

Varient FCC RF Test Report

APPLICANT	: Texas Instruments Incorporated
EQUIPMENT	: WiFi and Bluetooth Module
BRAND NAME	: Texas Instruments
MODEL NAME	: WL18MODGB
FCC ID	: Z64-WL18SBMOD
STANDARD	: FCC Part 15 Subpart C §15.247
CLASSIFICATION	: (DSS) Spread Spectrum Transmitter

The product was received on Oct. 23, 2014 and testing was completed on Aug. 14, 2015. We, SPORTON INTERNATIONAL INC., would like to declare that the tested sample has been evaluated in accordance with the test procedures and has been in compliance with the applicable technical standards.

The test results in this report apply exclusively to the tested model / sample. Without written approval of SPORTON INTERNATIONAL INC., the test report shall not be reproduced except in full.

Reviewed by: Joseph Lin / Supervisor

Ince/sai

Approved by: Jones Tsai / Manager

SPORTON INTERNATIONAL INC. No. 52, Hwa Ya 1st Rd., Hwa Ya Technology Park, Kwei-Shan District, Tao Yuan City, Taiwan, R.O.C.

SPORTON INTERNATIONAL INC. TEL : 886-3-327-3456 FAX : 886-3-328-4978 FCC ID : Z64-WL18SBMOD Page Number : 1 of 22 Report Issued Date : Sep. 04, 2015 Report Version : Rev. 01 Report Template No.: BU5-FR15CBT Version 1.0

TABLE OF CONTENTS

RE	VISION	N HISTORY	.3
SUI	MMAR	Y OF TEST RESULT	.4
1	GENE	ERAL DESCRIPTION	.5
	1.1	Applicant	.5
	1.2	Manufacturer	.5
	1.3	Product Feature of Equipment Under Test	.5
	1.4	Product Specification subjective to this standard	
	1.5	Modification of EUT	.6
	1.6	Testing Location	.7
	1.7	Applicable Standards	.7
2	TEST	CONFIGURATION OF EQUIPMENT UNDER TEST	.8
	2.1	Descriptions of Test Mode	.8
	2.2	Test Mode	.9
	2.3	Connection Diagram of Test System	10
	2.4	Support Unit used in test configuration and system	10
	2.5	EUT Operation Test Setup	10
	2.6	Measurement Results Explanation Example	11
3	TEST	RESULT	12
	3.1	Peak Output Power Measurement	12
	3.2	Radiated Band Edges and Spurious Emission Measurement	14
	3.3	Antenna Requirements	20
4	LIST	OF MEASURING EQUIPMENT	21
5	UNCE	ERTAINTY OF EVALUATION	22
API	PENDI	X A. TEST RESULT OF CONDUCTED SPURIOUS EMISSION	

APPENDIX B. TEST RESULT OF RADIATED SPURIOUS EMISSION

APPENDIX C. SETUP PHOTOGRAPHS

REVISION HISTORY

REPORT NO.	VERSION	DESCRIPTION	ISSUED DATE
FR402349A	Rev. 01	This is a variant report by adding 6 new antennas. All the test cases were performed on original report which can be referred to Sporton Report Number FR3N2752-01ATX. Based on the original report, only the peak output power and conducted spurious emission and cabinet radiation were performed.	Sep. 04, 2015

SUMMARY OF TEST RESULT

Report Section	FCC Rule	Description	Limit	Result	Remark
3.1	15.247(b)(1)	Peak Output Power	≤ 125 mW	Pass	-
3.2	15.247(d)	Radiated Band Edges and Radiated Spurious Emission	15.209(a) & 15.247(d)	Pass	Under limit 9.23 dB at 216.840 MHz
3.3	15.203 & 15.247(b)	Antenna Requirement	N/A	Pass	-

1 General Description

1.1 Applicant

Texas Instruments Incorporated

12500 TI Boulevard, M/S 8751, Dallas, TX 75243, USA

1.2 Manufacturer

Jorjin Technologies Inc

17F, No.239, Sec. 1, Datong Rd., Xizhi Dist., New Taipei City 221, Taiwan

1.3 Product Feature of Equipment Under Test

Product Feature			
Equipment WiFi and Bluetooth Module			
Brand Name	Texas Instruments		
Model Name	WL18MODGB		
FCC ID	Z64-WL18SBMOD		
EUT supports Radios application	WLAN 11b/g/n HT20/HT40		
	Bluetooth v4.0 EDR/LE		
EUT Stage	Identical Prototype		

Remark: The above EUT's information was declared by manufacturer. Please refer to the specifications or user's manual for more detailed description.

