

Prediction of MPE limit at a given distance

Equation from page 18 of OET Bulletin 65, Edition 97-01

$$S = \frac{PG}{4\pi R^2}$$

where: S = power density

P = power input to the antenna

G = power gain of the antenna in the direction of interest relative to an isotropic radiator

R = distance to the center of radiation of the antenna

Maximum peak output power at antenna input terminal:	<u>8.8</u> (dBm)	*
Maximum peak output power at antenna input terminal:	7.6 (mW)	
Antenna gain(maximum):	3.3 (dBi)	*
Maximum antenna gain:	2.14 (numeric)	
Time Averaging:	<u>100</u> (%)	*
Prediction distance:	20 (cm)	*
Prediction frequency:	2450 (MHz)	*
MPE limit for uncontrolled exposure at prediction frequency:	1.000 (mW/cm^2)	
Power density at prediction frequency:	0.003 (mW/cm^2)	
This equates to:	0.03 W/m^2	