

FCC C2PC Test Report

FCC ID	:	Z64-2564N
Equipment	:	CC2564 Bluetooth HCI Module
Model No.	:	CC2564MODA
Brand Name	:	Texas Instruments
Applicant	:	Texas Instruments Inc
Address	:	12500 TI Blvd, Dallas USA 75243
Standard	:	47 CFR FCC Part 15.247
Received Date	:	Jul. 01, 2015
Tested Date	:	Jul. 01 ~ Jul. 06, 2015

We, International Certification Corp., would like to declare that the tested sample has been evaluated and in compliance with the requirement of the above standards. The test results contained in this report refer exclusively to the product. It may be duplicated completely for legal use with the approval of the applicant. It shall not be reproduced except in full without the written approval of our laboratory.

Approved & Reviewed by:

Gary Chang / Manager

Table of Contents

1	GENERAL DESCRIPTION
1.1	Information5
1.2	Local Support Equipment List7
1.3	Test Setup Chart7
1.4	The Equipment List
1.5	Test Standards
1.6	Measurement Uncertainty9
2	TEST CONFIGURATION10
2.1	Testing Condition
2.2	The Worst Test Modes and Channel Details10
3	TRANSMITTER TEST RESULTS11
3.1	Conducted Emissions
3.2	Unwanted Emissions into Restricted Frequency Bands14
4	TEST LABORATORY INFORMATION

Release Record

Report No.	Version	Description	Issued Date
FR3D0402-02AD	Rev. 01	Initial issue	Aug. 14, 2015

Summary of Test Results

FCC Rules	Test Items	Measured	Result
15.207	Conducted Emissions	[dBuV]: 0.482MHz 30.65 (Margin -15.65dB) - AV	Pass
15.247(d) 15.209	Radiated Emissions	[dBuV/m at 3m]: 697.36MHz 42.58 (Margin -3.42dB) - PK	Pass

1 General Description

1.1 Information

This report is prepared for FCC class II change.

This report is issued as a supplementary report to original ICC report no. FR3D0402AD. The modification is concerned with adding new antenna and model name. In this report, conducted emission and radiated emission tests had been re-tested and only its data was presented in the following sections.

1.1.1 Product Details

The following models are provided to this EUT.

Model	Antenna type	Gain (dBi)	Remark
CC2564MODN	Chip	-1.38	Original
CC2564MODA	Chip	1.69	C2PC

1.1.2 Specification of the Equipment under Test (EUT)

RF General Information						
Frequency Range (MHz)			Channel Number	Data Rate		
2400-2483.5	BR V2.1	2402-2480	0-78 [79]	1 Mbps		
2400-2483.5	EDR V2.1	2402-2480	0-78 [79]	2 Mbps		
2400-2483.5	EDR V2.1	2402-2480	0-78 [79]	3 Mbps		
Note 1: RF output power specifies that Maximum Peak Conducted Output Power. Note 2: Bluetooth BR uses a GFSK. Note 3: Bluetooth EDR uses a combination of $\pi/4$ -DQPSK and 8DPSK.						

1.1.3 Antenna Details

Ant. No.	Туре	Connector	Gain (dBi)	Remarks
1	Chip	1.69	N/A	

1.1.4 Power Supply Type of Equipment under Test (EUT)

Power Supply Type	3.3Vdc from host

1.1.5 Accessories

N/A

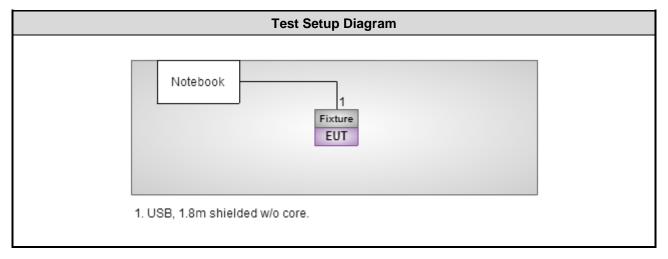
1.1.6 Channel List

Frequency band (MHz)				2400~2483.5			
Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)
0	2402	20	2422	40	2442	60	2462
1	2403	21	2423	41	2443	61	2463
2	2404	22	2424	42	2444	62	2464
3	2405	23	2425	43	2445	63	2465
4	2406	24	2426	44	2446	64	2466
5	2407	25	2427	45	2447	65	2467
6	2408	26	2428	46	2448	66	2468
7	2409	27	2429	47	2449	67	2469
8	2410	28	2430	48	2450	68	2470
9	2411	29	2431	49	2451	69	2471
10	2412	30	2432	50	2452	70	2472
11	2413	31	2433	51	2453	71	2473
12	2414	32	2434	52	2454	72	2474
13	2415	33	2435	53	2455	73	2475
14	2416	34	2436	54	2456	74	2476
15	2417	35	2437	55	2457	75	2477
16	2418	36	2438	56	2458	76	2478
17	2419	37	2439	57	2459	77	2479
18	2420	38	2440	58	2460	78	2480
19	2421	39	2441	59	2461		

1.1.7 Test Tool

Test Tool HCI Tester V3.0.0.24

1.1.8 Power Setting


Modulation Mode	Test Frequency (MHz)			
	2402	2441	2480	
GFSK/1Mbps	0x18	0x18	0x19	
8DPSK/3Mbps	0x19	0x19	0x19	

1.2 Local Support Equipment List

	Support Equipment List						
No.	Equipment	Brand	Model	FCC ID	Signal cable / Length (m)		
1	Notebook	DELL	E5420	DoC	USB, 1.8m non-shielded.		
2	Fixture	Ampak	WSDT-700XX_ EVB_V00				