1.4 Product Specification subjective to this standard

Product Specification subjective to this standard			
Tx/Rx Frequency Range	2402 MHz ~ 2480 MHz		
Number of Channels	79		
Carrier Frequency of Each Channel	2402+n*1 MHz; n=0~78		
Maximum Output Power to Antenna	Bluetooth BR(1Mbps) : 11.90 dBm (0.0155 W) Bluetooth EDR (2Mbps) : 9.78 dBm (0.0095 W) Bluetooth EDR (3Mbps) : 9.85 dBm (0.0097 W)		
Type of Modulation	Bluetooth BR (1Mbps) : GFSK Bluetooth EDR (2Mbps) : π /4-DQPSK Bluetooth EDR (3Mbps) : 8-DPSK		

Antenna Information							
Antenna Type	Antenna Type Brand 2.4GHz~2.5GHz						
PCB	Ethertronics	-0.6					
Dipole LSR PCB Laird		2					
		2					
Chip	Pulse	3.2					
PIFA	LSR	2					
Chip	TDK	2.4					

1.5 Modification of EUT

No modifications are made to the EUT during all test items.

1.6 Testing Location

Sporton Lab is accredited to ISO 17025 by Taiwan Accreditation Foundation (TAF code : 1190) and the FCC designation No. TW1022 under the FCC 2.948(e) by Mutual Recognition Agreement (MRA) in FCC Test.

Test Site	SPORTON INTERNATIONAL INC.		
	No. 52, Hwa Ya 1 st Rd., Hwa Ya Technology Park,		
Test Site Location	Kwei-Shan District, Tao Yuan City, Taiwan, R.O.C.		
Test Site Location	TEL: +886-3-327-3456		
	FAX: +886-3-328-4978		
Test Site No.	Sporton Site No.		
Test Site No.	TH05-HY		

Test Site	SPORTON INTERNATIONAL INC.		
	No. 58 , Aly. 75, Ln. 564, Wenhua 3rd Rd.,		
Test Site Location	Kwei-Shan District, Tao Yuan City, Taiwan, R.O.C.		
	TEL: +886-3-327-0855		
Test Site No	Sporton Site No.		
Test Site No.	03CH10		

Note: The test site complies with ANSI C63.4 2009 requirement.

1.7 Applicable Standards

According to the specifications of the manufacturer, the EUT must comply with the requirements of the following standards:

- FCC Part 15 Subpart C §15.247
- ANSI C63.10-2009

Remark:

- 1. All test items were verified and recorded according to the standards and without any deviation during the test.
- 2. FCC permits the use of the 1.5 meter table as an alternative in C63.10-2013 through inquiry tracking number 961829.
- 3. This EUT has also been tested and complied with the requirements of FCC Part 15, Subpart B, recorded in a separate test report.

2 Test Configuration of Equipment Under Test

2.1 Descriptions of Test Mode

Preliminary tests were performed in different data rates and recorded the RF output power in the following table:

	el Frequency	В	luetooth RF Output Powe	er		
Channel		Data Rate / Modulation				
Channel		GFSK	π /4-DQPSK	8-DPSK		
		1Mbps	2Mbps	3Mbps		
Ch00	2402MHz	<mark>11.90</mark> dBm	9.78 dBm	9.85 dBm		
Ch39	2441MHz	11.37 dBm	9.39 dBm	9.58 dBm		
Ch78	2480MHz	11.50 dBm	9.31 dBm	9.34 dBm		

Remark:

1. All the test data for each data rate were verified, but only the worst case was reported.

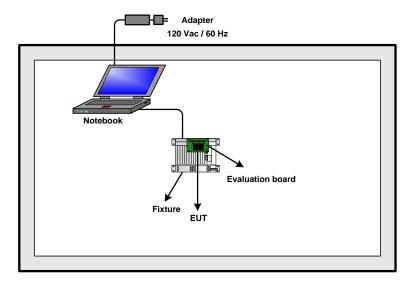
2. The data rate was set in 1Mbps for all the test items due to the highest RF output power.

The EUT has been associated with peripherals and configuration operated in a manner tended to maximize its emission characteristics in a typical application. Frequency range investigated: radiation (9 kHz to the 10th harmonic of the highest fundamental frequency or to 40 GHz, whichever is lower).

