RF Exposures Evaluation

According to FCC 1.1310 : The criteria listed in the following table shall be used to evaluate the environment impact of human exposure to radio frequency (RF) radiation as specified in 1.1307(b).

Frequency Range (MHz)	Electric Field Strength (V/m)	Magnetic Field Strength (A/m)	Power Density (mW/cm ²)	Average Time				
(A) Limits for Occupational / Control Exposures								
300-1,500			F/300	6				
1,500-100,000			5	6				
(B) Limits for General Population / Uncontrol Exposures								
300-1,500			F/1500	6				
1,500-100,000			1	30				

LIMITS FOR MAXIMUM PERMISSIBLE EXPOSURE (MPE)

CALCULATIONS

$$E = \frac{\sqrt{30 \times P \times G}}{d} \& S = \frac{E^2}{3770}$$

Given

Where E = Field strength in Volts / meter

P = Power in Watts

G = Numeric antenna gain

d = Distance in meters

S = Power density in milliwatts / square centimeter

Combining equations and re-arranging the terms to express the distance as a function of the remaining variables yields:

$$S = \frac{30 \times P \times G}{3770d^2}$$

Changing to units of mW and cm, using:

P (mW) = P (W) / 1000 and d (cm) = d(m) / 100

Yields

$$S = \frac{30 \times (P/1000) \times G}{3770 \times (d/100)^2} = 0.0796 \times \frac{P \times G}{d^2}$$

Where d = Distance in cm

P = Power in mW

G = Numeric antenna gain

S = Power density in mW / cm^2

LIMIT

Power Density Limit, S=1.0mW/cm²

TEST RESULTS

Pass

Mode	Minimum separation distance (cm)	Output Power (dBm)	Antenna Gain (dBi)	Power Density Limit (mW/cm ²)	Power Density at 20cm (mW/cm ²)
IEEE 802.11b	20	21.17	0	1.0	0.03
IEEE 802.11g	20	24.90	0	1.0	0.06
IEEE 802.11n HT20	20	25.48	0	1.0	0.05
IEEE 802.11n HT40	20	25.64	0	1.0	0.07

"This equipment complies with FCC RF radiation exposure limits set forth for an uncontrolled environment. This equipment should be installed and operated with a minimum distance of 20 centimeters between the radiator and your body."