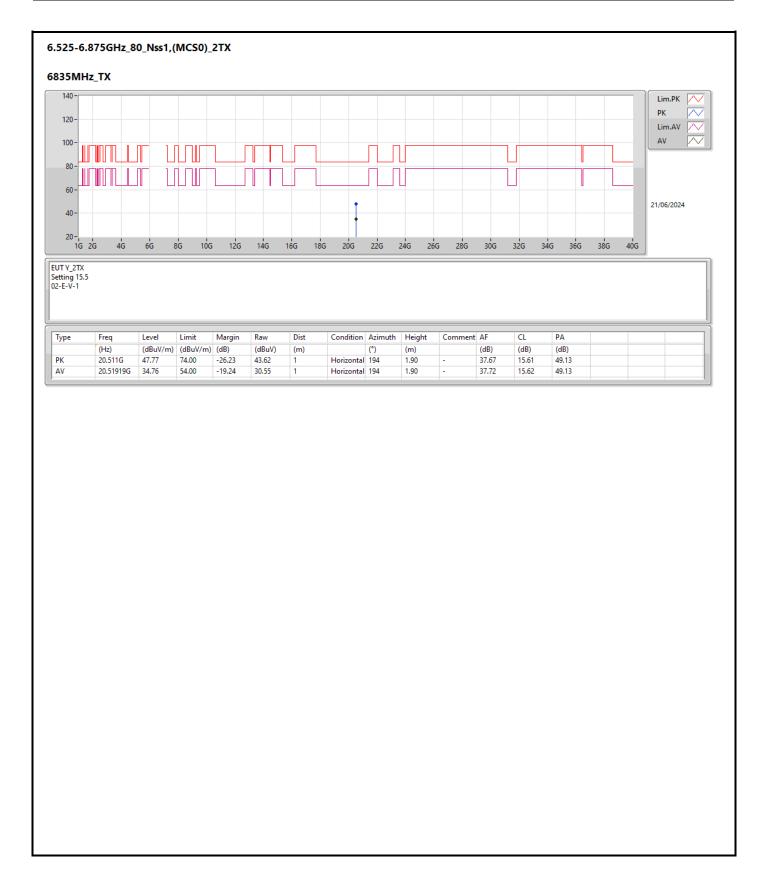

Summary

Mode	Result	Туре	Freq (Hz)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Dist (m)	Condition	Azimuth (°)	Height (m)	Comments
6.525-6.875GHz	-	-	-	-	-	-	-	-	-	-	-
80_Nss1,(MCS0)_2TX	Pass	RMS	13.685G	49.76	68.20	-18.44	3	Horizontal	155	2.59	-

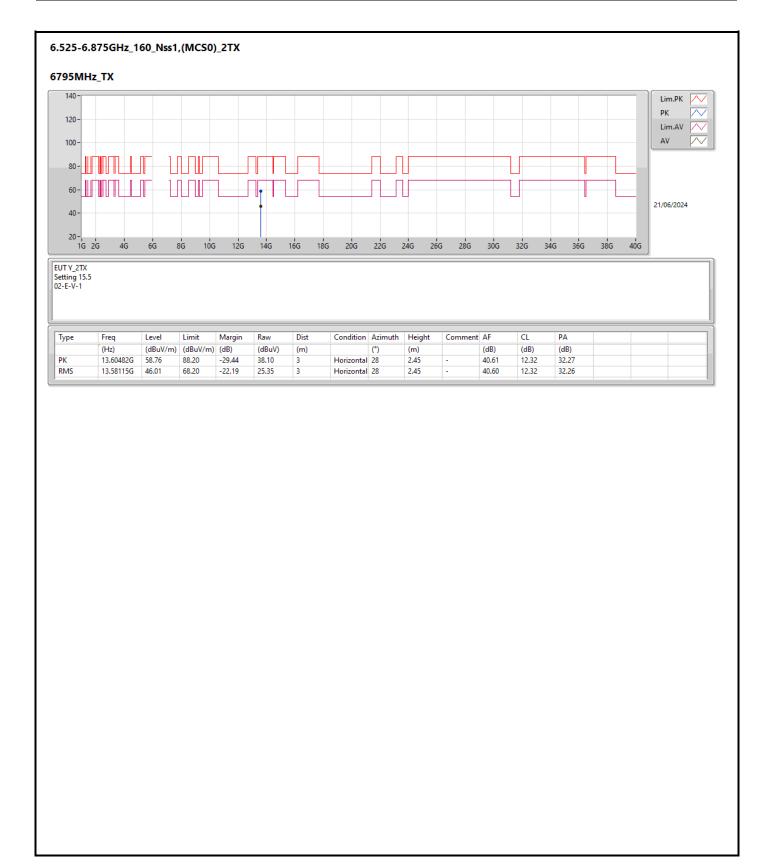
Sporton International Inc. Hsinchu Laboratory


