

TEST REPORT

For

- Applicant : BRAVEN LC
 - Address: 6001 Oak Canyon, Irvine, CA 92618 USA
- Product Name : Braven BRV-XXL Speaker
 - Model Name : BRV-XXL
 - Brand Name : BRAVEN
 - FCC ID : Z7RBXXL
 - Report No. : MTE/DYY/A15111526
 - Date of Issue : Nov. 18, 2015
 - Issued by : Most Technology Service Co., Ltd.
 - Address : No.5, 2nd Langshan Road, North District, Hi-tech Industrial Park, Nanshan, Shenzhen, Guangdong, China
 - Tel: 86-755-8602 6850
 - Fax : 86-755-2601 6850

The report consists 51 pages in total. It may be duplicated completely for legal use with the approval of the applicant. It should not be reproduced except in full, without the written approval of our laboratory. The client should not use it to claim product endorsement by MOST. The test results in the report only apply to the tested sample. The test report shall be invalid without all the signatures of testing engineers, reviewer and approver.

TABLE OF CONTENTS

1. VERIFICATION OF CONFORMITY	4
2. GENERAL INFORMATION	5
2.1 Product Information	
2.2 Objective	
2.3 Test Standards and Results	
2.4 Environmental Conditions	6
3. TEST METHODOLOGY	7
3. 1TEST FACILITY	
3.2 GENERAL TEST PROCEDURES	
4. SETUP OF EQUIPMENT UNDER TEST	
4.1 SETUP CONFIGURATION OF EUT	
4.2 SUPPORT EQUIPMENT	
4.3 TEST EQUIPMENT LIST	
5. 47 CFR Part 15 C Requirements	
5.1 RF EXPOSURE	
5.1.1 Applicable Standard	
5.1.2 Measurement Result	
5.2 ANTENNA REQUIREMENT	
5.2.1 Applicable Standard	
5.2.2 Evaluation Criteria	
5.2.3 Result: Compliance.5.3 AC Power Line Conducted Emission.	
5.3.1Requirement	
5.3.2 Block Diagram of Test Setup	
5.3.3 Test procedure	
5.3.4 Test Result	
5.4 Radiated Emission	
5.4.1Requirement	
5.4.2 Test Configuration	
5.4.3 Test Procedure:	
5.4.4 Test Result	
5.5 Conducted Peak Output Power	
5.5.1 Requirement	
5.5.2 Block Diagram of Test Setup	
5.5.3 Test Procedure	
5.5.4 Test Result	
5.6 20dB Emission Bandwidth	
5.6.1 Test Requirement	
5.6.2 Test Procedure	
5.6.3 Test Result	
5.7 Carrier Frequency Separation	
5.7.1 Test Requirement	
5.7.2 Test Procedure	
5.7.3 Test Result	
5.8 Number of Hopping Channel	
5.8.1 Test Requirement	
5.8.2 Test Procedure	
5.8.3 Test Result	
5.9 Dwell Time	
5.9.1 Test Requirement	
	Page 2 of 51

5.9.2 Test Procedure	
5.9.3 Test Result	
5.9 Band Edge and Conducted Spurious Emissions	
5.9.1 Test Requirement	
5.9.2 Test Procedure	
5.9.3 Test Result	
5.10 Restricted Frequency Bands	
5.10.1 Test Requirement	
5.10.2 Test Configuration	
5.10.3 Test Procedure:	
5.10.4 Test Result	

1. VERIFICATION OF CONFORMITY

Equipment Under Test:	Braven BRV-XXL Speaker
Brand Name:	BRAVEN
Model Number:	BRV-XXL
FCC ID:	Z7RBXXL
Applicant:	BRAVEN LC
	6001 Oak Canyon, Irvine, CA 92618 USA
Manufacturer:	Plastoform Electronics (Shenzhen) Company Limited.
	Building No. 16, 21 B Zone, The 1st Industrial Zone, Gonghe Community, Shajing Street, Baoan District, Shenzhen City, Guangdong, P.R.C
Technical Standards:	47 CFR Part 15 Subpart C
File Number:	MTE/DYY/A15111526
Date of test:	Nov. 06-10, 2015
Deviation:	None
Condition of Test Sample:	Normal
Test Result:	PASS

The above equipment was tested by Most Technology Service Co., Ltd. for compliance with the requirements set forth in FCC rules and the Technical Standards mentioned above. This said equipment in the configuration described in this report shows the maximum emission levels emanating from equipment and the level of the immunity endurance of the equipment are within the compliance requirements.

The test results of this report relate only to the tested sample identified in this report.

Prepared by (+ signature):	Daisy	
	Daisy Yu	Oct. 10-16, 2015
Review by (+ signature):	Henry	APPROVED
	Henry Chen	* EMC & OCT 19, 2015
Approved by (+ signature):	This	
	Yvette Zhou(Mana	ger) Oct. 19, 2015

2. GENERAL INFORMATION

2.1 Product Information

Braven BRV-XXL Speaker				
BRAVEN				
BRV-XXL				
N/A	N/A			
N/A	N/A			
	1. DC 18V by Switching Adaptor 2. DC 11.1V by Battery			
2402MHz -2480MHz				
GFSK, π /4-DQPSK, 8DPSK				
FHSS				
79				
Chip Antenna, 2.66 dBi				
-10°C ~ +50°C				
Model No. FJ-SW1803500D				
	Shenzhen Fujia Appliance CO., Ltd.			
Manufacturer	Bldg. B1#, Xujingchang Technology Ind. Park, Haoye Road, Xinghe Village, Fuyong Town, Baoan District, Shenzhen, Guangdong 518103, P.R. China			
	BRAVEN BRV-XXL N/A 1. DC 18V by S 2. DC 11.1V by 2402MHz -248 GFSK, π /4-DQ FHSS 79 Chip Antenna, 2 -10°C ~ +50°C Model No.			

NOTE:

1. For a more detailed features description about the EUT, please refer to User's Manual.

2.2 Objective

The objective of the report is to perform tests according to FCC Part 15 Subpart C for the EUT FCC ID Certification:

No.	Identity	Document Title
1	47 CFR Part 15	Radio Frequency Devices
2	DA00-705	Filing and Measurement Guidelines for Frequency Hopping Spread Spectrum Systems.

No.	Section	Test Items	Result	Date of Test		
1	FCC 15.247 (i)	RF EXPOSURE	PASS	2015-11-09		
2	FCC 15.203	Antenna Requirement	PASS	2015-11-10		
3	FCC15.207 (a)	AC Power Line Conducted Emission	PASS	2015-11-10		
4	FCC15.209, 15.247(d)	Radiated Emission	PASS	2015-11-06		
5	FCC 15.247 (b)(1)	Conducted Peak Output Power	PASS	2015-11-06		
6	FCC 15.247 (a)(1)	20dB Emission Bandwidth	PASS	2015-11-09		
7	FCC 15.247 (a)(1)	Carrier Frequency Separation	PASS	2015-11-06		
8	FCC 15.247 (a)(1)(iii)	Number of Hopping Channel	PASS	2015-11-09		
9	FCC 15.247 (a)(1) (iii)	Dwell Time	PASS	2015-11-09		
10	FCC15.247(d)	Band Edge and Conducted Spurious Emissions	PASS	2015-11-09		
11	FCC15.247(d)	Restricted Frequency Bands	PASS	2015-11-09		
Rema	Remark: N/A means not applicable					

2.3 Test Standards and Results

Note: 1. The test result judgment is decided by the limit of measurement standard 2. The information of measurement uncertainty is available upon the customer's request.

2.4 Environmental Conditions

During the measurement the environmental conditions were within the listed ranges:

- Temperature: 15-35°C
- Humidity: 30-60 %
- Atmospheric pressure: 86-106 kPa

3. TEST METHODOLOGY

3. 1TEST FACILITY

Test Site:	Most Technology Service Co., Ltd
Location:	No.5, Langshan 2nd Rd., North Hi-Tech Industrial park, Nanshan, Shenzhen, Guangdong, China
Description:	There is one 3m semi-anechoic an area test sites and two line conducted labs for final
	test. The Open Area Test Sites and the Line Conducted labs are constructed and
	calibrated to meet the FCC requirements in documents ANSI C63.4:2009 and CISPR
	16 requirements.
	The FCC Registration Number is 490827. The IC Registration Number is 7103A-1.
Site Filing:	The site description is on file with the Federal Communications
	Commission, 7435 Oakland Mills Road, Columbia, MD 21046.
Instrument	All measuring equipment is in accord with ANSI C63.4:2009 and CISPR 16
Tolerance:	requirements that meet industry regulatory agency and accreditation agency
	requirement.
Ground Plane:	Two conductive reference ground planes were used during the Line Conducted
	Emission, one in vertical and the other in horizontal. The dimensions of these ground
	planes are as below. The vertical ground plane was placed distancing 40 cm to the
	rear of the wooden test table on where the EUT and the support equipment were
	placed during test. The horizontal ground plane projected 50 cm beyond the footprint
	of the EUT system and distanced 80 cm to the wooden test table. For Radiated
	Emission Test, one horizontal conductive ground plane extended at least 1m beyond
	the periphery of the EUT and the largest measuring antenna, and covered the entire
	area between the EUT and the antenna.

3.2 GENERAL TEST PROCEDURES

Radiated Emissions

The EUT is placed on a turn table, which is 0.8 m above ground plane. The turntable shall rotate 360 degrees to determine the position of maximum emission level. EUT is set 3m away from the receiving antenna, which varied from 1m to 4m to find out the highest emission. And also, each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical. In order to find out the maximum emissions, exploratory radiated emission measurements were made according to the requirements in Section 8.3.1 of ANSI C63.4:2009.

