

RADIO TEST REPORT FCC ID: Z63-AUSDOM004A

Product: True Wireless Stereo Gaming Earphones

Trade Mark: Mixcder

Model No.: G1

Family Model: G1 Plus, G1S, G1 PRO

Report No.: S21050804407001

Issue Date: 08 June. 2021

Prepared for

Shenzhen Aoni Electronic Industry Co., Ltd.

Honghui Industrial Park, 2nd LiuXian Road, Xin'An streets, District 68,Bao'an District, Shenzhen, China

Prepared by

Shenzhen NTEK Testing Technology Co., Ltd. 1/F, Building E, Fenda Science Park, Sanwei Community, Xixiang Street Bao'an District, Shenzhen 518126 P.R. China Tel. 400-800-6106,0755-2320 0050 / 2320 0090 Website: http://www.ntek.org.cn

TABLE OF CONTENTS

ACCREDITED

Certificate #4298.01

1 TE	ST RESULT CERTIFICATION	
2 SU	MMARY OF TEST RESULTS	4
3 FA	CILITIES AND ACCREDITATIONS	5
3.1 3.2 3.3	FACILITIES LABORATORY ACCREDITATIONS AND LISTINGS MEASUREMENT UNCERTAINTY	5
4 GE	ENERAL DESCRIPTION OF EUT	6
5 DE	SCRIPTION OF TEST MODES	8
6 SE'	TUP OF EQUIPMENT UNDER TEST	9
6.1 6.2 6.3	BLOCK DIAGRAM CONFIGURATION OF TEST SYSTEM SUPPORT EQUIPMENT EQUIPMENTS LIST FOR ALL TEST ITEMS	9
7 TE	ST REQUIREMENTS	
	CONDUCTED EMISSIONS TEST RADIATED SPURIOUS EMISSION NUMBER OF HOPPING CHANNEL HOPPING CHANNEL SEPARATION MEASUREMENT AVERAGE TIME OF OCCUPANCY (DWELL TIME) 20DB BANDWIDTH TEST PEAK OUTPUT POWER CONDUCTED BAND EDGE MEASUREMENT SPURIOUS RF CONDUCTED EMISSION ANTENNA APPLICATION FREQUENCY HOPPING SYSTEM (FHSS) EQUIPMENT REQUIREMENTS	16 25 26 27 29 30 31 31 32 33 33 34
8 TE	ST RESULTS	
8.1 8.2 8.3 8.4 8.5 8.6 8.7	Dwell Time Maximum Conducted Output Power Occupied Channel Bandwidth Carrier Frequencies Separation Number of Hopping Channel Band Edge Conducted RF Spurious Emission	

NTEKJLW

1 TEST RESULT CERTIFICATION

Applicant's name:	Shenzhen Aoni Electronic Industry Co., Ltd.		
Address	Honghui Industrial Park, 2nd LiuXian Road, Xin'An streets, District 68,Bao'an District, Shenzhen, China		
Manufacturer's Name:	Shenzhen Aoni Electronic Industry Co., Ltd.		
Address	Honghui Industrial Park, 2nd LiuXian Road, Xin'An streets, District 68,Bao'an District, Shenzhen, China		
Product description			
Product name:	True Wireless Stereo Gaming Earphones		
Model and/or type reference:	G1		
Family Model:	G1 Plus,G1S,G1 PRO		

Certificate #4298.01

Measurement Procedure Used:

APPLICABLE STANDARDS			
STANDARD/ TEST PROCEDURE	TEST RESULT		
FCC 47 CFR Part 2, Subpart J FCC 47 CFR Part 15, Subpart C ANSI C63.10-2013	Complied		

This device described above has been tested by Shenzhen NTEK Testing Technology Co., Ltd., and the test results show that the equipment under test (EUT) is in compliance with the FCC requirements. And it is applicable only to the tested sample identified in the report.

This report shall not be reproduced except in full, without the written approval of Shenzhen NTEK Testing Technology Co., Ltd., this document may be altered or revised by Shenzhen NTEK Testing Technology Co., Ltd., personnel only, and shall be noted in the revision of the document.

The test results of this report relate only to the tested sample identified in this report.

Date of Test	:	08 May. 2021 ~ 08 June. 2021
Testing Engineer	:	(Mary Hu)
Technical Manager	:	(Jason Chen)
		(Jason Chen)
Authorized Signatory	:	(Alex Li)

NTEK北测

SUMMARY OF TEST RESULTS 2

FCC Part15 (15.247), Subpart C				
Standard Section	Test Item	Verdict	Remark	
15.207	Conducted Emission	PASS		
15.209 (a) 15.205 (a)	Radiated Spurious Emission	PASS		
15.247(a)(1)	Hopping Channel Separation	PASS		
15.247(b)(1)	Peak Output Power	PASS		
15.247(a)(iii)	Number of Hopping Frequency	PASS		
15.247(a)(iii)	Dwell Time	PASS		
15.247(a)(1)	Bandwidth	PASS		
15.247 (d)	Band Edge Emission	PASS		
15.247 (d)	Spurious RF Conducted Emission	PASS		
15.203	Antenna Requirement	PASS		

ACC

Certificate #4298.01

Remark:

 "N/A" denotes test is not applicable in this Test Report.
 All test items were verified and recorded according to the standards and without any deviation during the test.

3 FACILITIES AND ACCREDITATIONS

3.1 FACILITIES

All measurement facilities used to collect the measurement data are located at

1/F, Building E, Fenda Science Park, Sanwei Community, Xixiang Street, Bao'an District, Shenzhen 518126 P.R. China.

The sites are constructed in conformance with the requirements of ANSI C63.7, ANSI C63.10 and CISPR Publication 22.

3.2 LABORATORY ACCREDITATIONS AND LISTINGS

Site Description	
CNAS-Lab.	: The Certificate Registration Number is L5516.
IC-Registration	The Certificate Registration Number is 9270A. CAB identifier:CN0074
FCC- Accredited	Test Firm Registration Number: 463705.
	Designation Number: CN1184
A2LA-Lab.	The Certificate Registration Number is 4298.01
Name of Firm	: Shenzhen NTEK Testing Technology Co., Ltd.
Site Location	: 1/F, Building E, Fenda Science Park, Sanwei Community, Xixiang Street, Bao'an District, Shenzhen 518126 P.R. China.

3.3 MEASUREMENT UNCERTAINTY

The reported uncertainty of measurement $y\pm U$, where expended uncertainty U is based on a standard uncertainty multiplied by a coverage factor of k=2, providing a level of confidence of approximately 95 %.

No.	Item	Uncertainty
1	Conducted Emission Test	±2.80dB
2	RF power, conducted	±0.16dB
3	Spurious emissions, conducted	±0.21dB
4	All emissions, radiated(30MHz~1GHz)	±2.64dB
5	All emissions, radiated(1GHz~6GHz)	±2.40dB
6	All emissions, radiated(>6GHz)	±2.52dB
7	Temperature	±0.5°C
8	Humidity	±2%

NTEKJLW

4 GENERAL DESCRIPTION OF EUT

Product Feature and Specification			
Equipment	True Wireless Stereo Gaming Earphones		
Trade Mark	Mixcder		
FCC ID	Z63- AUSDOM004A		
Model No.	G1		
Family Model	G1 Plus,G1S,G1 PRO		
Model Difference	All models are the same circuit and RF module, except the Model Name		
Sample no.	S210508044001		
Operating Frequency	2402MHz~2480MHz		
Modulation	GFSK, π/4-DQPSK, 8-DPSK		
Number of Channels	79 Channels		
Antenna Type	Ceramic Antenna		
Antenna Gain	2 dBi		
Power supply	DC 5V from Type-C.		
Adapter	N/A		
HW Version	Link-BT5816-V1.3 2020-09-26		
SW Version	LK_CSR8670_BT4872_USB Dongle_USB_TX_LG_08195563_V2_8_20200429		

ACCRED

Certificate #4298.01

Note 1: Based on the application, features, or specification exhibited in User's Manual, the EUT is considered as an ITE/Computing Device. More details of EUT technical specification, please refer to the User's Manual.

Revision History

ACCREDITED

Certificate #4298.01

Report No.	Version	Description	Issued Date		
S21050804407001	Rev.01	Initial issue of report	08 June. 2021		
		•			

5 DESCRIPTION OF TEST MODES

To investigate the maximum EMI emission characteristics generates from EUT, the test system was pre-scanning tested base on the consideration of following EUT operation mode or test configuration mode which possible have effect on EMI emission level. Each of these EUT operation mode(s) or test configuration mode(s) mentioned above was evaluated respectively.

The Transmitter was operated in the normal operating mode. The TX frequency was fixed which was for the purpose of the measurements.

Test of channel included the lowest and middle and highest frequency to perform the test, then record on this report.

Those data rates (1Mbps for GFSK modulation; 2Mbps for π /4-DQPSK modulation; 3Mbps for 8-DPSK modulation) were used for all test.

The EUT was pretested with 3 orientations placed on the table for the radiated emission measurement -X, Y, and Z-plane. The X-plane results were found as the worst case and were shown in this report.

Carrier Frequency and Channel list:

Channel	Frequency(MHz)
0	2402
1	2403
39	2441
40	2442
77	2479
78	2480

Note: fc=2402MHz+k×1MHz k=0 to 78

The following summary table is showing all test modes to demonstrate in compliance with the standard.

For AC Conducted Emission			
Final Test Mode	Description		
Mode 1 normal link mode			

Note: AC power line Conducted Emission was tested under maximum output power.

For Radiated Test Cases		
Final Test Mode	Description	
Mode 1	normal link mode	
Mode 2	CH00(2402MHz)	
Mode 3	CH39(2441MHz)	
Mode 4	CH78(2480MHz)	

Note: For radiated test cases, the worst mode data rate 1Mbps was reported only, because this data rate has the highest RF output power at preliminary tests, and no other significantly frequencies found in conducted spurious emission.

For Conducted Test Cases				
Description				
CH00(2402MHz)				
CH39(2441MHz)				
CH78(2480MHz)				
Hopping mode				

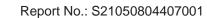
Note: The engineering test program was provided and the EUT was programmed to be in continuously transmitting mode.

SETUP OF EQUIPMENT UNDER TEST 6 6.1 BLOCK DIAGRAM CONFIGURATION OF TEST SYSTEM For AC Conducted Emission Mode For Conducted Emission Mode AC PLUG C-1 AE-1 EUT Power source For Radiated Test Cases AC PLUG C-1 AE-1 EUT Power source For Conducted Test Cases AC PLUG C-2 C-1 Measurement AE-1 Εl Instrument Power source Note: 1. The temporary antenna connector is soldered on the PCB board in order to perform conducted tests

Note: 1. The temporary antenna connector is soldered on the PCB board in order to perform conducted tests and this temporary antenna connector is listed in the equipment list.

6.2 SUPPORT EQUIPMENT

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.


Item	Equipment	Model/Type No.	Series No.	Note
AE-1	Power source	N/A	N/A	Peripherals

Item	Cable Type	Shielded Type	Ferrite Core	Length
C-1	USB Cable	YES	NO	1.0m
C-2	RF Cable	YES	NO	0.1m

Notes:

- (1) The support equipment was authorized by Declaration of Confirmation.
- (2) For detachable type I/O cable should be specified the length in cm in [Length] column.
- (3) "YES" is means "shielded" "with core"; "NO" is means "unshielded" "without core".

NTEK北测

6.3 EQUIPMENTS LIST FOR ALL TEST ITEMS

Radiation& Conducted Test equipment

		est equipment					
Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Last calibration	Calibrated until	Calibrati on period
1	Spectrum Analyzer	Aglient	E4407B	MY45108040	2020.07.13	2021.07.12	1 year
2	Spectrum Analyzer	Agilent	N9020A	MY49100060	2020.07.13	2021.07.12	1 year
3	Spectrum Analyzer	R&S	FSV40	101417	2020.07.13	2021.07.12	1 year
4	Test Receiver	R&S	ESPI7	101318	2020.07.13	2021.07.12	1 year
5	Bilog Antenna	TESEQ	CBL6111D	31216	2020.07.13	2021.07.12	1 year
6	50Ω Coaxial Switch	Anritsu	MP59B	6200983705	2020.05.11	2023.05.10	3 year
7	Horn Antenna	EM	EM-AH-1018 0	2011071402	2020.07.13	2021.07.12	1 year
8	Broadband Horn Antenna	SCHWARZBE CK	BBHA 9170	803	2020.12.10	2021.12.09	1 year
9	Amplifier	EMC	EMC051835 SE	980246	2020.07.13	2021.07.12	1 year
10	Active Loop Antenna	SCHWARZBE CK	FMZB 1519 B	055	2020.12.10	2021.12.09	1 year
11	Power Meter	DARE	RPR3006W	15I00041SN 084	2020.07.13	2021.07.12	1 year
12	Test Cable (9KHz-30MHz)	N/A	R-01	N/A	2019.08.6	2022.08.05	3 year
13	Test Cable (30MHz-1GHz)	N/A	R-02	N/A	2019.08.6	2022.08.05	3 year
14	High Test Cable(1G-40G Hz)	N/A	R-03	N/A	2019.06.28	2022.06.27	3 year
15	High Test Cable(1G-40G Hz)	N/A	R-04	N/A	2020.07.13	2021.07.12	1 year
16	Filter	TRILTHIC	2400MHz	29	2020.07.13	2021.07.12	1 year
17	temporary antenna connector (Note)	NTS	R001	N/A	N/A	N/A	N/A

ACC

Certificate #4298.01

Note:

We will use the temporary antenna connector (soldered on the PCB board) When conducted test And this temporary antenna connector is listed within the instrument list

AC Conduction Test equipment							
Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Last calibration	Calibrated until	Calibration period
1	Test Receiver	R&S	ESCI	101160	2020.07.13	2021.07.12	1 year
2	LISN	R&S	ENV216	101313	2020.07.13	2021.07.12	1 year
3	LISN	SCHWARZBE CK	NNLK 8129	8129245	2020.07.13	2021.07.12	1 year
4	50Ω Coaxial Switch	ANRITSU CORP	MP59B	6200983704	2020.05.11	2023.05.10	3 year
5	Test Cable (9KHz-30MH z)	N/A	C01	N/A	2020.05.11	2023.05.10	3 year
6	Test Cable (9KHz-30MH z)	N/A	C02	N/A	2020.05.11	2023.05.10	3 year
7	Test Cable (9KHz-30MH z)	N/A	C03	N/A	2020.05.11	2023.05.10	3 year

ACCREI

Certificate #4298.01

Note: Each piece of equipment is scheduled for calibration once a year except the Aux Equipment & Test Cable which is scheduled for calibration every 2 or 3 years.

NTEKJLIM CERTIFICATE #4298.01

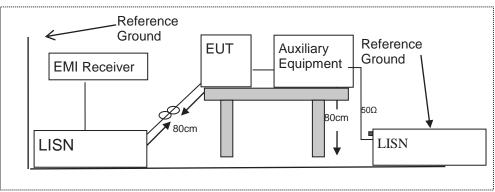
7 TEST REQUIREMENTS

7.1 CONDUCTED EMISSIONS TEST

7.1.1 Applicable Standard

According to FCC Part 15.207(a)

7.1.2 Conformance Limit


	Conducted Emission Limit		
Frequency(MHz)	Quasi-peak	Average	
0.15-0.5	66-56*	56-46*	
0.5-5.0	56	46	
5.0-30.0	60	50	

Note: 1. *Decreases with the logarithm of the frequency

2. The lower limit shall apply at the transition frequencies

3. The limit decreases in line with the logarithm of the frequency in the range of 0.15 to 0.50MHz.

7.1.3 Test Configuration

7.1.4 Test Procedure

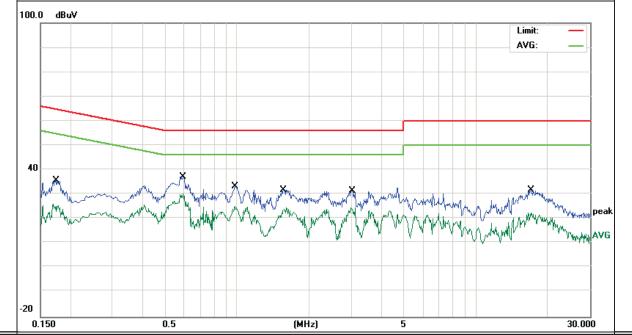
According to the requirements in Section 13.1.4.1 of ANSI C63.10-2013 Conducted emissions the EUT measured in the frequency range between 0.15 MHz and 30 MHz using CISPR Quasi-Peak and average detector mode.

- 1. The EUT was placed 0.4 meter from the conducting wall of the shielding room.
- 2. The EUT was placed on a table which is 0.8m above ground plane.
- 3. Connect EUT to the power mains through a line impedance stabilization network (LISN). All other support equipments powered from additional LISN(s). The LISN provide 50 Ohm/ 50uH of coupling impedance for the measuring instrument.
- 4. Interconnecting cables that hang closer than 40 cm to the ground plane shall be folded back and forth in the center forming a bundle 30 to 40cm long.
- 5. I/O cables that are not connected to a peripheral shall be bundled in the center. The end of the cable may be terminated, if required, using the correct terminating impedance. The overall length shall not exceed 1 m.
- 6. LISN at least 80 cm from nearest part of EUT chassis.
- 7. The frequency range from 150KHz to 30MHz was searched.
- 8. Set the test-receiver system to Peak Detect Function and specified bandwidth(IF bandwidth=9KHz) with Maximum Hold Mode
- 9. For the actual test configuration, please refer to the related Item –EUT Test Photos.

7.1.5 Test Results

Pass

7.1.6 Test Results

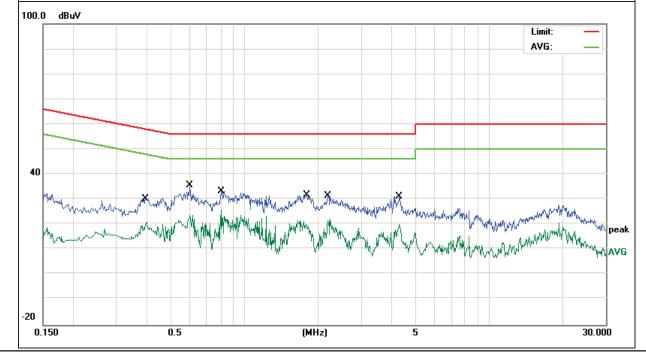

EUT:	True Wireless Stereo Gaming Earphones	Model Name :	G1
Temperature:	21.5 ℃	Relative Humidity:	55%
Pressure:	1010hPa	Phase :	L
Test Voltage :	DC 5V from Power source AC 120V/60Hz	Test Mode:	Mode 1

Frequency	Reading Level	Correct Factor	Measure-ment	Limits	Margin	Deverente
(MHz)	(dBµV)	(dB)	(dBµV)	(dBµV)	(dB)	- Remark
0.1748	26.15	9.55	35.70	64.72	-29.02	QP
0.1748	16.55	9.55	26.10	54.72	-28.62	AVG
0.5939	27.75	9.55	37.30	56.00	-18.70	QP
0.5939	20.57	9.55	30.12	46.00	-15.88	AVG
0.9819	23.64	9.56	33.20	56.00	-22.80	QP
0.9819	15.51	9.56	25.07	46.00	-20.93	AVG
1.5620	22.32	9.58	31.90	56.00	-24.10	QP
1.5620	15.08	9.58	24.66	46.00	-21.34	AVG
3.0339	21.90	9.60	31.50	56.00	-24.50	QP
3.0339	14.86	9.60	24.46	46.00	-21.54	AVG
17.0178	21.86	9.84	31.70	60.00	-28.30	QP
17.0178	12.70	9.84	22.54	50.00	-27.46	AVG

Remark:

1. All readings are Quasi-Peak and Average values.

2. Factor = Insertion Loss + Cable Loss.


EUT:	True Wireless Stereo Gaming Earphones	Model Name :	G1
Temperature:	21.5℃	Relative Humidity:	55%
Pressure:	1010hPa	Phase :	N
Test Voltage :	DC 5V from Power source AC 120V/60Hz	Test Mode:	Mode 1

Frequency	Reading Level	Correct Factor	Measure-ment	Limits	Margin	Damarla
(MHz)	(dBµV)	(dB)	(dBµV)	(dBµV)	(dB)	Remark
0.3940	20.86	9.54	30.40	57.98	-27.58	QP
0.3940	11.38	9.54	20.92	47.98	-27.06	AVG
0.5978	26.11	9.54	35.65	56.00	-20.35	QP
0.5978	14.15	9.54	23.69	46.00	-22.31	AVG
0.8059	23.86	9.54	33.40	56.00	-22.60	QP
0.8059	16.31	9.54	25.85	46.00	-20.15	AVG
1.8020	22.33	9.57	31.90	56.00	-24.10	QP
1.8020	11.67	9.57	21.24	46.00	-24.76	AVG
2.1979	21.93	9.57	31.50	56.00	-24.50	QP
2.1979	12.66	9.57	22.23	46.00	-23.77	AVG
4.2938	21.69	9.61	31.30	56.00	-24.70	QP
4.2938	10.59	9.61	20.20	46.00	-25.80	AVG

Remark:

1. All readings are Quasi-Peak and Average values.

2. Factor = Insertion Loss + Cable Loss.

7.2 **RADIATED SPURIOUS EMISSION**

7.2.1 Applicable Standard

According to FCC Part 15.247(d) and 15.209 and ANSI C63.10-2013

7.2.2 Conformance Limit

According to FCC Part 15.247(d): radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)). According to FCC Part15.205, Restricted bands

According to 1 CC 1 alt 15.20			
MHz	MHz	MHz	GHz
0.090-0.110	16.42-16.423	399.9-410	4.5-5.15
0.495-0.505	16.69475-16.69525	608-614	5.35-5.46
2.1735-2.1905	16.80425-16.80475	960-1240	7.25-7.75
4.125-4.128	25.5-25.67	1300-1427	8.025-8.5
4.17725-4.17775	37.5-38.25	1435-1626.5	9.0-9.2
4.20725-4.20775	73-74.6	1645.5-1646.5	9.3-9.5
6.215-6.218	74.8-75.2	1660-1710	10.6-12.7
6.26775-6.26825	123-138	2200-2300	14.47-14.5
8.291-8.294	149.9-150.05	2310-2390	15.35-16.2
8.362-8.366	156.52475-156.52525	2483.5-2500	17.7-21.4
8.37625-8.38675	156.7-156.9	2690-2900	22.01-23.12
8.41425-8.41475	162.0125-167.17	3260-3267	23.6-24.0
12.29-12.293	167.72-173.2	3332-3339	31.2-31.8
12.51975-12.52025	240-285	3345.8-3358	36.43-36.5
12.57675-12.57725	322-335.4	3600-4400	(2)
13.36-13.41			

20dBc in any 100 kHz bandwidth outside the operating frequency band. In case the emission fall within the restricted band specified on 15.205(a), then the 15.209(a) limit in the table below has to be followed.