Page No. : 1 of 9 Report No. : FR140145-09


Page No. : 2 of 9
Report No. : FR140145-09


Page No. : 3 of 9 Report No. : FR140145-09

Page No. : 4 of 9 Report No. : FR140145-09


Page No. : 5 of 9 Report No. : FR140145-09

Page No. : 6 of 9
Report No. : FR140145-09

Page No. : 7 of 9
Report No. : FR140145-09



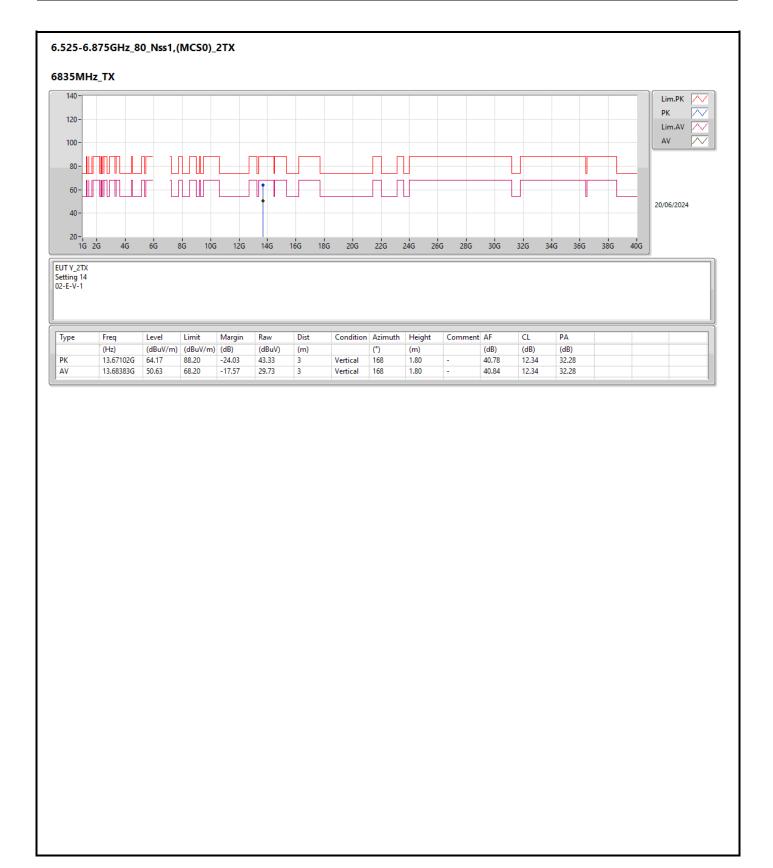
Page No. : 8 of 9

Report No. : FR140145-09

Page No. : 9 of 9 Report No. : FR140145-09