1.3 Test Setup Chart

1.4 The Equipment List

Test Item	Conducted Emission				
Test Site	Conduction room 1 / ((CO01-WS)			
Instrument	Manufacturer	Model No.	Serial No.	Calibration Date	Calibration Until
EMC Receiver	R&S	ESCS 30	100169	Oct. 17, 2014	Oct. 16, 2015
LISN	SCHWARZBECK	Schwarzbeck 8127	8127-667	Nov. 17, 2014	Nov. 16, 2015
LISN (Support Unit)	SCHWARZBECK	Schwarzbeck 8127	8127-666	Nov. 26, 2014	Nov. 25, 2015
RF Cable-CON	Woken	CFD200-NL	CFD200-NL-001	Dec. 31, 2014	Dec. 30, 2015
50 ohm terminal (Support Unit)	NA	50	04	Apr. 15, 2015	Apr. 14, 2016
Measurement Software	AUDIX	e3	6.120210k	NA	NA

Test Item	Radiated Emission				
Test Site	966 chamber 2 / (03C	H02-WS)			
Instrument	Manufacturer	Model No.	Serial No.	Calibration Date	Calibration Until
Spectrum Analyzer	R&S	FSV40	101499	Dec. 31, 2014	Dec. 30, 2015
Receiver	R&S	ESR3	101657	Jan. 15, 2015	Jan. 14, 2016
Bilog Antenna	SCHWARZBECK	VULB9168	VULB9168-524	Oct. 16, 2014	Oct. 15, 2015
Horn Antenna 1G-18G	SCHWARZBECK	BBHA 9120 D	BBHA 9120 D 1095	Oct. 14, 2014	Oct. 13, 2015
Horn Antenna 18G-40G	SCHWARZBECK	BBHA 9170	BBHA 9170517	Nov. 10, 2014	Nov. 09, 2015
Loop Antenna	R&S	HFH2-Z2	11900	Nov. 10, 2014	Nov. 09, 2015
Preamplifier	Burgeon	BPA-530	100218	Nov. 10, 2014	Nov. 09, 2015
Preamplifier	Agilent	83017A	MY39501309	Sep. 29, 2014	Sep. 28, 2015
Preamplifier	EMC	EMC184045B	980192	Aug. 26, 2014	Aug. 25, 2015
RF Cable	HUBER+SUHNER	SUCOFLEX104	MY16140/4	Dec. 16, 2014	Dec. 15, 2015
RF Cable	HUBER+SUHNER	SUCOFLEX104	MY16018/4	Dec. 16, 2014	Dec. 15, 2015
RF Cable	HUBER+SUHNER	SUCOFLEX104	MY16015/4	Dec. 16, 2014	Dec. 15, 2015
LF cable 3M	Woken	CFD400NL-LW	CFD400NL-003	Dec. 16, 2014	Dec. 15, 2015
LF cable 10M	Woken	CFD400NL-LW	CFD400NL-004	Dec. 16, 2014	Dec. 15, 2015
Measurement Software	AUDIX	e3	6.120210g	NA	NA
Note: Calibration Inter	val of instruments listed	d above is one year.			

1.5 Test Standards

According to the specification of EUT, the EUT must comply with following standards and KDB documents.

47 CFR FCC Part 15.247 FCC Public notice DA 00-705 ANSI C63.10-2013

1.6 Measurement Uncertainty

ISO/IEC 17025 requires that an estimate of the measurement uncertainties associated with the emissions test results be included in the report. The measurement uncertainties given below are based on a 95% confidence level (based on a coverage factor (k=2)

Measurement Uncertainty								
Parameters	Uncertainty							
Bandwidth	±34.134 Hz							
Conducted power	±0.808 dB							
Power density	±0.463 dB							
Conducted emission	±2.670 dB							
AC conducted emission	±2.92 dB							
Radiated emission ≤ 1GHz	±3.62 dB							
Radiated emission > 1GHz	±5.6 dB							

2 Test Configuration

2.1 Testing Condition

Test Item	Test Site	Ambient Condition	Tested By
AC Conduction	CO01-WS	22°C / 68%	Kevin Ma
Radiated Emissions	03CH02-WS	22-26°C / 61-63%	Mark Liao Felix Sung

➢ FCC site registration No.: 657002

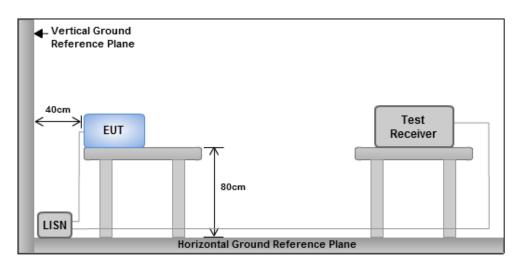
➢ IC site registration No.: 10807A-2

2.2 The Worst Test Modes and Channel Details

Test item	Mode	Test Frequency (MHz)	Data Rate (Mbps)	Test Configuration
Conducted Emissions	GFSK	2480	1Mbps	
Radiated Emissions ≤ 1GHz	GFSK	2480	1Mbps	
Radiated Emissions > 1GHz	GFSK 8DPSK	2402, 2441, 2480 2402, 2441, 2480	1Mbps 3Mbps	
NOTE: 1. The EUT was pretested with 3 Z-plane. The Z-plane results				surement – X, Y, and