Conducted Emissions

The EUT is placed on the turntable, which is 0.8 m above ground plane. According to the requirements in Section 7.3 of ANSI C63.4:2009, Conducted emissions from the EUT measured in the frequency range between 0.15 MHz and 30MHz using CISPR Quasi-peak and average detector modes.

4. SETUP OF EQUIPMENT UNDER TEST

4.1 SETUP CONFIGURATION OF EUT

See test photographs attached in Appendix 1 for the actual connections between EUT and support equipment.

4.2 SUPPORT EQUIPMENT

De	evice Type	Manufacturer	Model Name	Serial No.	Input	Output

Remark:

All the equipment/cables were placed in the worst-case configuration to maximize the emission during the test. Grounding was established in accordance with the manufacturer's requirements and conditions for the intended use.

4.3 TEST EQUIPMENT LIST

Instrumentation: The following list contains equipment used at Most for testing. The equipment conforms to the CISPR 16-1 / ANSI C63.2 Specifications for Electromagnetic Interference and Field Strength Instrumentation from 10 kHz to 1.0 GHz or above.

No.	Equipment	Manufacturer	Model No.	S/N	Calibration date	Calibration Interval
1	Test Receiver	Rohde & Schwarz	ESCI	100492	2015/03/10	1 Year
2	Spectrum Analyzer	Agilent	E7405A	US44210471	2015/03/14	1 Year
3	L.I.S.N.	Rohde & Schwarz	ENV216	100093	2015/03/10	1 Year
4	Coaxial Switch	Anritsu Corp	MP59B	6200283933	2015/03/07	1 Year
5	Terminator	Hubersuhner	50Ω	No.1	2015/03/07	1 Year
6	RF Cable	SchwarzBeck	N/A	No.1	2015/03/07	1 Year
7	Test Receiver	Rohde & Schwarz	ESPI	101202	2015/03/10	1 Year
8	Bilog Antenna	Sunol	JB3	A121206	2015/03/14	1 Year
9	Horn Antenna	SCHWARZBECK	BBHA9120D	756	2015/03/14	1 Year
10	Horn Antenna	Penn Engineering	9034	8376	2015/03/14	1 Year
11	Cable	Resenberger	N/A	NO.1	2015/03/07	1 Year
12	Cable	SchwarzBeck	N/A	NO.2	2015/03/07	1 Year
13	Cable	SchwarzBeck	N/A	NO.3	2015/03/07	1 Year
14	Single Phase Power Line Filter	DuoJi	FNF 202B30	N/A	2015/03/07	1 Year
15	Test Receiver	Rohde & Schwarz	ESCI	100492	2015/03/10	1 Year
16	Loop antenna	ARA	PLA-1030/B	1039	2015/03/14	1 Year

NOTE: Equipments listed above have been calibrated and are in the period of validation.

5. 47 CFR Part 15 C Requirements

5.1 RF EXPOSURE

5.1.1 Applicable Standard

According to§15.247(i) and §1.1310, systems operating under the provisions of this section shall be operated in a manner that ensure that the public is not exposed to radio frequency energy level in excess of the Commission's guideline.

(B) Limits for General Population/Uncontrolled Exposure **Electric field strength** Magnetic field strength **Power density** Frequency range Averaging time (MHz) (V/m) (A/m) (mW/cm²) (minutes) 0.3-1.34 614 1.63 *100 30 *180/f² 1.34-30 30 824/f 2.19/f 30-300 27.5 0.073 30 0.2 300-1,500 f/1500 30 1,500-100,000 1.0 30

Limits for Maximum Permissible Exposure (MPE) (§1.1310, §2.1091)

f = frequency in MHz; * = Plane-wave equivalent power density; According to §1.1310 and §2.1091 RF exposure is calculated.

Calculated Formulary:

Predication of MPE limit at a given distance

S = PG/4 π R² = power density (in appropriate units, e.g. mW/cm2);

P = power input to the antenna (in appropriate units, e.g., mW);

G = power gain of the antenna in the direction of interest relative to an isotropic radiator, the power gain

factor, is normally numeric gain;

R = distance to the center of radiation of the antenna (appropriate units, e.g., cm);

5.1.2 Result:

Mode	Frequency (MHz)	Antenna Gain		Conducted Power		Evaluation Distance(cm)	Power Density	MPE Limit
	(1917)	(dBi)	(numeric)	(dBm)	(mW)	· · · ·	(mW/cm ²)	(mW/cm ²)
GFSK	2480	2.66	1.85	-0.036	0.9917	20	0.000365	1
π /4-DQPSK	2480	2.66	1.85	-0.596	0.8718	20	0.000321	1
8DPSK	2480	2.66	1.85	-0.424	0.9070	20	0.000334	1

Note: To maintain compliance with the FCC's RF exposure guidelines, place the equipment at least 20cm from nearby persons.

Result: Compliance

5.2 ANTENNA REQUIREMENT

5.2.1 Applicable Standard

According to FCC § 15.203, An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited. This requirement does not apply to carrier current devices or to devices operated under the provisions of §15.211, §15.213, §15.217, §15.219, or §15.221. Further, this requirement does not apply to intentional radiators that must be professionally installed, such as perimeter protection systems and some field disturbance sensors, or to other intentional radiators which, in accordance with §15.31(d), must be measured at the installation site. However, the installer shall be responsible for ensuring that the proper antenna is employed so that the limits in this part are not exceeded.

5.2.2 Evaluation Criteria

(a) Antenna must be permanently attached to the unit.

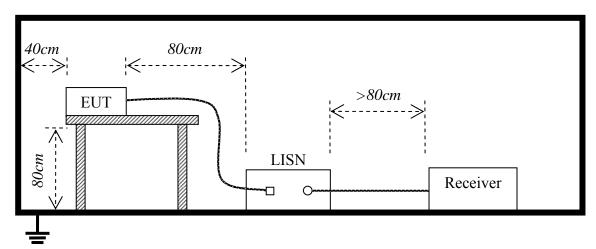
(b) Antenna must use a unique type of connector to attach to the EUT.

Unit must be professionally installed, Installer shall be responsible for verifying that the correct antenna is employed with the unit.

5.2.3 Result: Compliance.

The EUT has one integral antenna arrangement, which was permanently attached and the antenna gain is 2.66dBi, fulfill the requirement of this section.

5.3 AC Power Line Conducted Emission 5.3.1Requirement


A radio apparatus that is designed to be connected to the public utility (AC) power line shall ensure that the radio frequency voltage, which is conducted back onto the AC power line on any frequency or frequencies within the and 150 kHz-30 MHz, shall not exceed the limits in the following table:

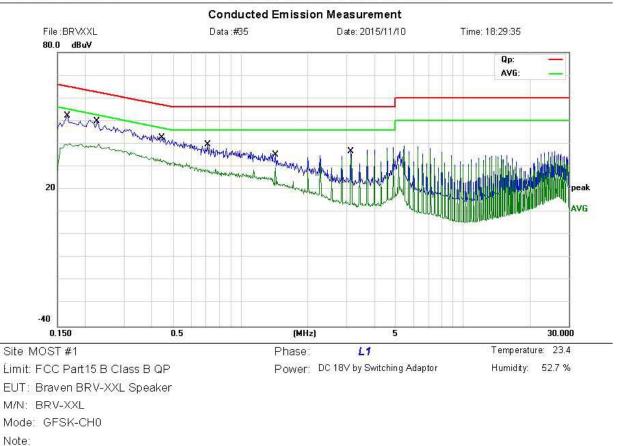
Eroquopov	Maximum RF Line Voltage			
Frequency	Q.P.(dBuV)	Average(dBuV)		
150kHz-500kHz	66-56	56-46		
500kHz-5MHz	56	46		
5MHz-30MHz	60	50		

**Note: 1. the lower limit shall apply at the band edges.

2. The limit decreases linearly with the logarithm of the frequency in the range 0.15 MHz to 0.50 MHz

5.3.2 Block Diagram of Test Setup

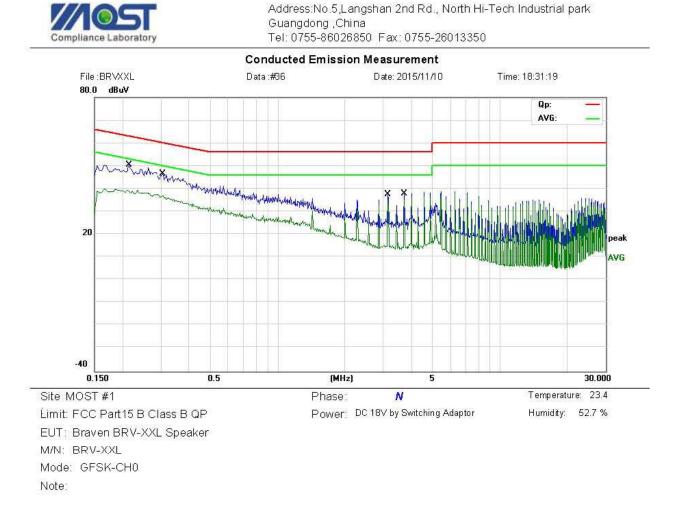
5.3.3 Test procedure


- 1. The E.U.T and simulators are connected to the main power through a line impedance stabilization network (L.I.S.N.). This provides a 50ohm/50uH coupling impedance for the measuring equipment.
- 2. Exploratory measurements were made to identify the frequency of the emission that has the highest amplitude relative to the limit;
- 3. The peripheral devices are also connected to the main power through a LISN that provides a 50ohm/50uH coupling impedance with 50ohm termination. (Please refer to the block diagram of the test setup and photographs).
- 4. Both sides of A.C. line are checked for maximum conducted interference. In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.4: 2009 on conducted measurement.
- 5. The bandwidth of test receiver (ESCI) set at 9 KHz.
- 6. All data was recorded in the Quasi-peak and average detection mode.