RSE TX above 1GHz_Sector Antenna

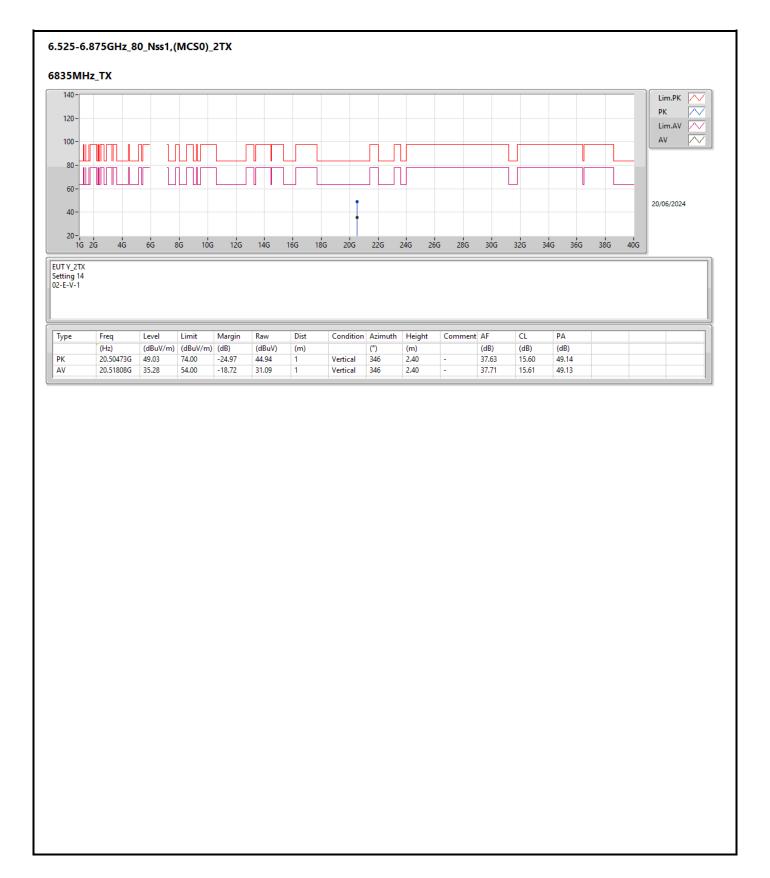
Appendix D.2


Summary

Mode	Result	Туре	Freq (Hz)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Dist (m)	Condition	Azimuth (°)	Height (m)	Comments
6.525-6.875GHz	-	-	-	-	-	-	-	-	-	-	-
80_Nss1,(MCS0)_2TX	Pass	AV	13.68383G	50.63	68.20	-17.57	3	Vertical	168	1.80	-

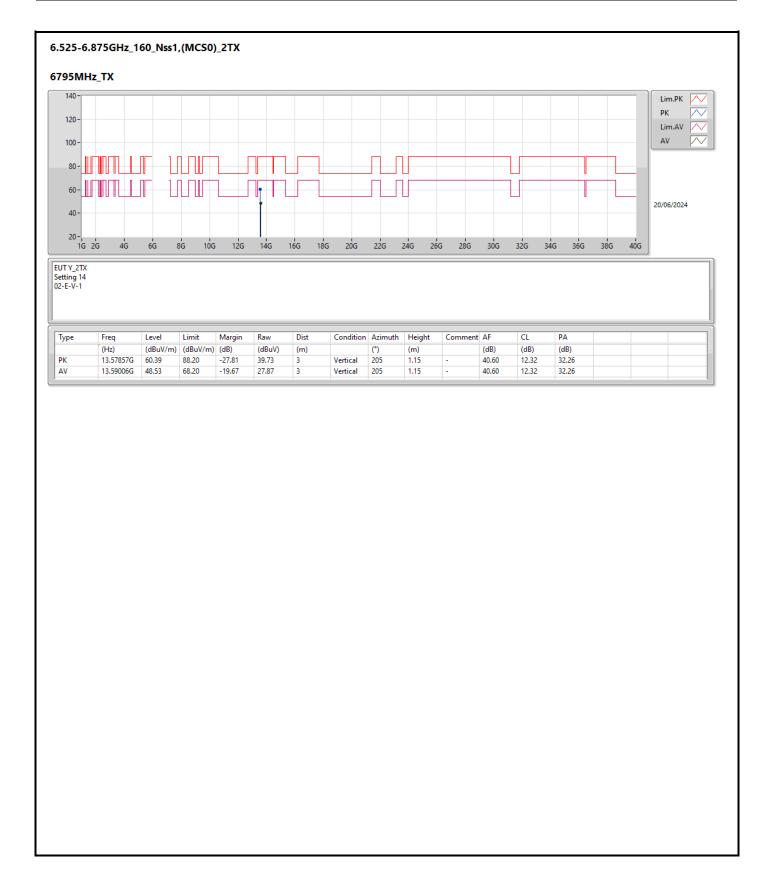
Sporton International Inc. Hsinchu Laboratory