Restricted Frequency(MHz)	Field Strength (µV/m)	Field Strength (dBµV/m)	Measurement Distance
0.009~0.490	2400/F(KHz)	20 log (uV/m)	300
0.490~1.705	24000/F(KHz)	20 log (uV/m)	30
1.705~30.0	30	29.5	30
30-88	100	40	3
88-216	150	43.5	3
216-960	200	46	3
Above 960	500	54	3

Limits of Radiated Emission Measurement(Above 1000MHz)

Frequency(MHz)	Class B (dBuV/m) (at 3M)					
Frequency(imrz)	PEAK	AVERAGE				
Above 1000	74	54				

Remark :1. Emission level in dBuV/m=20 log (uV/m)

2. Measurement was performed at an antenna to the closed point of EUT distance of meters.

3. For Frequency 9kHz~30MHz:

Distance extrapolation factor =40log(Specific distance/ test distance)(dB);

Limit line=Specific limits(dBuV) + distance extrapolation factor.

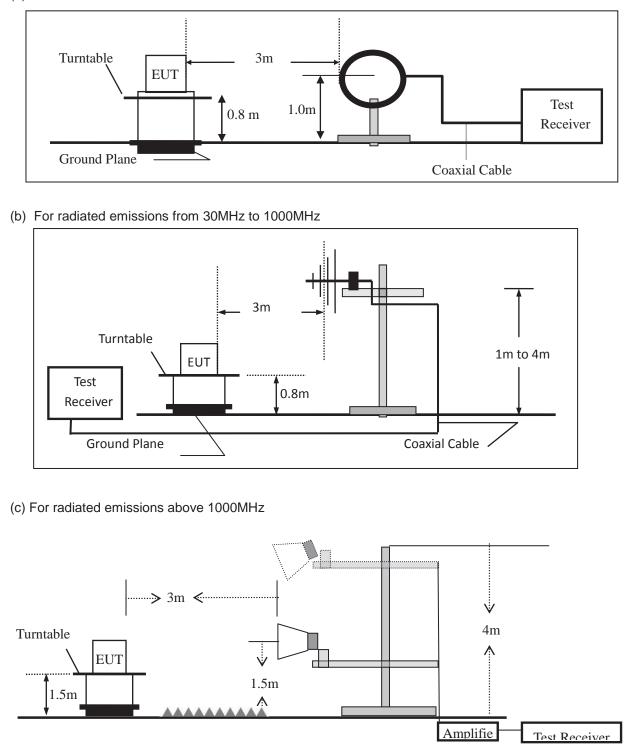
For Frequency above 30MHz:

Distance extrapolation factor =20log(Specific distance/ test distance)(dB);

Limit line=Specific limits(dBuV) + distance extrapolation factor.

NTEKJL测

7.2.3 Measuring Instruments


The Measuring equipment is listed in the section 6.3 of this test report.

ACC

Certificate #4298.01

7.2.4 Test Configuration

(a) For radiated emissions below 30MHz

7.2.5 Test Procedure

The test site semi-anechoic chamber has met the requirement of NSA tolerance 4 dB according to the standards: ANSI C63.10-2013. The test distance is 3m. The setup is according to the requirements in Section 13.1.4.1 of ANSI C63.10-2013 and CAN/CSA-CEI/IEC CISPR 22.

This test is required for any spurious emission that falls in a Restricted Band, as defined in Section 15.205. It must be performed with the highest gain of each type of antenna proposed for use with the EUT. Use the following spectrum analyzer settings:

	···					
Spectrum Parameter	Setting					
Attenuation	Auto					
Start Frequency	1000 MHz					
Stop Frequency	10th carrier harmonic					
RB / VB (emission in restricted band)	1 MHz / 1 MHz for Peak, 1 MHz / 1 MHz for Average					

Receiver Parameter	Setting
Attenuation	Auto
Start ~ Stop Frequency	9kHz~150kHz / RB 200Hz for QP
Start ~ Stop Frequency	150kHz~30MHz / RB 9kHz for QP
Start ~ Stop Frequency	30MHz~1000MHz / RB 120kHz for QP

- a. The measuring distance of at 3 m shall be used for measurements at frequency up to 1GHz. For frequencies above 1GHz, any suitable measuring distance may be used.
- b. The EUT was placed on the top of a rotating table 0.8 m for below 1GHz and 1.5m for above 1GHz the ground at a 3 meter. The table was rotated 360 degrees to determine the position of the highest radiation.
- c. The height of the equipment or of the substitution antenna shall be 0.8 m for below 1GHz and 1.5m for above 1GHz; the height of the test antenna shall vary between 1 m to 4 m. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For the radiated emission test above 1GHz: Place the measurement antenna away from each area of the EUT determined to be a source of emissions at the specified measurement distance, while keeping the measurement antenna aimed at the source of emissions at each frequency of significant emissions, with polarization oriented for maximum response. The measurement antenna may have to be higher or lower than the EUT, depending on the radiation pattern of the emission and staying aimed at the emission source for receiving the maximum signal. The final measurement antenna elevation shall be that which maximizes the emissions. The measurement antenna elevation for maximum emissions shall be restricted to a range of heights of from 1 m to 4 m above the ground or reference ground plane.
- e. The initial step in collecting conducted emission data is a spectrum analyzer peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak detector mode re-measured.
- f. If the Peak Mode measured value compliance with and lower than Quasi Peak Mode Limit, the EUT shall be deemed to meet QP Limits and then no additional QP Mode measurement performed.
- g. For the actual test configuration, please refer to the related Item -EUT Test Photos.

Note:

Both horizontal and vertical antenna polarities were tested and performed pretest to three orthogonal axis. The worst case emissions were reported

During the radiated emission to	During the radiated emission test, the Spectrum Analyzer was set with the following configurations:										
Frequency Band (MHz)	Function	Video Bandwidth									
30 to 1000	QP	120 kHz	300 kHz								
Ah awa 4000	Peak	1 MHz	1 MHz								
Above 1000	Average	1 MHz	1 MHz								

Note: for the frequency ranges below 30 MHz, a narrower RBW is used for these ranges but the measured value should add a RBW correction factor (RBWCF) where RBWCF [dB] =10*lg(100 [kHz]/narrower RBW [kHz]). , the narrower RBW is 1 kHz and RBWCF is 20 dB for the frequency 9 kHz to 150 kHz, and the narrower RBW is 10 kHz and RBWCF is 10 dB for the frequency 150 kHz to 30 MHz.

7.2.6 Test Results

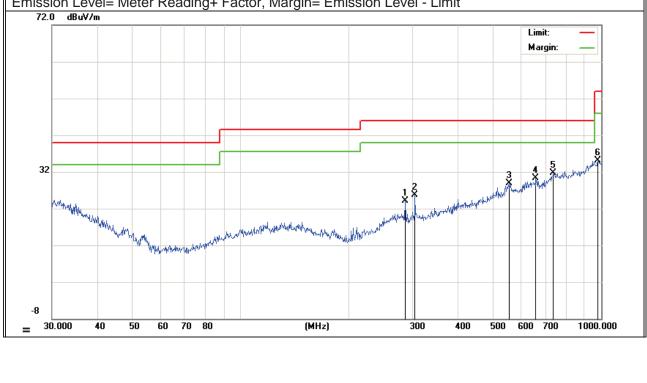
Spurious Emission below 30MHz (9KHz to 30MHz)

EUT:	True Wireless Stereo Gaming Earphones	Model No.:	G1
Temperature:	20 ℃	Relative Humidity:	48%
Test Mode:	Mode2/Mode3/Mode4	Test By:	Mary Hu

Freq.	Ant.Pol.	Emission L	.evel(dBuV/m)	Limit 3	m(dBuV/m)	Over(dB)		
(MHz)	H/V	PK	AV	PK	AV	PK	AV	

Note: the amplitude of spurious emission that is attenuated by more than 20dB below the permissible limit has no need to be reported.

Spurious Emission below 1GHz (30MHz to 1GHz)


All the modulation modes have been tested, and the worst result was report as below:

EUT:	True Wireless Stereo Gaming Earphones	Model Name :	G1
Temperature:	25.4 ℃	Relative Humidity:	47%
Pressure:	1010hPa	Test Mode:	1Mbps GFSK CH00
Test Voltage :	DC 5V from Power source	AC 120V/60Hz	

Polar	Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Remark	
(H/V)	(MHz)	(dBuV)	(dB)	(dBuV/m)	(dBuV/m)	(dB)		
V	285.9778	9.70	14.32	24.02	46.00	-21.98	QP	
V	304.6099	10.63	15.07	25.70	46.00	-20.30	QP	
V	554.8253	6.35	22.50	28.85	46.00	-17.15	QP	
V	658.8361	7.78	22.61	30.39	46.00	-15.61	QP	
V	737.0714	6.48	25.13	31.61	46.00	-14.39	QP	
V	979.1803	7.09	28.06	35.15	54.00	-18.85	QP	

Remark:

Emission Level= Meter Reading+ Factor, Margin= Emission Level - Limit

Polar	Freque	ency		/lete eadii		Fact	or	Emission Level	L	imits	N	/largi	n	Remark	
(H/V)	(MHz)		(0	(dBuV)		(dB)		(dBuV/m)	(dE	BuV/m)		(dB)		Roman	
Н	30.74	154		6.18		18.4	14	24.62	4	0.00		-15.38	8	C	P)
Н	33.91	174		6.40		17.3	34	23.74	4	0.00		-16.20	6	C)P
Н	47.82	260		4.95		10.8	34	15.79	4	0.00		-24.2	1	C	۱P
Н	144.8	418		6.13		12.0)5	18.18	4	3.50		-25.32	2	C	١P
Н	286.9	823		6.33		14.3	32	20.65	4	6.00		-25.3	5	C	١P
H Remark	752.7	432		7.44		24.9	92	32.36	4	6.00		-13.64	4	C	۱P
72.0 dB	uV/m											Lin		_	
												Ma	rgin:		
32	When when a		hayahay		where	w ^{ala} a fila	A market and the second	here we when a we will	111 Second 199	y hiden odd hwyrd	ugher also	Nya Mari	ex Martine	n de la constanció	**
8 30.000	40 5	50 60	70	80			(MHz)		300	400	500	600	700	1000). 000

Spurious	Emission A	Above 10	GHz (1GHz	to 25GH	z)						
EUT:	True	Wireless ing Earp	s Stereo	Model		G1	G1				
Temperature	e: 20 ℃			Relati	ve Humidity	r: 48%					
Test Mode:	Mode	e2/Mode	3/Mode4	Test E	By:	Mary	Hu				
All the modul	ation mode	s have b	een tested	, and the	worst result	was repor	t as below	/:			
Frequency	Read Level	Cable loss	Antenna Factor	Preamp Factor	Emission Level	Limits	Margin	Rema	rk Comment		
(MHz)	(dBµV)	(dB)	dB/m	(dB)	(dBµV/m)	(dBµV/m)	(dB)				
Low Channel (2402 MHz)(GFSK)Above 1G											
4804.95	65.61	5.21	35.59	44.30	62.11	74.00	-11.89	Pk	Vertical		
4804.95	43.77	5.21	35.59	44.30	40.27	54.00	-13.73	AV	Vertical		
7206.59	61.01	6.48	36.27	44.60	59.16	74.00	-14.84	Pk	Vertical		
7206.59	43.66	6.48	36.27	44.60	41.81	54.00	-12.19	AV	Vertical		
4804.77	63.97	5.21	35.55	44.30	60.43	74.00	-13.57	Pk	Horizontal		
4804.77	42.26	5.21	35.55	44.30	38.72	54.00	-15.28	AV	Horizontal		
7206.12	63.68	6.48	36.27	44.52	61.91	74.00	-12.09	Pk	Horizontal		
7206.12	40.99	6.48	36.27	44.52	39.22	54.00	-14.78	AV	Horizontal		
			Mid Chanr	nel (2441 N	1Hz)(GFSK)-	-Above 1G	1				
4882.32	64.04	5.21	35.66	44.20	60.71	74.00	-13.29	Pk	Vertical		
4882.32	43.47	5.21	35.66	44.20	40.14	54.00	-13.86	AV	Vertical		
7323.06	62.54	7.10	36.50	44.43	61.71	74.00	-12.29	Pk	Vertical		
7323.06	43.26	7.10	36.50	44.43	42.43	54.00	-11.57	AV	Vertical		
4882.97	62.68	5.21	35.66	44.20	59.35	74.00	-14.65	Pk	Horizontal		
4882.97	43.82	5.21	35.66	44.20	40.49	54.00	-13.51	AV	Horizontal		
7324.28	59.42	7.10	36.50	44.43	58.59	74.00	-15.41	Pk	Horizontal		
7324.28	42.83	7.10	36.50	44.43	42.00	54.00	-12.00	AV	Horizontal		
		1	High Chanr	nel (2480 N	/Hz)(GFSK)-	- Above 1G	1				
4959.36	63.09	5.21	35.52	44.21	59.61	74.00	-14.39	Pk	Vertical		
4959.36	43.26	5.21	35.52	44.21	39.78	54.00	-14.22	AV	Vertical		
7439.17	62.12	7.10	36.53	44.60	61.15	74.00	-12.85	Pk	Vertical		
7439.17	43.90	7.10	36.53	44.60	42.93	54.00	-11.07	AV	Vertical		
4960.16	64.47	5.21	35.52	44.21	60.99	74.00	-13.01	Pk	Horizontal		
4960.16	40.67	5.21	35.52	44.21	37.19	54.00	-16.81	AV	Horizontal		
7440.14	60.57	7.10	36.53	44.60	59.60	74.00	-14.40	Pk	Horizontal		
7440.14	40.46	7.10	36.53	44.60	39.49	54.00	-14.51	AV	Horizontal		

ACCREE

Certificate #4298.01

Note:

(1) Emission Level= Antenna Factor + Cable Loss + Read Level - Preamp Factor (2)All other emissions more than 20dB below the limit.

Spurious	Emission in	Restric	ted Band 2	2310-23	90MHz and 2	2483.	5-250	0MHz			
EUT:	True Wirel Gaming Ea			Мос	Model No.:			G1			
Temperature	: 20 ℃			Rela	ative Humidity	y:	48%				
Test Mode:	Mode2/ M	ode4		Tes	: By:		Mary	Hu			
All the modu	lation mode	s have b	oeen teste		he worst resu	ult wa			OW:		
Frequency	Meter Cable Antenna Pre		Pream Factor		Lii	nits	Margin	Detector	Comment		
(MHz)	(dBµV)	(dB)	dB/m	(dB)	(dBµV/m)	(dB)	uV/m)	(dB)	Туре		
			1M	bps(GFS	K)- Non-hop	ping					
2310.00	52.96	2.97	27.80	43.80	39.93	7	74	-34.07	Pk	Horizontal	
2310.00	44.59	2.97	27.80	43.80	31.56	Ę	54	-22.44	AV	Horizontal	
2310.00	53.52	2.97	27.80	43.80	40.49	7	74	-33.51	Pk	Vertical	
2310.00	44.93	2.97	27.80	43.80	31.90	Ę	54	-22.10	AV	Vertical	
2390.00	51.52	3.14	27.21	43.80	38.07	7	74	-35.93	Pk	Vertical	
2390.00	42.82	3.14	27.21	43.80	29.37	Ę	54	-24.63	AV	Vertical	
2390.00	51.71	3.14	27.21	43.80	38.26	7	74	-35.74	Pk	Horizontal	
2390.00	42.07	3.14	27.21	43.80	28.62	Ę	54	-25.38	AV	Horizontal	
2483.50	50.81	3.58	27.70	44.00	38.09	7	74	-35.91	Pk	Vertical	
2483.50	43.60	3.58	27.70	44.00	30.88	Ę	54	-23.12	AV	Vertical	
2483.50	52.73	3.58	27.70	44.00	40.01	7	74	-33.99	Pk	Horizontal	
2483.50	40.57	3.58	27.70	44.00	27.85	Ę	54	-26.15	AV	Horizontal	
				1Mbps (0	GFSK)- hoppin	g					
2310.00	50.17	2.97	27.80	43.80	37.14	7	74	-36.86	Pk	Horizontal	
2310.00	42.90	2.97	27.80	43.80	29.87	Ę	54	-24.13	AV	Horizontal	
2310.00	54.18	2.97	27.80	43.80	41.15	7	74	-32.85	Pk	Vertical	
2310.00	44.94	2.97	27.80	43.80	31.91	Ę	54	-22.09	AV	Vertical	
2390.00	53.69	3.14	27.21	43.80	40.24	7	74	-33.76	Pk	Vertical	
2390.00	40.97	3.14	27.21	43.80	27.52	Ę	54	-26.48	AV	Vertical	
2390.00	50.11	3.14	27.21	43.80	36.66	7	74	-37.34	Pk	Horizontal	
2390.00	44.42	3.14	27.21	43.80	30.97	Ę	54	-23.03	AV	Horizontal	
2483.50	52.44	3.58	27.70	44.00	39.72	7	74	-34.28	Pk	Vertical	
2483.50	44.36	3.58	27.70	44.00	31.64	Ę	54	-22.36	AV	Vertical	
2483.50	54.58	3.58	27.70	44.00	41.86	7	74	-32.14	Pk	Horizontal	
2483.50	42.28	3.58	27.70	44.00	29.56	Ę	54	-24.44	AV	Horizontal	

Note: (1) All other emissions more than 20dB below the limit.

	Spurious Emission in Restricted Band 3260MHz-18000MHz											
E	UT:			lireless g Earph		Model	No.:	G1	G1			
Т	emperature:	2	0 °C			Relativ	ve Humidity	: 48%				
Т	Test Mode: Mode2/ Mode4				Test E	By:	Mary	Hu				
4	All the modulation modes have been tested,						worst resu	It was repo	ort as belo	ow:		
	Frequency	Read Lev		Cable Loss	Antenna Factor	Preamp Factor	Emission Level	Limits	Margin	Detector	Comment	
	(MHz) (d		IV)	(dB)	dB/m	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре		
	3260	58.0)7	4.04	29.57	44.70	46.98	74	-27.02	Pk	Vertical	
	3260	49.6	69	4.04	29.57	44.70	38.60	54	-15.40	AV	Vertical	
	3260	57.4	19	4.04	29.57	44.70	46.40	74	-27.60	Pk	Horizontal	
	3260	47.8	34	4.04	29.57	44.70	36.75	54	-17.25	AV	Horizontal	
	3332	62.6	64	4.26	29.87	44.40	52.37	74	-21.63	Pk	Vertical	
	3332	44.4	19	4.26	29.87	44.40	34.22	54	-19.78	AV	Vertical	
	3332	61.1	18	4.26	29.87	44.40	50.91	74	-23.09	Pk	Horizontal	
	3332	45.8	36	4.26	29.87	44.40	35.59	54	-18.41	AV	Horizontal	
	17797	48.3	30	10.99	43.95	43.50	59.74	74	-14.26	Pk	Vertical	
	17797 38		35	10.99	43.95	43.50	50.29	54	-3.71	AV	Vertical	
	17788	54.5	52	11.81	43.69	44.60	65.42	74	-8.58	Pk	Horizontal	
	17788	34.1	0	11.81	43.69	44.60	45.00	54	-9.00	AV	Horizontal	

ACCRED

Certificate #4298.01

Note: (1) All other emissions more than 20dB below the limit.

7.3 NUMBER OF HOPPING CHANNEL

7.3.1 Applicable Standard

According to FCC Part 15.247(a)(1) (iii)and ANSI C63.10-2013

7.3.2 Conformance Limit

Frequency hopping systems in the 2400-2483.5MHz band shall use at least 15 channels.

7.3.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

7.3.4 Test Setup

Please refer to Section 6.1 of this test report.

7.3.5 Test Procedure

The testing follows ANSI C63.10-2013 clause 7.8.3

The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator.

The path loss was compensated to the results for each measurement.

Set to the maximum power setting and enable the EUT transmit continuously.

The EUT must have its hopping function enabled.

Use the following spectrum analyzer settings:

Span = the frequency band of operation

RBW : To identify clearly the individual channels, set the RBW to less than 30% of the channel spacing or the 20 dB bandwidth, whichever is smaller.

VBW ≥ RBW

Sweep = auto

Detector function = peak Trace = max hold

7.3.6 Test Results

	True Wireless Stereo Gaming Earphones	Model No.:	G1
Temperature:	20 ℃	Relative Humidity:	48%
Test Mode:	Mode 5(1Mbps)	Test By:	Mary Hu

Test data reference attachment.

Note: All modes are predicted, and only the worst mode is recorded in the report.

7.4 HOPPING CHANNEL SEPARATION MEASUREMENT

7.4.1 Applicable Standard

According to FCC Part 15.247(a)(1) and ANSI C63.10-2013

7.4.2 Conformance Limit

Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater. Alternatively, frequency hopping systems operating in the 2400-2483.5MHz band shall have hopping channel carrier frequencies that are separated by 25kHz or two-thirds of the 20dB bandwidth of the hopping channel, whichever is greater.

7.4.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

7.4.4 Test Setup

Please refer to Section 6.1 of this test report.

7.4.5 Test Procedure

The testing follows ANSI C63.10-2013 clause 7.8.2

The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator.

The path loss was compensated to the results for each measurement.

Set to the maximum power setting and enable the EUT transmit continuously.

The EUT was operating in controlled its channel.

Use the following spectrum analyzer settings:

Span = Measurement Bandwidth or Channel Separation

RBW: Start with the RBW set to approximately 3% of the channel spacing; adjust as necessary to best identify the center of each individual channel.

VBW ≥ RBW

Sweep = auto

Detector function = peak

Trace = max hold

7.4.6 Test Results

EUT:	True Wireless Stereo Gaming Earphones	Model No.:	G1
Temperature:	20 ℃	Relative Humidity:	48%
Test Mode:	Mode2/Mode3/Mode4	Test By:	Mary Hu

7.5 AVERAGE TIME OF OCCUPANCY (DWELL TIME)

7.5.1 Applicable Standard

According to FCC Part 15.247(a)(1)(iii) and ANSI C63.10-2013

7.5.2 Conformance Limit

The average time of occupancy on any channel shall not be greater than 0.4s within a period of 0.4s multiplied by the number of hopping channels employed.

7.5.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

7.5.4 Test Setup

Please refer to Section 6.1 of this test report.

7.5.5 Test Procedure

The testing follows ANSI C63.10-2013 clause 7.8.4 The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement. Set to the maximum power setting and enable the EUT transmit continuously. The EUT must have its hopping function enabled. Use the following spectrum analyzer settings: Span = zero span, centered on a hopping channel RBW \geq 1MHz VBW \geq RBW Sweep = as necessary to capture the entire dwell time per hopping channel Detector function = peak Trace = max hold Measure the maximum time duration of one single pulse. Set the EUT for DH5, DH3 and DH1 packet transmitting. Measure the maximum time duration of one single pulse.

7.5.6 Test Results

EUT:	True Wireless Stereo Gaming Earphones	Model No.:	G1
Temperature:	20 ℃	Relative Humidity:	48%
Test Mode:	Mode2/Mode3/Mode4	Test By:	Mary Hu

Test data reference attachment.

Note:

A Period Time = (channel number)*0.4 DH1 Dwell time: Reading * (1600/2)*31.6/(channel number) DH3 Dwell time: Reading * (1600/4)*31.6/(channel number) DH5 Dwell time: Reading * (1600/6)*31.6/(channel number)

For Example:

- 1. In normal mode, hopping rate is 1600 hops/s with 6 slots in 79 hopping channels. With channel hopping rate (1600 / 6 / 79) in Occupancy Time Limit (0.4×79) (s), Hops Over Occupancy Time comes to $(1600 / 6 / 79) \times (0.4 \times 79) = 106.67$ hops.
- In AFH mode, hopping rate is 800 hops/s with 6 slots in 20 hopping channels. With channel hopping rate (800 / 6 / 20) in Occupancy Time Limit (0.4 x 20) (s), Hops Over Occupancy Time comes to (800 / 6 / 20) x (0.4 x 20) = 53.33 hops.
- 3. Dwell Time(s) = Hops Over Occupancy Time (hops) x Package Transfer Time

7.6 20DB BANDWIDTH TEST

7.6.1 Applicable Standard

According to FCC Part 15.247(a)(1) and ANSI C63.10-2013

7.6.2 Conformance Limit

No limit requirement.