5.3.4 Test Result

Pass

Note: All test modes are performed, only the worst case is recorded in this report.



No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		
		MHz	dBu∨	dB	dBu∨	dBuV	dB	Detector	Comment
1		0.1660	42.15	9.96	52.11	65.16	-13.05	QP	
2		0.1660	29.54	9.96	39.50	55.16	-15.66	AVG	
3		0.2260	37.98	11.83	49,81	62.60	-12,79	QP	
4		0.2260	26.89	11.83	38.72	52.60	-13.88	AVG	
5		0.4460	32.36	10.36	42.72	56.95	-14.23	QP	
6		0.4460	21.71	10.36	32.07	46.95	-14.88	AVG	
7		0.7020	26.62	10.00	36.62	56.00	-19.38	QP	
8		0.7020	18.21	10.00	28.21	46.00	-17.79	AVG	
9		1.4340	25.59	9.57	35.16	56.00	-20.84	QP	
10		1.4340	19.75	9.57	29.32	46.00	-16.68	AVG	
11	*	3.1540	24.15	10.15	34,30	46.00	-11.70	AVG	
12		3.1580	24.62	10.16	34.78	56.00	-21.22	QP	

*:Maximum data x:Over limit I:over margin

Engineer Signature: FLY

No. Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		
	MHz	dBu∨	dB	dBu∨	dBuV	dB	Detector	Comment
1	0.2127	37.68	11.92	49.60	63.10	-13.50	QP	
2	0.2127	27.27	11.92	39.19	53.10	-13.91	AVG	
3	0.3034	35.08	11.31	46,39	60.15	-13.76	QP	
4	0.3034	25.47	11.31	36.78	50.15	-13.37	AVG	
5	3.1540	27,42	10.15	37,57	56.00	-18.43	QP	
6 *	3.1540	24.71	10.15	34.86	46.00	-11.14	AVG	
7	3.7540	14.74	10.75	25.49	56.00	-30.51	QP	
8	3.7540	4.96	10.75	15.71	46.00	-30.29	AVG	

*:Maximum data x:Over limit I:over margin

Engineer Signature: FLY

5.4 Radiated Emission 5.4.1Requirement

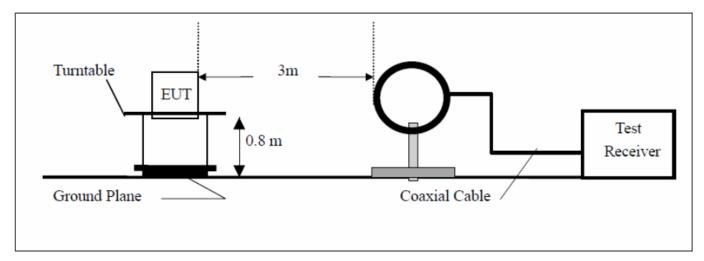
According to FCC section 15.247(d), In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)).

According to FCC section 15.209(a), Except as provided elsewhere in this subpart, the emissions from an intentional radiator shall not exceed the field strength levels specified in the following table:

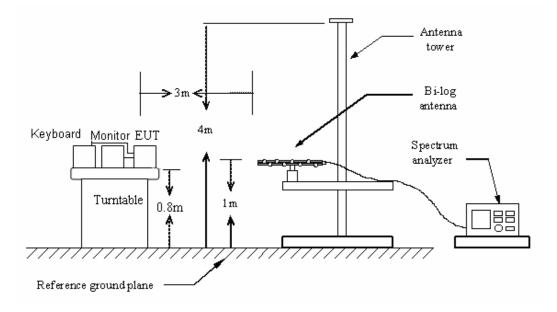
Frequency (MHz)	Field Strength (µV/m at 3-meter)	Test Distance (m)	Field Strength (dBµV/m at 3-meter)
0.009 - 0.490	2400/F(kHz)	300	
0.490 - 1.705	24000/F(kHz)	30	
1.705-30	30	30	
30-88	100	3	40
88-216	150	3	43.5
216-960	200	3	46
Above 960	500	3	54

Note:

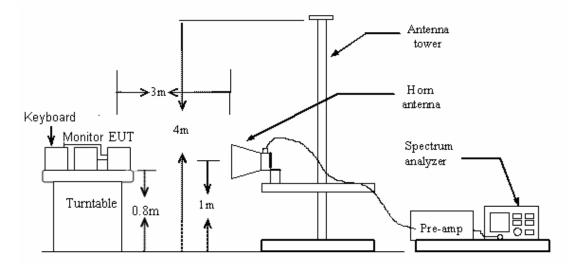
1. For Above 1000MHz, the emission limit in this paragraph is based on measurement instrumentation employing an average detector, measurement using instrumentation with a peak detector function, corresponding to 20dB above the maximum permitted average limit.


2. For above 1000MHz, limit field strength of harmonics: 54dBuV/m@3m (AV) and 74dBuV/m@3m (PK)

In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)).


5.4.2 Test Configuration

Test Setup:


1) For radiated emissions from 9kHz to 30MHz

2) For radiated emissions from 30MHz to1GHz

3) For radiated emissions above 1GHz

5.4.3 Test Procedure:

- 1. For frequencies above 1GHz, the frequencies of maximum emission was recorded by manually positioning the antenna close to the EUT and by moving the antenna over all sides of the EUT while observing a spectral display.
- 2. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter chamber. The table was rotated 360 degrees to determine the position of the highest radiation.
- 3. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- 4. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- 5. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rote table was turned from 0 degrees to 360 degrees to find the maximum reading.

6. For frequencies above 1GHz, horn antenna mouth should face to the EUT all the time when rise or fall.

7. Set the spectrum analyzer in the following setting as:

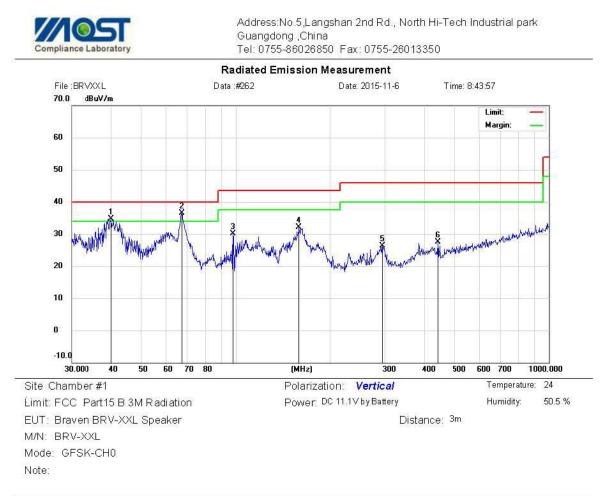
Below 1GHz: PEAK: RBW=100 kHz / VBW=300 kHz / Sweep=AUTO QP: RBW=120 kHz / Sweep=AUTO Above 1GHz: (a)PEAK: RBW=VBW=1MHz / Sweep=AUTO (b)AVERAGE: RBW=1MHz / VBW=10Hz / Sweep=AUTO

The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.

8. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.

5.4.4 Test Result

Pass

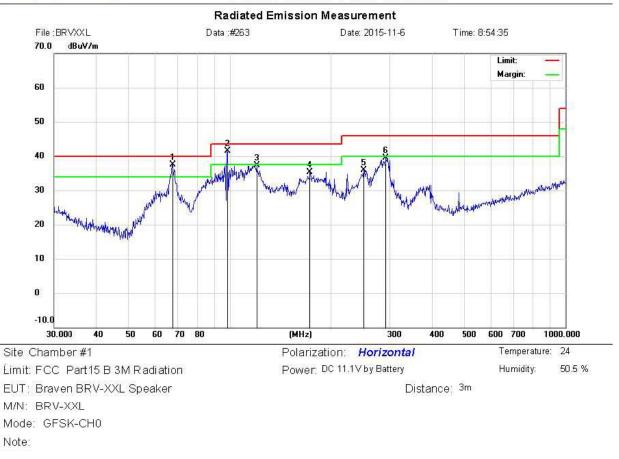

Remark:

1. During the test, pre-scan the GFSK, π /4-QPSK, 8DPSK modulation, and found the GFSK modulation which it is worse case in above 1GHz and the GFSK Low channel modulation which it is worse case in below 1GHz.

2. Pre-scan all kind of the place mode (X-axis, Y-axis, Z-axis), and found the Y-axis which it is worse case.

Please refer the following pages.