Page No. : 1 of 9 Report No. : FR140145-09

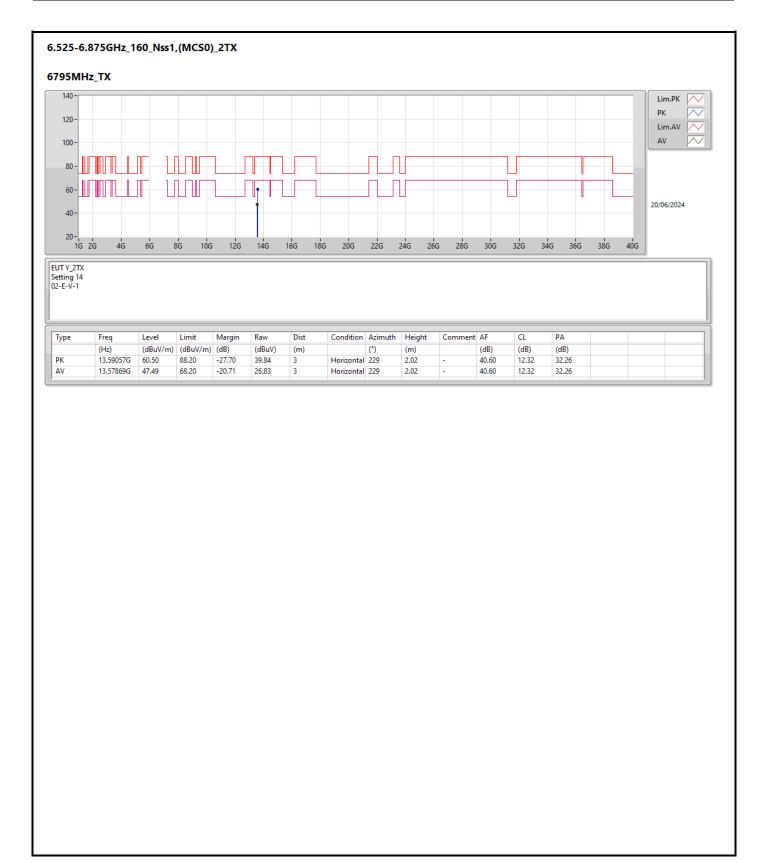

Page No. : 2 of 9
Report No. : FR140145-09

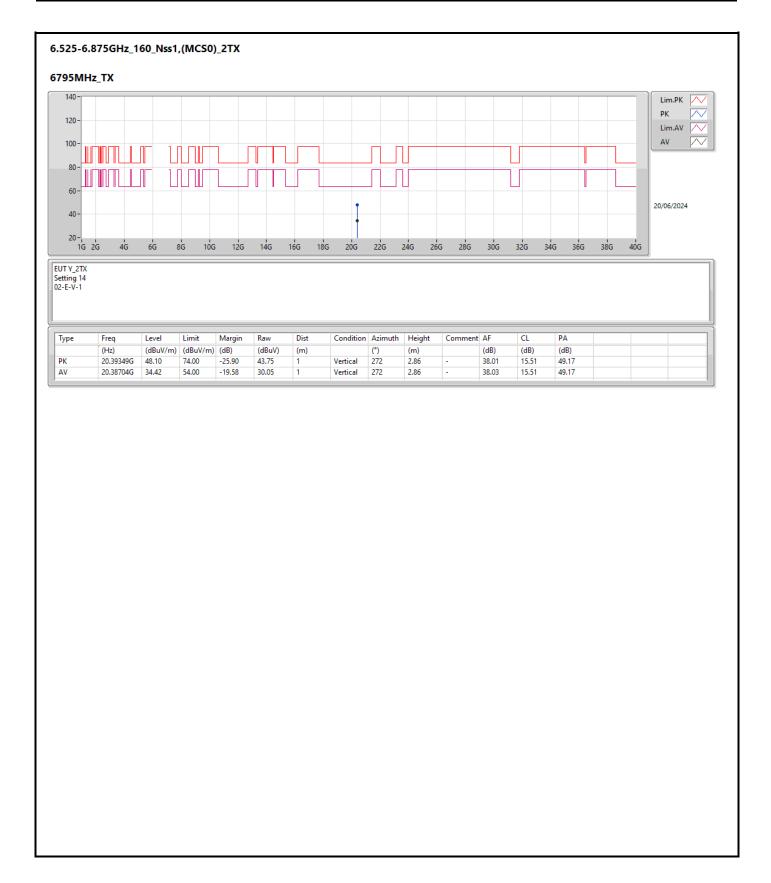
Page No. : 3 of 9 Report No. : FR140145-09