3 Transmitter Test Results

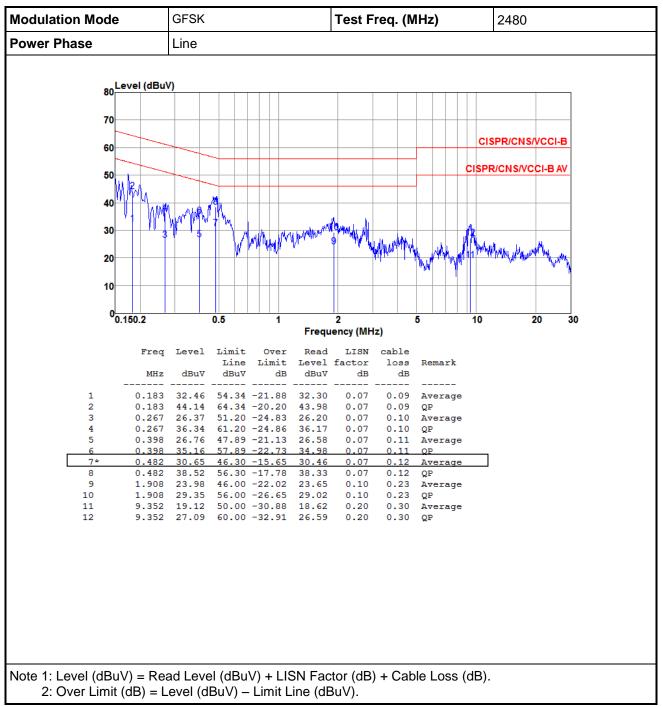
3.1 Conducted Emissions


3.1.1 Limit of Conducted Emissions

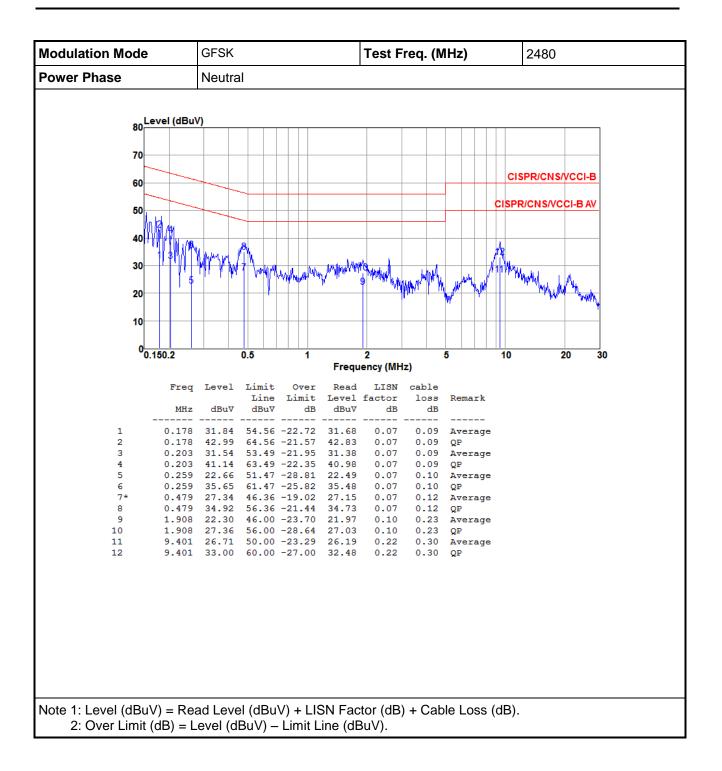
	Conducted Emissions Limit	
Frequency Emission (MHz)	Quasi-Peak	Average
0.15-0.5	66 - 56 *	56 - 46 *
0.5-5	56	46
5-30	60	50
Note 1: * Decreases with the logarith	nm of the frequency.	

3.1.2 Test Procedures

- 1. The device is placed on a test table, raised 80 cm above the reference ground plane. The vertical conducting plane is located 40 cm to the rear of the device.
- The device is connected to line impedance stabilization network (LISN) and other accessories are connected to other LISN. Measured levels of AC power line conducted emission are across the 50 Ω LISN port.
- 3. AC conducted emission measurements is made over frequency range from 150 kHz to 30 MHz.
- 4. This measurement was performed with AC 120V/60Hz


3.1.3 Test Setup

Note: 1. Support units were connected to second LISN.


2. Both of LISNs (AMN) are 80 cm from EUT and at least 80 cm from other units and other metal planes

3.1.4 Test Result of Conducted Emissions

3.2 Unwanted Emissions into Restricted Frequency Bands

3.2.1 Limit of Unwanted Emissions into Restricted Frequency Bands

	Restricted Band	Emissions Limit	
Frequency Range (MHz)	Field Strength (uV/m)	Field Strength (dBuV/m)	Measure Distance (m)
0.009~0.490	2400/F(kHz)	48.5 - 13.8	300
0.490~1.705	24000/F(kHz)	33.8 - 23	30
1.705~30.0	30	29	30
30~88	100	40	3
88~216	150	43.5	3
216~960	200	46	3
Above 960	500	54	3

Note 1:

Qusai-Peak value is measured for frequency below 1GHz except for 9–90 kHz, 110–490 kHz frequency band. Peak and average value are measured for frequency above 1GHz. The limit on average radio frequency emission is as above table. The limit on peak radio frequency emissions is 20 dB above the maximum permitted average emission limit **Note 2:**

Measurements may be performed at a distance other than what is specified provided. When performing measurements at a distance other than that specified, the results shall be extrapolated to the specified distance using an extrapolation factor as below, Frequency at or above 30 MHz: 20 dB/decade Frequency below 30 MHz: 40 dB/decade.