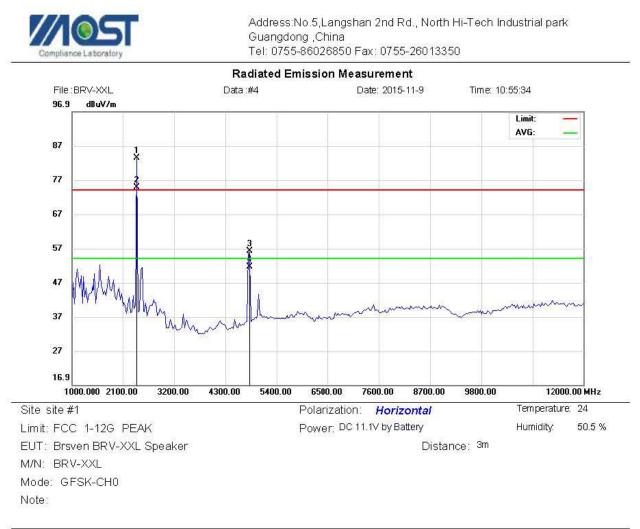
Below 1GHz:



No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		Antenna Height	Table Degree	
	3. 3	MHz	dBu∨	dB	dBuV/m	dBuV/m	dB	Detector	cm	degree	Comment
1	1	40.1347	18.81	15.92	34.73	40.00	-5.27	QP			
2	*	67.2022	24.99	11.44	36.43	40.00	-3.57	QP			
3		98.1418	17,30	12.86	30,16	43.50	-13.34	QP			
4	ş	159.7844	14.76	17.28	32.04	43.50	-11.46	QP			
5		294,1136	6.91	19.36	26.27	46.00	-19.73	QP			
6	•	441.7425	7.20	20.27	27.47	46.00	-18.53	QP			

*:Maximum data x:Over limit 1:over margin

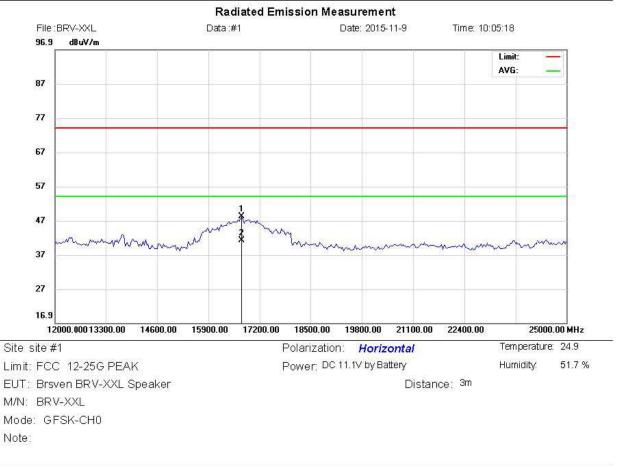
Engineer Signature: Deft



No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		Antenna Height	Table Degree	
	N 0	MHz	dBu∨	dB	dBuV/m	dBuV/m	dB	Detector	cm	degree	Comment
1	1	67.6751	26.08	11.49	37.57	40.00	-2.43	QP			
2	*	98.1419	28.69	12.86	41.55	43.50	-1.95	QP			
3		120.2766	19.77	17.51	37.28	43.50	-6.22	QP			
4		173.8135	18.31	17.01	35.32	43.50	-8.18	QP			
5	10.000	251.1804	18.52	17.42	35.94	46.00	-10.06	QP			
6		292.0583	20.14	19.38	39.52	46.00	-6.48	QP			

*:Maximum data x:Over limit I:over margin

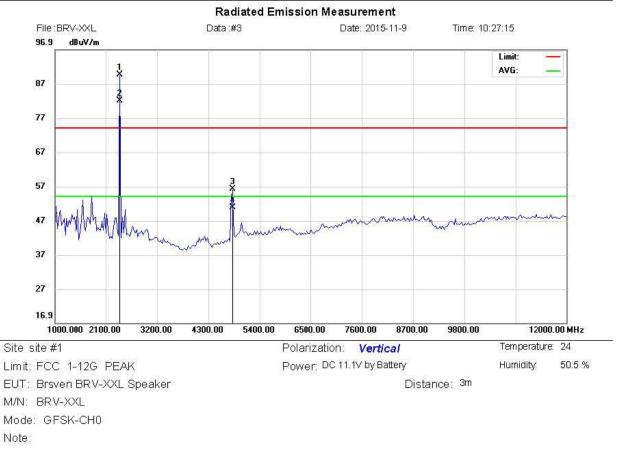
Above 1GHz:



No.	Mk	. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		Antenna Height	Table Degree	
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	cm	degree	Comment
1	Х	2402.160	91.80	-8.43	83.37	74.00	9.37	peak			
2	*	2402.160	83.20	-8.43	74.77	54.00	20.77	AVG			
3		4804.050	62.26	-6.15	56.11	74.00	-17.89	peak			
4		4804.050	57.69	-6.15	51.54	54.00	-2.46	AVG			

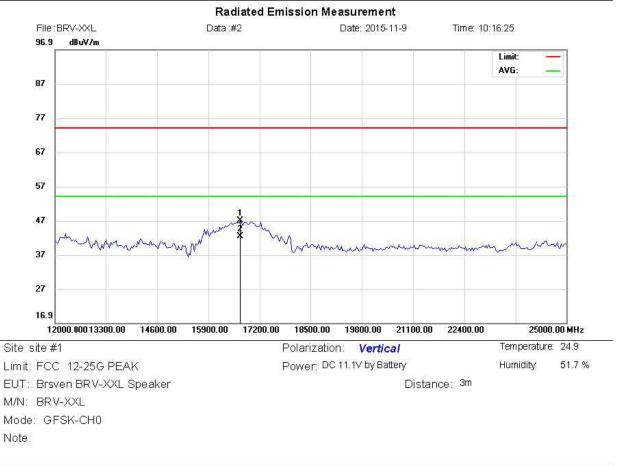
*:Maximum data x:Over limit I:over margin

Page 20 of 51



No.	Mk	. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		Antenna Height	Table Degree	
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	cm	degree	Comment
1		16745.00	42.14	6.08	48.22	74.00	-25.78	peak			
2	*	16745.00	35.04	6.08	41.12	54.00	-12.88	AVG			

*:Maximum data x:Over limit I:over margin



No.	Mk	. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		Antenna Height	Table Degree	
		MHz	dBuV	dB	dBu∀/m	dBuV/m	dB	Detector	cm	degree	Comment
1	Х	2402.180	97.96	-8.43	89.53	74.00	15.53	peak			
2	*	2402.180	90.53	-8.43	82.10	54.00	28.10	AVG			
3		4804.395	62.34	-6.15	56.19	74.00	-17.81	peak			
4		4804.395	57.00	-6.15	50.85	54.00	-3.15	AVG			

*:Maximum data x:Over limit I:over margin

Engineer Signature: Deft

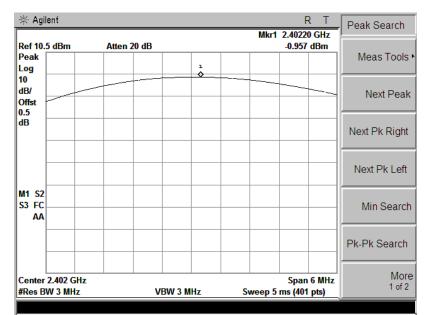
No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		Antenna Height	Table Degree	
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	cm	degree	Comment
1	ŝ	16712.50	41.00	5.98	46.98	74.00	-27.02	peak			
2	*	16712.50	36.42	5.98	42.40	54.00	-11.60	AVG			

*:Maximum data x:Over limit I:over margin

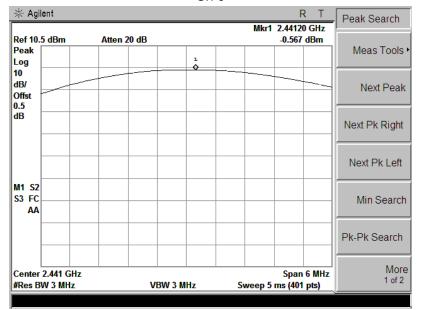
5.5 Conducted Peak Output Power 5.5.1 Requirement

According to FCC Section 15.247(b)(1), for frequency hopping systems operating in the 2400–2483.5 MHz band employing at least 75 non-overlapping hopping channels, and all frequency hopping systems in the 5725- 5850 MHz band: 1 watt. For all other frequency hopping systems in the 2400–2483.5 MHz band: 0.125 watts

5.5.2 Block Diagram of Test Setup


5.5.3 Test Procedure

- 1. Place the EUT on a bench and set in transmitting mode.
- 2. Remove the antenna from the EUT and then connect a low loss RF cable from the antenna port to an EMI test receiver.
- 3. Add a correction factor to the display.

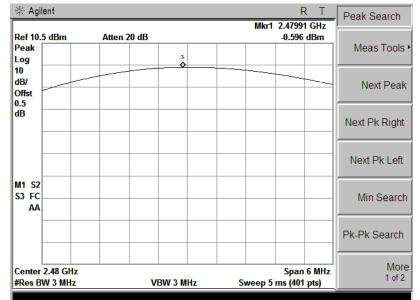

5.5.4 Test Result

Test Item:	Peak Output Power	Temperature :	21°C
Test Engineer:	Kang	Relative Humidity :	59%

Mode	Channel	Frequenc v	Peak Output	Liı	nit	Pass/Fail
		(MHz)	Power(dBm)	(mW)	(dBm)	
	Low	2402	-0.957	125	20.97	Pass
BDR (GFSK)	Middle	2441	-0.567	125	20.97	Pass
	High	2480	-0.036	125	20.97	Pass
	Low	2402	-1.468	125	20.97	Pass
EDR (π/4-DQPSK)	Middle	2441	-1.001	125	20.97	Pass
	High	2480	-0.596	125	20.97	Pass
	Low	2402	-1.349	125	20.97	Pass
EDR (8DPSK)	Middle	2441	-0.896	125	20.97	Pass
	High	2480	-0.424	125	20.97	Pass

Ch 0

Ch 39


🔆 Agile	ent						R		Peak Search
			_			Mkr1	2.47979		
Ref 10.5 Peak Log		Atten 20 dl	1 				-0.036	JBM	Meas Tools 🕨
10 dB/ Offst 0.5									Next Peak
dB	Marker								Next Pk Right
	2.47979		HZ						Next Division
	-0.036 (звш							Next Pk Left
M1 S2 S3 FC AA									Min Search
									Pk-Pk Search
	2.48 GHz V 3 MHz		VBW 3 M	Hz	Sw	veep 5 i	Span ms (401	6 MHz pts)	More 1 of 2

🔆 Agilen	ť						F		Peak Search
Ref 10.5 d	Bm	Atten 20 dB				Mkr1	2.4022		
Peak Log		Atten 20 ub		1			-1.400		Meas Tools
10 dB/ Offst 0.5				<u> </u>					Next Peak
dB									Next Pk Right
_									Next Pk Left
M1 S2 S3 FC AA									Min Search
									Pk-Pk Search
Center 2.4 #Res BW		<u> </u>	VBW 3 M	Hz	Sv	veep 5		6 MHz pts)	More 1 of 2