2.2 Test Mode

The following summary table is showing all test modes to demonstrate in compliance with the standard.

Summary table of Test Cases							
	Data Rate / Modulation						
Test Item	Bluetooth BR 1Mbps	Bluetooth EDR 2Mbps	Bluetooth EDR 3Mbps				
	GFSK	π /4-DQPSK	8-DPSK				
Conducted	Mode 1: CH00_2402 MHz	Mode 4: CH00_2402 MHz	Mode 7: CH00_2402 MHz				
	Mode 2: CH39_2441 MHz	Mode 5: CH39_2441 MHz	Mode 8: CH39_2441 MHz				
Test Cases	Mode 3: CH78_2480 MHz	Mode 6: CH78_2480 MHz	Mode 9: CH78_2480 MHz				
		Bluetooth BR 1Mbps GFSK					
Radiated		Mode 1: CH00_2402 MHz					
Test Cases		Mode 2: CH39_2441 MHz					
		Mode 3: CH78_2480 MHz					


Remark:

For radiated test cases, the worst mode data rate 1Mbps was reported only, because this data rate has the highest RF output power at preliminary tests, and the conducted spurious emissions and conducted band edge measurement for each data rate are no worse than 1Mbps, and no other significantly frequencies found in conducted spurious emission.

2.3 Connection Diagram of Test System

<Bluetooth Tx Mode>

2.4 Support Unit used in test configuration and system

ltem	Equipment	Trade Name	Model Name	FCC ID	Data Cable	Power Cord
1.	Notebook		WiFi module	FCC DoC/ Contains FCC ID:QDS-BRCM1058	N/A	AC I/P: Unshielded, 1.2 m DC O/P: Shielded, 1.8 m

2.5 EUT Operation Test Setup

For Bluetooth function, programmed RF utility, "HCI Tester" installed in the notebook make the EUT provide functions like channel selection and power level for continuous transmitting and receiving signals.

2.6 Measurement Results Explanation Example

For all conducted test items:

The offset level is set in the spectrum analyzer to compensate the RF cable loss and attenuator factor between EUT conducted output port and spectrum analyzer. With the offset compensation, the spectrum analyzer reading level is exactly the EUT RF output level.

Example:

The spectrum analyzer offset is derived from RF cable loss and attenuator factor.

Offset = RF cable loss + attenuator factor.

Following shows an offset computation example with cable loss 4.2 dB and 10dB attenuator.

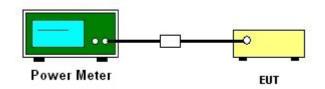
 $Offset(dB) = RF \ cable \ loss(dB) + attenuator \ factor(dB).$ = 4.2 + 10 = 14.2 (dB)

3 Test Result

3.1 Peak Output Power Measurement

3.1.1 Limit of Peak Output Power

Section 15.247 (b) The maximum peak conducted output power of the intentional radiator shall not exceed the following: (1) For frequency hopping systems operating in the 2400-2483.5 MHz band employing at least 75 non-overlapping hopping channels, and all frequency hopping systems in the 5725-5850 MHz band: 1 watt. For all other frequency hopping systems in the 2400-2483.5 MHz band 0.125 watts. The power limit for 1Mbps is 1watt, and for 2Mbps, 3Mbps and AFH are 0.125 watts.


3.1.2 Measuring Instruments

The measuring equipment is listed in the section 4 of this test report.

3.1.3 Test Procedures

- 1. The testing follows FCC Public Notice DA 00-705 Measurement Guidelines.
- The RF output of EUT was connected to the power meter by RF cable and attenuator. The path loss was compensated to the results for each measurement.
- 3. Set to the maximum power setting and enable the EUT transmit continuously.
- 4. Measure the conducted output power with cable loss and record the results in the test report.
- 5. Measure and record the results in the test report.

3.1.4 Test Setup

3.1.5 Test Result of Peak Output Power

Test Mode :	1Mbps		Temperature :		24 - 26°C		
Test Engineer :	Bill Kuo		Relative Humidity : 4		48 – 51%		
_		RF Power (dBm)					
Channel	Frequency (MHz)	(GFSK M		ax. Limits	Pass/Fail	
		1	Mbps		(dBm)	Pass/Fall	
00	2402		11.90		20.97	Pass	
39	2441		11.37		20.97	Pass	
78	2480		11.50		20.97	Pass	

Note: For AFH mode using 20 hopping channels, the maximum output power limit is 20.97dBm.