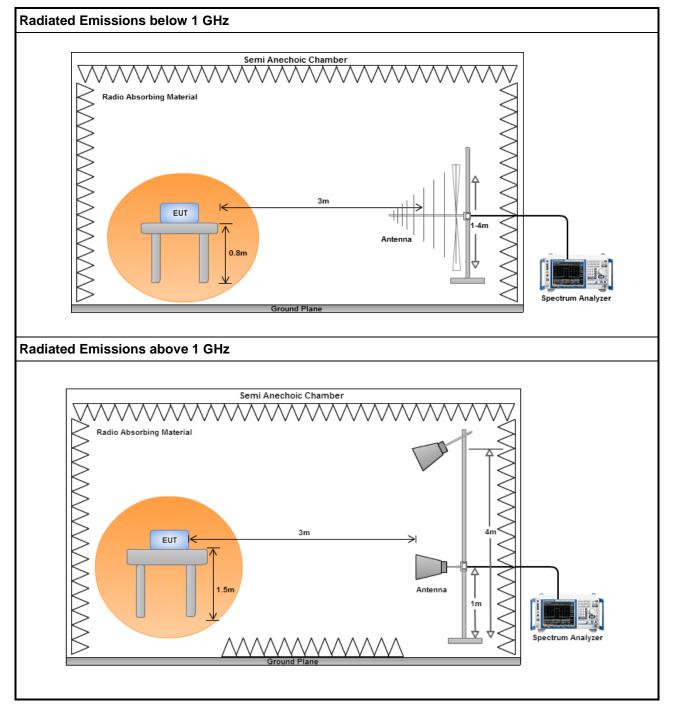
3.2.2 Test Procedures

- Measurement is made at a semi-anechoic chamber that incorporates a turntable allowing a EUT rotation of 360°. A continuously-rotating, remotely-controlled turntable is installed at the test site to support the EUT and facilitate determination of the direction of maximum radiation for each EUT emission frequency. The EUT is placed at test table. For emissions testing at or below 1 GHz, the table height is 80 cm above the reference ground plane. For emission measurements above 1 GHz, the table height is 1.5 m
- Measurement is made with the antenna positioned in both the horizontal and vertical planes of polarization. The measurement antenna is varied in height (1m ~ 4m) above the reference ground plane to obtain the maximum signal strength. Distance between EUT and antenna is 3 m.
- 3. This investigation is performed with the EUT rotated 360°, the antenna height scanned between 1 m and 4 m, and the antenna rotated to repeat the measurements for both the horizontal and vertical antenna polarizations.

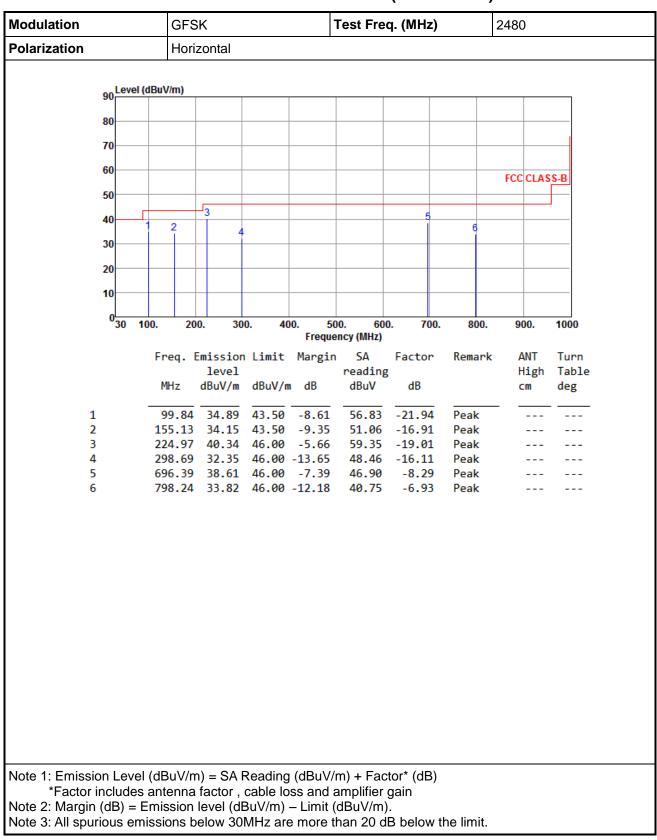
Note:

- 1. 120kHz measurement bandwidth of test receiver and Quasi-peak detector is for radiated emission below 1GHz.
- 2. Radiated emission above 1GHz / Peak value RBW=1MHz, VBW=3MHz and Peak detector

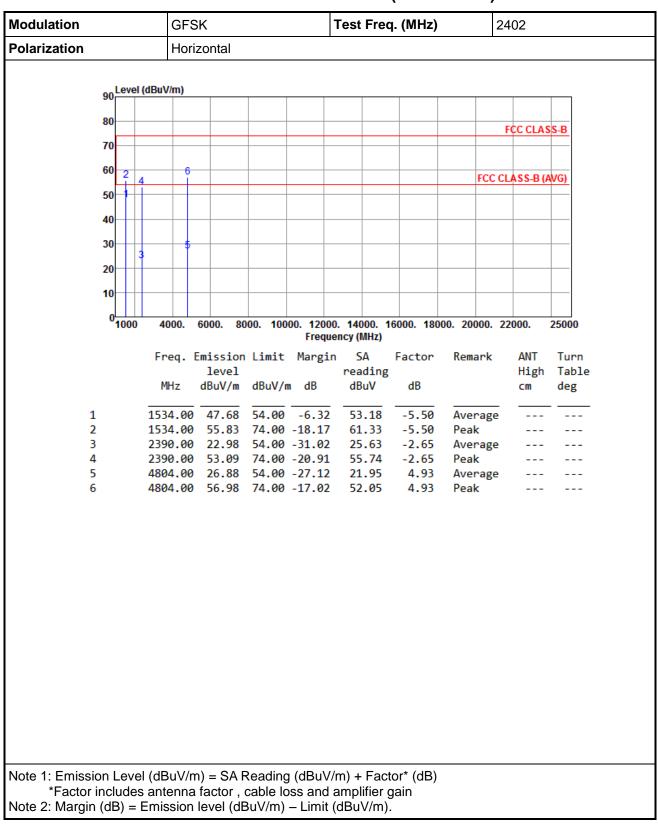
Radiated emission above 1GHz / Average value for harmonics The average value is: Average = Peak value + 20log(Duty cycle) Where the duty factor is calculated from following formula for DH5 packet type which has worst duty factor:


3.