π/4-DQPSK Mode

Ch 0

🔆 Agilent				RT	Peak Search
	A., 00 ID		Mkr1 2.441		
Ref 10.5 dBm Peak Log	Atten 20 dB	1	-1.0	01 dBm	Meas Tools
10 dB/ Offst 0.5					Next Peak
dB					Next Pk Right
					Next Pk Left
M1 S2 S3 FC AA					Min Search
					Pk-Pk Search
Center 2.441 GHz #Res BW 3 MHz		/BW 3 MHz	Spa Sweep 5 ms (4	an 6 MHz 01 pts)	More 1 of 2

🔆 Agile	ent					F		Peak Search
Ref 10.5	i dBm	Atten 20 dB			Mkr1	2.4020 -1.349		,
Peak Log								Meas Tools '
10 dB/ Offst 0.5			*					Next Peak
dB								Next Pk Right
-								Next Pk Left
M1 S2 S3 FC AA								Min Search
-								Pk-Pk Search
	2.402 GHz N 3 MHz		VBW 3 MH	z	Sweep 5		6 MHz pts)	More 1 of 2

8DPSK Mode

Ch 0

🔆 Agilent						F	R T	Peak Search
Ref 10.5 dBm		Atten 20 d	D		Mkr1	2.4410 -0.896		
Peak Log	•	Allen zu u		1 3		-0.030		Meas Tools
10 dB/ Offst 0.5				2				Next Peak
dB								Next Pk Right
								Next Pk Left
M1 S2 S3 FC AA								Min Search
								Pk-Pk Search
Center 2.441 #Res BW 3 N			VBW 3 MH		Sweep 5		6 MHz pts)	More 1 of 2

🔆 Agili	ent						Mind	P 4904		Peak Search
Ref 10.5 Peak Log	ō dBm	Atten 2	20 dB		1		МКГІ	2.4801 -0.424		Meas Tools
10 dB/ Offst 0.5					♦					Next Peak
dB	Marker									Next Pk Right
	2.48012 -0.424 () GHz	z						Next Pk Left
M1 S2 S3 FC AA										Min Search
										Pk-Pk Search
	2.48 GHz N 3 MHz		v	BW 3 M	Hz	Sv	veep 5	Span ms (401	6 MHz pts)	More 1 of 2

5.6 20dB Emission Bandwidth

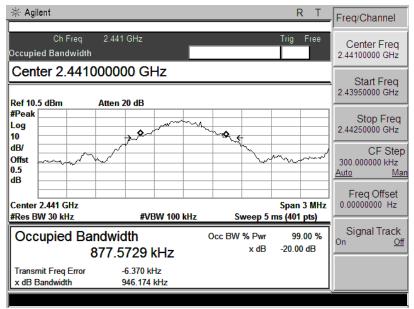
5.6.1 Test Requirement

The bandwidth of a frequency hopping channel is the -20 dB emission bandwidth, measured with the hopping stopped.

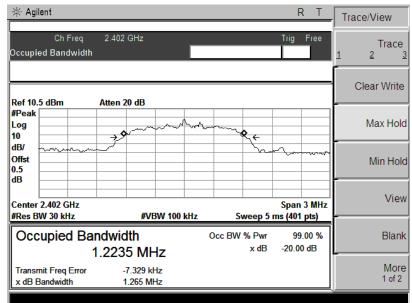
5.6.2 Test Procedure

- 1. Check the calibration of the measuring instrument using either an internal calibrator or a known signal from an external generator.
- 2. Position the EUT on the test table without connection to measurement instrument. Turn on the EUT. Then set it to any one convenient frequency within its operating range. Set a reference level on the measuring instrument equal to the highest peak value.
- 3. Measure the frequency difference of two frequencies that were attenuated 20 dB from the reference level. Record the frequency difference as the emission bandwidth.
- 4. Repeat above procedures until all frequencies measured were complete.

5.6.3 Test Result


Test Item:	20dB Emission Bandwidth	Temperature :	23°C
Test Engineer:	Kang	Relative Humidity :	65%

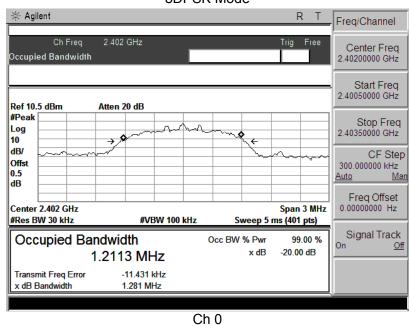
Mode	Mode Channel		20dB Bandwidth(MHz)
חחח	Low	2402	0.963
BDR (GFSK)	Middle	2441	0.946
	High	2480	0.939
	Low	2402	1.265
EDR (π/4-DQPSK)	Middle	2441	1.258
	High	2480	1.299
	Low	2402	1.281
EDR (8DPSK)	Middle	2441	1.310
	High	2480	1.281


GFSK Mode

i∰ Agilent			RT	Freq/Channel
Occupied Bandwidth	2 GHz		Trig Free	Center Freq 2.40200000 GHz
Center 2.4020000	00 GHz 20 dB			Start Freq 2.40050000 GHz
#Peak	A A A A A A A A A A A A A A A A A A A	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		Stop Freq 2.40350000 GHz
dB/ Offst 0.5 dB			A	CF Step 300.000000 kHz <u>Auto Ma</u>
Center 2.402 GHz #Res BW 30 kHz	#VBW 100 kHz	Sweep 5	Span 3 MHz ms (401 pts)	Freq Offset 0.00000000 Hz
Occupied Bandwi 890.8	dth 3411 kHz	Occ BW % Pwr x dB	99.00 % -20.00 dB	Signal Track ^{On <u>Off</u>}
Transmit Freq Error x dB Bandwidth	-6.256 kHz 963.227 kHz			

Ch 0

🔆 Agilent			RT	Freq/Channel
Ch Freq Occupied Bandwidth	,		Trig Free	Center Freq 2.48000000 GHz
Center 2.4800	Atten 20 dB			Start Freq 2.47850000 GHz
#Peak Log	*****	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		Stop Freq 2.48150000 GHz
dB/ Offst ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~			~~~~	CF Step 300.000000 kHz <u>Auto Mar</u>
Center 2.48 GHz #Res BW 30 kHz	#VBW 100 kt	łz Sweep 5 i	Span 3 MHz ms (401 pts)	Freq Offset 0.00000000 Hz
Occupied Ba	ndwidth 855.8679 kHz	Occ BW % Pwr x dB	99.00 % -20.00 dB	Signal Track ^{On <u>Off</u>}
Transmit Freq Error x dB Bandwidth	-8.333 kHz 939.462 kHz			



π/4-DQPSK Mode

Ch 0

泰 Agilent R T	Trace/View
Ch Freq 2.441 GHz Trig Free Occupied Bandwidth	Trace 1 <u>2 3</u>
Ref 10.5 dBm Atten 20 dB	Clear Write
Heat Log 10 +9	Max Hold
dB/	Min Hold
Center 2.441 GHz Span 3 MHz #Res BW 30 kHz #VBW 100 kHz Sweep 5 ms (401 pts)	View
Occupied Bandwidth Occ BW % Pwr 99.00 % 1.2221 MHz x dB -20.00 dB	Blank
Transmit Freq Error-18.855 kHzx dB Bandwidth1.258 MHz	More 1 of 2

🔆 Agilent	ť				RT	Freq/Channel
Occupied	Ch Freq Bandwidth	2.48 GHz			Trig Free	Center Freq 2.48000000 GHz
Ref 10.5 d	IBm	Atten 20 dB				Start Freq 2.47850000 GHz
#Peak Log 10		→ ⊅ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	Muran	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		Stop Freq 2.48150000 GHz
dB/ Offst 0.5 dB	~~~~				~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	CF Step 300.000000 kHz <u>Auto Mar</u>
Center 2.4 #Res BW 3		#VBW 10	0 kHz	Sweep 5 I	Span 3 MHz ns (401 pts)	Freq Offset 0.00000000 Hz
Occu		ndwidth 1.2107 MHz	Occ	BW % Pwr x dB	99.00 % -20.00 dB	Signal Track On <u>Off</u>
Transmit x dB Ban	Freq Error dwidth	-17.003 kHz 1.299 MHz				

Occupied Bandwidth 2.441000 Center 2.441000000 GHz Star Ref 10.5 dBm Atten 20 dB #Peak Star Log Center 2.441000 0dB/ Center 2.44100 0fist Center 2.441 GHz Freq Span 3 MHz #New 30 kHz #VBW 100 kHz Sweep 5 ms (401 pts)	annel	Freq/Channe	Т	R						lent	🔆 Aç
Ref 10.5 dBm Atten 20 dB Star #Peak		Center Fre 2.44100000 GF	Free	Trig F					dth	ed Bandv	_
#Peak Sto Log		Start Fre 2.43950000 GF	—				Hz				<u> </u>
Center 2.441 GHz #Res BW 30 kHz Span 3 MHz #VBW 100 kHz Span 3 MHz Sweep 5 ms (401 pts) 0.000000 Occupied Bandwidth Occ BW % Pwr 99.00 % Signa On 1.2357 MHz x dB -20.00 dB Signa	00 GHz CF Step 00 kHz <u>Man</u>	300.000000 kH	***		¢ (→ ₁ ,		#Peak Log 10 dB/ Offst 0.5
1.2357 MHz x dB -20.00 dB		0.00000000 H			Sweep 5	kHz	BW 100	#VE			
Transmit Freg Error -21.925 kHz	l Track <u>Off</u>	Signal Tra ^{On}									
x dB Bandwidth 1.310 MHz									or		