Page No. : 4 of 9 Report No. : FR140145-09

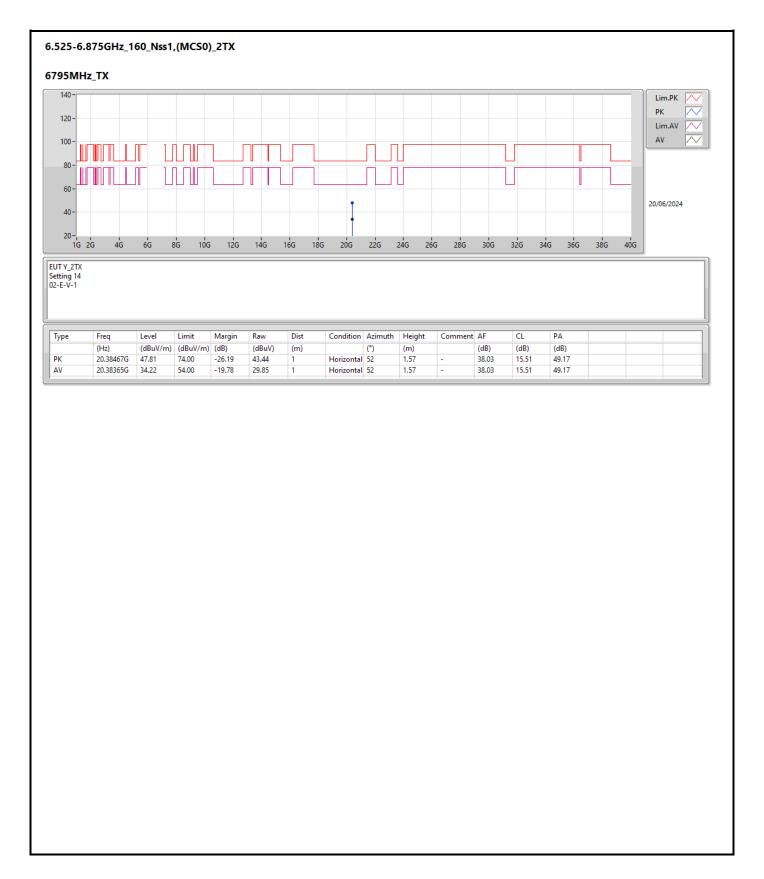


Page No. : 5 of 9

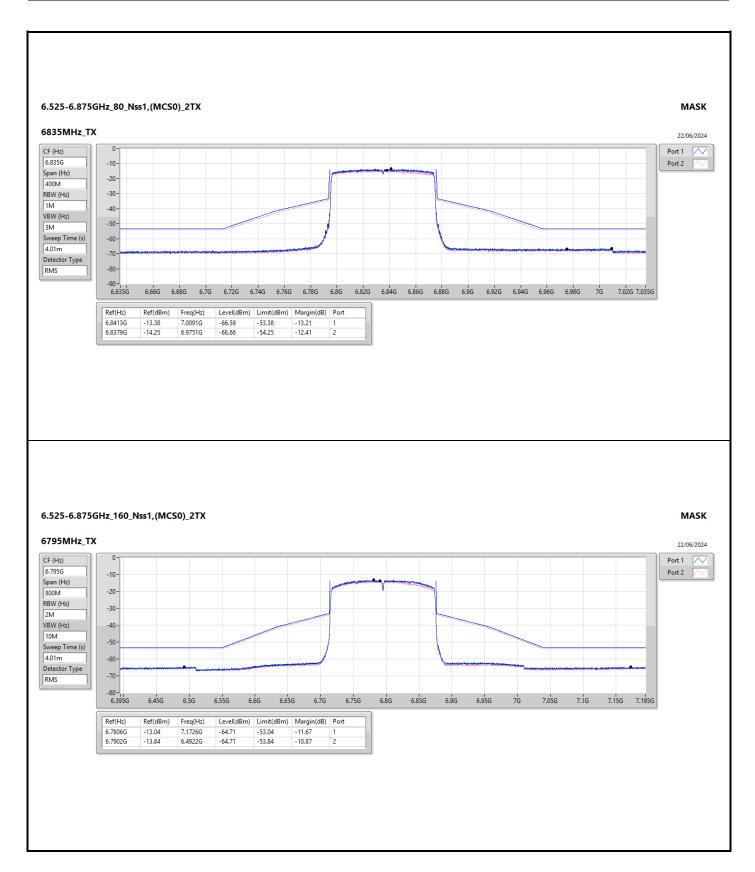

: FR140145-09 Report No.

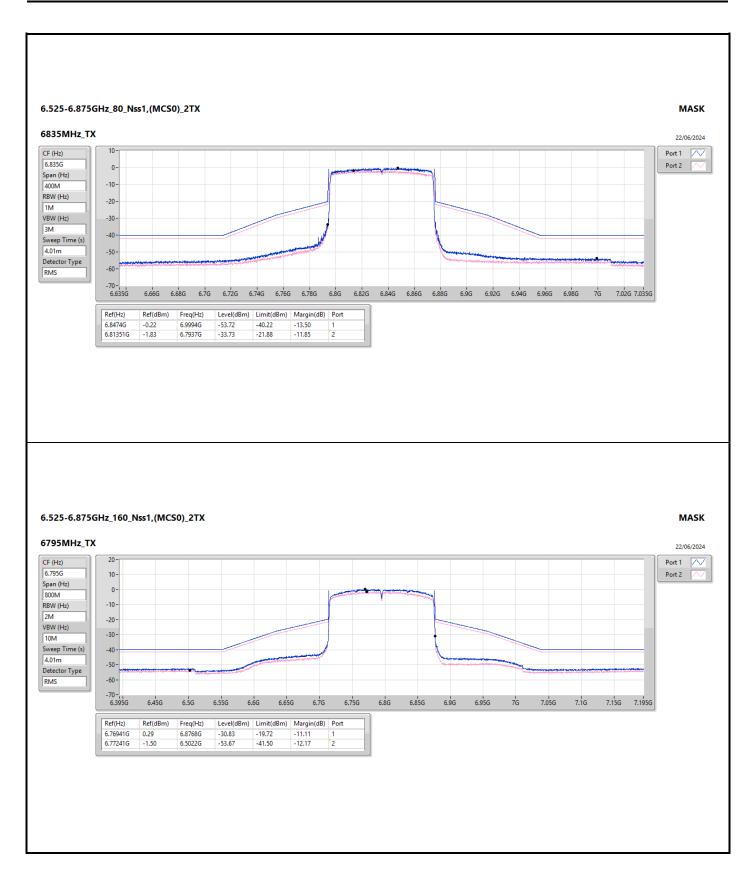

Page No. : 6 of 9
Report No. : FR140145-09

Page No. : 7 of 9
Report No. : FR140145-09



Page No. : 8 of 9


Report No. : FR140145-09


Page No. : 9 of 9 Report No. : FR140145-09

Page No. : 1 of 1
Report No. : FR140145-09

Page No. : 1 of 1
Report No. : FR140145-09