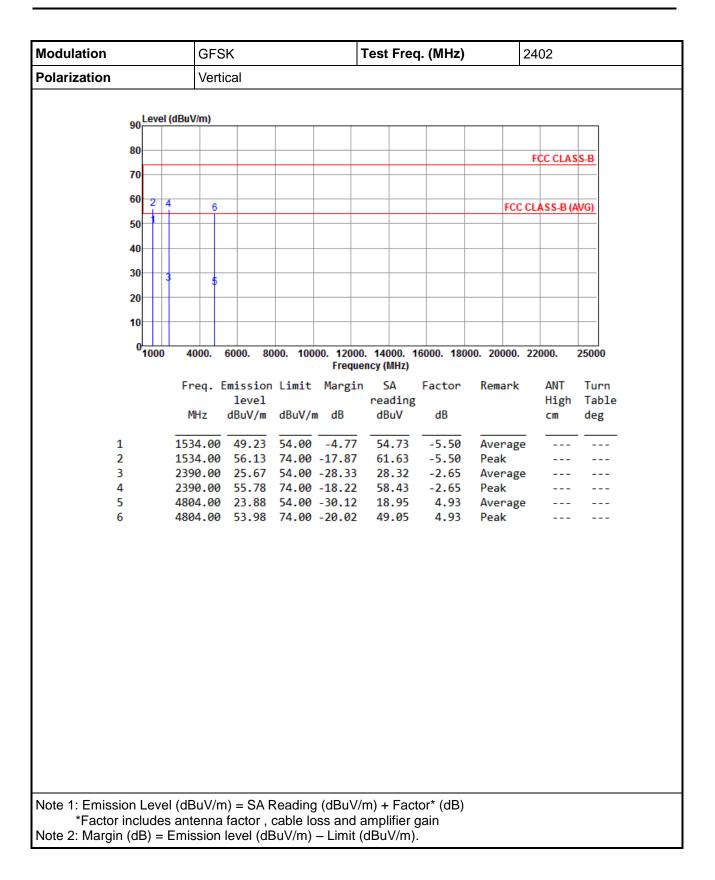
20log (Duty cycle) = 20log
$$\frac{1s / 1600 * 5}{100 \text{ ms}}$$
 = -30.1dB