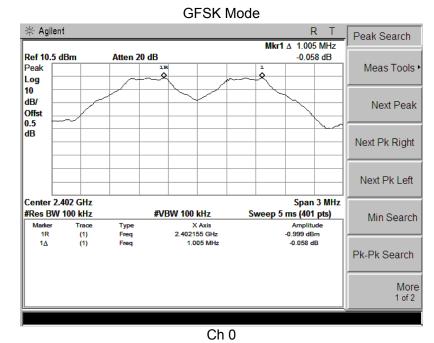
🔆 Agilent			RT	Trace/View
Ch Freq Occupied Bandwidth	2.48 GHz	ļ	Trig Free	Trace 1 2 3
Ref 10.5 dBm	Atten 20 dB			Clear Write
#Peak Log	→ Auten 20 ub	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		Max Hold
dB/ Offst 0.5 dB			~~~~	Min Hold
Center 2.48 GHz #Res BW 30 kHz	#VBW 100	kHz Sweep 5	Span 3 MHz ms (401 pts)	View
Occupied Bar 1	ndwidth .1930 MHz	Occ BW % Pwr x dB	99.00 % -20.00 dB	Blank
Transmit Freq Error x dB Bandwidth	-19.267 kHz 1.281 MHz			More 1 of 2

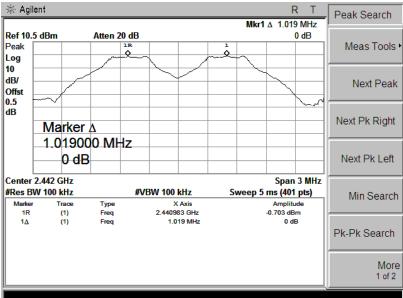
5.7 Carrier Frequency Separation 5.7.1 Test Requirement

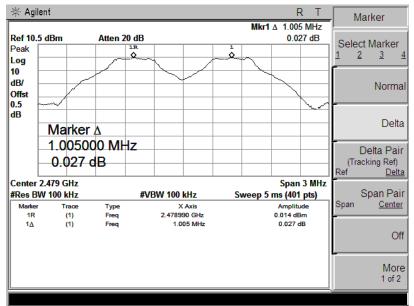
Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20dB bandwidth of the hopping channel, whichever is greater. Alternatively, frequency hopping systems operating in the 2400-2483.50 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20dB bandwidth of the hopping channel, whichever is greater provided the systems operate with an output power no greater than 125 mW.

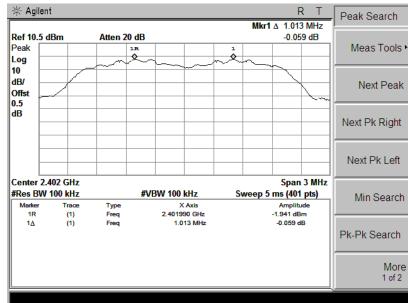
5.7.2 Test Procedure

1.Set the EUT in transmitting mode, spectrum Bandwidth was set at 30 kHz, maxhold the channel.

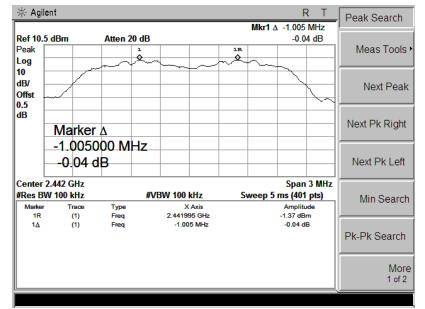

2.Set the adjacent channel of the EUT maxhold another trace

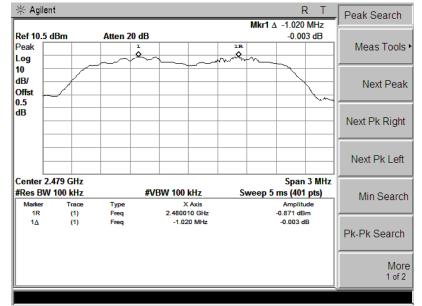

3.Measure the channel separation.

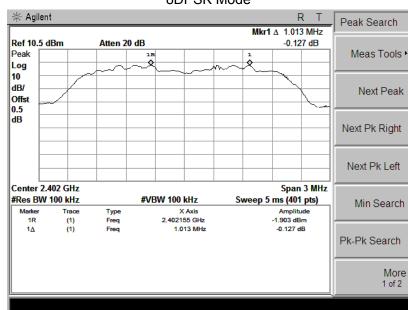

5.7.3 Test Result


Test Item:	Carrier Frequency Separation	Temperature :	23°C
Test Engineer:	Kang	Relative Humidity :	65%

Mode	Channel	Frequency (MHz)	Channel Separation (MHz)	Limit (MHz)	Result
חחח	Low	2402	1.005	0.642	Pass
BDR (GFSK)	Middle	2441	1.019	0.631	Pass
(015K)	High	2480	1.005	0.626	Pass
	Low	2402	1.013	0.843	Pass
EDR (π/4-DQPSK)	Middle	2441	1.005	0.839	Pass
	High	2480	1.020	0.866	Pass
EDR (8DPSK)	Low	2402	1.013	0.854	Pass
	Middle	2441	0.998	0.873	Pass
	High	2480	1.013	0.854	Pass

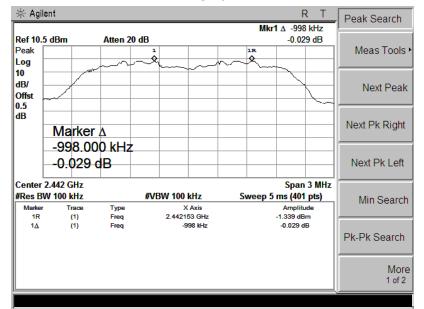


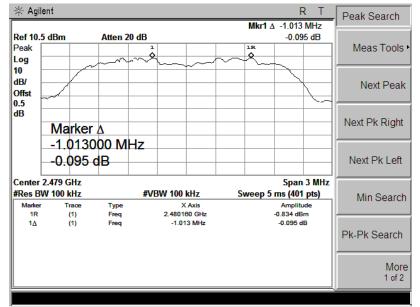




π/4-DQPSK Mode

Ch 0





8DPSK Mode

Ch 0

5.8 Number of Hopping Channel 5.8.1 Test Requirement

Frequency hopping systems in the 2400–2483.5 MHz band shall use at least 15 channels. The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed. Frequency hopping systems may avoid or suppress transmissions on a particular hopping frequency provided that a minimum of 15 channels are used.

5.8.2 Test Procedure

- 1. Check the calibration of the measuring instrument (SA) using either an internal calibrator or a known signal from an external generator.
- 2. Set the EUT in hopping mode from first channel to last.
- 3. By using the Max-Hold function record the Quantity of the channel.

5.8.3 Test Result

Test Item:	Number of Hopping Channel	Temperature :	23°C
Test Engineer:	Kang	Relative Humidity :	65%

Mode	Frequency Range (MHz)	Number of Hopping Channel	Limit
GFSK	2400-2483.5	79	≥15
π /4-DQPSK	2400-2483.5	79	≥15
8DPSK	2400-2483.5	79	≥15

崇	Agil	ent								F	R T	TI	race/View
Ref Pea Log	ak	5 dBm		Atten 2	20 dB							<u>1</u>	Trace
10 dB/ Offs 0.5								WMW		YYYYYY			Clear Write
dB													Max Hold
		/											Min Hole
M1 S3													View
													Blank
		4 GHz W 100 I	cHz.		#VE	3W 300	kHz	Sweep	St 5 8.651 i	op 2.48 ns (401			More 1 of 2

GFSK Mode

举 Agil	ent								F	र T		Trace/	View
Ref 10. Peak Log	5 dBm		Atten 2	20 dB							٦	1	Trace
0 1B/ 0ffst 0,5	/www	WYNWN	MMMM	NVWW	AMAAAAA	MMMM	WY AVANA	VIYWYW	4W/4W/4	WWW1		Cle	ar Write
iΒ												Ν	Max Hold
	[-	Min Hold
M1 S2 S3 FC AA													Viev
													Blank
Start 2. #Res B	4 GHz W 100 I	رHz		#VE	3W 300	kHz	Sweep	St 5 8.651 i	op 2.48 ms (401		 z		More 1 of 2

π/4-DQPSK

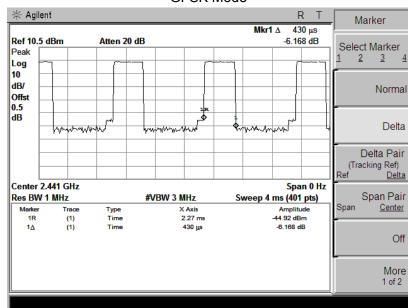
🔆 Agil	lent								F	≀ T		Trace/View
Ref 10. Peak Log	5 dBm		Atten 2	20 dB							7	Trace
10 dB/ Offst 0.5	www	wwww	474974439	www	NWWW	MANAA AMA	ww.www	ANN	www.w	WW		Clear Write
dB												Max Hold
												Min Hold
M1 S2 S3 FC AA												View
												Blank
Start 2. #Res B	4 GHz W 100 I	۲. ۲		#VE	3W 300	kHz	Sweep		op 2.483 ms (401		 z	More 1 of 2

8DPSK Mode

5.9 Dwell Time 5.9.1 Test Requirement

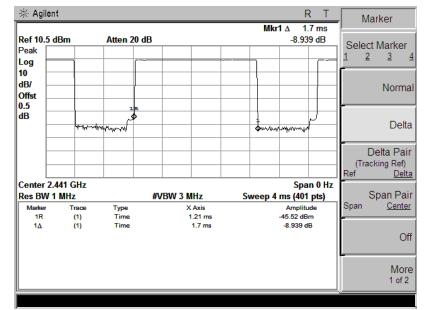
Frequency hopping systems in the 2400-2483.5 MHz shall use at least 15 channels. The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed. Frequency hopping systems may avoid or suppress transmissions on a particular hopping frequency provided that a minimum of 15 channels are used.