7.6.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

7.6.4 Test Setup

Please refer to Section 6.1 of this test report.

7.6.5 Test Procedure

The testing follows ANSI C63.10-2013 clause 6.9.2 The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement. Set to the maximum power setting and enable the EUT transmit continuously. The EUT was operating in controlled its channel. Use the following spectrum analyzer settings: Span = approximately 2 to 3 times the 20 dB bandwidth, centered on a hopping channel RBW \geq 1% of the 20 dB bandwidth VBW \geq RBW Sweep = auto Detector function = peak Trace = max hold

7.6.6 Test Results

EUT:	True Wireless Stereo Gaming Earphones	Model No.:	G1
Temperature:	20 ℃	Relative Humidity:	48%
Test Mode:	Mode2/Mode3/Mode4	Test By:	Mary Hu

7.7 PEAK OUTPUT POWER

7.7.1 Applicable Standard

According to FCC Part 15.247(b)(1) and ANSI C63.10-2013

7.7.2 Conformance Limit

The maximum peak conducted output power of the intentional radiator shall not exceed the following: (1) For frequency hopping systems operating in the 2400-2483.5 MHz band employing at least 75 non-overlapping hopping channels, and all frequency hopping systems in the 5725-5850 MHz band: 1 watt. For all other frequency hopping systems in the 2400-2483.5 MHz band 0.125 watts.

7.7.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

7.7.4 Test Setup

Please refer to Section 6.1 of this test report.

7.7.5 Test Procedure

The testing follows ANSI C63.10-2013 clause 7.8.5.

The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator.

The path loss was compensated to the results for each measurement.

Set to the maximum power setting and enable the EUT transmit continuously.

The EUT was operating in controlled its channel.

Use the following spectrum analyzer settings:

Span = approximately 5 times the 20 dB bandwidth, centered on a hopping channel

RBW \geq the 20 dB bandwidth of the emission being measured

 $VBW \ge RBW$

Sweep = auto

Detector function = peak

Trace = max hold

7.7.6 Test Results

EUT:	True Wireless Stereo Gaming Earphones	Model No.:	G1
Temperature:	20 ℃	Relative Humidity:	48%
Test Mode:	Mode2/Mode3/Mode4	Test By:	Mary Hu

7.8 CONDUCTED BAND EDGE MEASUREMENT

7.8.1 Applicable Standard

According to FCC Part 15.247(d) and ANSI C63.10-2013

7.8.2 Conformance Limit

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.205(c)).

7.8.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

7.8.4 Test Setup

Please refer to Section 6.1 of this test report.

7.8.5 Test Procedure

The testing follows ANSI C63.10-2013 clause 7.8.6.

The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator.

The path loss was compensated to the results for each measurement.

Set to the maximum power setting and enable the EUT transmit continuously.

The EUT must have its hopping function enabled.

Use the following spectrum analyzer settings:

Span = approximately 5 times the 20 dB bandwidth, centered on a hopping channel

RBW = 100KHz

VBW = 300KHz

Band edge emissions must be at least 20 dB down from the highest emission level within the authorized band as measured with a 100kHz RBW. The attenuation shall be 30 dB instead of 20 dB when RMS conducted output power procedure is used.

Measure the highest amplitude appearing on spectral display and set it as a reference level. Plot the graph with marking the highest point and edge frequency.

Repeat above procedures until all measured frequencies were complete.

7.8.6 Test Results

EUT:	True Wireless Stereo Gaming Earphones	Model No.:	G1
Temperature:	20 ℃	Relative Humidity:	48%
Test Mode:	Mode2 /Mode4/ Mode 5	Test By:	Mary Hu

7.9 SPURIOUS RF CONDUCTED EMISSION

7.9.1 Applicable Standard

According to FCC Part 15.247(d) and ANSI C63.10-2013.

7.9.2 Conformance Limit

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)).

7.9.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

7.9.4 Test Setup

Please refer to Section 6.1 of this test report.

7.9.5 Test Procedure

Establish an emission level by using the following procedure:

- a) Set the center frequency and span to encompass frequency range to be measured.
- b) Set the RBW = 100 kHz.
- c) Set the VBW \geq [3 × RBW].
- d) Detector = peak.
- e) Sweep time = auto couple.
- f) Trace mode = max hold.
- g) Allow trace to fully stabilize.

h) Use the peak marker function to determine the maximum amplitude level. Then the limit shall be attenuated by at least 20 dB relative to the maximum amplitude level in 100 kHz.

7.9.6 Test Results

Remark: The measurement frequency range is from 30MHzHz to the 10th harmonic of the fundamental frequency. The lowest, middle and highest channels are tested to verify the spurious emissions and bandege measurement data.

7.10 ANTENNA APPLICATION

7.10.1 Antenna Requirement

15.203 requirement: For intentional device, according to 15.203: an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device.

7.10.2 Result

The EUT antenna is permanent attached Ceramic antenna (Gain: 2dBi). It comply with the standard requirement.

ACCRED

Certificate #4298.01

NTEK北测

7.11 FREQUENCY HOPPING SYSTEM (FHSS) EQUIPMENT REQUIREMENTS 7.11.1 Standard Applicable

According to FCC Part 15.247(a)(1), The system shall hop to channel frequencies that are selected at the system hopping rate from a pseudo randomly ordered list of hopping frequencies. Each frequency must be used equally on the average by each transmitter. The system receivers shall have input bandwidths that match the hopping channel bandwidths of their corresponding transmitters and shall shift frequencies in synchronization with the transmitted signals. (g) Frequency hopping spread spectrum systems are not required to employ all available hopping channels during each transmission. However, the system, consisting of both the transmitter and the receiver, must be designed to comply with all of the regulations in this section should the transmission bursts must comply with the definition of a frequency hopping system and must distribute its transmissions over the minimum number of hopping channels specified in this section. (h) The incorporation of intelligence within a frequency hopping spread spectrum system that permits the system to recognize other users within the spectrum band so that it individually and independently chooses and adapts its hopsets to avoid hopping on occupied channels is permitted. The coordination of frequency hopping systems in any other manner for the express purpose of avoiding the simultaneous occupancy of individual hopping frequencies by multiple transmitters is not permitted.

Certificate #4298.01

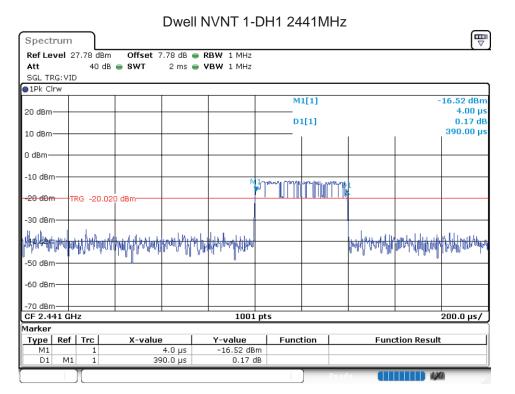
7.11.2 Frequency Hopping System

This transmitter device is frequency hopping device, and complies with FCC part 15.247 rule. This device uses Bluetooth radio which operates in 2400-2483.5 MHz band. Bluetooth uses a radio technology called frequency-hopping spread spectrum, which chops up the data being sent and transmits chunks of it on up to 79 bands (1 MHz each; centred from 2402 to 2480 MHz) in the range 2,400-2,483.5 MHz. The transmitter switches hop frequencies 1,600 times per second to assure a high degree of data security. All Bluetooth devices participating in a given piconet are synchronized to the frequency-hopping channel for the piconet. The frequency hopping sequence is determined by the master's device address and the phase of the hopping sequence (the frequency to hop at a specific time) is determined by the master's internal clock. Therefore, all slaves in a piconet must know the master's device address and must synchronize their clocks with the master's clock. Adaptive Frequency Hopping (AFH) was introduced in the Bluetooth specification to provide an effective way for a Bluetooth radio to counteract normal interference. AFH identifies "bad" channels, where either other wireless devices are interfering with the Bluetooth signal or the Bluetooth signal is interfering with another device. The AFH-enabled Bluetooth device will then communicate with other devices within its piconet to share details of any identified bad channels. The devices will then switch to alternative available "good" channels, away from the areas of interference, thus having no impact on the bandwidth used.

This device was tested with an bluetooth system receiver to check that the device maintained hopping synchronization, and the device complied with these requirements for FCC Part 15.247 rule.

7.11.3 EUT Pseudorandom Frequency Hopping Sequence

Pseudorandom Frequency Hopping Sequence Table as below: Channel: 08, 24, 40, 56, 40, 56, 72, 09, 01, 09, 33, 41, 33, 41, 65, 73, 53, 69, 06, 22, 04, 20, 36, 52, 38, 46, 70, 78, 68, 76, 21, 29, 10, 26, 42, 58, 44, 60, 76, 13, 03, 11, 35, 43, 37, 45, 69, 77, 55, 71, 08, 24, 08, 24, 40, 56, 40, 48, 72, 01, 72, 01, 25, 33, 12, 28, 44, 60, 42, 58, 74, 11, 05, 13, 37, 45 etc.


The system receiver have input bandwidths that match the hopping channel bandwidths of their corresponding transmitters and shift frequencies in synchronization with the transmitted signals.

8 TEST RESULTS

8.1 **DWELL TIME**

OII DILLE							
Condition	Mode	Frequency	Pulse	Total Dwell	Period	Limit	Verdict
		(MHz)	Time (ms)	Time (ms)	Time (ms)	(ms)	
NVNT	1-DH1	2441	0.39	124.8	31600	400	Pass
NVNT	1-DH3	2441	1.644	263.04	31600	400	Pass
NVNT	1-DH5	2441	2.888	308.053	31600	400	Pass
NVNT	2-DH1	2441	0.378	120.96	31600	400	Pass
NVNT	2-DH3	2441	1.629	260.64	31600	400	Pass
NVNT	2-DH5	2441	2.872	306.347	31600	400	Pass
NVNT	3-DH1	2441	0.406	129.92	31600	400	Pass
NVNT	3-DH3	2441	1.656	264.96	31600	400	Pass
NVNT	3-DH5	2441	2.864	305.493	31600	400	Pass

Att	27.78 dBn 40 d£	o Offset		• RBW 1 MHz • VBW 1 MHz					
SGL TRG: VI	D								
UPK CIW			1		M	1[1]		-	15.67 dBm
20 dBm						111			5.00 μs -0.35 dB
10 dBm						[1]	1	1	-0.35 uB L.64400 ms
0 dBm									
-10 dBm			Milwo	(በሽበጊት እንት እስ ተሳቢ የሆኑ እስ ከማይ	The second of	መካት የሚያስት የ	and the second	Ներաույներին	
-20 dBm	TRG -20.0	20 dBm				hn 1. 110			
-30 dBm									
htereshereshereshereshereshereshereshere	Whythywe	r hall and the second s	₩¥						allor of the band the
-50 dBm		•							•
-60 dBm									
-70 dBm									
CF 2.441 G	Hz			1001	pts				300.0 µs/
Marker _Type Ref	Trc	X-valu	e	Y-value	Funct	ion	Fund	tion Result	: 1
M1	1		5.0 µs	-15.67 dB	im				
D1 M	1 1	1.	644 ms	-0.35 (38				
Spectrum			Dwell	I NVNT 1-	DH5 24	41MHz	4 ~ (11		
Ref Level Att	27.78 dBn 40 dB	Offset B • SWT	7.78 dB	RBW 1 MHz VBW 1 MHz	DH5 24	J Rea 41MHz	4y (11		
Ref Level	27.78 dBn 40 dB		7.78 dB	RBW 1 MHz			dy (11		
Ref Level Att SGL TRG:VI 1Pk Clrw	27.78 dBn 40 dB		7.78 dB	RBW 1 MHz		41MHz	dy (M		-14.32 dBm
Ref Level Att SGL TRG: VI	27.78 dBn 40 dB		7.78 dB	RBW 1 MHz	M:		4v (M		
Ref Level Att SGL TRG: VI 1Pk Clrw 20 dBm	27.78 dBn 40 dB		7.78 dB	RBW 1 MHz	M:	1[1]	۲۰ ۹۱		-14.32 dBm 8.00 μs 3.35 dB
Ref Level Att SGL TRG: VI 1Pk Clrw 20 dBm 10 dBm	27.78 dBn 40 dB	3 • SWT	7.78 dB • 8 ms •	RBW 1 MHz	M:	1[1]			-14.32 dBm 8.00 μs 3.35 dB
Ref Level Att SGL TRG: VI 1Pk Clrw 20 dBm 10 dBm 0 dBm -10 dBm	27.78 dBn 40 df	3 • SWT	7.78 dB • 8 ms •	RBW 1 MHz VBW 1 MHz	M:	1[1]			-14.32 dBm 8.00 μs 3.35 dB
Ref Level Att SGL TRG: VI ● 1Pk Clrw 20 dBm 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm	27.78 dBm 40 df D	3 • SWT	7.78 dB • 8 ms •	BBW 1 MHz VBW 1 MHz	M: D1	L[1] L[1]			14.32 dBm 8.00 µs 3.35 dB 2.88800 ms
Ref Level Att SGL TRG: VI 1Pk Clrw 20 dBm 10 dBm 0 dBm -10 dBm -20 dBm	27.78 dBm 40 df D	3 • SWT	7.78 dB • 8 ms •	BBW 1 MHz VBW 1 MHz	M: D1	L[1] L[1]			14.32 dBm 8.00 µs 3.35 dB 2.88800 ms
Ref Level Att SGL TRG: VI ● 1Pk Clrw 20 dBm 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm	27.78 dBm 40 df D	3 • SWT	7.78 dB • 8 ms •	BBW 1 MHz VBW 1 MHz	M: D1	L[1] L[1]			14.32 dBm 8.00 µs 3.35 dB 2.88800 ms
Ref Level Att SGL TRG: VI 1Pk CIrw 20 dBm 10 dBm -10 dBm -10 dBm -30 dBm -30 dBm -50 dBm -60 dBm	27.78 dBm 40 df D	3 • SWT	7.78 dB • 8 ms •	BBW 1 MHz VBW 1 MHz	M: D1	L[1] L[1]			14.32 dBm 8.00 µs 3.35 dB 2.88800 ms
Ref Level Att SGL TRG: VI 1Pk Clrw 20 dBm 10 dBm 0 dBm -10 dBm -30 dBm -30 dBm -50 dBm -60 dBm	27.78 dBm 40 dt D	3 • SWT	7.78 dB • 8 ms •	PBW 1 MHz VBW 1 MHz	M: D 1 Ալիլի ԱՌ/Խիսիս Ալիլի ԱՌ/Խիսիսիս	L[1] L[1]		ะแรงสารสุขาร์เล	14.32 dBm 8.00 µs 3.35 dB 2.88800 ms
Ref Level Att SGL TRG: VI ● 1Pk Clrw 20 dBm 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -50 dBm -60 dBm -70 dBm CF 2.441 G Marker	27.78 dBn 40 dt D TRG -20.0	20 dBm	7.78 dB • 8 ms •	BBW 1 MHz VBW 1 MHz	M: D 1 Ալիլի ԱՌ/Խիսիս Ալիլի ԱՌ/Խիսիսիս	L[1] L[1]		ะแรงสารสุขาร์เล	14.32 dBm 8.00 µs 3.35 dB 2.88800 ms
Ref Level Att SGL TRG: VI 1Pk Clrw 20 dBm 10 dBm 0 dBm -10 dBm -30 dBm -30 dBm -50 dBm -60 dBm	27.78 dBn 40 dt D TRG -20.0	3 • SWT	7.78 dB • 8 ms •	PBW 1 MHz VBW 1 MHz	D1	1[1] 1[1] 1(1]	- 	ะแรงสารสุขาร์เล	14.32 dBm 8.00 μs 3.35 dB 2.88800 ms

Ref Level 27.78 Att 40	dBm Offset 7) dB 👄 SWT		RBW 1 MHz VBW 1 MHz					
SGL TRG: VID								
				M1	[1]		-	14.40 dBm
20 dBm			+					24.00 µs
10 dBm				D1	[1]	I	I	-0.29 dB 378.00 μs
0 dBm								
-10 dBm				, Timerik p ^r iver	Ռոիփուլներիին	1		
-20 dBm TRG -2	0.020 dBm				1.11.5			
-30 dBm								
analidaby/managerand	amphyly and a second	NAMA ANT	and a comparish			all har all the	Halle Hard H	and the full of the
-50 dBm		•						
-60 dBm								
-70 dBm CF 2.441 GHz			1001	ntc				200.0.45
CF 2.441 GHz Marker			1001	μες				200.0 µs/
Type Ref Trc	X-value		Y-value	Functi	ion	Fund	ction Result	
M1 1 D1 M1 1		24.0 µs 78.0 µs	-14.40 dBr -0.29 d					
Spectrum			NVNT 2-I	DH3 244	41MHz			
Ref Level 27.78 Att 40		7.78 dB 🖷	NVNT 2-I RBW 1 MHz VBW 1 MHz	DH3 244	41MHz			E
Ref Level 27.78	dBm Offset 7	7.78 dB 🖷	RBW 1 MHz	DH3 244	41MHz			
Ref Level 27.78 Att 40 SGL TRG:VID PIPK Clrw	dBm Offset 7	7.78 dB 🖷	RBW 1 MHz	DH3 244				14.25 dBm
Ref Level 27.78 Att 40 SGL TRG:VID 1Pk Cirw 20 dBm 20	dBm Offset 7	7.78 dB 🖷	RBW 1 MHz		[1]			
Ref Level 27.78 Att 40 SGL TRG:VID PIPK Clrw	dBm Offset 7	7.78 dB 🖷	RBW 1 MHz	M1	[1]			14.25 dBm 26.00 μs -0.50 dB
Ref Level 27.78 Att 40 SGL TRG: VID 1Pk Clrw 20 dBm 10 dBm	dBm Offset 7	7.78 dB 🖷	RBW 1 MHz	M1 D1	[1]			14.25 dBm 26.00 μs -0.50 dB
Ref Level 27.78 Att 40 SGL TRG: VID 1Pk Clrw 20 dBm 10 dBm -10 dBm	dBm Offset 7	7.78 dB • 3 ms •	RBW 1 MHz	M1 D1	[1]	4444444		14.25 dBm 26.00 μs -0.50 dB
Ref Level 27.78 Att 40 SGL TRG: VID 1Pk Clrw 20 dBm 10 dBm -10 dBm	dBm Offset 7	7.78 dB • 3 ms •	RBW 1 MHz	M1 D1	[1]			14.25 dBm 26.00 μs -0.50 dB
Ref Level 27.78 Att 40 SGL TRG: VID ● 1Pk Clrw 20 dBm 10 dBm 0 dBm -10 dBm -20 dBm TRG -2	dBm Offset 7	7.78 dB • 3 ms •	RBW 1 MHz	M1 D1	[1]			14.25 dBm 26.00 μs -0.50 dB
Ref Level 27.78 Att 40 SGL TRG: VID 1Pk Clrw 20 dBm 10 dBm 0 dBm -10 dBm -20 dBm TRG -2 -30 dBm	dBm Offset 7	7.78 dB • 3 ms •	RBW 1 MHz	M1 D1	[1]			14.25 dBm 26.00 µs -0.50 dB 62900 ms
Ref Level 27.78 Att 40 SGL TRG: VID • 1Pk Clrw 20 dBm 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm	dBm Offset 7	7.78 dB • 3 ms •	RBW 1 MHz	M1 D1	[1]			14.25 dBm 26.00 µs -0.50 dB 62900 ms
Ref Level 27.78 Att 40 SGL TRG:VID •1Pk Clrw 20 dBm 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -50 dBm -60 dBm	dBm Offset 7	7.78 dB • 3 ms •	RBW 1 MHz VBW 1 MHz	M1 D1	[1]			14.25 dBm 26.00 µs -0.50 dB 62900 ms
Ref Level 27.78 Att 44 SGL TRG: VID 44 9 1Pk Clrw 20 dBm 10 dBm 0 dBm -10 dBm - -20 dBm TRG -2 -30 dBm - -50 dBm - -60 dBm - -70 dBm - -70 dBm -	dBm Offset 7	7.78 dB • 3 ms •	RBW 1 MHz	M1 D1	[1]			14.25 dBm 26.00 µs -0.50 dB 62900 ms
Ref Level 27.78 Att 40 SGL TRG: VID 40 SGL TRG: VID 40 1Pk Cirw 20 20 dBm 10 10 dBm 10 -10 dBm 10 -20 dBm TRG -20 dBm -20 -30 dBm -30 -50 dBm -60 -70 dBm -70 CF 2.441 GHZ Marker Type Ref Trc	D.020 dBm	7.78 dB • 3 ms •	RBW 1 MHz VBW 1 MHz	M1 D1	[1] [1] [] ^{/Tr} /lp4++##/^			14.25 dBm 26.00 μs -0.50 dB .62900 ms
Ref Level 27.78 Att 40 SGL TRG: VID 40 9 1Pk Clrw 20 dBm 20 dBm 10 dBm 10 dBm - -10 dBm - -20 dBm TRG -2 -30 dBm - -50 dBm - -60 dBm - -70 dBm - CF 2.441 GHz Marker	Dem Offset 7	7.78 dB • 3 ms •	RBW 1 MHz VBW 1 MHz	M1 D1	[1] [1] [] ^{/Tr} /lp4++##/^			14.25 dBm 26.00 μs -0.50 dB .62900 ms