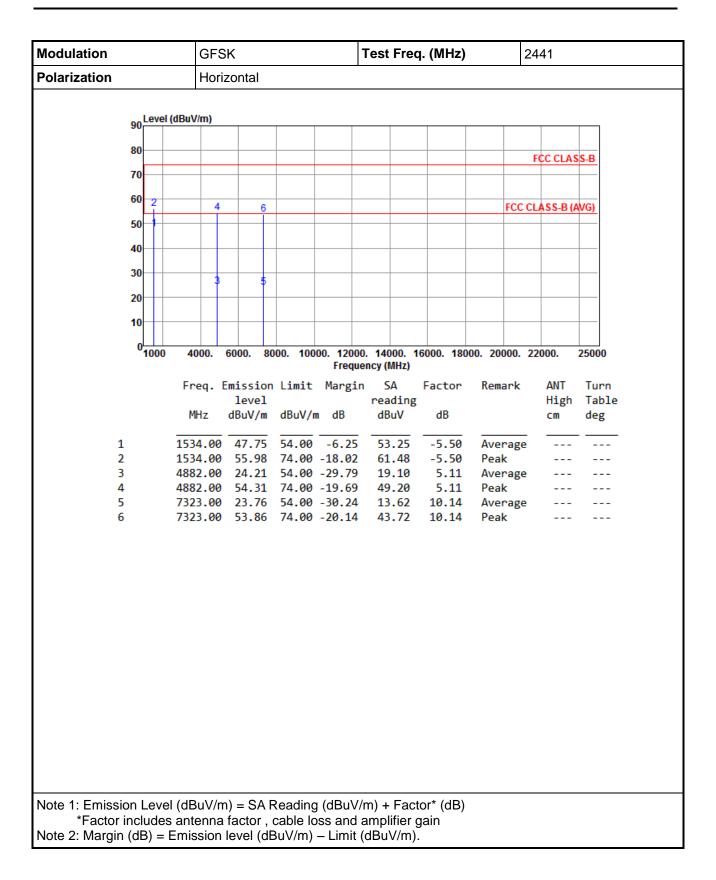

4. Radiated emission above 1GHz / Average value for other emissions

3.2.3 Test Setup

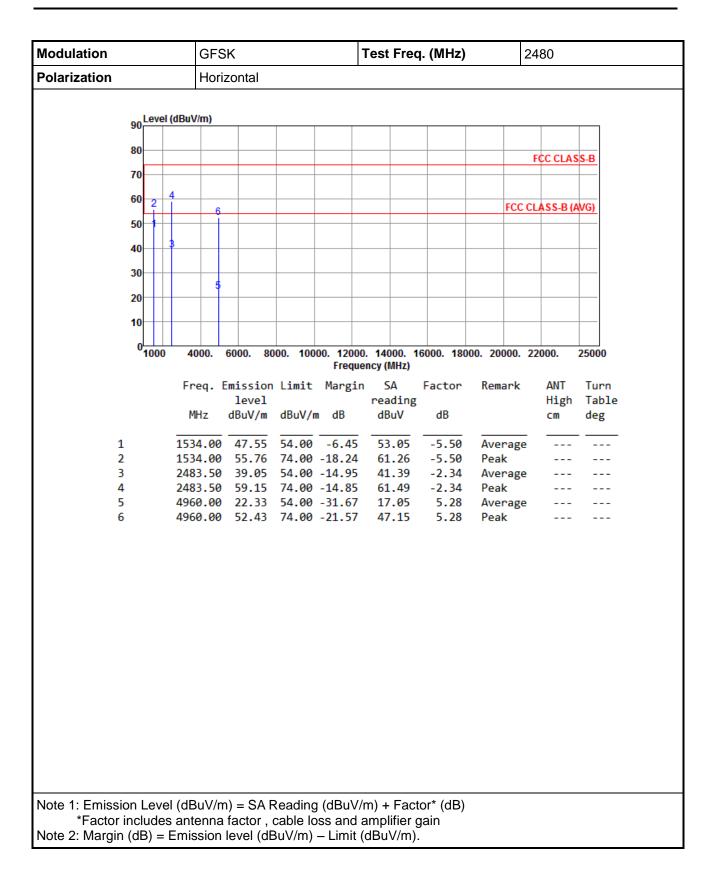


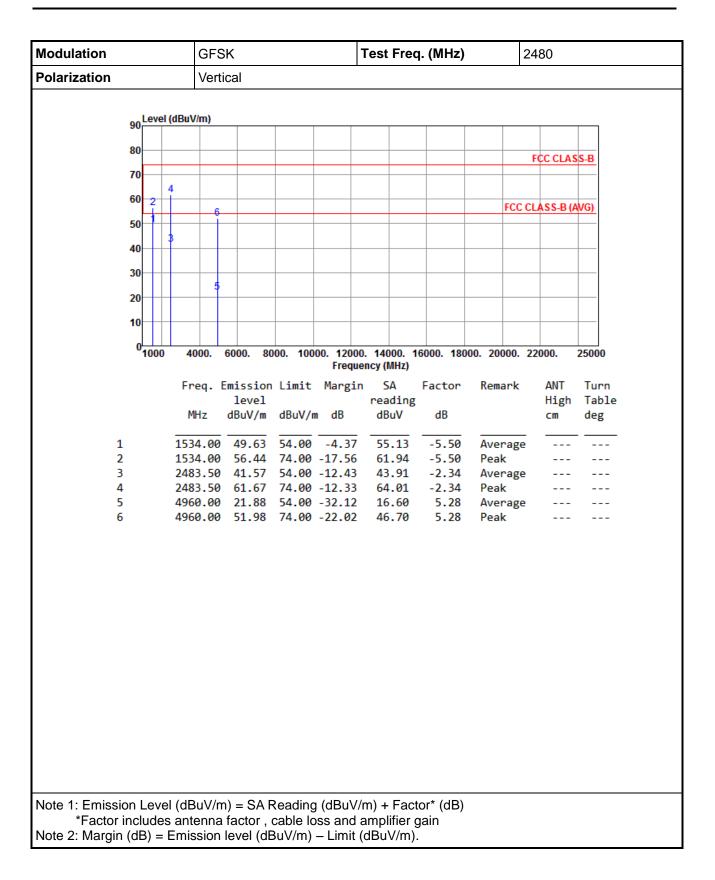
3.2.4 Transmitter Radiated Unwanted Emissions (Below 1GHz)


Modulation		GF	GFSK Test Freq. (MHz) 2480								
Polarizatio	n	Ve	rtical								
	90	vel (dBuV/m)									
	80										
	70										
	70										
	60								FCC CI	LASS-B	
	50										
	40-						4 5				
		1	2	3					6		
	30										
	20										
	10										
	0 <mark></mark> 30	100.	200. 3	300. 4	00. 50		0. 700	. 800.	900.	1000	
		-				ncy (MHz)	-	- ·			
		Freq.	Lmissi leve	on Limit 1	Margin	SA reading	Factor	Remark	: ANT Hig		
		MHz		n dBuV∕r	n dB	dBuV	, dB		Cm	deg	
	1 2			1 43.50 5 46.00			-21.94 -17.40	Peak Peak			
	2			9 46.00			-17.40	Peak			
_	4			8 46.00		49.52	-8.74	Peak			
	5			8 46.00		50.86	-8.28	Peak			
	6	839.9	5 32.7	9 46.00	-13.21	39.00	-6.21	Peak			
loto 1. Emi	ogion I -		/m)	Docding			+or* (dD)				
Note 1: Emi *Fact		des antenr									
Note 2: Mar											
		emissions									