5.9.2 Test Procedure

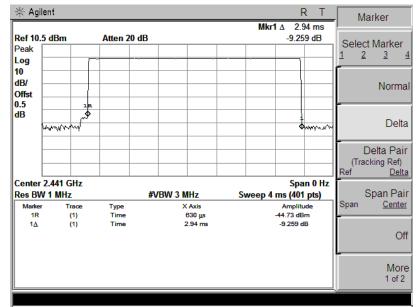

The EUT was worked in channel hopping; Spectrum SPAN was set as 0. Sweep was set as 0.4 * channel no. (s), the quantity of pulse was get from single sweep. In addition, the time of single pulses was tested.

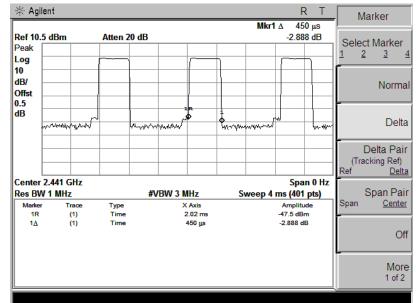
Dwell Time= time slot length * hope rate/ number of hopping channels * 31.6s Hop rate=1600/s

5.9.3 Test Result

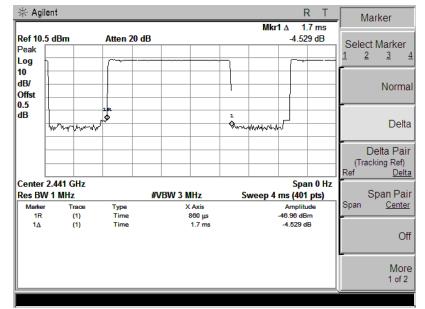

Test Item:	Dwell Time	Temperature :	25°C
Test Engineer:	Henry	Relative Humidity :	65%

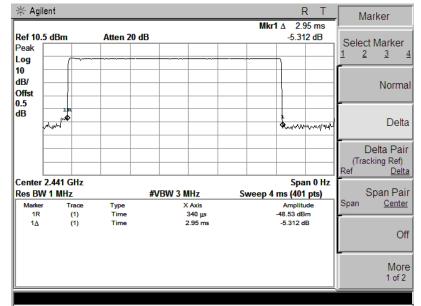
Mode	Packet	Pulse Time (ms)	Dwell Time(ms)	Limit(ms)	Result							
	DH1	0.43	137.6	400	Pass							
GFSK	DH3	1.70	272.0	400	Pass							
	DH5 2.94 313.6 400 Pass											
	2DH1	0.45	144.0	400	Pass							
π /4DQPSK	2DH3	1.70	272.0	400	Pass							
	2DH5	2.95	314.8	400	Pass							
	3DH1	0.45	144.0	400	Pass							
8DPSK	3DH3	1.70	272.0	400	Pass							
	3DH5	2.95	314.8	400	Pass							
Note: DH1/2D	Note: DH1/2DH1/3DH1: Dwell Time=Pulse Time(ms)X[(1600/2/79)X31.6]											
DH3/2D	DH3/2DH3/3DH3: Dwell Time= Pulse Time(ms)X[(1600/4/79)X31.6]											
DH5/2D	H5/3DH5: Dwell Time	e= Pulse Time(ms)>	K[(1600/6/79)X31	.6]								

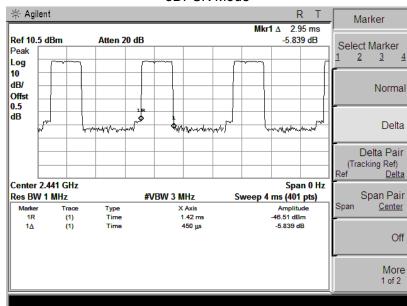



GFSK Mode

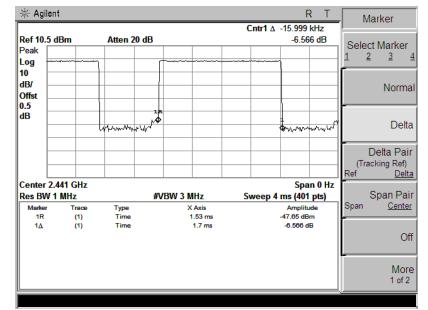
DH1

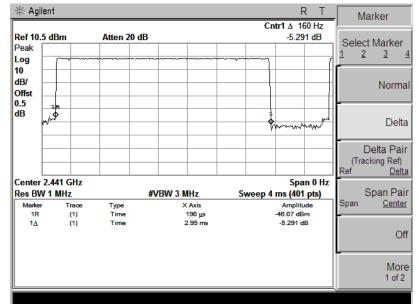

DH3




π/4-DQPSK Mode

DH1


DH3



8DPSK Mode

DH1

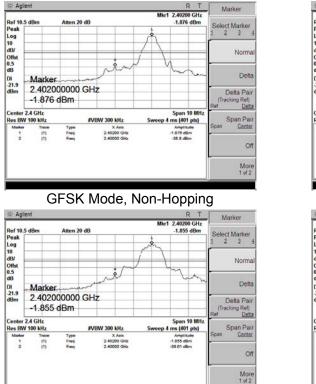
DH3

5.9 Band Edge and Conducted Spurious Emissions 5.9.1 Test Requirement

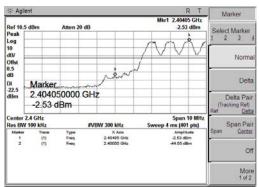
In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required.

5.9.2 Test Procedure

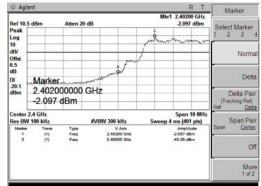
- 1. Check the calibration of the measuring instrument using either an internal calibrator or a known signal from an external generator.
- 2. Remove the antenna from the EUT and then connect to a low loss RF cable from the antenna port to a EMI test receiver, then turn on the EUT and make it operate in transmitting mode. Then set it to Low Channel and High Channel within its operating range, and make sure the instrument is operated in its linear range.
- 3. Set both RBW and VBW of spectrum analyzer to 100 kHz with a convenient frequency span including 100 kHz bandwidth from band edge.
- 4. Measure the highest amplitude appearing on spectral display and set it as a reference level. Plot the graph with marking the highest point and edge frequency.
- 5. Repeat above procedures until all measured frequencies were complete.

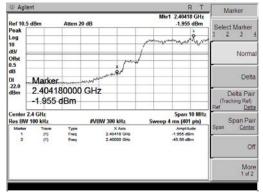

5.9.3 Test Result

Pass


Remark:

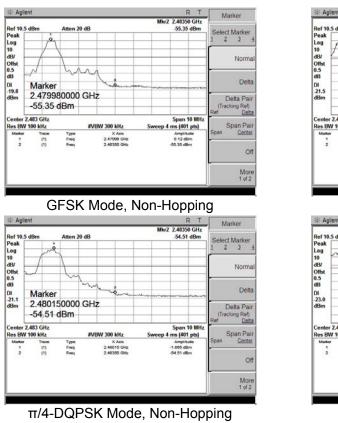
During the Conducted Spurious Emissions test, pre-scan the GFSK, $\pi/4$ -QPSK, 8DPSK modulation, and found the GFSK modulation which it is worse case.


Test Item:	Band Edge	Temperature :	23°C
Test Engineer:	Kang	Relative Humidity :	65%

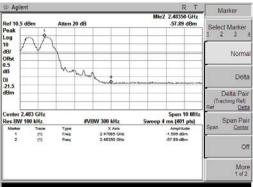

Band Edge, Left Side

GFSK Mode, Hopping

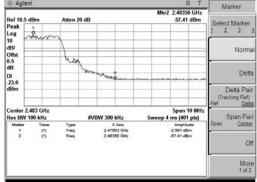
 π /4-DQPSK Mode, Hopping

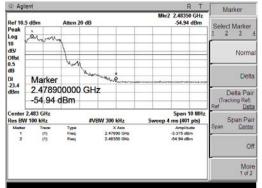


8DPSK Mode, Hopping

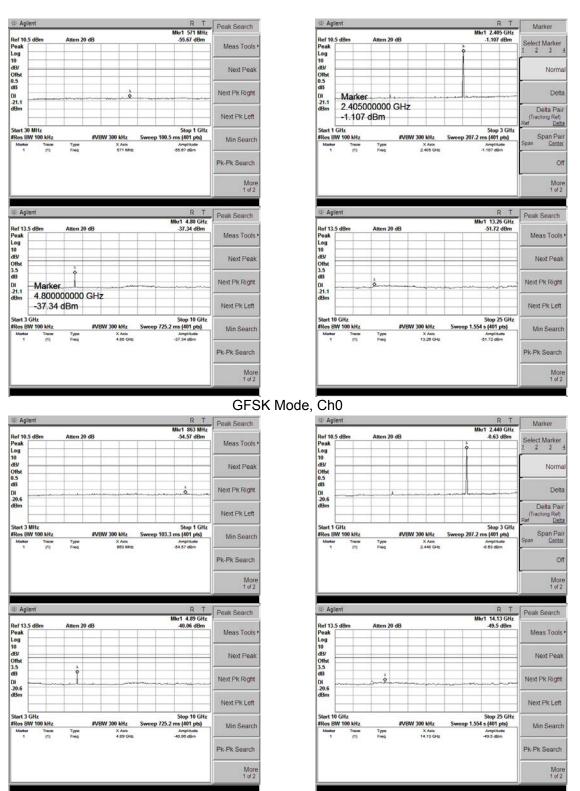

π /4-DQPSK Mode, Non-Hopping

示 Agilent	Freq/Channel					
			10	Mkr1 2.402		1 roq onanio
Ref 10.5 d Peak Log	Bm	Atten 20	315	-1.81	9 dBm	Center Freq 2.40000000 GHz
10 dB/ Offst 0.5				\square		Start Freq 2 39500000 GHz
dB DI -21.8			mank		~~~~	Stop Freq 2.40500000 GHz
dBm						CF Step 1.00000000 MHz Auto Ma
Center 2.4 Res BW 1			WBW 300 kHz	Sweep 4 ms (40	10 MHz 1 pts)	Freq Offset
Marker	Trace	Type Freq	X Aals 2.40215 GHz	Ampli -1.819 d		0.00000000 Hz
1 2	(1)	Freq	2.40000 GHz	-1.819 0 -38.08 d		Signal Track On <u>Off</u>