Test Mode :	2Mbps	Temperature :	24 - 26 ℃
Test Engineer :	Bill Kuo	Relative Humidity :	48 – 51%

Channel	Eroguopov	RF Power (dBm)				
	Frequency (MHz)	π /4-DQPSK	Max. Limits	Pass/Fail		
		2 Mbps	(dBm)	rass/Fall		
00	2402	9.78	20.97	Pass		
39	2441	9.39	20.97	Pass		
78	2480	9.31	20.97	Pass		

Test Mode :	3Mbps		Temperature :		24 - 26 ℃	
Test Engineer :	Bill Kuo		Relative Humidity : 4		48 – 51%	
		RF Power (dBm)				
Channel	Frequency (MHz)	8.	-DPSK	м	ax. Limits	Pass/Fail
	(1917)	3	Mbps		(dBm)	Fass/Fall
00	2402		9.85		20.97	Pass
39	2441		9.58		20.97	Pass
78	2480		9.34		20.97	Pass

3.2 Radiated Band Edges and Spurious Emission Measurement

3.2.1 Limit of Radiated Band Edges and Spurious Emission

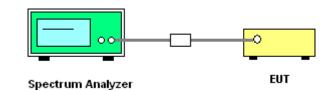
In any 100 kHz bandwidth outside the intentional radiator frequency band, all harmonics/spurious must be at least 20 dB below the highest emission level within the authorized band. In addition, radiated emissions which fall in the restricted bands must also comply with the FCC section 15.209 limits as below.

Frequency	Field Strength	Measurement Distance	
(MHz)	(microvolts/meter)	(meters)	
0.009 - 0.490	2400/F(kHz)	300	
0.490 – 1.705	24000/F(kHz)	30	
1.705 – 30.0	30	30	
30 – 88	100	3	
88 – 216	150	3	
216 - 960	200	3	
Above 960	500	3	

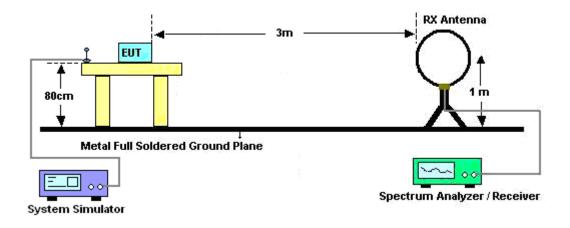
3.2.2 Measuring Instruments

The measuring equipment is listed in the section 4 of this test report.

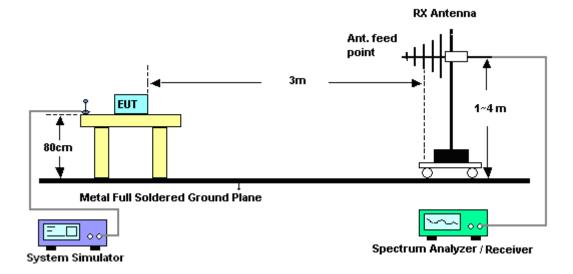
3.2.3 Test Procedures


- 1. The EUT was placed on a turntable with 0.8 meter for frequency below 1GHz and 1.5 meter for frequency above 1GHz respectively above ground.
- 2. The EUT was set 3 meters from the interference receiving antenna, which was mounted on the top of a variable height antenna tower.
- 3. For each suspected emission, the EUT was arranged to its worst case and then tune the Antenna tower (from 1 m to 4 m) and turntable (from 0 degree to 360 degrees) to find the maximum reading. A pre-amp and a high pass filter are used for the test in order to get better signal level to comply with the guidelines.
- 4. Set to the maximum power setting and enable the EUT transmit continuously.
- 5. Use the following spectrum analyzer settings:
 - (1) Span shall wide enough to fully capture the emission being measured;
 - (2) Set RBW=100 kHz for f < 1 GHz, RBW=1MHz for f>1GHz ; VBW ≥ RBW; Sweep = auto; Detector function = peak; Trace = max hold for peak
 - (3) For average measurement: use duty cycle correction factor method per 15.35(c). Duty cycle = On time/100 milliseconds On time = N₁*L₁+N₂*L₂+...+N_{n-1}*LN_{n-1}+N_n*L_n Where N₁ is number of type 1 pulses, L₁ is length of type 1 pulses, etc. Average Emission Level = Peak Emission Level + 20*log(Duty cycle)
- 6. Corrected Reading: Antenna Factor + Cable Loss + Read Level Preamp Factor = Level