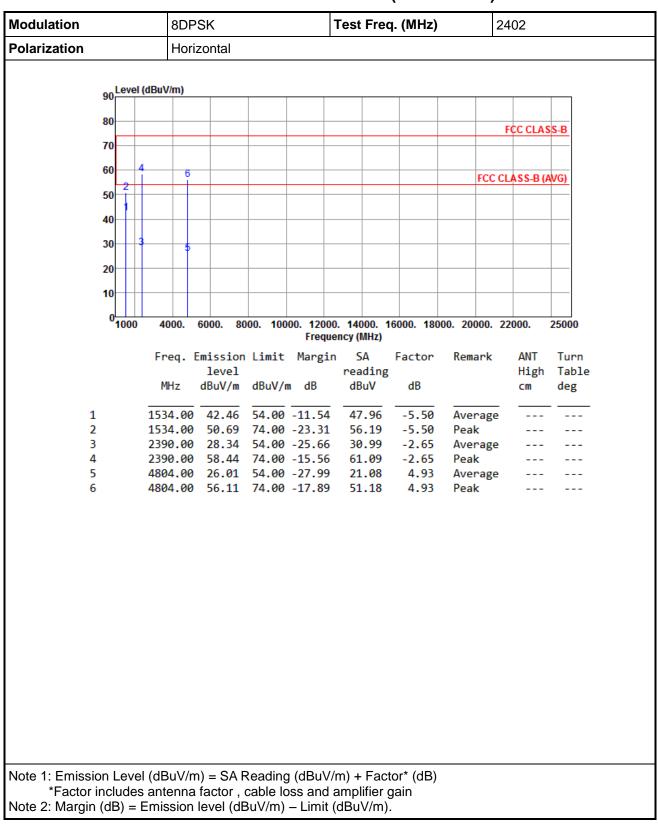


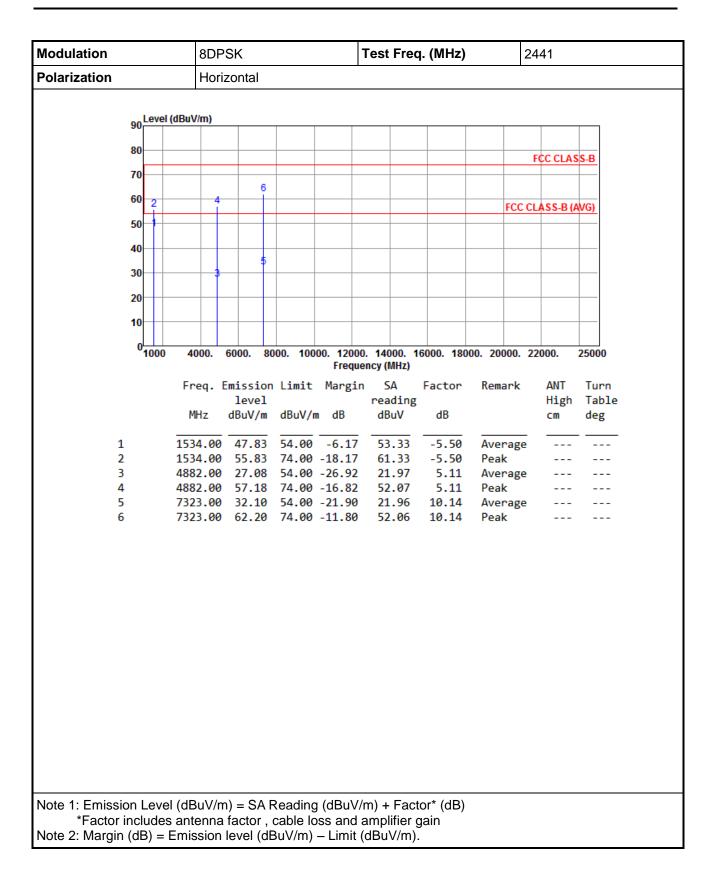
3.2.5 Transmitter Radiated Unwanted Emissions (Above 1GHz) for GFSK





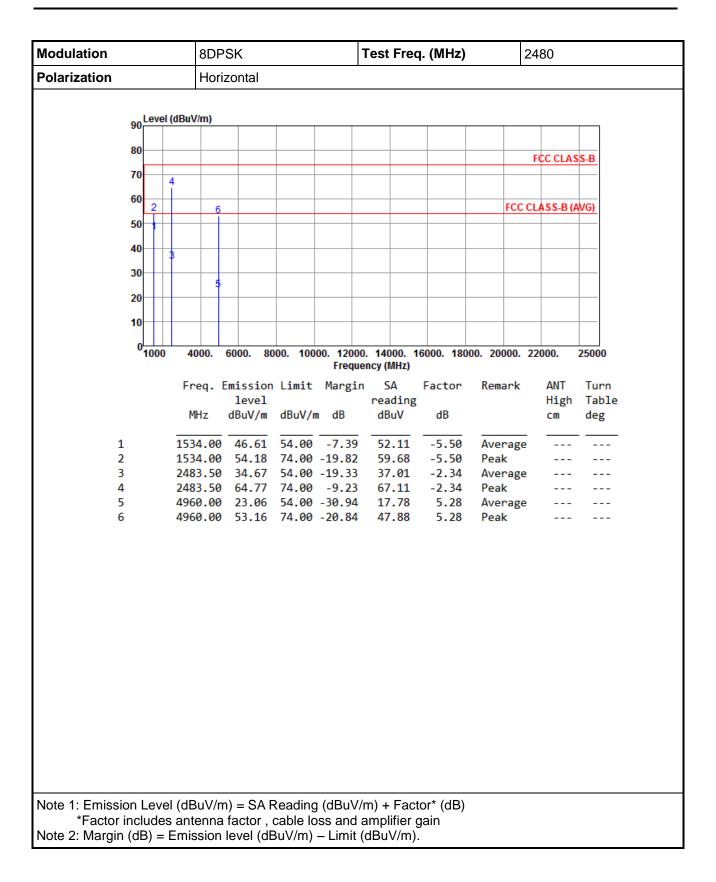
Modulation	GFSK Test Freq. (MHz) 2441											
Polarization		Vertical										
	Level	(dBuV/m)										
90												
80							_		F	CC CLAS	S-B	
70												
60												
	ι.	4	6					FC	C CL	ASS-B (A	VG)	
50												
40												
30												
		3	5									
20												
10			_									
0	1000	4000.	6000. 80	00 100	00 42000	. 14000. 1	6000 490	00 2000	1 22	000	25000	
	1000	4000.	0000. 80	00. 100		ency (MHz)	0000. 180	00. 20000	J. ZZ	000.	25000	
		Freq. E	mission	Limit	Margin	SA	Factor	Remar	k	ANT	Turn	
			level	10.144	10	reading				High		
		MHz	dBuV/m	aBuv/r	n ab	dBuV	dB			cm	deg	
1		1534.00	49.33	54.00	-4.67	54.83	-5.50	Avera	ge			
2		1534.00				61.95	-5.50	Peak				
3		4882.00 4882.00				18.78 48.88	5.11 5.11	Avera Peak	ge			
5		7323.00						Avera	ge			
6		7323.00	53.82	74.00	-20.18	43.68	10.14	Peak				
Note 1: Emission												
*Factor incl Note 2: Margin (dl	ludes	antenna	tactor,		ss and a	amplifier (gain					
iote ∠. Margin (di	ו = נס	LUNSSION	ievei (de	suv/m)	– Limit (ubuv/m).						