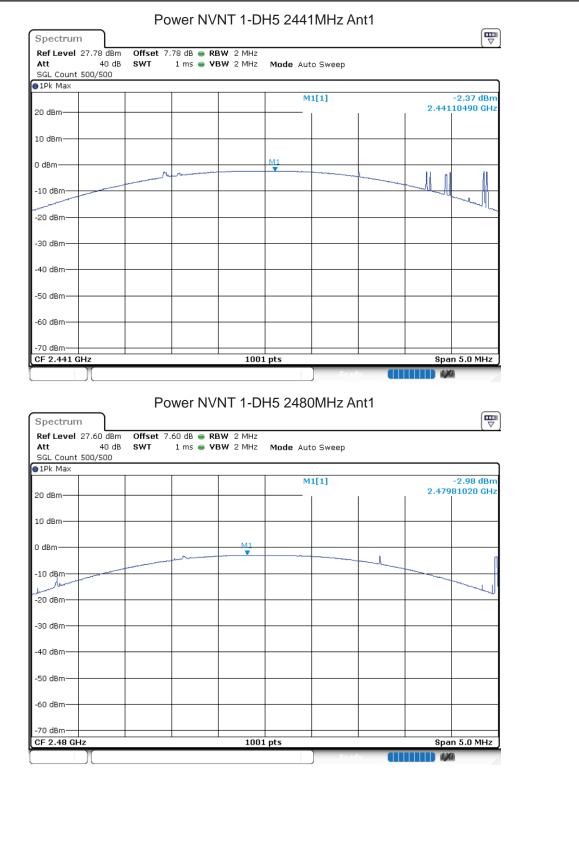
Ref Level 27.78 dB	m Offset 7.78 dB	🔵 RBW 1 MHz					
	B 🕳 SWT 8 ms	🔵 VBW 1 MHz					
SGL TRG: VID							
1Pk Clrw							
			M1[1]			-	11.94 dBm
20 dBm							32.00 µs
			D1[1]				-1.49 dB
10 dBm				1	1	2	.87200 ms
0.40							
0 dBm							
-10 dBm	I TANK ALSO A DAMAGE A TANK	a					
-10 dBill	ollowing the second of the sec	worden and worder and the second s					
-20 dBm TRG -20.0	120 dBm	•					
-30 dBm							
nan an ha			1	المالات.	a. de l	و الله ساله ال	للانجا وبالان
lubblenthinght			Upphally and the	MANA WANTA	<u>nupyuuly</u> nii	b Alvhu Waller bud	narditertikeringer
			··· 0	· []	· •		
-50 dBm							
-60 dBm	+ +						
-70 dBm CF 2.441 GHz		1001	ntc				000 0 /
		1001	μις				800.0 µs/
Marker	V_11=1	V	Function	1	F	tion Beault	
Type Ref Trc M1 1	<u>X-value</u> 32.0 μs	<u>Y-value</u> -11.94 dBm			Func	tion Result	
D1 M1 1	2.872 ms	-11.94 UBr					
· _	_	INVNT 3-E	DH1 2441	MHz			
Ref Level 27.78 dB	m Offset 7.78 dB	-	DH1 2441	MHz			
Ref Level 27.78 dB Att 40 d SGL TRG: VID	m Offset 7.78 dB	RBW 1 MHz	DH1 2441	MHz			
Ref Level 27.78 dB Att 40 d SGL TRG: VID	m Offset 7.78 dB	RBW 1 MHz					
Att 40 d SGL TRG: VID 1Pk Clrw	m Offset 7.78 dB	RBW 1 MHz	DH1 2441				-5.15 dBm
Ref Level 27.78 dBi Att 40 d SGL TRG: VID) 1Pk Clrw	m Offset 7.78 dB	RBW 1 MHz	M1[1]				-5.15 dBm 2.00 μs
Ref Level 27.78 dBi Att 40 d SGL TRG:VID 1Pk Clrw 20 dBm	m Offset 7.78 dB	RBW 1 MHz					-5.15 dBm 2.00 μs -3.16 dB
Ref Level 27.78 dBi Att 40 d SGL TRG: VID 1Pk Clrw 20 dBm	m Offset 7.78 dB	RBW 1 MHz	M1[1]				-5.15 dBm 2.00 μs
Ref Level 27.78 dB Att 40 d SGL TRG:VID PIPk Cirw 20 dBm 10 dBm	m Offset 7.78 dB	RBW 1 MHz	M1[1]				-5.15 dBm 2.00 μs -3.16 dB
Ref Level 27.78 dB Att 40 d SGL TRG:VID IPk Clrw 20 dBm 10 dBm	m Offset 7.78 dB	RBW 1 MHz	M1[1]				-5.15 dBm 2.00 μs -3.16 dB
Ref Level 27.78 dB Att 40 d SGL TRG:VID IPk Clrw 20 dBm 10 dBm 0 dBm	m Offset 7.78 dB B SWT 2 ms	RBW 1 MHz VBW 1 MHz	M1[1]				-5.15 dBm 2.00 μs -3.16 dB
Ref Level 27.78 dB Att 40 d SGL TRG:VID IPk Clrw 20 dBm 10 dBm	m Offset 7.78 dB B SWT 2 ms	RBW 1 MHz VBW 1 MHz	M1[1]				-5.15 dBm 2.00 μs -3.16 dB
Ref Level 27.78 dB Att 40 d SGL TRG: VID >IPk Clrw 20 dBm 10 dBm 0 dBm -10-dBm TRG -10.0	m Offset 7.78 dB B SWT 2 ms	RBW 1 MHz VBW 1 MHz	M1[1]				-5.15 dBm 2.00 μs -3.16 dB
Ref Level 27.78 dB Att 40 d SGL TRG:VID 10k Clrw 20 dBm 10 dBm 0 dBm 0 dBm	m Offset 7.78 dB B SWT 2 ms	RBW 1 MHz VBW 1 MHz	M1[1]				-5.15 dBm 2.00 μs -3.16 dB
Ref Level 27.78 dB Att 40 d SGL TRG: VID IPk Cirw 20 dBm 10 dBm 0 dBm -10 dBm -20 dBm	m Offset 7.78 dB B SWT 2 ms	RBW 1 MHz VBW 1 MHz	M1[1]				-5.15 dBm 2.00 μs -3.16 dB
Ref Level 27.78 dB Att 40 d SGL TRG: VID IPk Clrw 20 dBm 10 dBm 0 dBm -10 dBm TRG -10.0	m Offset 7.78 dB B SWT 2 ms	RBW 1 MHz VBW 1 MHz	M1[1]				-5.15 dBm 2.00 μs -3.16 dB
Ref Level 27.78 dB Att 40 d SGL TRG:VID IPk Clrw 20 dBm 10 dBm 0 dBm -10 dBm -20 dBm	m Offset 7.78 dB B SWT 2 ms	RBW 1 MHz VBW 1 MHz	M1[1]			#HL.1947446	-5.15 dBm 2.00 μs -3.16 dB
Ref Level 27.78 dB Att 40 d SGL TRG: VID IPk CIrw 20 dBm 10 dBm 0 dBm -20 dBm -30 dBm	m Offset 7.78 dB B SWT 2 ms	RBW 1 MHz VBW 1 MHz	M1[1]				-5.15 dBm 2.00 μs -3.16 dB
Ref Level 27.78 dB Att 40 d SGL TRG: VID 10 dBm 10 dBm 0 dBm -10 dBm TRG -20 dBm -10.0	m Offset 7.78 dB B SWT 2 ms	RBW 1 MHz VBW 1 MHz	M1[1]			Martha	-5.15 dBm 2.00 μs -3.16 dB
Ref Level 27.78 dB Att 40 d SGL TRG: VID 1Pk Clrw 1Pk Clrw 20 dBm 10 dBm 0 dBm -10 dBm TRG -10.0 -20 dBm -30 dBm -30 dBm -30 dBm	m Offset 7.78 dB B SWT 2 ms	RBW 1 MHz VBW 1 MHz	M1[1]				-5.15 dBm 2.00 μs -3.16 dB
Ref Level 27.78 dB Att 40 d SGL TRG: VID IPk CIrw 20 dBm 10 dBm 0 dBm -20 dBm -30 dBm	m Offset 7.78 dB B SWT 2 ms	RBW 1 MHz VBW 1 MHz	M1[1]				-5.15 dBm 2.00 μs -3.16 dB
Ref Level 27.78 dB Att 40 d SGL TRG: VID 10k Cirw 10 dBm 20 dBm 10 dBm 0 dBm -10 dBm TRG -20 dBm -30 dBm -30 dBm -50 dBm	m Offset 7.78 dB B SWT 2 ms	RBW 1 MHz VBW 1 MHz	M1[1]			Mutruttur	-5.15 dBm 2.00 μs -3.16 dB
Ref Level 27.78 dB Att 40 d SGL TRG: VID 10k Clrw 20 dBm 10 dBm 10 dBm 0 dBm -10 dBm TRG -10.0 -20 dBm -30 dBm -30 dBm -60 dBm	m Offset 7.78 dB B SWT 2 ms	RBW 1 MHz VBW 1 MHz	M1[1]			Mill prof for front	-5.15 dBm 2.00 μs -3.16 dB 406.00 μs
Ref Level 27.78 dB Att 40 d SGL TRG: VID 10 kCrw 10 dBm 20 dBm 10 dBm 70 dBm -20 dBm -10.0 -20 dBm -10.0 -20 dBm -30 dBm -30 dBm -60 dBm -60 dBm -70 dBm -70 dBm -70 dBm	m Offset 7.78 dB B SWT 2 ms	RBW 1 MHz VBW 1 MHz	M1[1]				-5.15 dBm 2.00 μs -3.16 dB
Ref Level 27.78 dB Att 40 d SGL TRG: VID 10 kCrw 10 dBm 20 dBm 10 dBm 70 dBm -20 dBm 786 -10.0 -20 dBm -10.0 -20 dBm -30 dBm -30 dBm -30 dBm -70 dBm -60 dBm -70 dBm -70 dBm -70 dBm -70 dBm -70 dBm -70 dBm	m Offset 7.78 dB B SWT 2 ms	RBW 1 MHz VBW 1 MHz	M1[1] D1[1] 				-5.15 dBm 2.00 μs -3.16 dB 406.00 μs
Ref Level 27.78 dB Att 40 d SGL TRG: VID 10k Clrw 20 dBm 20 dBm 10 dBm 0 dBm -10 dBm TRG -20 dBm -10.0 -20 dBm -60 dBm -50 dBm -60 dBm -60 dBm -60 dBm -70 dBm CF 2.441 GHz Marker Type Type Ref Trc	m Offset 7.78 dB B SWT 2 ms	RBW 1 MHz VBW 1 MHz VBW 1 MHz	M1[1] D1[1]		Func	tion Result	-5.15 dBm 2.00 μs -3.16 dB 406.00 μs
Ref Level 27.78 dB Att 40 d SGL TRG: VID 10 dBm 10 dBm 0 10 dBm 70 dBm -20 dBm TRG -30 dBm -10.0 -30 dBm -0.0 -70 dBm -0.0 -70 dBm -70 dBm -70 dBm -70 dBm	m Offset 7.78 dB B SWT 2 ms	RBW 1 MHz VBW 1 MHz VBW 1 MHz	M1[1]		Func		-5.15 dBm 2.00 μs -3.16 dB 406.00 μs
Ref Level 27.78 dB Att 40 d SGL TRG: VID 10k Clrw 20 dBm 20 dBm 10 dBm 0 dBm -10 dBm TRG -20 dBm -10.0 -20 dBm -60 dBm -50 dBm -60 dBm -60 dBm -60 dBm -70 dBm CF 2.441 GHz Marker Type Type Ref Trc	m Offset 7.78 dB B SWT 2 ms	RBW 1 MHz VBW 1 MHz VBW 1 MHz	M1[1]		Func		-5.15 dBm 2.00 μs -3.16 dB 406.00 μs

ACCREDITED

Ref Leve Att	el 27		n Offs B 👄 SW			RBW 1 MH VBW 1 MH							
SGL TRG:							-						
●1Pk Clrw	,							M1	[1]			-4.98 dBm	
20 dBm—	_						_					2.00 µs	
10 dBm—								D1	[1]		1	-2.13 dB L.65600 ms	
10 000													
0 dBm—			-		M1						an marganet		
-10 dBm		3 -10.0	20 dBm-			her of the word.	-1-1-1-1	mbi - oo dadh	an human frame	r-Duralmerandranske	Allowing and a second s		
-20 dBm—													
-30 dBm—													
hippop	the state	WARD	MANA		u .		_				ļ	http://www.	
-50 dBm-	ווי	0 400		* * 1 *								.0 00 0. ··· 10	
-60 dBm—			-										
-70 dBm—						+							
CF 2.441 Marker	GHz					10	01 pt	5				300.0 µs/	
Type R	tef	Trc	X-1	alue		Y-value		Funct	ion	Fund	tion Result		
M1 D1	M1	1		2.	0 µs	-4.98							
	1112	<u> </u>		1.000	5 1115	2.1	5 ab 1					74	
Spectru			n Offe					-15 24	41MHz]
Ref Leve Att	el 27		n Offs B e SW	et 7.7	8 dB 👄	NVNT 3	Iz	H5 24	41MHz]
Ref Leve	el 27			et 7.7	8 dB 👄	RBW 1 MH	Iz			<u>.</u>]
Ref Leve Att SGL TRG: 1Pk Cirw	el 27			et 7.7	8 dB 👄	RBW 1 MH	Iz		41MHz			11.96 dBm]
Ref Leve Att SGL TRG:	el 27			et 7.7	8 dB 👄	RBW 1 MH	Iz	M1		: 		11.96 dBm -128.00 µs 0.51 dB	
Ref Leve Att SGL TRG: 1Pk Cirw	el 27			et 7.7	8 dB 👄	RBW 1 MH	Iz	M1	.[1]			11.96 dBm -128.00 µs	
Ref Leve Att SGL TRG: 1Pk Clrw 20 dBm-	el 27			et 7.7	8 dB 👄	RBW 1 MH	Iz	M1	.[1]			11.96 dBm -128.00 µs 0.51 dB	
Ref Leve Att SGL TRG: 1Pk Clrw 20 dBm- 10 dBm- 0 dBm-	VID	40 d	B • SW	set 7.7	8 dB 🖷 8 ms 🖷	RBW 1 MH	Iz	M1	.[1]	<u></u>		11.96 dBm -128.00 µs 0.51 dB]
Ref Leve Att SGL TRG: 1Pk Clrw 20 dBm— 10 dBm— 0 dBm— -10 dBm	VID	40 d	B • SW	set 7.7	8 dB 🖷 8 ms 🖷	RBW 1 MH	Iz	M1	.[1]			11.96 dBm -128.00 µs 0.51 dB	
Ref Leve Att SGL TRG: 1Pk Clrw 20 dBm- 10 dBm- 0 dBm-	VID	40 d	B • SW	set 7.7	8 dB 🖷 8 ms 🖷	RBW 1 MH	Iz	M1	.[1]			11.96 dBm -128.00 µs 0.51 dB	
Ref Leve Att SGL TRG: 1Pk Clrw 20 dBm— 10 dBm— 0 dBm— -10 dBm	VID	40 d	B • SW	set 7.7	8 dB 🖷 8 ms 🖷	RBW 1 MH			[1]		2	11.96 dBm -128.00 µs 0.51 dB 2.86400 ms	
Ref Leve Att SGL TRG: 1Pk Clrw 20 dBm- 10 dBm- 0 dBm- -10 dBm-	el 27	40 d	B • SW	set 7.7	8 dB 🖷 8 ms 🖷	RBW 1 MH			[1]		2	11.96 dBm -128.00 µs 0.51 dB 2.86400 ms	
Ref Leve Att SGL TRG: 1Pk Cirw 20 dBm- 10 dBm- -10 dBm- -20 dBm- -30 dBm-	el 27	40 d	B • SW	set 7.7	8 dB 🖷 8 ms 🖷	RBW 1 MH			[1]		2	11.96 dBm -128.00 µs 0.51 dB 2.86400 ms	
Ref Leve Att SGL TRG: 1Pk Clrw 20 dBm- 0 dBm- -10 dBm- -20 dBm- -30 dBm- -30 dBm-	el 27	40 d	B • SW	set 7.7	8 dB 🖷 8 ms 🖷	RBW 1 MH			[1]		2	11.96 dBm -128.00 µs 0.51 dB 2.86400 ms	
Ref Leve Att SGL TRG: 1Pk Cirw 20 dBm- 10 dBm- -10 dBm- -20 dBm- -30 dBm-	el 27	40 d	B • SW	set 7.7	8 dB 🖷 8 ms 🖷	RBW 1 MH			[1]		2	11.96 dBm -128.00 µs 0.51 dB 2.86400 ms	
Ref Leve Att SGL TRG: 1Pk Cirw 20 dBm- 10 dBm- 0 dBm- -20 dBm- -30 dBm- -30 dBm- -50 dBm- -60 dBm- -70 dBm-		40 d	B • SW	set 7.7	8 dB 🖷 8 ms 🖷	RBW 1 MH		 	[1]		2 Mgrafingerpsjilder	11.96 dBm -128.00 μs 0.51 dB 2.86400 ms	
Ref Leve Att SGL TRG: 1Pk Clrw 20 dBm- 0 dBm- -10 dBm- -20 dBm- -30 dBm- -30 dBm- -50 dBm-		40 d	B • SW	set 7.7	8 dB 🖷 8 ms 🖷	RBW 1 MH		 	[1]		2 Mgrafingerpsjilder	11.96 dBm -128.00 µs 0.51 dB 2.86400 ms	
Ref Level Att SGL TRG: ● 1Pk Clrw 20 dBm 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -30 dBm -50 dBm -60 dBm -70 dBm		40 d	20,dBmbr	set 7.7	8 dB • 8 ms •	RBW 1 MH		 	[1] [1]		2 Mgrafingerpsjilder	11.96 dBm -128.00 µs 0.51 dB 2.86400 ms	
Ref Leve Att SGL TRG: ● 1Pk Cirw 20 dBm 10 dBm 0 dBm -20 dBm -30 dBm -30 dBm -50 dBm -60 dBm -70 dBm Type Type		40 d	20,dBmbr	set 7.7 Γ :	8 dB • 8 ms •	RBW 1 MH VBW 1 MH			[1] [1]		ร ใน _{ไป} ประหาญไปห	11.96 dBm -128.00 µs 0.51 dB 2.86400 ms	

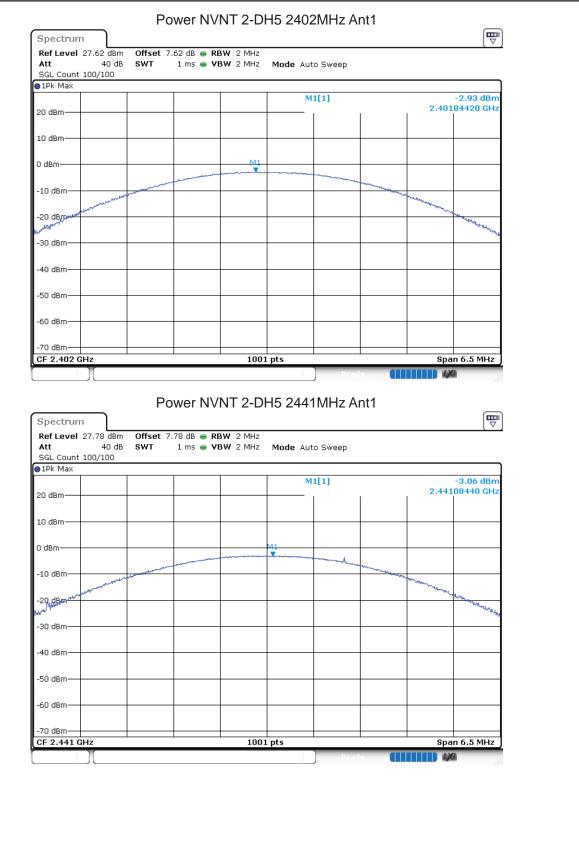
NTEK北测

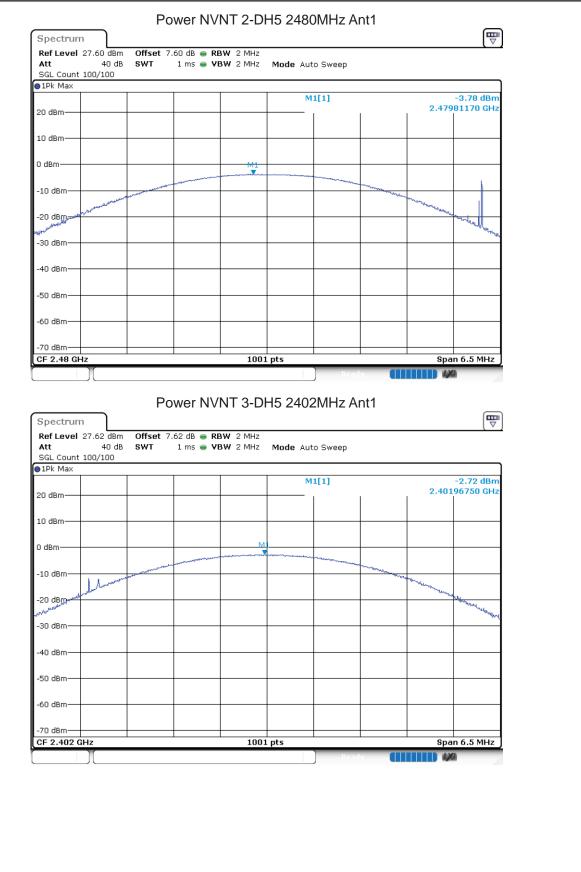
8.2 MAXIMUM CONDUCTED OUTPUT POWER

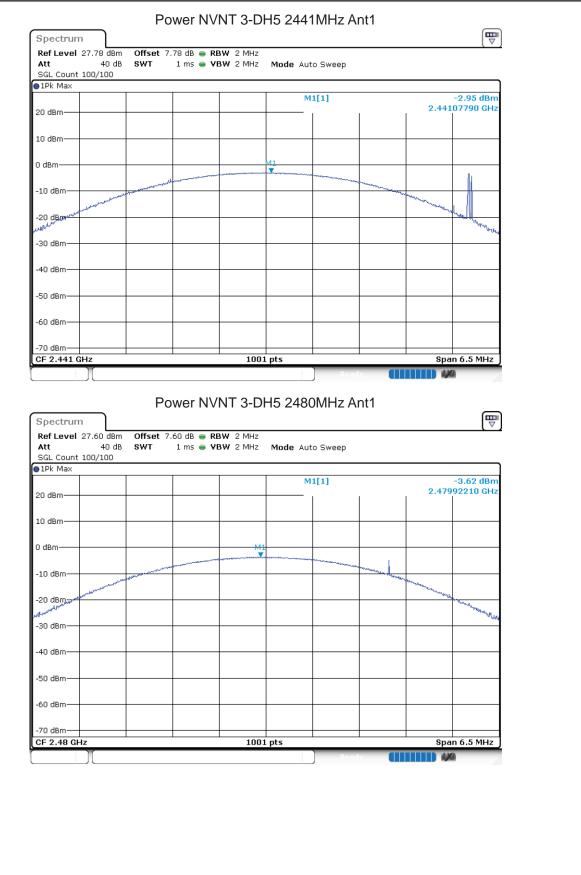

Con	dition	Mode	Frequency (MHz)	Antenna	Power (dBm)	Limit (dBm)	Verdict
N٧	/NT	1-DH5	2402	Ant 1	-2.01	30	Pass
N٧	/NT	1-DH5	2441	Ant 1	-2.37	30	Pass
N٧	/NT	1-DH5	2480	Ant 1	-2.98	30	Pass
N٧	/NT	2-DH5	2402	Ant 1	-2.93	20.97	Pass
N٧	/NT	2-DH5	2441	Ant 1	-3.06	20.97	Pass
N٧	/NT	2-DH5	2480	Ant 1	-3.78	20.97	Pass
N٧	/NT	3-DH5	2402	Ant 1	-2.72	20.97	Pass
N٧	/NT	3-DH5	2441	Ant 1	-2.95	20.97	Pass
N٧	/NT	3-DH5	2480	Ant 1	-3.62	20.97	Pass

Power NVNT 1-DH5 2402MHz Ant1

Spectrum
 Offset
 7.62 dB
 ■
 RBW
 2 MHz


 SWT
 1 ms
 ■
 VBW
 2 MHz
 Ref Level 30.62 dBm 40 dB Att Mode Auto Sweep SGL Count 300/300 ●1Pk Max M1[1] -2.01 dBm 2.40209990 GHz 20 dBm-10 dBm-M: 0 dBmu 10 dBm -20 dBm -30 dBm -40 dBm -50 dBm -60 dBm Span 5.0 MHz CF 2.402 GHz 1001 pts 1