8DPSK Mode, Non-Hopping


Band Edge, Right Side

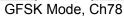
GFSK Mode, Hopping


π/4-DQPSK Mode, Hopping

8DPSK Mode, Hopping

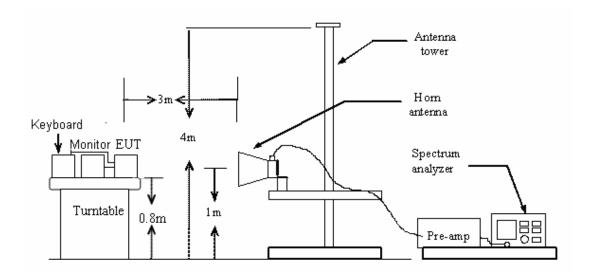

宗 Agilent			R	Т	Marker		
	21 X X X X X X X X X X X		Mkr2 2.48350		- marrier		
Ref 10.5 dBm	Atten 20 dB		-55.15	dBm	Select Marker		
Peak Log	n.e			_	1 2 3		
10					r		
dB/ /				_	Norma		
offst with	6			-			
0.5 dB	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~						
	or	- in			Delta		
20.9 0 40	and the second se	1-		and a desce	-		
out		74			Delta Pair		
-55.1	15 dBm						
Center 2.483 GH	z	and the second s	Span 1	0 MHz	Four Local		
Res BW 100 kHz		VBW 300 kHz	Sweep 4 ms (401		Span Pair		
Matter Trac		X Axis	Amplitu		Span <u>Center</u>		
2 (1)	Freq	2,48350 GHz	-0.047 dur -55.15 dBr		5		
				°	Of		
					More		
0.9 3m 2.48 -55.1 enter 2.483 GH es BW 100 kHz Marker Tree	0180000 GI I5 dBm z Type Freq	VBW 300 kHz X Axis 2.48016 Gitz	Amplitu -0.847 dBr	pts) se	Delta Pa (Tracking Ref) Ref Del Span Pa Span <u>Centr</u> O		

8DPSK Mode, Non-Hopping



Conducted Spurious Emissions

Conducted Spurious Emissions



5.10 Restricted Frequency Bands 5.10.1 Test Requirement

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)).

5.10.2 Test Configuration

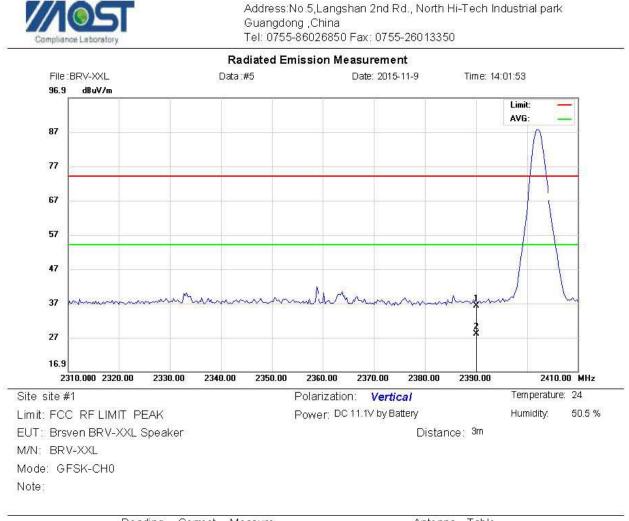
Test Setup:

5.10.3 Test Procedure:

1. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter chamber. The table was rotated 360 degrees to determine the position of the highest radiation.

2. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.

3. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.

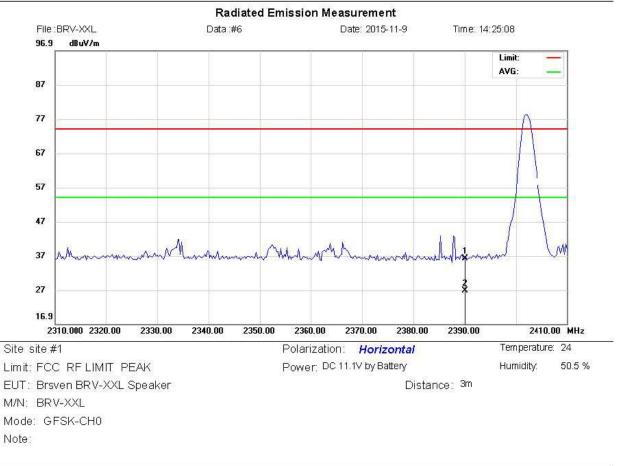

4. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the table was turned from 0 degrees to 360 degrees to find the maximum reading.

5.10.4 Test Result

Pass

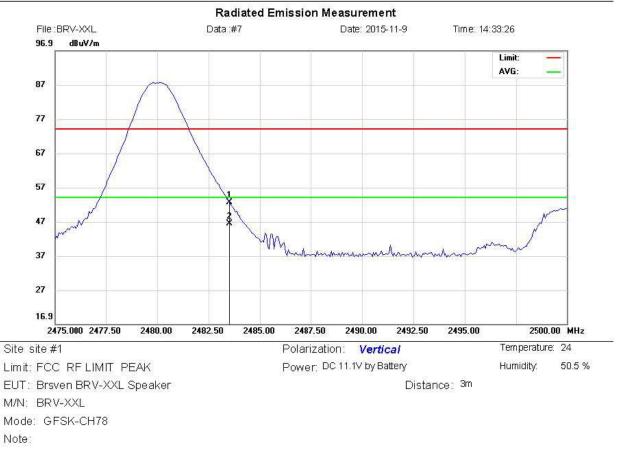
Note: All test modes are performed, only the worst case is recorded in this report.

Please refer the following plots.


No.	Mk	. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		Antenna Height	Table Degree	
	MHz	dBuV	dB	dBu∀/m	dBuV/m	dB	Detector	cm	degree	Comment	
1		2390.000	44.73	-8.43	36.30	74.00	-37.70	peak			
2	*	2390.000	36.51	-8.43	28.08	54.00	-25.92	AVG			

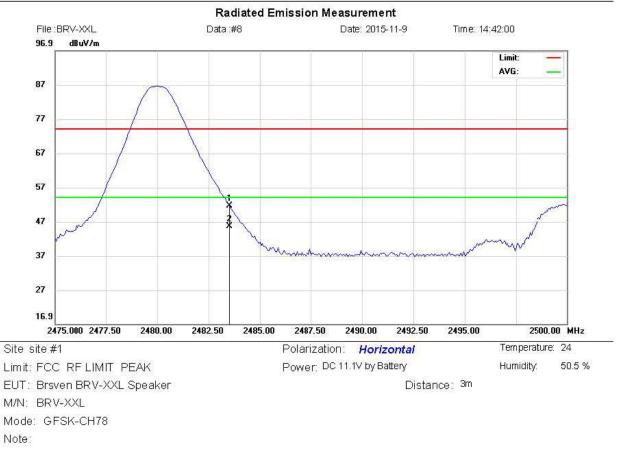
*:Maximum data x:Over limit I:over margin

Page 48 of 51


Address:No.5,Langshan 2nd Rd., North Hi-Tech Industrial park Guangdong ,China Tel: 0755-86026850 Fax: 0755-26013350

No.	Mk	. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		Antenna Height	Table Degree	
		MHz	dBuV	dB	dBu∀/m	dBuV/m	dB	Detector	cm	degree	Comment
1		2390.000	44.71	-8.43	36.28	74.00	-37.72	peak			
2	*	2390.000	35.23	-8.43	26.80	54.00	-27.20	AVG			

Address:No.5,Langshan 2nd Rd., North Hi-Tech Industrial park Guangdong ,China Tel: 0755-86026850 Fax: 0755-26013350



No.	Mk	. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		Antenna Height	Table Degree	
		MHz	dBuV	dB	dBu∀/m	dBuV/m	dB	Detector	cm	degree	Comment
1		2483.500	60.80	-8.29	52.51	74.00	-21.49	peak			
2	*	2483.500	54.79	-8.29	46.50	54.00	-7.50	AVG			

*:Maximum data x:Over limit 1:over margin

Address:No.5,Langshan 2nd Rd., North Hi-Tech Industrial park Guangdong ,China Tel: 0755-86026850 Fax: 0755-26013350

No.	Mk	. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		Antenna Height	Table Degree	
		MHz	dBuV	dB	dBu∀/m	dBuV/m	dB	Detector	cm	degree	Comment
1		2483.500	59.99	-8.29	51.70	74.00	-22.30	peak			
2	*	2483.500	53.90	-8.29	45.61	54.00	-8.39	AVG			

*:Maximum data x:Over limit I:over margin

Engineer Signature: Deft

End of Report