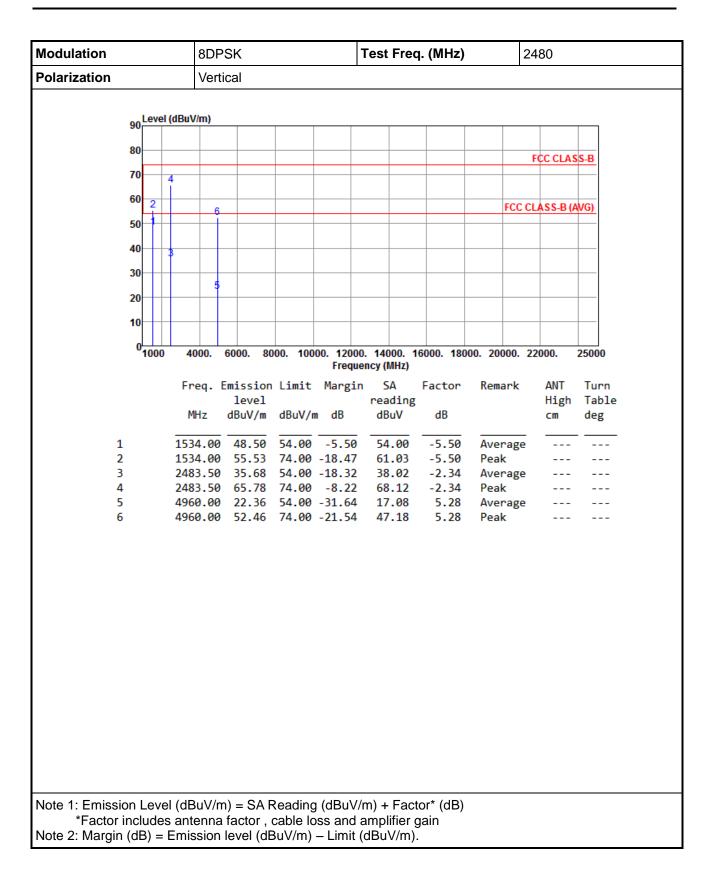




3.2.6 Transmitter Radiated Unwanted Emissions (Above 1GHz) for 8DPSK

Modulation	8DPSK Test Freq. (MHz) 2402										
Polarization	Vertical										
90 Level	(dBuV/m)										
90											
80						FCC CLAS	S-B				
70											
60 2 4											
	6				FCC (CLASS-B (A	WG)				
50											
40											
30 3											
	3										
20											
10											
0	4000 0000					22000					
01000	4000. 6000.	8000. 10000. 12000 Freque). 14000. 16 ency (MHz)	000. 1800	JU. 20000. /	22000.	25000				
	Freq. Emissi	on Limit Margin	SA	Factor	Remark	ANT	Turn				
	leve		reading			High					
	MHz dBuV,	m dBuV/m dB	dBuV	dB		cm	deg				
1	1534.00 49.4	4 54.00 -4.56	54.94	-5.50	Average						
2		8 74.00 -17.22	62.28	-5.50	Peak						
3 4		3 54.00 -25.47 3 74.00 -15.37	31.18 61.28	-2.65 -2.65	Average Peak						
5		9 54.00 -28.81		4.93							
6		9 74.00 -18.71		4.93	Peak						
Note 1: Emission Leve		A Reading (dBuV/									





Modulation	8DPSK Test Freq. (MHz) 2441											
Polarization		Vertical										
	Level	(dBuV/m)										
9												
8	0						-		FCC CL	ASS-B		
7	0											
6			6									
	-Ĩ-		Ť					FC	C CLASS-B	(AVG)		
5												
4	0											
3												
		Ĭ										
2												
10	0											
	0 <mark>1000</mark>	4000	000 00	00 400	00 40000	44000 4	000 400	00 20000	22000	25000		
	1000	4000.	6000. 80	00. 100		. 14000. 1 ncy (MHz)	0000. 180	00. 20000	. 22000.	25000		
		Freq. E	mission	Limit	Margin	SA	Factor	Remark	C ANT	Turn		
		-	level		_	reading			High			
		MHz	dBuV/m	dBuV/r	n dB	dBuV	dB		cm	deg		
1		1534.00	48.59	54.00	-5.41	54.09	-5.50	Averag	ge			
2		1534.00	55.79	74.00	-18.21	61.29	-5.50	Peak				
3		4882.00				21.56	5.11	Averag	ge			
4 5		4882.00 7323.00					5.11 10.14	Peak Averag	 7e			
6		7323.00					10.14	Peak				
Note 1: Emission	Leve	l (dBuV/m	n) = SAF	Reading	g (dBuV/	m) + Fact	or* (dB)					
*Factor inc	ludes	antenna	factor,	cable lo	oss and a	amplifier g	gain					
Note 2: Margin (d	IB) = [mission	level (dE	3uV/m)	– Limit (dBuV/m).						

4 Test laboratory information

Established in 2012, ICC provides foremost EMC & RF Testing and advisory consultation services by our skilled engineers and technicians. Our services employ a wide variety of advanced edge test equipment and one of the widest certification extents in the business.

International Certification Corp, it is our definitive objective is to institute long term, trust-based associations with our clients. The expectation we set up with our clients is based on outstanding service, practical expertise and devotion to a certified value structure. Our passion is to grant our clients with best EMC / RF services by oriented knowledgeable and accommodating staff.

Our Test sites are located at Linkou District and Kwei Shan Hsiang. Location map can be found on our website <u>http://www.icertifi.com.tw</u>.

Linkou

Tel: 886-2-2601-1640 No. 30-2, Ding Fwu Tsuen, Lin Kou District, New Taipei City, Taiwan, R.O.C.

Kwei Shan

Tel: 886-3-271-8666 No. 3-1, Lane 6, Wen San 3rd St., Kwei Shan Hsiang, Tao Yuan Hsien 333, Taiwan, R.O.C.

Kwei Shan Site II

Tel: 886-3-271-8640 No. 14-1, Lane 19, Wen San 3rd St., Kwei Shan Hsiang, Tao Yuan Hsien 333, Taiwan, R.O.C.

If you have any suggestion, please feel free to contact us as below information

Tel: 886-3-271-8666 Fax: 886-3-318-0155 Email: ICC_Service@icertifi.com.tw

—END—