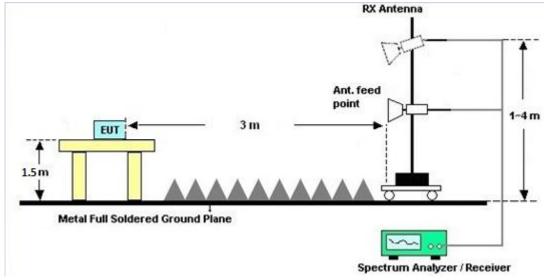
Note: The average levels were calculated from the peak level corrected with duty cycle correction factor (24.73dB) derived from 20log (dwell time/100ms). This correction is only for signals that hop with the fundamental signal, such as band-edge and harmonic. Other spurious signals that are independent of the hopping signal would not use this correction.



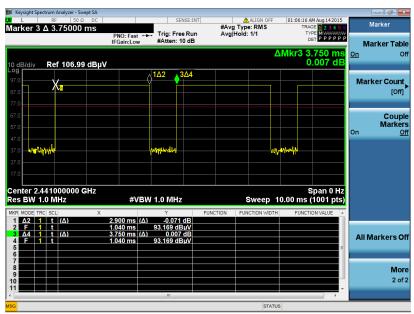
3.2.4 Test Setup


For Conducted Measurement Setup:

For radiated emissions below 30MHz

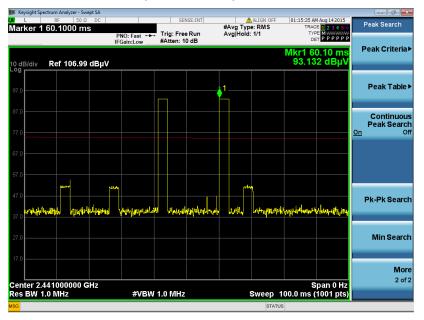


For radiated emissions from 30MHz to 1GHz



3.2.5 Test Results of Radiated Spurious Emissions (9 kHz ~ 30 MHz)

The low frequency, which started from 9 kHz to 30MHz, was pre-scanned and the result which was 20dB lower than the limit line per 15.31(o) was not reported.



3.2.6 Duty cycle correction factor for average measurement

DH5 on time (One Pulse) Plot on Channel 39

DH5 on time (Count Pulses) Plot on Channel 39

Note:

- 1. Worst case Duty cycle = on time/100 milliseconds = 2 * 2.90 / 100 = 5.80 %
- 2. Worst case Duty cycle correction factor = 20*log(Duty cycle) = -24.73 dB
- 3. DH5 has the highest duty cycle worst case and is reported.

Duty Cycle Correction Factor Consideration for AFH mode:

Bluetooth normal hopping rate is 1600Hz and reduced to 800Hz in AFH mode; due to the reduced number of hopping frequencies, with the same packet configuration the dwell time in each channel frequency within 100msec period is longer in AFH mode than normal mode.

In AFH mode, the minimum hopping frequencies are 20, to get the longest dwell time DH5 packet is observed; the period to have DH5 packet completing one hopping sequence is

2.90 ms x 20 channels = 58.0 ms

There cannot be 2 complete hopping sequences within 100ms period, considering the random hopping behavior, maximum 2 hops can be possibly observed within the period. [100ms / 57.6ms] = 2 hops

Thus, the maximum possible ON time:

2.90 ms x 2 = 5.80 ms

Worst case Duty Cycle Correction factor, which is derived from the maximum possible ON time,

 $20 \times \log(5.80 \text{ ms}/100 \text{ms}) = -24.73 \text{ dB}$

3.2.7 Test Result of Conducted Spurious at Band Edges in the Restricted Band Please refer to Appendix A.

3.2.8 Test Result of Conducted Spurious Emission in the Restricted Band

Please refer to Appendix A.

3.2.9 Test Result of Cabinet Radiated Spurious at Band Edges

Please refer to Appendix B.

3.2.10 Test Result of Cabinet Radiated Spurious Emission (30MHz ~ 10th Harmonic)

Please refer to Appendix B.

3.3 Antenna Requirements

3.3.1 Standard Applicable

If directional gain of transmitting antennas is greater than 6dBi, the power shall be reduced by the same level in dB comparing to gain minus 6dBi. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the FCC rule.

3.3.2 Antenna Anti-Replacement Construction

Non-standard antenna connector is used.