ACCREDITED


ACCREDITED

ACCREDITED

ACCREDITED

Certificate #4298.01

Version.1.3

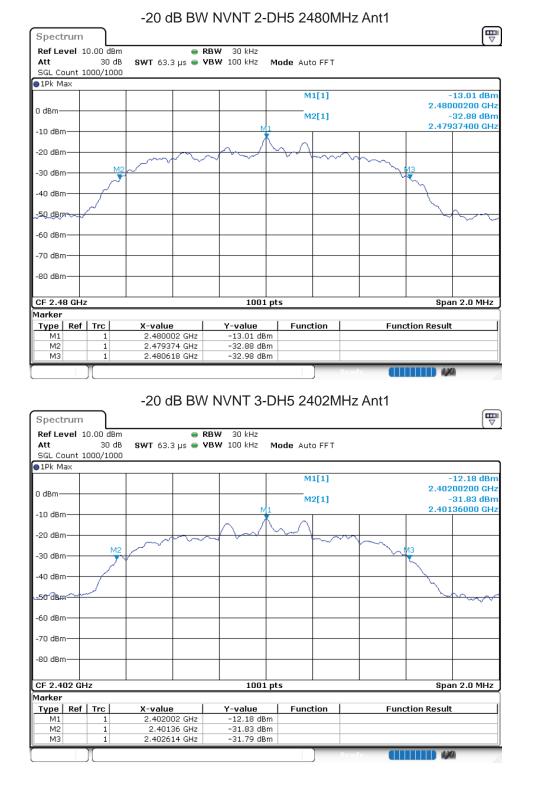
8.3 OCCUPIED CHANNEL BANDWIDTH

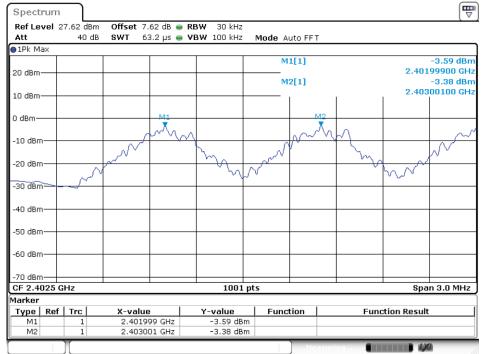
Condition	Mode	Frequency	Antenna	-20 dB	Verdict
		(MHz)		Bandwidth	
				(MHz)	
NVNT	1-DH5	2402	Ant 1	0.868	Pass
NVNT	1-DH5	2441	Ant 1	0.934	Pass
NVNT	1-DH5	2480	Ant 1	0.942	Pass
NVNT	2-DH5	2402	Ant 1	1.24	Pass
NVNT	2-DH5	2441	Ant 1	1.246	Pass
NVNT	2-DH5	2480	Ant 1	1.244	Pass
NVNT	3-DH5	2402	Ant 1	1.254	Pass
NVNT	3-DH5	2441	Ant 1	1.26	Pass
NVNT	3-DH5	2480	Ant 1	1.258	Pass

ACCREDITED

Certificate #4298.01

-20 dB BW NVNT 1-DH5 2402MHz Ant1



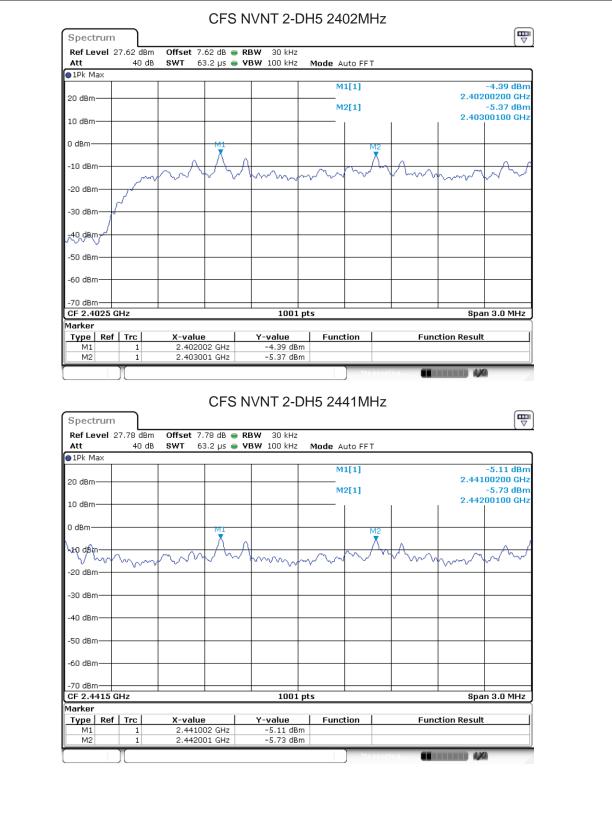

8.4 CARRIER FREQUENCIES SEPARATION

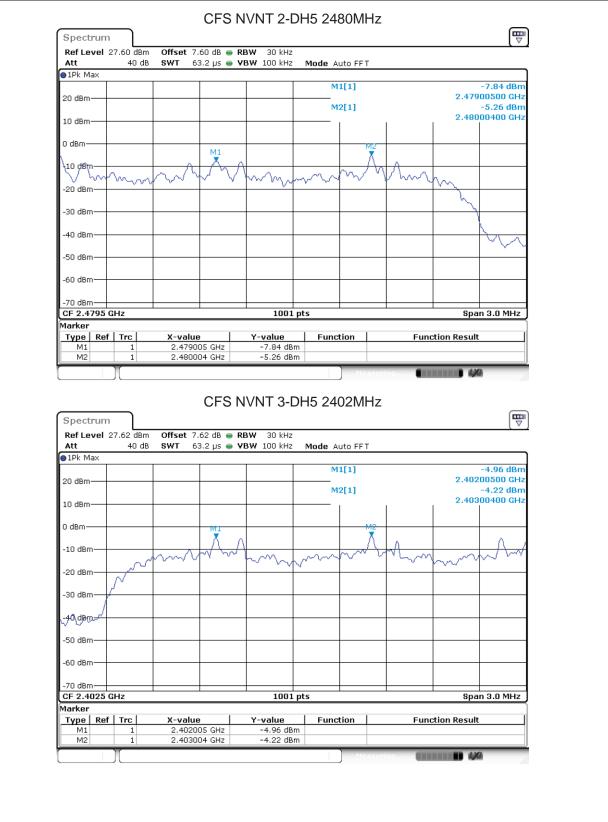
Condition	Mode	Hopping Freq1	Hopping Freq2	HFS	Limit	Verdict
		(MHz)	(MHz)	(MHz)	(MHz)	
NVNT	1-DH5	2401.999	2403.001	1.002	0.868	Pass
NVNT	1-DH5	2441.002	2442.001	0.999	0.934	Pass
NVNT	1-DH5	2479.005	2480.004	0.999	0.942	Fail
NVNT	2-DH5	2402.002	2403.001	0.999	0.827	Pass
NVNT	2-DH5	2441.002	2442.001	0.999	0.831	Pass
NVNT	2-DH5	2479.005	2480.004	0.999	0.829	Pass
NVNT	3-DH5	2402.005	2403.004	0.999	0.836	Pass
NVNT	3-DH5	2441.002	2442.004	1.002	0.84	Pass
NVNT	3-DH5	2479.002	2480.004	1.002	0.839	Pass

ACCREDITED

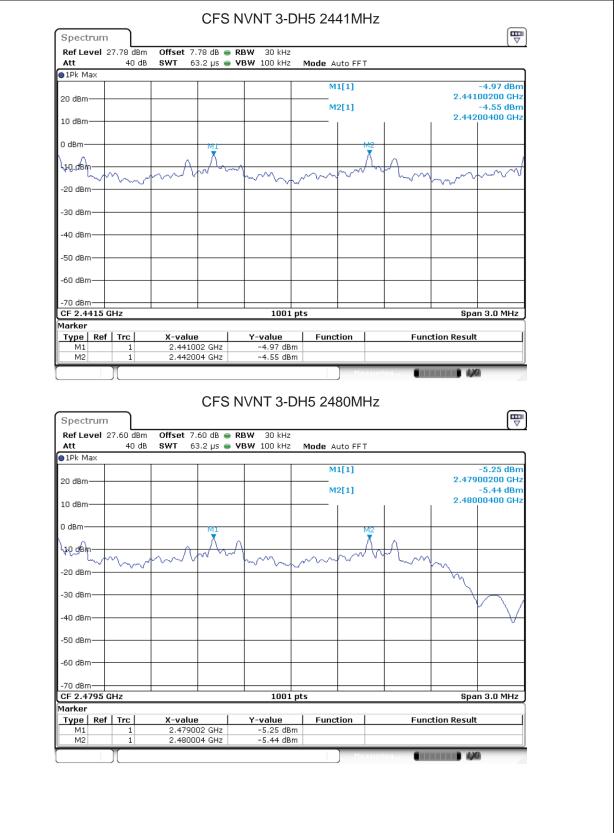
Certificate #4298.01

CFS NVNT 1-DH5 2402MHz





ACCREDITED



8.5 NUMBER OF HOPPING CHANNEL Condition Mode Hopping Number Limit Verdict **NVNT** 1-DH5 Pass 79 15 Hopping No. NVNT 1-DH5 2402MHz Spectrum Offset 7.62 dB 🖷 RBW 100 kHz Ref Level 27.62 dBm 40 dB 1 ms 🖷 VBW 300 kHz Att SWT Mode Auto Sweep SGL Count 7000/7000 ●1Pk Max M1[1] -2.85 dBm 2.4020040 GHz 20 dBm M2[1] 2.38 dBm 2.4799095 GHz 10 dBm-M2 o∰8m NAN. 180807 888866666 NAAAAA 80800 0 dBn 30 dBm 40 dBm -50 dBm -60 dBm -70 dBm Start 2.4 GHz 1001 pts Stop 2.4835 GHz Marker Type Ref Trc Function **Function Result** 2.402004 GHz Y-value -2.85 dBm M1 1 1 M2 2.4799095 GHz 2.38 dBm

ACCREDITED

8.6 BAND EDGE

0.0 DAND LD	GL						
Condition	Mode	Frequency	Antenna	Hopping	Max Value	Limit	Verdict
		(MHz)		Mode	(dBc)	(dBc)	
NVNT	1-DH5	2402	Ant 1	No-Hopping	-38.36	-20	Pass
NVNT	1-DH5	2402	Ant 1	Hopping	-38.26	-20	Pass
NVNT	1-DH5	2480	Ant 1	No-Hopping	-44.98	-20	Pass
NVNT	1-DH5	2480	Ant 1	Hopping	-44.82	-20	Pass
NVNT	2-DH5	2402	Ant 1	No-Hopping	-36.02	-20	Pass
NVNT	2-DH5	2402	Ant 1	Hopping	-37.5	-20	Pass
NVNT	2-DH5	2480	Ant 1	No-Hopping	-38.74	-20	Pass
NVNT	2-DH5	2480	Ant 1	Hopping	-37.98	-20	Pass
NVNT	3-DH5	2402	Ant 1	No-Hopping	-38.49	-20	Pass
NVNT	3-DH5	2402	Ant 1	Hopping	-36.54	-20	Pass
NVNT	3-DH5	2480	Ant 1	No-Hopping	-37.53	-20	Pass
NVNT	3-DH5	2480	Ant 1	Hopping	-38.21	-20	Pass

Band Edge NVNT 1-DH5 2402MHz Ant1 No-Hopping Ref Spectrum Ref Level 27.62 dBm Offset 7.62 dB 🖷 RBW 100 kHz Mode Auto FFT ●1Pk Max -3.02 dBm 2.40195200 GHz M1[1] 20 dBm-10 dBm-0 dBm -10 dBm -20 dBm -30 dBm -40 dBm -50 dBm -60 dBm

1001 pts

-70 dBm-

CF 2.402 GHz

Span 8.0 MHz

RefLevel 27.62 dBm Offset 7.62 dB ● R Att 40 dB SWT 227.5 μs ● V SGL Count 100/100 ● 1Pk Max		
)1Pk Max	BW 500 kHz Mode Auto FFT	
20 dBm	M1[1]	-2.41 dBm
20 UBIII	MILI	2.40215000 GHz
	M2[1]	-32.82 dBm
10 dBm		2.4000000 GHz
D dBm		M1
-10 dBm		NP 1
-20 dBm		01
-30 dBm		M2
M4		
40 dBm		M3 M3
ordenalle all and white the second of the se	ware some war and war and war and ward	hallow and the stand the stand the stand the stand of the
-60 dBm		
-70 dBm		
Start 2.306 GHz	1001 pts	Stop 2.406 GHz
larker Type Ref Trc X-value	Y-value Function	Function Result
M1 1 2.40215 GHz	-2.41 dBm	Function Result
M2 1 2.4 GHz	-32.82 dBm	
M3 1 2.39 GHz M4 1 2.3409 GHz	-46.57 dBm -41.39 dBm	
Ref Level 27.62 dBm Offset 7.62 dB 🖷 RB		
Att 40 dB SWT 18.9 μs 👄 VE SGL Count 8000/8000	3W 300 kHz Mode Auto FFT	
1Pk Max		
	M1[1]	-2.34 dBm
20 dBm		2.40315880 GHz
10 dBm		
D dBm	M1	
		m m
-10 dBm		
	$ \land \land \land \land $	
-20 dBm		
-20 dBm		
-30 dBm		
-30 dBm		

Att SGL Count 12	40 dB 00/1200	SWT 22	?7.5 μs 😑 🖌	'BW 300 kH:	2 Mode /	Auto FFT			
●1Pk Max					м	1[1]			-2.39 dBm
20 dBm									315000 GHz
10 dBm					M	2[1]			-44.36 dBm 000000 GHz
0 dBm									M1
-10 dBm									<u>hnnn</u>
-20 dBm-01	-22.338	dBm							ĮVIIN
-30 dBm	-22.330	ubiii							
-40 dBm			M4					1/13	Ma
100 dBm	dural falm	Nonnandor	any muchand	www.	harlowedayhol	www.	www.www.	bound with the	error month
-60 dBm									
-70 dBm									
Start 2.306 G	Hz			1001	pts			Stop	2.406 GHz
Marker Type Ref	Trc	X-value	· I	Y-value	Func	tion	Fun	ction Resul	t I
	1	2.4031	15 GHz .4 GHz	-2.39 dBi -44.36 dBi	m				
M1	4			-++.30 aBI					
M2 M3	1	2.38	37 GHz	-44.91 dB					
M2 M3 M4 Spectrum Ref Level 27 Att	1 1 Band .60 dBm 40 dB	2.38 2.340 Edge N' Offset 7.	7 GHZ 06 GHZ VNT 1-[60 dB • RE	-44.91 dBi -40.60 dBi DH5 248 3w 100 kHz 3w 100 kHz 3w 300 kHz	80MHz /		o-Hoppi	ng Ref	
M2 M3 M4 Spectrum Ref Level 27 Att SGL Count 10	1 1 Band .60 dBm 40 dB	2.38 2.340 Edge N' Offset 7.	7 GHZ 06 GHZ VNT 1-[60 dB • RE	-40.60 dBi DH5 248 3W 100 kHz	80MHz /		o-Hoppi	ng Ref	
M2 M3 M4 Spectrum Ref Level 27 Att	1 1 Band .60 dBm 40 dB	2.38 2.340 Edge N' Offset 7.	7 GHZ 06 GHZ VNT 1-[60 dB • RE	-40.60 dBi DH5 248 3W 100 kHz	Mode A		₄v (∎		1.79 dBm
M2 M3 M4 Spectrum Ref Level 27 Att SGL Count 10	1 1 Band .60 dBm 40 dB	2.38 2.340 Edge N' Offset 7.	7 GHZ 06 GHZ VNT 1-[60 dB • RE	-40.60 dBi DH5 248 3W 100 kHz	Mode A	uto FFT	o-Hoppi		
M2 M3 M4 Spectrum Ref Level 27 Att SGL Count 10 1Pk Max 20 dBm	1 1 Band .60 dBm 40 dB	2.38 2.340 Edge N' Offset 7.	7 GHZ 06 GHZ VNT 1-[60 dB • RE	-40.60 dBi DH5 248 3W 100 kHz	Mode A	uto FFT	o-Hoppi		1.79 dBm
M2 M3 M4 Spectrum Ref Level 27 Att SGL Count 10 1Pk Max 20 dBm 10 dBm	1 1 Band .60 dBm 40 dB	2.38 2.340 Edge N' Offset 7.	7 GHZ 06 GHZ VNT 1-[60 dB • RE	-40.60 dBi	Mode A	uto FFT	o-Hoppi		1.79 dBm
M2 M3 M4 Spectrum Ref Level 27 Att SGL Count 10 1Pk Max	1 1 Band .60 dBm 40 dB	2.38 2.340 Edge N' Offset 7.	7 GHZ 06 GHZ VNT 1-[60 dB • RE	-40.60 dBi	Mode A	uto FFT	o-Hoppi		1.79 dBm
M2 M3 M4 Spectrum Ref Level 27 Att SGL Count 10 1Pk Max 20 dBm 10 dBm	1 1 Band .60 dBm 40 dB	2.38 2.340 Edge N' Offset 7.	7 GHZ 06 GHZ VNT 1-[60 dB • RE	-40.60 dBi	Mode A	uto FFT	dv III		1.79 dBm
M2 M3 M4 Spectrum Ref Level 27 Att SGL Count 10 1Pk Max 20 dBm 10 dBm 0 dBm	1 1 Band .60 dBm 40 dB	2.38 2.340 Edge N' Offset 7.	7 GHZ 06 GHZ VNT 1-[60 dB • RE	-40.60 dBi	Mode A	uto FFT	o-Hoppi		1.79 dBm
M2 M3 M4 M4 Spectrum Ref Level 27 Att SGL Count 10 1Pk Max 20 dBm 10 dBm 0 dBm -10 dBm -20 dBm	1 1 Band .60 dBm 40 dB	2.38 2.340 Edge N' Offset 7.	7 GHZ 06 GHZ VNT 1-[60 dB • RE	-40.60 dBi	Mode A	uto FFT	o-Hoppi		1.79 dBm
M2 M3 M3 M4 Spectrum Ref Level 27 Att SGL Count 10 1Pk Max 20 dBm 10 dBm 0 dBm -10 dBm -10 dBm	1 1 Band .60 dBm 40 dB	2.38 2.340 Edge N' Offset 7.	7 GHZ 06 GHZ VNT 1-[60 dB • RE	-40.60 dBi	Mode A	uto FFT	o-Hoppi		1.79 dBm
M2 M3 M4 M4 Spectrum Ref Level 27 Att SGL Count 10 1Pk Max 20 dBm 10 dBm 0 dBm -10 dBm -20 dBm	1 1 Band .60 dBm 40 dB	2.38 2.340 Edge N' Offset 7.	7 GHZ 06 GHZ VNT 1-[60 dB • RE	-40.60 dBi	Mode A	uto FFT	o-Hoppi		1.79 dBm
M2 M3 M4 M4 Spectrum Ref Level 27 Att SGL Count 10 1Pk Max 20 dBm 10 dBm 0 -10 dBm - -20 dBm - -30 dBm -	1 1 Band .60 dBm 40 dB	2.38 2.340 Edge N' Offset 7.	7 GHZ 06 GHZ VNT 1-[60 dB • RE	-40.60 dBi	Mode A	uto FFT			1.79 dBm
M2 M3 M3 M4 Spectrum Ref Level 27 Ref Level 27 Att SGL Count 10 10 1Pk Max 20 dBm - 10 dBm - -10 dBm - -20 dBm - -30 dBm - -50 dBm -	1 1 Band .60 dBm 40 dB	2.38 2.340 Edge N' Offset 7.	7 GHZ 06 GHZ VNT 1-[60 dB • RE	-40.60 dBi	Mode A	uto FFT			1.79 dBm
M2 M3 M3 M4 Spectrum Ref Level 27 Att SGL Count 10 IPk Max 20 dBm 10 dBm 0 -10 dBm - -20 dBm - -30 dBm -	1 1 Band .60 dBm 40 dB	2.38 2.340 Edge N' Offset 7.	7 GHZ 06 GHZ VNT 1-[60 dB • RE	-40.60 dBi	Mode A	uto FFT	o-Hoppi		1.79 dBm
M2 M3 M3 M4 Spectrum Ref Level 27 Ref Level 27 Att SGL Count 10 10 1Pk Max 20 dBm - 10 dBm - -10 dBm - -20 dBm - -30 dBm - -50 dBm -	1 1 Band .60 dBm 40 dB	2.38 2.340 Edge N' Offset 7.	7 GHZ 06 GHZ VNT 1-[60 dB • RE	-40.60 dBi	Mode A	uto FFT		2.48	1.79 dBm

Spectrum Ref Level 2 Att				RBW 100 kH VBW 300 kH		Auto FFT			
SGL Count 1	100/100								
●1Pk Max				1	M	1[1]			1.72 dBm
20 dBm									105000 GHz
10 dBm					M	2[1]			-46.52 dBm 50000 GHz
-10 dBm									
-20 dBm	01 -18.211	dBm 							
-30 dBm									
-40 dam		MA							
-50 dBm	www.	hunnan	ary thurs	Walterphotocycles	ale mariner parties	whethere	manner	multillevile	new way being weithe
-60 dBm							1		
-70 dBm Start 2.476	CH 2			1001	ntc			Ptor	2.576 GHz
Start 2.476 Marker	382			1001	. prs			SLUP	2.370 GH2
Type Ref		X-value		Y-value	Func	tion	Fund	ction Result	:
M1 M2	1		05 GHz 35 GHz	1.72 dB -46.52 dB					
M3	1		95 GHz	-45.35 dB -43.20 dB					
M4									
Spectrum Ref Level 2		ge(Hopp offset 7.	Ding) N	/NT 1-D BW 100 kHz			Ant1 Ho	pping R	ef
Ba Spectrum Ref Level 2 Att SGL Count 8		ge(Hopp offset 7.	Ding) N	VNT 1-D			Ant1 Ho	pping R	
Ba Spectrum Ref Level 2 Att SGL Count 8 • 1Pk Max		ge(Hopp offset 7.	Ding) N	/NT 1-D BW 100 kHz	Mode A		Ant1 Ho		₩ 2.49 dBm
Ba Spectrum Ref Level 2 Att SGL Count 8		ge(Hopp offset 7.	Ding) N	/NT 1-D BW 100 kHz	Mode A	uto FFT	Ant1 Ho		
Ba Spectrum Ref Level 2 Att SGL Count 8 • 1Pk Max		ge(Hopp offset 7.	Ding) N	/NT 1-D BW 100 kHz	Mode A	uto FFT	Ant1 Ho		₩ 2.49 dBm
Ba Spectrum Ref Level 2 Att SGL Count 8 • 1Pk Max 20 dBm		ge(Hopp offset 7.	Ding) N	/NT 1-D BW 100 kHz	Mode A	uto FFT	Ant1 Ho		₩ 2.49 dBm
Ba Spectrum Ref Level 2 Att SGL Count 8 SGL Count 8 IPk Max 20 dBm 10 dBm		ge(Hopp offset 7.	Ding) N	/NT 1-D BW 100 kHz	Mode A	uto FFT	Ant1 Ho		₩ 2.49 dBm
Ba Spectrum Ref Level 2 Att SGL Count 8 SGL Count 8 IPk Max 20 dBm 10 dBm		ge(Hopp offset 7.	Ding) N	/NT 1-D BW 100 kHz	Mode A	uto FFT	Ant1 Ho		₩ 2.49 dBm
Ba Spectrum Ref Level 2 Att SGL Count 8 SGL Count 8 IPK Max 20 dBm 10 dBm		ge(Hopp offset 7.	Ding) N	/NT 1-D BW 100 kHz	Mode A	uto FFT	Ant1 Ho		₩ 2.49 dBm
Ba Spectrum Ref Level 2 Att SGL Count 8 • IPk Max 20 dBm 10 dBm -10 dBm		ge(Hopp offset 7.	Ding) N	/NT 1-D BW 100 kHz	Mode A	uto FFT	Ant1 Ho		₩ 2.49 dBm
Ba Spectrum Ref Level 2 Att SGL Count 8 IPk Max 20 dBm 10 dBm 10 dBm -10 dBm -20 dBm -30 dBm		ge(Hopp offset 7.	Ding) N	/NT 1-D BW 100 kHz	Mode A	uto FFT	Ant1 Ho		₩ 2.49 dBm
Ba Spectrum Ref Level 2 Att SGL Count 8 O IPk Max 20 dBm 10 dBm -10 dBm -20 dBm		ge(Hopp offset 7.	Ding) N	/NT 1-D BW 100 kHz	Mode A	uto FFT			₩ 2.49 dBm
Ba Spectrum Ref Level 2 Att SGL Count 8 IPk Max 20 dBm 10 dBm 10 dBm -10 dBm -20 dBm -30 dBm		ge(Hopp offset 7.	Ding) N	/NT 1-D BW 100 kHz	Mode A	uto FFT			₩ 2.49 dBm
Ba Spectrum Ref Level 2 Att SGL Count 8 IPk Max 20 dBm 10 dBm 10 dBm -10 dBm -20 dBm -30 dBm -40 dBm		ge(Hopp offset 7.	Ding) N	/NT 1-D BW 100 kHz	Mode A	uto FFT			₩ 2.49 dBm
Ba Spectrum Ref Level 2 Att SGL Count 8 I Pk Max 20 dBm 10 dBm 10 dBm -10 dBm -20 dBm -30 dBm -30 dBm -40 dBm -50 dBm -60 dBm		ge(Hopp offset 7.	Ding) N	/NT 1-D BW 100 kHz	Mode A	uto FFT			₩ 2.49 dBm
Ba Spectrum Ref Level 2 Att SGL Count 8 SGL Count 8	ind Edg 27.60 dBm 40 dB 3009/8009	ge(Hopp offset 7.	Ding) N		Mode A	uto FFT		2.480	2.49 dBm 116780 GHz
Ba Spectrum Ref Level 2 Att SGL Count 8 I Pk Max 20 dBm 10 dBm 10 dBm -10 dBm -20 dBm -30 dBm -30 dBm -40 dBm -50 dBm -60 dBm	ind Edg 27.60 dBm 40 dB 3009/8009	ge(Hopp offset 7.	Ding) N	/NT 1-D BW 100 kHz	Mode A	uto FFT		2.480	2.49 dBm 116780 GHz

Ref Level 27 Att	7.60 dBm 40 dB			RBW 100 kH VBW 300 kH		Auto FFT			
SGL Count 12 1Pk Max	200/1200								
					м	1[1]			1.81 dBm
20 dBm					м	2[1]			995000 GHz -43.37 dBm
10 dBm						1	I		350000 GHz
0/dem									
վ ան կերտերություններություններություններություններություններություններություններություններություններություններ									
-20 cBm-D1	-17.506	dBm							
-30 dBm									
-40 dB	M4	<u>M3</u>	. atta Mar					mate	mill pool maller lake
-50 dBm	man	well to the for the second	Mr. M. W. W. W. M.	- Ulphanker hables and	puludana	purplement	wrightlyannan	array	man postrally lyes
-60 dBm									
-70 dBm									
Start 2.476 (GHz		1	1001	1 pts			Stop	2.576 GHz
Marker Type Ref	Trc	X-value	e	Y-value	Func	tion	Fund	tion Resu	lt
M1 M2	1		95 GHz 35 GHz	1.81 dB -43.37 dB					
M3	1		2.5 GHz	-44.43 dB					
M3 M4	Band I	2.49 Edge N Offset 7	112 GHz VNT 2- .62 dB • R	-42.33 dB	ат 02MHz . 2		o-Hoppin	ng Ref	
M3 M4 Spectrum Ref Level 27 Att SGL Count 10	1 Band I	2.49 Edge N Offset 7	112 GHz VNT 2- .62 dB • R	-42.33 dP DH5 24(BW 100 kHz	ат 02MHz . 2		o-Hoppin	ng Ref	
M3 M4 Spectrum Ref Level 27 Att SGL Count 10 • 1Pk Max	1 Band I	2.49 Edge N Offset 7	112 GHz VNT 2- .62 dB • R	-42.33 dP DH5 24(BW 100 kHz	02MHz /		o-Hoppin		-5.10 dBm 199200 GHz
M3 M4 Spectrum Ref Level 27 Att SGL Count 10	1 Band I	2.49 Edge N Offset 7	112 GHz VNT 2- .62 dB • R	-42.33 dP DH5 24(BW 100 kHz	02MHz /	uto FFT	o-Hoppin		-5.10 dBm
M3 M4 Spectrum Ref Level 27 Att SGL Count 10 • 1Pk Max	1 Band I	2.49 Edge N Offset 7	112 GHz VNT 2- .62 dB • R	-42.33 dP DH5 24(BW 100 kHz	02MHz /	uto FFT	o-Hoppin		-5.10 dBm
M3 M4 Spectrum Ref Level 27 Att SGL Count 10 • 1Pk Max 20 dBm	1 Band I	2.49 Edge N Offset 7	112 GHz VNT 2- .62 dB • R	-42.33 dP	02MHz . Mode A	uto FFT	o-Hoppin		-5.10 dBm
M3 M4 Spectrum Ref Level 27 Att SGL Count 10 1Pk Max 20 dBm 10 dBm 0 dBm	1 Band I	2.49 Edge N Offset 7	112 GHz VNT 2- .62 dB • R	-42.33 dP DH5 24(BW 100 kHz	02MHz . Mode A	uto FFT	o-Hoppin		-5.10 dBm
M3 M4 Spectrum Ref Level 27 Att SGL Count 10 • 1Pk Max 20 dBm 10 dBm	1 Band I	2.49 Edge N Offset 7	112 GHz VNT 2- .62 dB • R	-42.33 dP	02MHz . Mode A	uto FFT	o-Hoppin		-5.10 dBm
M3 M4 Spectrum Ref Level 27 Att SGL Count 10 • 1Pk Max 20 dBm 10 dBm 0 dBm	1 Band I	2.49 Edge N Offset 7	112 GHz VNT 2- .62 dB • R	-42.33 dP	02MHz . Mode A	uto FFT	o-Hoppin		-5.10 dBm
M3 M4 Spectrum Ref Level 27 Att SGL Count 10 1Pk Max 20 dBm 10 dBm 0 dBm -10 dBm -20 dBm	1 Band I	2.49 Edge N Offset 7	112 GHz VNT 2- .62 dB • R	-42.33 dP	02MHz . Mode A	uto FFT	o-Hoppin		-5.10 dBm
M3 M4 Spectrum Ref Level 27 Att SGL Count 10 1Pk Max 20 dBm 10 dBm 0 dBm -10 dBm -10 dBm	1 Band I	2.49 Edge N Offset 7	112 GHz VNT 2- .62 dB • R	-42.33 dP	02MHz . Mode A	uto FFT			-5.10 dBm
M3 M4 Spectrum Ref Level 27 Att SGL Count 10 1Pk Max 20 dBm 10 dBm 0 dBm -10 dBm -20 dBm	1 Band I	2.49 Edge N Offset 7	112 GHz VNT 2- .62 dB • R	-42.33 dP	02MHz . Mode A	uto FFT			-5.10 dBm
M3 M4 M4 M4 Spectrum Ref Level 27 Att SGL Count 10 IPk Max 20 dBm 10 dBm 0 dBm -10 dBm	1 Band I	2.49 Edge N Offset 7	112 GHz VNT 2- .62 dB • R	-42.33 dP	02MHz . Mode A	uto FFT			-5.10 dBm
M3 M4 Spectrum Ref Level 27 Att SGL Count 10 IPk Max 20 dBm 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -40 dBm	1 Band I	2.49 Edge N Offset 7	112 GHz VNT 2- .62 dB • R	-42.33 dP	02MHz . Mode A	uto FFT			-5.10 dBm
M3 M4 Spectrum Ref Level 27 Att SGL Count 10 • 1Pk Max 20 dBm 10 dBm - -10 dBm - -20 dBm - -30 dBm - -60 dBm -	1 Band I	2.49 Edge N Offset 7	112 GHz VNT 2- .62 dB • R	-42.33 dP	02MHz . Mode A	uto FFT			-5.10 dBm
M3 M4 Spectrum Ref Level 27 Att SGL Count 10 • IPk Max 20 dBm 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -30 dBm -40 dBm -50 dBm	1 Band I 40 dB 10/100	2.49 Edge N Offset 7	112 GHz VNT 2- .62 dB • R	-42.33 dP	2 Mode A	uto FFT		2.40	-5.10 dBm

Ref Level 27.62		7.62 dB 👄 R					
Att 4 SGL Count 100/1	40 dB SWT .00	227.5 µs 😑 V	′ BW 300 kHz	Mode Auto	FFT		
●1Pk Max							
20 dBm				M1[1]			-5.53 dBm 05000 GHz
10 dBm				M2[1]		-	44.14 dBm
					1	2.400	00000 GHz
0 dBm							
-10 dBm							<u> </u>
-20 dBm							
-30 dBm	5.104 dBm						
		M4					
-40 dBm	Hunderson	U comparte lar ordinal	and another and	una alter hales marke	muchallani	M3	Mure Wa
-50 dBm	o Juli male o controlleto	TOWN TO THE				Can Parothern (
-60 dBm							
-70 dBm							
Start 2.306 GHz	1		1001	pts		Stop 2	2.406 GHz
Marker			V	[ation Drawl	
Type Ref Tro M1		0205 GHz	Y-value -5.53 dBr	n Function	Fun	ction Result	
	1 1	2.4 GHz 2.39 GHz	-44.14 dBr -47.65 dBr				
		3438 GHz	-41.12 dBr				
			12122 001				
Band Spectrum					Hz Ant1 Ho	pping R	ef
Spectrum Ref Level 27.62 Att	Edge(Ho dBm Offset t0 dB swT	pping) N\ 7.62 dB • RE	/NT 2-D			pping Re	
Spectrum Ref Level 27.62 Att 2 SGL Count 8000/	Edge(Ho dBm Offset t0 dB swT	pping) N\ 7.62 dB • RE	/NT 2-D	H5 2402M		pping Re	
Spectrum Ref Level 27.62 Att	Edge(Ho dBm Offset t0 dB swT	pping) N\ 7.62 dB • RE	/NT 2-D	H5 2402M			
Spectrum Ref Level 27.62 Att 2 SGL Count 8000/	Edge(Ho dBm Offset t0 dB swT	pping) N\ 7.62 dB • RE	/NT 2-D	H5 2402M Mode Auto F			
Spectrum Ref Level 27.62 Att 2 SGL Count 8000/ ●1Pk Max 20 dBm	Edge(Ho dBm Offset t0 dB swT	pping) N\ 7.62 dB • RE	/NT 2-D	H5 2402M Mode Auto F			-3.43 dBm
Spectrum Ref Level 27.62 Att 2 SGL Count 8000/ 1Pk Max	Edge(Ho dBm Offset t0 dB swT	pping) N\ 7.62 dB • RE	/NT 2-D	H5 2402M Mode Auto F			-3.43 dBm
Spectrum Ref Level 27.62 Att 2 SGL Count 8000/ 1Pk Max 20 dBm	Edge(Ho dBm Offset t0 dB swT	pping) N\ 7.62 dB • RE	/NT 2-D	H5 2402M Mode Auto F			-3.43 dBm
Spectrum Ref Level 27.62 Att 2 SGL Count 8000/ 1Pk Max 20 dBm 10 dBm	Edge(Ho dBm Offset t0 dB swT	pping) N\ 7.62 dB • RE	/NT 2-D	H5 2402M Mode Auto F			-3.43 dBm
Spectrum Ref Level 27.62 Att 2 SGL Count 8000/ 1Pk Max 20 dBm 10 dBm	Edge(Ho dBm Offset t0 dB swT	pping) N\ 7.62 dB • RE	/NT 2-D	H5 2402M Mode Auto F			-3.43 dBm
Spectrum Ref Level 27.62 Att 2 SGL Count 8000/ 1Pk Max 20 dBm 10 dBm -10 dBm	Edge(Ho dBm Offset t0 dB swT	pping) N\ 7.62 dB • RE	/NT 2-D	H5 2402M Mode Auto F			-3.43 dBm
Spectrum Ref Level 27.62 Att 2 SGL Count 8000/ 1Pk Max 20 dBm 10 dBm 0 dBm	Edge(Ho dBm Offset t0 dB swT	pping) N\ 7.62 dB • RE	/NT 2-D	H5 2402M Mode Auto F			-3.43 dBm
Spectrum Ref Level 27.62 Att 2 SGL Count 8000/ 1Pk Max 20 dBm 10 dBm -10 dBm	Edge(Ho dBm Offset t0 dB swT	pping) N\ 7.62 dB • RE	/NT 2-D	H5 2402M Mode Auto F			-3.43 dBm
Spectrum Ref Level 27.62 Att 2 SGL Count 8000/ 1Pk Max 20 dBm 10 dBm -10 dBm -20 dBm	Edge(Ho dBm Offset t0 dB swT	pping) N\ 7.62 dB • RE	/NT 2-D	H5 2402M Mode Auto F			-3.43 dBm
Spectrum Ref Level 27.62 Att 2 SGL Count 8000/ 1Pk Max 20 dBm 10 dBm -10 dBm -20 dBm	Edge(Ho dBm Offset t0 dB swT	pping) N\ 7.62 dB • RE	/NT 2-D	H5 2402M Mode Auto F			-3.43 dBm
Spectrum Ref Level 27.62 Att 2 SGL Count 8000/ • 1Pk Max 20 dBm 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm	Edge(Ho dBm Offset t0 dB swT	pping) N\ 7.62 dB • RE	/NT 2-D	H5 2402M Mode Auto F			-3.43 dBm
Spectrum Ref Level 27.62 Att 2 SGL Count 8000/ •1Pk Max 20 dBm 10 dBm -10 dBm -20 dBm -30 dBm	Edge(Ho dBm Offset t0 dB swT	pping) N\ 7.62 dB • RE	/NT 2-D	H5 2402M Mode Auto F			-3.43 dBm
Spectrum Ref Level 27.62 Att 2 SGL Count 8000/ • 1Pk Max 20 dBm 10 dBm -10 dBm -20 dBm -30 dBm -50 dBm	Edge(Ho dBm Offset t0 dB swT	pping) N\ 7.62 dB • RE	/NT 2-D	H5 2402M Mode Auto F			-3.43 dBm
Spectrum Ref Level 27.62 Att 2 SGL Count 8000/ • 1Pk Max 20 dBm 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm	Edge(Ho dBm Offset t0 dB swT	pping) N\ 7.62 dB • RE	/NT 2-D	H5 2402M Mode Auto F			-3.43 dBm
Spectrum Ref Level 27.62 Att 2 SGL Count 8000/ • IPk Max 20 dBm 10 dBm -10 dBm -20 dBm -30 dBm -30 dBm -50 dBm	Edge(Ho dBm Offset t0 dB swT	pping) N\ 7.62 dB • RE	/NT 2-D	H5 2402M		2.403	-3.43 dBm

Att	27.62 dBm 40 dB			BW 100 kHz BW 300 kHz		Auto FFT			
●1Pk Max	1200/1200	1	1						
20 dBm						1[1]			-4.37 dBm 295000 GHz
10 dBm					M	2[1]			-44.08 dBm)00000 GHz
0 dBm									M1
-10 dBm—									hard
-20 dBm—	D1 -23.432	dBm							
-30 dBm—	20.102								
-40 dBm—	an maker star	uhrman	and which have	M4	~ multiplessilling	ahumana	unudrepter	M3	
-50 dBm		de o 01 Coosto do	~~~~~		- Annathan An			e to Animate	
-60 dBm—									
-70 dBm				1001	ntc			Stop	2.406 GHz
Marker				1001					
Type Re M1	1		95 GHz	-4.37 dBr		tion	Fund	tion Result	t
M2	1		2.4 GHz 39 GHz	-44.08 dBr -44.07 dBr					
M3		۷. ۲	op one						
M4 Spectrur Ref Level Att	Band n 27.60 dBm 40 dB	2.34 Edge N Offset 7.	85 GHZ VNT 2-[60 dB • RE	-40.93 dBr DH5 248 3W 100 kHz 3W 300 kHz	30MHz /		-Hoppir	ng Ref	
M4 Spectrur Ref Level	Band 0 27.60 dBm 40 dB	2.34 Edge N Offset 7.	85 GHZ VNT 2-[60 dB • RE	DH5 248	30MHz /		-Hoppir	ng Ref	
M4 Spectrur Ref Level Att SGL Count	Band 0 27.60 dBm 40 dB	2.34 Edge N Offset 7.	85 GHZ VNT 2-[60 dB • RE	DH5 248	30MHz / Mode A		p-Hoppir		4.51 dBm 000000 GHz
M4 Spectrur Ref Level Att SGL Count IPk Max 20 dBm-	Band 0 27.60 dBm 40 dB	2.34 Edge N Offset 7.	85 GHZ VNT 2-[60 dB • RE	DH5 248	30MHz / Mode A	uto FFT	-Hoppir		-4.51 dBm
M4 Spectrur Ref Level Att SGL Count ● 1Pk Max	Band 0 27.60 dBm 40 dB	2.34 Edge N Offset 7.	85 GHZ VNT 2-[60 dB • RE	DH5 248	30MHz / Mode A	uto FFT	p-Hoppir		-4.51 dBm
M4 Spectrur Ref Level Att SGL Count IPk Max 20 dBm-	Band 0 27.60 dBm 40 dB	2.34 Edge N Offset 7.	85 GHZ VNT 2-[60 dB • RE	DH5 248	30MHz / Mode A	uto FFT	e-Hoppir		-4.51 dBm
M4 Spectrur Ref Level Att SGL Count IPk Max 20 dBm- 10 dBm-	Band 0 27.60 dBm 40 dB	2.34 Edge N Offset 7.	85 GHZ VNT 2-[60 dB • RE	DH5 248	30MHz / Mode A	uto FFT	p-Hoppir		-4.51 dBm
M4 Spectrur Ref Level Att SGL Count SGL Count 1Pk Max 20 dBm- 10 dBm- 0 dBm-	Band 0 27.60 dBm 40 dB	2.34 Edge N Offset 7.	85 GHZ VNT 2-[60 dB • RE	DH5 248	30MHz / Mode A	uto FFT	-Hoppir		-4.51 dBm
M4 Spectrur Ref Level Att SGL Count SGL Count I Pk Max 20 dBm 10 dBm -10 dBm -10 dBm -20 dBm	Band 0 27.60 dBm 40 dB	2.34 Edge N Offset 7.	85 GHZ VNT 2-[60 dB • RE	DH5 248	30MHz / Mode A	uto FFT	p-Hoppir		-4.51 dBm
M4 Spectrur Ref Level Att SGL Count IPk Max 20 dBm 10 dBm -10 dBm -10 dBm	Band 0 27.60 dBm 40 dB	2.34 Edge N Offset 7.	85 GHz VNT 2-Г 60 dB • Re 8.9 µs • VE	DH5 248	30MHz / Mode A	uto FFT	p-Hoppir		-4.51 dBm
M4 Spectrur Ref Level Att SGL Count SGL Count I D dBm 10 dBm -10 dBm -10 dBm -20 dBm	Band 0 27.60 dBm 40 dB	2.34 Edge N Offset 7.	85 GHZ VNT 2-[60 dB • RE	DH5 248	30MHz / Mode A	uto FFT	p-Hoppir	2.480	-4.51 dBm
M4 Spectrur Ref Level Att SGL Count 9 IPk Max 20 dBm- 10 dBm- -10 dBm- -20 dBm- -30 dBm-	Band 0 27.60 dBm 40 dB	2.34 Edge N Offset 7.	85 GHz VNT 2-Г 60 dB • Re 8.9 µs • VE	DH5 248	30MHz / Mode A	uto FFT	p-Hoppir		-4.51 dBm
M4 Spectrur Ref Level Att SGL Count 9 1Pk Max 20 dBm 10 dBm -10 dBm -20 dBm -20 dBm -30 dBm -40 dBm	Band n 27.60 dBm 40 dB	2.34 Edge N Offset 7.	85 GHz VNT 2-Г 60 dB • Re 8.9 µs • VE	DH5 248	30MHz / Mode A	uto FFT	p-Hoppir	2.480	-4.51 dBm
M4 Spectrur Ref Level Att SGL Count • 1Pk Max 20 dBm - 10 dBm - 10 dBm - 20 dBm - 30 dBm - 30 dBm - 40 dBm - 50 dBm - 60 dBm	Band n 27.60 dBm 40 dB	2.34 Edge N Offset 7.	85 GHz VNT 2-Г 60 dB • Re 8.9 µs • VE	DH5 248	30MHz / Mode A	uto FFT	p-Hoppir	2.480	-4.51 dBm
M4 Spectrur Ref Level Att SGL Count • 1Pk Max 20 dBm - 10 dBm - 10 dBm - 20 dBm - 30 dBm - 40 dBm - 50 dBm	1 Band 27.60 dBm 40 dB 100/100	2.34 Edge N Offset 7.	85 GHz VNT 2-Г 60 dB • Re 8.9 µs • VE	DH5 248	BOMHZ A	uto FFT	p-Hoppir	2.480	-4.51 dBm