3.3.3 Antenna Gain

The antenna peak gain of EUT is less than 6 dBi. Therefore, it is not necessary to reduce maximum peak output power limit.

4 List of Measuring Equipment

Instrument	Manufacturer	Model No.	Serial No.	Characteristics	Calibration Date	Test Date	Due Date	Remark
Power Meter	Agilent	E4416A	GB412923 44	300MHz~40GH z	Jan. 14, 2015	Aug.12, 2015~ Aug.13, 2015	Jan. 13, 2016	Conducted (TH05-HY)
Power Sensor	Agilent	E9327A	US404415 48	300MHz~40GH z	Jan. 14, 2015	Aug.12,2015~ Aug.13,2015	Jan. 13, 2016	Conducted (TH05-HY)
Spectrum Analyzer	Rohde & Schwarz	FSP40	100055	9kHz-40GHz	Jun. 18, 2015	Aug.12, 2015~ Aug.13, 2015	Jun. 17, 2016	Conducted (TH05-HY)
BT Base Station(Measure)	Rohde & Schwarz	CBT	101136	BT 3.0 & 4.0	Sep. 24, 2014	Aug.12, 2015~ Aug.13, 2015	Sep. 23, 2015	Conducted (TH05-HY)
Horn Antenna	SCHWARZBE CK	BBHA 9170	BBHA9170 584	18GHz- 40GHz	Nov. 03, 2014	Aug. 13, 2015~ Aug. 14, 2015	Nov. 02, 2015	Radiation (03CH10-HY)
Loop Antenna	TESEQ	HLA 6120	31244	9kHZ~30MHz	Feb. 02, 2015	Aug. 13, 2015~ Aug. 14, 2015	Feb. 01, 2016	Radiation (03CH10-HY)
Amplifier	SONOMA	310N	187311	9kHz~1GHz	Nov. 24, 2014	Aug. 13, 2015~ Aug. 14, 2015	Nov. 23, 2015	Radiation (03CH10-HY)
Bilog Antenna	TESEQ	CBL 6111D	35413	30MHz~1GHz	Oct. 24, 2014	Aug. 13, 2015~ Aug. 14, 2015	Oct. 23, 2015	Radiation (03CH10-HY)
EMI Test Receiver	Keysight	N9038A	MY541300 85	20Hz ~ 8.4GHz	Nov. 05, 2014	Aug. 13, 2015~ Aug. 14, 2015	Nov. 04, 2015	Radiation (03CH10-HY)
Horn Antenna	SCHWARZBE CK	BBHA 9120 D	9120D-132 5	1GHz ~ 18GHz	Oct. 03, 2014	Aug. 13, 2015~ Aug. 14, 2015	Oct. 02, 2015	Radiation (03CH10-HY)
Preamplifier	Keysight	83017A	MY532700 78	1GHz~26.5GHz	Nov. 20, 2014	Aug. 13, 2015~ Aug. 14, 2015	Nov. 19, 2015	Radiation (03CH10-HY)
Spectrum Analyzer	Keysight	N9010A	MY542004 85	10Hz ~ 44GHZ	Oct. 14, 2014	Aug. 13, 2015~ Aug. 14, 2015	Oct. 13, 2015	Radiation (03CH10-HY)
Controller	EMEC	EM 1000	N/A	Control Turn table & Ant Mast	N/A	Aug. 13, 2015~ Aug. 14, 2015	N/A	Radiation (03CH10-HY)
Antenna Mast	EMEC	AM-BS-4500- B	N/A	1~4m	N/A	Aug. 13, 2015~ Aug. 14, 2015	N/A	Radiation (03CH10-HY)
Turn Table	EMEC	TT 2200	N/A	0-360 degree	N/A	Aug. 13, 2015~ Aug. 14, 2015	N/A	Radiation (03CH10-HY)
Preamplifier	MITEQ	JS44-180040 00-33-8P	1840917	18GHz ~ 40GHz	Jun. 02, 2015	Aug. 13, 2015~ Aug. 14, 2015	Jun. 01, 2016	Radiation (03CH10-HY)

5 Uncertainty of Evaluation

Uncertainty of Conducted Emission Measurement (150 kHz ~ 30 MHz)

Measuring Uncertainty for a Level of	2.26
Confidence of 95% (U = 2Uc(y))	2:20

Uncertainty of Radiated Emission Measurement (30 MHz ~ 1000 MHz)

Measuring Uncertainty for a Level of	4.90
Confidence of 95% (U = 2Uc(y))	100