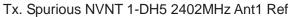
Spectrum Ref Level 23				RBW 100 kH					
Att SGL Count 10	40 dB 00/100	SWT 22	27.5 µs 👄	VBW 300 kH	z Mode A	uto FFT			
●1Pk Max	1				M	1[1]			-6.94 dBm
20 dBm								2.480	05000 GHz
10 dBm					M:	2[1]			44.59 dBm 50000 GHz
0 dBm									
-10 Bm									
-20 cBm									
DI	L -24.506	dBm							
-30 dBm	M4								
-40 dBm2		M3	Warmon all all all a	and wale warmously	Lynuman	manhana	Innouldury	manumation	hangyungu
-50 dBm			-						
-60 dBm									
-70 dBm Start 2.476 (1001	ntc			Ptor (2 576 CH2
Marker	3172			1001	μts			stop 2	2.576 GHz
Type Ref M1	Trc 1	X-value 2.4800	5 GHz	Y-value -6.94 dB	Funct	ion	Func	tion Result	
M2	1	2.483	35 GHz	-44.59 dB	m				
M3 M4	1		.5 GHz 11 GHz	-46.35 dB -43.26 dB					
Bar			oing) N	VNT 2-D	0H5 248) OMHz A	Ant1 Hop	oping R	
Bar Spectrum Ref Level 27 Att		je(Hopp offset 7.	60 dB 👄 R	VNT 2-D			Ant1 Hop	oping R	ef (₩
Bar Spectrum Ref Level 27 Att SGL Count 80		je(Hopp offset 7.	60 dB 👄 R	BW 100 kHz	Mode Au	uto FFT	Ant1 Hop		
Bar Spectrum Ref Level 27 Att SGL Count 80 • 1Pk Max		je(Hopp offset 7.	60 dB 👄 R	BW 100 kHz	Mode Au		Ant1 Hop		
Bar Spectrum Ref Level 27 Att SGL Count 80		je(Hopp offset 7.	60 dB 👄 R	BW 100 kHz	Mode Au	uto FFT	Ant1 Hop		₩ ▼
Bar Spectrum Ref Level 27 Att SGL Count 80 • 1Pk Max		je(Hopp offset 7.	60 dB 👄 R	BW 100 kHz	Mode Au	uto FFT	Ant1 Hop		₩ ▼
Bar Spectrum Ref Level 23 Att SGL Count 80 1Pk Max 20 dBm 10 dBm		je(Hopp offset 7.	60 dB 👄 R	BW 100 kHz	Mode Au	uto FFT	Ant1 Hop		₩ ▼
Bar Spectrum Ref Level 27 Att SGL Count 80 • 1Pk Max 20 dBm 10 dBm 0 dBm		je(Hopp offset 7.	60 dB 👄 R	BW 100 kHz	Mode Au	uto FFT	Ant1 Hop		₩ ▼
Bar Spectrum Ref Level 23 Att SGL Count 80 1Pk Max 20 dBm 10 dBm		je(Hopp offset 7.	60 dB 👄 R	BW 100 kHz	Mode Au	uto FFT	Ant1 Hop		₩ ▼
Bar Spectrum Ref Level 27 Att SGL Count 80 • IPK Max 20 dBm 10 dBm		je(Hopp offset 7.	60 dB 👄 R	BW 100 kHz	Mode Au	uto FFT	Ant1 Hop		₩ ▼
Bar Spectrum Ref Level 27 Att SGL Count 80 • 1Pk Max 20 dBm 10 dBm • 0 dBm • 10 tBp • -10 tBp		je(Hopp offset 7.	60 dB 👄 R	BW 100 kHz	Mode Au	uto FFT	Ant1 Hop		₩ ▼
Bar Spectrum Ref Level 27 Att SGL Count 80 • IPK Max 20 dBm 10 dBm 0 dBm		je(Hopp offset 7.	60 dB 👄 R	BW 100 kHz	Mode Au	uto FFT	Ant1 Hop		₩ ▼
Bar Spectrum Ref Level 27 Att SGL Count 80 •1Pk Max 20 dBm 10 dBm •10 dBm •10 dBm -10 dBm		je(Hopp offset 7.	60 dB 👄 R	BW 100 kHz	Mode Au	uto FFT	Ant1 Hop		₩ ▼
Bar Spectrum Ref Level 27 Att SGL Count 80 •1Pk Max 20 dBm 10 dBm •10 dBm •20 dBm -20 dBm -30 dBm		je(Hopp offset 7.	60 dB 👄 R	BW 100 kHz	Mode Au	uto FFT	Ant1 Hop		₩ ▼
Bar Spectrum Ref Level 27 Att SGL Count 80 1Pk Max 20 dBm 10 dBm 10 dBm -10 dBm -20 dBm -30 dBm		je(Hopp offset 7.	60 dB 👄 R	BW 100 kHz	Mode Au	uto FFT	Ant1 Hop		₩ ▼
Bar Spectrum Ref Level 27 Att SGL Count 80 •1Pk Max 20 dBm 10 dBm •10 dBm •20 dBm -20 dBm -30 dBm		je(Hopp offset 7.	60 dB 👄 R	BW 100 kHz	Mode Au	uto FFT	Ant1 Hop		₩ ▼
Bar Spectrum Ref Level 27 Att SGL Count 80 •1Pk Max 20 dBm 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -40 dBm -60 dBm		je(Hopp offset 7.	60 dB 👄 R	BW 100 kHz	Mode Au	uto FFT			₩ ▼
Bar Spectrum Ref Level 27 Att SGL Count 80 •1Pk Max 20 dBm 10 dBm 0 dBm -10 vBgp -20 dBm -30 dBm -40 dBm		je(Hopp offset 7.	60 dB 👄 R	BW 100 kHz		uto FFT	Ant1 Hop	2.476	₩ ▼
Bar Spectrum Ref Level 27 Att SGL Count 80 IPk Max 20 dBm 10 dBm -10 dBm -20 dBm -30 dBm -30 dBm -40 dBm -50 dBm -50 dBm		je(Hopp offset 7.	60 dB 👄 R			uto FFT	Ant1 Hop	2.476	-4.39 dBm 00400 GHz

Att SGL Count :	40 d 1000/100		27.5 µs 🖷 🕻	/BW 300 kH:	Z Mode /	Auto FFT			
●1Pk Max					M	1[1]			-7.66 dBm
20 dBm						2[1]			505000 GHz -43.32 dBm
10 dBm						1	1		350000 GHz
0 dBm									
₩ ₽ ₽¢₩Bm									
-20 cBm-	01 -24.38	R6 dBm							
-30 dBm	51 -24.50								
-40 dam	Jurally W	MO	aluce monumen	muluburghang	LAURANNIAAAN	a and a state of the second	www.	al ma millioner	and which which the second
-50 dBm				free of the second second			a		24 - 0
-60 dBm									
-70 dBm									
Start 2.476 Marker				1001	pts			Stop	2.576 GHz
Type Ref M1	1 Trc	X-value 2.4760	D5 GHz	Y-value -7.66 dB	Funct m	tion	Fund	ction Result	t
M2	1	2.483	35 GHz .5 GHz	-43.32 dB -44.63 dB	m				
	1								
M3 M4 Spectrum Ref Level 2 Att	27.62 dBi 40 d	2.483 Edge N m Offset 7.	39 GHZ VNT 3-1 62 db • RI	-42.37 dB)2MHz /		o-Hoppin	ng Ref	
M3 M4 Spectrum Ref Level 2 Att SGL Count 3	1 Banc 27.62 dBi 40 d	2.483 Edge N' m Offset 7.	39 GHZ VNT 3-1 62 db • RI	DH5 24(BW 100 kHz)2MHz / Mode A	uto FFT	o-Hoppin	ng Ref	
M3 M4 Spectrum Ref Level 2 Att SGL Count 2 • 1Pk Max	1 Banc 27.62 dBi 40 d	2.483 Edge N' m Offset 7.	39 GHZ VNT 3-1 62 db • RI	DH5 24(BW 100 kHz)2MHz / Mode A		p-Hoppin		-3.41 dBm 83220 GHz
M3 M4 Spectrum Ref Level 2 Att SGL Count 3 • 1Pk Max 20 dBm	1 Banc 27.62 dBi 40 d	2.483 Edge N' m Offset 7.	39 GHZ VNT 3-1 62 db • RI	DH5 24(BW 100 kHz)2MHz / Mode A	uto FFT	p-Hoppin		-3.41 dBm
M3 M4 Spectrum Ref Level 2 Att SGL Count 3 • 1Pk Max 20 dBm	1 Banc 27.62 dBi 40 d	2.483 Edge N' m Offset 7.	39 GHZ VNT 3-1 62 db • RI	DH5 24(BW 100 kHz)2MHz / Mode A	uto FFT	p-Hoppin		-3.41 dBm
M3 M4 Spectrum Ref Level 2 Att SGL Count 3 • 1Pk Max 20 dBm 10 dBm	1 Banc 27.62 dBi 40 d	2.483 Edge N' m Offset 7.	39 GHZ VNT 3-1 62 db • RI	DH5 24(BW 100 kHz)2MHz / Mode A	uto FFT	p-Hoppin		-3.41 dBm
M3 M4 Spectrum Ref Level 2 Att	1 Banc 27.62 dBi 40 d	2.483 Edge N' m Offset 7.	39 GHZ VNT 3-1 62 db • RI	DH5 24(BW 100 kHz)2MHz / Mode A	uto FFT	p-Hoppin		-3.41 dBm
M3 M4 Spectrum Ref Level 2 Att SGL Count 3 1Pk Max 20 dBm 10 dBm -10 dBm	1 Banc 27.62 dBi 40 d	2.483 Edge N' m Offset 7.	39 GHZ VNT 3-1 62 db • RI	DH5 24(BW 100 kHz)2MHz / Mode A	uto FFT	p-Hoppin		-3.41 dBm
M3 M4 Spectrum Ref Level 2 Att SGL Count 3 1Pk Max 20 dBm 10 dBm 0 dBm	1 Banc 27.62 dBi 40 d	2.483 Edge N' m Offset 7.	39 GHZ VNT 3-1 62 db • RI	DH5 24(BW 100 kHz)2MHz / Mode A	uto FFT	p-Hoppin		-3.41 dBm
M3 M4 Spectrum Ref Level 2 Att SGL Count 3 1Pk Max 20 dBm 10 dBm -10 dBm	1 Banc 27.62 dBi 40 d	2.483 Edge N' m Offset 7.	39 GHZ VNT 3-1 62 db • RI	DH5 24(BW 100 kHz)2MHz / Mode A	uto FFT			-3.41 dBm
M3 M4 Spectrum Ref Level 2 Att SGL Count 3 1Pk Max 20 dBm 10 dBm -10 dBm -20 dBm	1 Banc 27.62 dBi 40 d	2.483 Edge N' m Offset 7.	39 GHZ VNT 3-1 62 db • RI	DH5 24(BW 100 kHz)2MHz / Mode A	uto FFT			-3.41 dBm
M3 M4 Spectrum Ref Level 2 Att SGL Count 3 • 1Pk Max 20 dBm 10 dBm -10 dBm -20 dBm -20 dBm -40 dBm	1 Banc 27.62 dBi 40 d	2.483 Edge N' m Offset 7.	39 GHZ VNT 3-1 62 db • RI	DH5 24(BW 100 kHz)2MHz / Mode A	uto FFT			-3.41 dBm
M3 M4 Spectrum Ref Level 2 Att SGL Count 3 • 1Pk Max 20 dBm 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm	1 Banc 27.62 dBi 40 d	2.483 Edge N' m Offset 7.	39 GHZ VNT 3-1 62 db • RI	DH5 24(BW 100 kHz)2MHz / Mode A	uto FFT			-3.41 dBm
M3 M4 Spectrum Ref Level 2 Att SGL Count 3 • 1Pk Max 20 dBm 10 dBm -10 dBm -20 dBm -20 dBm -40 dBm	1 Banc 27.62 dBi 40 d	2.483 Edge N' m Offset 7.	39 GHZ VNT 3-1 62 db • RI	DH5 24(BW 100 kHz)2MHz / Mode A	uto FFT			-3.41 dBm
M3 M4 Spectrum Ref Level 2 Att SGL Count 3 • 1Pk Max 20 dBm 10 dBm -10 dBm -20 dBm -20 dBm -30 dBm -30 dBm -40 dBm	1 Banc 27.62 dBi 40 d 300/300	2.483 Edge N' m Offset 7.	39 GHZ VNT 3-1 62 db • RI	DH5 24(BW 100 kHz	D2MHz /	uto FFT		2.401	-3.41 dBm

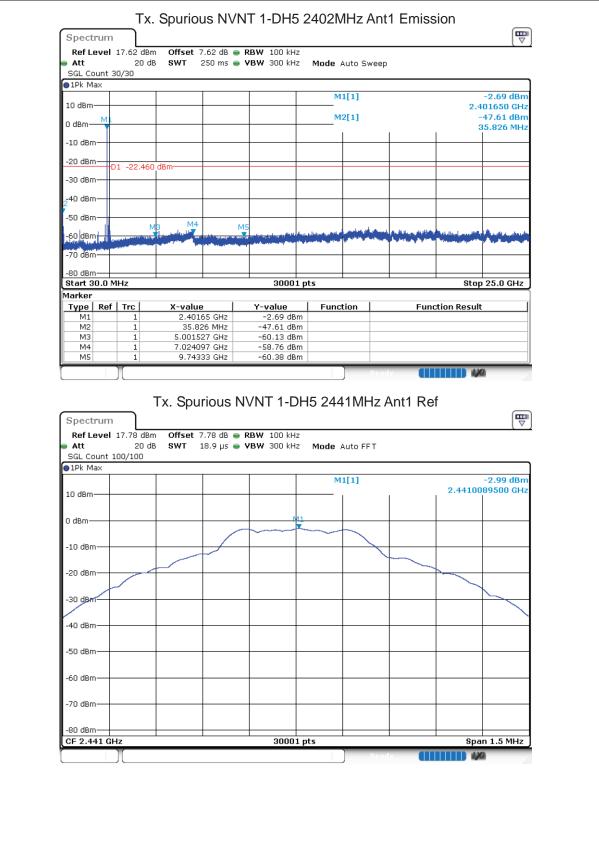
	27.62 dBm			RBW 100 kHz					
Att SGL Count	40 dB 100/100	SWT 2	27.5 µs 🖷	VBW 300 kHz	z Mode A	uto FFT			
●1Pk Max	1				M11	[1]			-3.49 dBm
20 dBm					M11	[1]		2.402	205000 GHz
10 dBm					M2	[1]			-41.92 dBm)00000 GHz
					1			2.400	M1
0 dBm									Ţ
-10 dBm—									
-20 dBm									
-30 dBm	D1 -23.408	dBm-							
			M4						Magy
-40 dBm	halfende an der et	physical		and and when the	uta have proof eals	dia del Marco a	drown yarman	M3 Harry Tauritation	
-50 dBm	C N D-DARD-WOR -MA	la a la constituca			and the and and	I WARD OF THE WARD	al au alvo anna	to t (pi illivition	Jundelan ina
-60 dBm									
-70 dBm									
-/U dBm	6 GHz			1001	pts			Stop	2.406 GHz
Marker									
Type Re M1	ef Trc 1	<u>X-valu</u> 2,402	e	<u>Y-value</u> -3.49 dBr	Functi m	ion	Func	tion Result	t
M2	1	2	2.4 GHz	-41.92 dBr	m				
	1	2	.39 GHz	-46.54 dBr	m				
Spectrun		2.34 ge(Hop offset 7	.62 dB 🖷 R	-41.90 dBr VNT 3-D BW 100 kHz 'BW 300 kHz	H5 2402		Ant1 Hop	oping R	a ef Ţ
M4 Spectrum Ref Level Att SGL Count	and Edg	2.34 ge(Hop offset 7	ping) N' .62 dB - R	VNT 3-D	H5 2402		ant1 Hop	oping R	
M4 Spectrum Ref Level Att SGL Count	and Edo	2.34 ge(Hop offset 7	ping) N' .62 dB - R	VNT 3-D	H5 2402 Mode Au		Ant1 Hop		
M4 B Spectrun Ref Level Att SGL Count 1Pk Max	and Edo	2.34 ge(Hop offset 7	ping) N' .62 dB - R	VNT 3-D	H5 2402 Mode Au	to FFT	ant1 Hop		-3.42 dBm
M4 Spectrun Ref Level Att SGL Count 1Pk Max	and Edo	2.34 ge(Hop offset 7	ping) N' .62 dB - R	VNT 3-D	H5 2402 Mode Au	to FFT	Ant1 Hop		-3.42 dBm
M4 Spectrum Ref Level Att SGL Count 1Pk Max 20 dBm- 10 dBm-	and Edo	2.34 ge(Hop offset 7	ping) N' .62 dB - R	VNT 3-D	H5 2402 Mode Au	to FFT	Ant1 Hop		-3.42 dBm
M4 Spectrum Ref Level Att SGL Count 1Pk Max 20 dBm	and Edo	2.34 ge(Hop offset 7	ping) N' .62 dB - R	VNT 3-D	H5 2402 Mode Au	to FFT	Ant1 Hop		-3.42 dBm
M4 Spectrum Ref Level Att SGL Count 1Pk Max 20 dBm- 10 dBm-	and Edo	2.34 ge(Hop offset 7	ping) N' .62 dB - R	VNT 3-D	H5 2402 Mode Au	to FFT	Ant1 Hop		-3.42 dBm
M4 Spectrum Ref Level Att SGL Count 1Pk Max 20 dBm- 10 dBm- 0 dBm-	and Edo	2.34 ge(Hop offset 7	ping) N' .62 dB - R	VNT 3-D	H5 2402 Mode Au	to FFT	Ant1 Hop		-3.42 dBm
M4 Spectrum Ref Level Att SGL Count O dBm 10 dBm -10 dBm -10 dBm	and Edo	2.34 ge(Hop offset 7	ping) N' .62 dB - R	VNT 3-D	H5 2402 Mode Au	to FFT	Ant1 Hop		-3.42 dBm
M4 Spectrun Ref Level Att SGL Count ID dBm 10 dBm -10 dBm -20 dBm -30 dBm	and Edo	2.34 ge(Hop offset 7	ping) N' .62 dB - R	VNT 3-D	H5 2402 Mode Au	to FFT	Ant1 Hop		-3.42 dBm
M4 Spectrum Ref Level Att SGL Count 10 dBm 10 dBm -10 dBm -20 dBm	and Edo	2.34 ge(Hop offset 7	ping) N' .62 dB • R 8.9 μs • V	VNT 3-D	H5 2402 Mode Au	to FFT	Ant1 Hop		-3.42 dBm
M4 Spectrum Ref Level Att SGL Count SGL Count 10 dBm 10 dBm -10 dBm -20 dBm -30 dBm	and Edo	2.34 ge(Hop offset 7	ping) N' .62 dB • R 8.9 μs • V	VNT 3-D	H5 2402 Mode Au	to FFT	Ant1 Hop		-3.42 dBm
M4 Spectrum Ref Level Att SGL Count 10 dBm 10 dBm -10 dBm -20 dBm -30 dBm -40 dBm	and Edo	2.34 ge(Hop offset 7	ping) N' .62 dB • R 8.9 μs • V	VNT 3-D	H5 2402 Mode Au	to FFT	Ant1 Hop		-3.42 dBm
M4 Spectrum Ref Level Att SGL Count 10 dBm 10 dBm -10 dBm -20 dBm -20 dBm -30 dBm -30 dBm -40 dBm -50 dBm -60 dBm	and Edo	2.34 ge(Hop offset 7	ping) N' .62 dB • R 8.9 μs • V	VNT 3-D	H5 2402 Mode Au	to FFT	Ant1 Hop		-3.42 dBm
M4 Spectrum Ref Level Att SGL Count 10 dBm 10 dBm -10 dBm -20 dBm -30 dBm -30 dBm -50 dBm -60 dBm -70 dBm	and Edg n 27.62 dBm 40 dB 8000/8000	2.34 ge(Hop offset 7	ping) N' .62 dB • R 8.9 μs • V	VNT 3-D	Mode Au	to FFT	Ant1 Hop	2.40:	-3.42 dBm 999800 GHz
M4 Spectrum Ref Level Att SGL Count 10 dBm 10 dBm -10 dBm -20 dBm -20 dBm -30 dBm -30 dBm -40 dBm -50 dBm -60 dBm	and Edg n 27.62 dBm 40 dB 8000/8000	2.34 ge(Hop offset 7	ping) N' .62 dB • R 8.9 μs • V	VNT 3-D	Mode Au	to FFT	Ant1 Hop	2.40:	-3.42 dBm 999800 GHz

Att SGL Count 1	40 dB 000/1000	SWT 227	7.5 µs 👄 V	/BW 300 kHz	Mode Au	uto FFT			
●1Pk Max					M1	[1]			-6.00 dBm
20 dBm					M2	[1]			395000 GHz -44.15 dBm
10 dBm									000000 GHz
0 dBm									MI
-10 dBm									MA
-20 dBm									10-01
-30 dBm	1 -23.419	dBm							
			M4						
· · ·	matrinka	mound	went for any	mphabhanaulagah	Anoneman	manna	and the second	wmythemply	www.utid
-50 dBm									
-60 dBm									
-70 dBm									
Start 2.306 Marker	GHz			1001 p	its			Stop	2.406 GHz
Type Ref		X-value		Y-value	Functi	on	Fun	ction Resul	lt
M1 M2	1		4 GHz	-6.00 dBm -44.15 dBm					
	1	2.39	9 GHz	-44.46 dBm					
M3 M4	1	2.34	4 GHz	-39.97 dBm					
M4	Band I	Edge NV	/NT 3-[0 db • Re	-39.97 dBm DH5 248(3W 100 kHz 3W 300 kHz	OMHz A		o-Hoppi	ng Ref	
M4 Spectrum Ref Level 2 Att SGL Count 1	Band I	Edge NV	/NT 3-[0 db • Re	DH5 248(3w 100 kHz	OMHz A		o-Hoppi	ng Ref	
M4 Spectrum Ref Level 2 Att	Band I	Edge NV	/NT 3-[0 db • Re	DH5 248(3w 100 kHz	OMHz A	to FFT	b 🚺		-5.42 dBm
M4 Spectrum Ref Level 2 Att SGL Count 1	Band I	Edge NV	/NT 3-[0 db • Re	DH5 248(3w 100 kHz	OMHz A	to FFT	b-Hoppi		
M4 Spectrum Ref Level 2 Att SGL Count 1 • 1Pk Max	Band I	Edge NV	/NT 3-[0 db • Re	DH5 248(3w 100 kHz	OMHz A	to FFT	o-Hoppi		-5.42 dBm
M4 Spectrum Ref Level 2 Att SGL Count 1 • 1Pk Max 20 dBm	Band I	Edge NV	/NT 3-[0 db • Re	DH5 248(3w 100 kHz	OMHz A	to FFT	b-Hoppi		-5.42 dBm
M4 Spectrum Ref Level 2 Att SGL Count 1 • 1Pk Max 20 dBm	Band I	Edge NV	/NT 3-[0 db • Re	DH5 248(3w 100 kHz	OMHz A	to FFT	b-Hoppi		-5.42 dBm
M4 Spectrum Ref Level 2 Att SGL Count 1 • 1Pk Max 20 dBm 10 dBm	Band I	Edge NV	/NT 3-[0 db • Re	DH5 248(3w 100 kHz 3w 300 kHz	OMHz A	to FFT	p-Hoppi		-5.42 dBm
M4 Spectrum Ref Level 2 Att SGL Count 1 • 1Pk Max 20 dBm 10 dBm -10 dBm	Band I	Edge NV	/NT 3-[0 db • Re	DH5 248(3w 100 kHz 3w 300 kHz	OMHz A	to FFT	p-Hoppi		-5.42 dBm
M4 Spectrum Ref Level 2 Att SGL Count 1 • 1Pk Max 20 dBm 10 dBm 0 dBm	Band I	Edge NV	/NT 3-[0 db • Re	DH5 248(3w 100 kHz 3w 300 kHz	OMHz A	to FFT	b-Hoppi		-5.42 dBm
M4 Spectrum Ref Level 2 Att SGL Count 1 • 1Pk Max 20 dBm 10 dBm -10 dBm	Band I	Edge NV	/NT 3-[0 db • Re	DH5 248(3w 100 kHz 3w 300 kHz	OMHz A	to FFT	p-Hoppi		-5.42 dBm
M4 Spectrum Ref Level 2 Att SGL Count 1 ID dBm 10 dBm -10 dBm -20 dBm -30 dBm -30 dBm	Band I	Edge NV	/NT 3-Е 9 µs • Уе	DH5 248(3w 100 kHz 3w 300 kHz	OMHz A	to FFT	p-Hoppi		-5.42 dBm
M4 Spectrum Ref Level 2 Att SGL Count 1 9 IPk Max 20 dBm 10 dBm -10 dBm -20 dBm	Band I	Edge NV	/NT 3-[0 db • Re	DH5 248(3w 100 kHz 3w 300 kHz	OMHz A	(1)	p-Hoppi		-5.42 dBm
M4 Spectrum Ref Level 2 Att SGL Count 1 ID dBm 10 dBm -10 dBm -20 dBm -30 dBm -30 dBm	Band I	Edge NV	/NT 3-Е 9 µs • Уе	DH5 248(3w 100 kHz 3w 300 kHz	OMHz A	(1)			-5.42 dBm
M4 Spectrum Ref Level 2 Att SGL Count 1 10 dBm 10 dBm 10 dBm -10 dBm -20 dBm -30 dBm -30 dBm -40 dBm -50 dBm -	Band I	Edge NV	/NT 3-Е 9 µs • Уе	DH5 248(3w 100 kHz 3w 300 kHz	OMHz A	(1)			-5.42 dBm
M4 Spectrum Ref Level 2 Att SGL Count 1 ID dBm 10 dBm -10 dBm -20 dBm -30 dBm -40 dBm	Band I	Edge NV	/NT 3-Е 9 µs • Уе	DH5 248(3w 100 kHz 3w 300 kHz	OMHz A	(1)			-5.42 dBm
M4 Spectrum Ref Level 2 Att SGL Count 1 PR Max 20 dBm 10 dBm -10 dBm -20 dBm -30 dBm -30 dBm -40 dBm	Band I	Edge NV	/NT 3-Е 9 µs • Уе	DH5 248((1)			-5.42 dBm
M4 Spectrum Ref Level 2 Att SGL Count 1 IPk Max 20 dBm 10 dBm -10 dBm -20 dBm -30 dBm -40 dBm -60 dBm	1 Band R 7.60 dBm 40 dB 00/100	Edge NV	/NT 3-Е 9 µs • Уе	DH5 248(3w 100 kHz 3w 300 kHz		(1)		2.48	-5.42 dBm

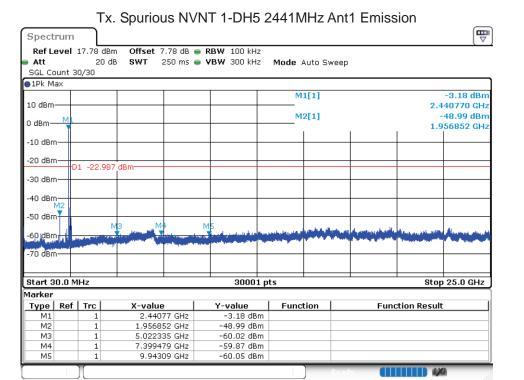
Ref Level Att	n 27.60 dBm 40 dB			RBW 100 kHz VBW 300 kHz	Mode At	uto FFT			
SGL Count	100/100								
∎1Pk Max					M1	[1]			-4.72 dBm
20 dBm									15000 GHz
10 dBm					M2	[1]			-46.78 dBm 50000 GHz
0 d9m									
-10 dBm									
-20 dBm	D1 -25.415	dBm							
-30 dBm	DI -20,410	ubin							
-40 d6m-	N	4 M3							
.∬ \/	Monterration	Murannan	who have a	hand when the property of the	worklowelyheer	without	he was and the flower	per hunder delle	markennethene
-60 dBm—									
-70 dBm	6 GHz			1001 p	its .			Stop	2.576 GHz
Marker				*P					
Type Re M1	f Trc	2,480	9	Y-value -4.72 dBm	Functi	on	Fund	tion Result	:
M2	1	2.48	35 GHz	-46.78 dBm					
	1	2	.5 GHz	-46.04 dBm					
M3 M4	1		61 GHz	-42.95 dBm					
M4 B Spectrur	and Edg	2.49i ge(Hopp	bing) N	IVNT 3-DH		Rea DMHz A	Ant1 Hop	oping R	ef
M4 B Spectrum Ref Level Att SGL Count		2.49 ge(Hopp offset 7.	51 GHZ Ding) N				Ant1 Hop	oping R	
M4 B Spectrum Ref Level Att	and Edo	2.49 ge(Hopp offset 7.	51 GHZ Ding) N	IVNT 3-DH	15 2480 Mode Au	to FFT	Ant1 Hop	oping R	
M4 B Spectrum Ref Level Att SGL Count	and Edo	2.49 ge(Hopp offset 7.	51 GHZ Ding) N	IVNT 3-DH	15 2480	to FFT	Ant1 Hop		
M4 B Spectrun Ref Level Att SGL Count IPk Max 20 dBm-	and Edo	2.49 ge(Hopp offset 7.	51 GHZ Ding) N	IVNT 3-DH	15 2480 Mode Au	to FFT	Ant1 Hop		₩ ▼
M4 Spectrum Ref Level Att SGL Count 1Pk Max 20 dBm- 10 dBm-	and Edo	2.49 ge(Hopp offset 7.	51 GHZ Ding) N	IVNT 3-DH	15 2480 Mode Au	to FFT	Ant1 Hop		₩ ▼
M4 Spectrun Ref Level Att SGL Count 1Pk Max 20 dBm- 10 dBm-	and Edo	2.49 ge(Hopp offset 7.	51 GHZ Ding) N	IVNT 3-DH	15 2480 Mode Au	to FFT	Ant1 Hop		₩ ▼
M4 Spectrum Ref Level Att SGL Count 1Pk Max 20 dBm- 10 dBm-	and Edo	2.49 ge(Hopp offset 7.	51 GHZ Ding) N	IVNT 3-DH	15 2480 Mode Au	to FFT	Ant1 Hop		₩ ▼
M4 Spectrun Ref Level Att SGL Count 1Pk Max 20 dBm- 10 dBm-	and Edo	2.49 ge(Hopp offset 7.	51 GHZ Ding) N	IVNT 3-DH	15 2480 Mode Au	to FFT	Ant1 Hop		₩ ▼
M4 Spectrum Ref Level Att SGL Count 1Pk Max 20 dBm 10 dBm 0 dBm -19 dBpp	and Edo	2.49 ge(Hopp offset 7.	51 GHZ Ding) N	IVNT 3-DH	15 2480 Mode Au	to FFT	Ant1 Hop		₩ ▼
M4 Spectrum Ref Level Att SGL Count 10 dBm 10 dBm 0 dBm -19 dBm -20 dBm	and Edo	2.49 ge(Hopp offset 7.	51 GHZ Ding) N	IVNT 3-DH	15 2480 Mode Au	to FFT	Ant1 Hop		₩ ▼
M4 Spectrum Ref Level Att SGL Count IPk Max 20 dBm 10 dBm -19 dBm -20 dBm -20 dBm -30 dBm	and Edo	2.49 ge(Hopp offset 7.	51 GHZ Ding) N	IVNT 3-DH	15 2480 Mode Au	to FFT	Ant1 Hop		₩ ▼
M4 Spectrun Ref Level Att SGL Count 10 dBm 10 dBm -19 dBm -20 dBm -20 dBm -30 dBm -40 dBm	and Edo	2.49 ge(Hopp offset 7.	51 GHZ Ding) N	IVNT 3-DH	15 2480 Mode Au	to FFT	Ant1 Hop		₩ ▼
M4 Spectrum Ref Level Att SGL Count IVK Max 20 dBm 0 dBm -10 dBm -20 dBm -20 dBm -30 dBm -30 dBm -40 dBm -50 dBm -60 dBm	and Edo	2.49 ge(Hopp offset 7.	51 GHZ Ding) N	IVNT 3-DH	15 2480 Mode Au	to FFT	Ant1 Hop		₩ ▼
M4 Spectrum Ref Level Att SGL Count ID dBm 10 dBm 0 dBm -19 dBm -20 dBm -20 dBm -30 dBm -30 dBm -50 dBm	and Edg 27.60 dBm 40 dB 8000/8000	2.49 ge(Hopp offset 7.	51 GHZ Ding) N	IVNT 3-DH	Mode Au	to FFT	Ant1 Hop	2.476	₩ ▼

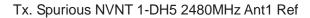

Band Edge(Hopping) NVNT 3-DH5 2480MHz Ant1 Hopping Emission ₽ Spectrum Ref Level 27.60 dBm Offset 7.60 dB 🖷 RBW 100 kHz 40 dB SWT 227.5 µs 😑 VBW 300 kHz Mode Auto FFT Att SGL Count 1000/1000 ●1Pk Max M1[1] 4.50 dBm 20 dBm-2.48015000 GHz -44.87 dBm 2.48350000 GHz M2[1] 10 dBm-0 d<mark>8</mark>m A O dBm -20 cBm D1 -24.255 dBm -30 d<mark>B</mark>m м4 -40 d8 m MC when purport a uner produced Salin B When an an war have unterson munich lon Bard AL AND AL ы. -50 dBm -60 dBm -70 dBm-Start 2.476 GHz 1001 pts Stop 2.576 GHz Marker 2.48015 GHz **Y-value** -4.50 dBm -44.87 dBm Function Result Type Ref Trc Function Μ1 1 M2 2.4835 GHz 1 ΜЗ 2.5 GHz -44.22 dBm 1 2.4887 GHz Μ4 -42.47 dBm

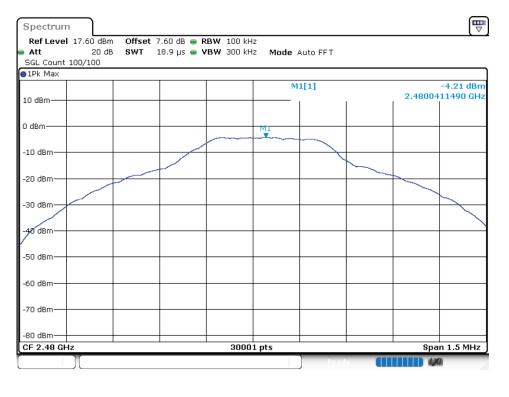
8.7 CONDUCTED RF SPURIOUS EMISSION

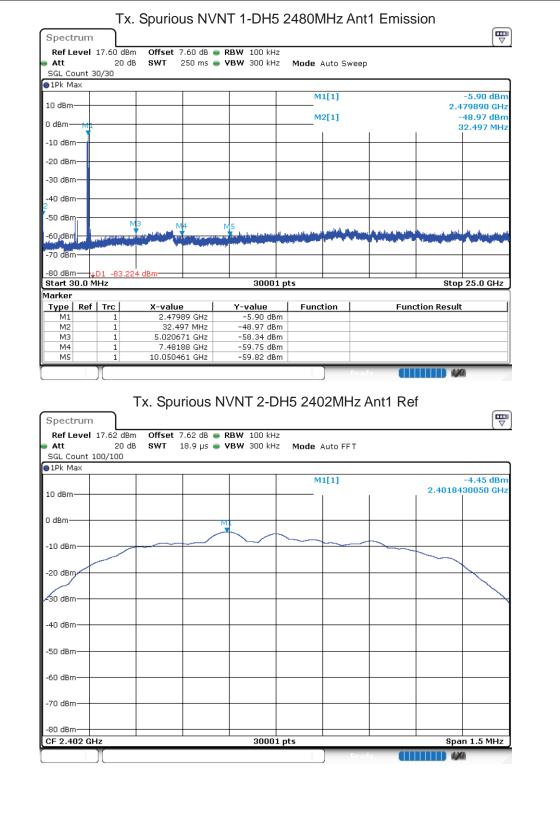

Condition	Mode	Frequency (MHz)	Antenna	Max Value (dBc)	Limit (dBc)	Verdict
NVNT	1-DH5	2402	Ant 1	-45.14	-20	Pass
NVNT	1-DH5	2441	Ant 1	-46	-20	Pass
NVNT	1-DH5	2480	Ant 1	14.25	-20	Fail
NVNT	2-DH5	2402	Ant 1	-41.47	-20	Pass
NVNT	2-DH5	2441	Ant 1	-34.13	-20	Pass
NVNT	2-DH5	2480	Ant 1	-47.71	-20	Pass
NVNT	3-DH5	2402	Ant 1	-25.06	-20	Pass
NVNT	3-DH5	2441	Ant 1	-41.82	-20	Pass
NVNT	3-DH5	2480	Ant 1	-45.84	-20	Pass

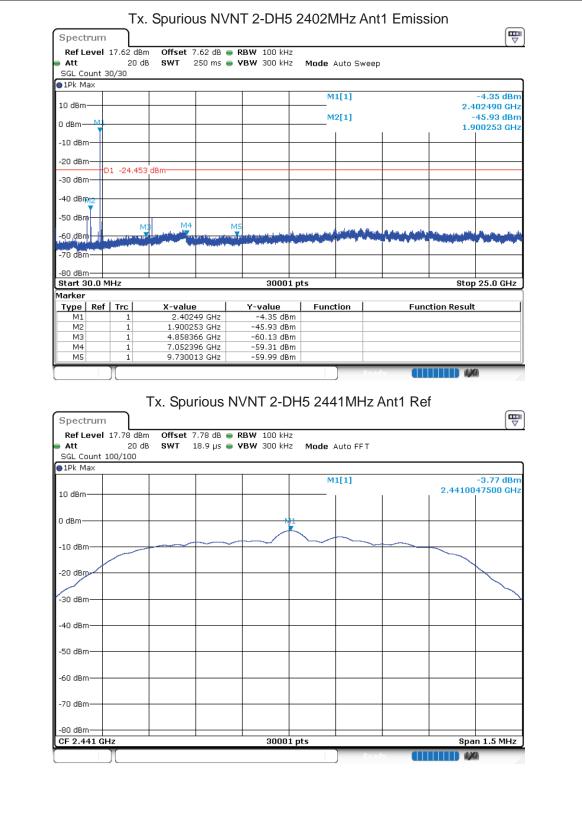
ACCREDITED

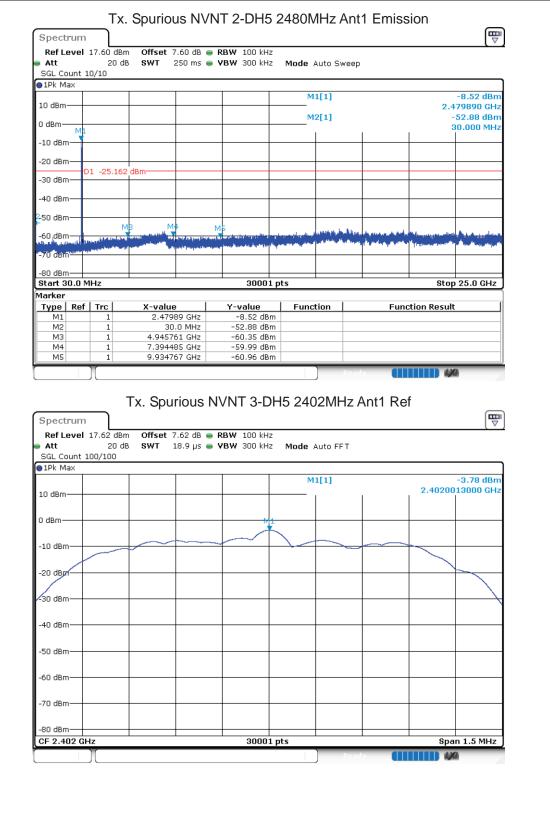


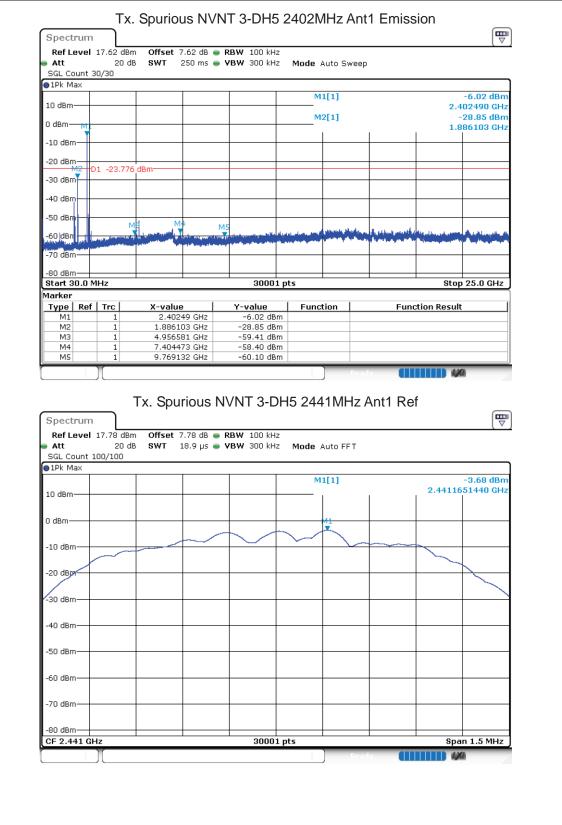




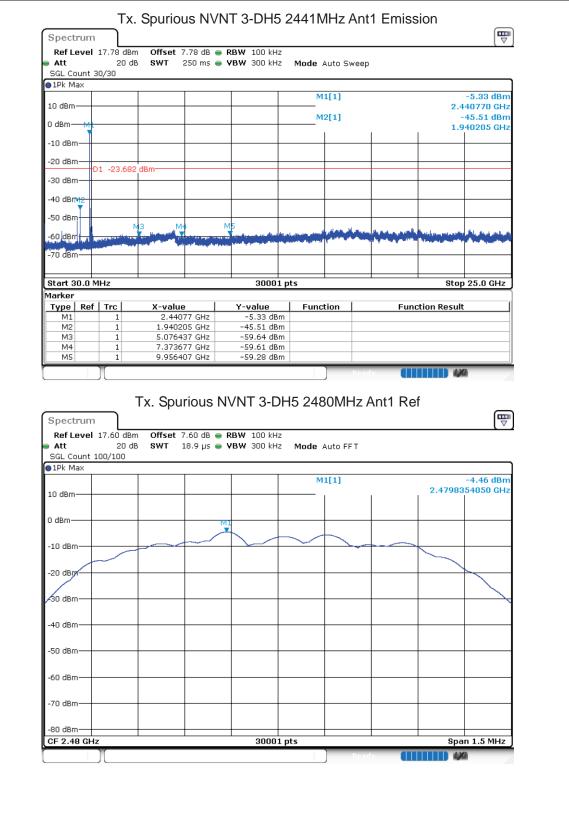


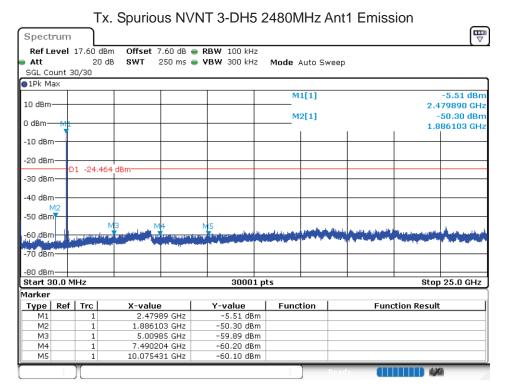






●1Pk Max			M1[1]		-6.34 dBm
10 dBm					2.440770 GHz
0 dBm mt			M2[1]		-37.91 dBm 1.716307 GHz
-10 dBm					
-20 dBm					
-30 dBm	o7 dBm				
-40 dBm					
-50 dBm					
-60 dBm	MB M4	M5			and the Advisor of the
-70 dBm					
Start 30.0 MHz Marker		30001 pt	s		Stop 25.0 GHz
Type Ref Trc	X-value	Y-value	Function	Function	Result
M1 1 M2 1	2.44077 GHz 1.716307 GHz	-6.34 dBm -37.91 dBm			
M3 1	4.955749 GHz	-59.64 dBm			
M4 1	7.302929 GHz	-59.95 dBm			
M5 1 Spectrum Ref Level 17.60 dB	9.588516 GHz Tx. Spurious	-59.36 dBm		Ant1 Ref	
M5 1 Spectrum Ref Level 17.60 dB	9.588516 GHz Tx. Spurious	-59.36 dBm		Ant1 Ref	
M5 1 Spectrum Ref Level 17.60 dB Att 20 d SGL Count 100/100	9.588516 GHz Tx. Spurious	-59.36 dBm			-5.16 dBm 4798433550 GHz
M5 1 Spectrum Ref Level 17.60 dB Att 20 d SGL Count 100/100	9.588516 GHz Tx. Spurious	-59.36 dBm	Mode Auto FFT		-5.16 dBm
M5 1 Spectrum Ref Level 17.60 dB Att 20 d SGL Count 100/100	9.588516 GHz Tx. Spurious	-59.36 dBm	Mode Auto FFT		-5.16 dBm
M5 1 Spectrum Ref Level 17.60 dB Att 20 d SGL Count 100/100 10 dBm	9.588516 GHz Tx. Spurious	-59.36 dBm	Mode Auto FFT		-5.16 dBm
M5 1 Spectrum Ref Level Ref Level 17.60 dB Att 20 d SGL Count 10 dBm 0 dBm -10 dBm -10 dBm	9.588516 GHz Tx. Spurious	-59.36 dBm	Mode Auto FFT		-5.16 dBm
M5 1 Spectrum Ref Level Ref Level 17.60 dB Att 20 d SGL Count 100/100 1Pk Max 10 dBm 0 dBm 0	9.588516 GHz Tx. Spurious	-59.36 dBm	Mode Auto FFT		-5.16 dBm
M5 1 Spectrum Ref Level Ref Level 17.60 dB Att 20 d SGL Count 10 dBm 0 dBm -10 dBm -10 dBm	9.588516 GHz Tx. Spurious	-59.36 dBm	Mode Auto FFT		-5.16 dBm
M5 1 Spectrum Ref Level 17.60 dB Att 20 d SGL Count 100/100 1Pk Max 10 dBm 0 dBm -10 dBm -20 dBm	9.588516 GHz Tx. Spurious	-59.36 dBm	Mode Auto FFT		-5.16 dBm
M5 1 Ref Level 17.60 dB Att 20 d SGL Count 100/100 1Pk Max 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -40 dBm -40 dBm	9.588516 GHz Tx. Spurious	-59.36 dBm	Mode Auto FFT		-5.16 dBm
M5 1 Ref Level 17.60 dB Att 20 d SGL Count 100/100 IPk Max 10 dBm 0 dBm - -10 dBm - -20 dBm - -30 dBm -	9.588516 GHz Tx. Spurious	-59.36 dBm	Mode Auto FFT		-5.16 dBm
M5 1 Ref Level 17.60 dB Att 20 d SGL Count 100/100 1Pk Max 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -40 dBm -40 dBm	9.588516 GHz Tx. Spurious	-59.36 dBm	Mode Auto FFT		-5.16 dBm
M5 1 Spectrum Ref Level 17.60 dB Att 20 d SGL Count 100/100 • 1Pk Max 10 dBm 0 dBm - -10 dBm - -20 dBm - -40 dBm - -50 dBm -	9.588516 GHz Tx. Spurious	-59.36 dBm	Mode Auto FFT		-5.16 dBm
M5 1 Ref Level 17.60 dB Att 20 d SGL Count 100/100 1Pk Max 10 dBm -0 dBm 0 dBm -0 dBm -0 dBm -20 dBm -30 dBm -60 dBm -70 dBm -70 dBm -70 dBm	9.588516 GHz Tx. Spurious	-59.36 dBm	Mode Auto FFT		-5.16 dBm
M5 1 Ref Level 17.60 dB Att 20 d SGL Count 100/100 1Pk Max 10 dBm -0 dBm 0 dBm	9.588516 GHz Tx. Spurious	-59.36 dBm	Mode Auto FFT		-5.16 dBm





END OF REPORT