Shenzhen Toby Technology Co., Ltd.

Report No.: TB-FCC178499
Page: 1 of 46

FCC Radio Test Report FCC ID: Z63-AUSDOM002

Original Grant

Report No. : TB-FCC178499

Applicant: ShenZhen Aoni Electronic Industry Co., Ltd.

Equipment Under Test (EUT)

EUT Name : Baby Monitor

Model No. : E95A

Series Model No. : N/A

Brand Name : papalook

Sample ID : 20210115-04-1#&20210115-04-2#

Receipt Date : 2021-01-20

Test Date : 2021-01-20 to 2021-02-06

Issue Date : 2021-02-07

Standards : FCC Part 15, Subpart C 15.247

Test Method : ANSI C63.10: 2013

Conclusions : PASS

In the configuration tested, the EUT complied with the standards specified above,

The EUT technically complies with the FCC requirements

Test/Witness Engineer : 20

Engineer Supervisor :

Engineer Manager :

This report details the results of the testing carried out on one sample. The results contained in this test report do not relate to other samples of the same product. The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in the report.

TB-RF-074-1.0

Contents

COL	NIENIS	
1.	GENERAL INFORMATION ABOUT EUT	5
	1.1 Client Information	5
	1.2 General Description of EUT (Equipment Under Test)	
	1.3 Block Diagram Showing the Configuration of System Tested	
	1.4 Description of Support Units	6
	1.5 Description of Test Mode	7
	1.6 Description of Test Software Setting	8
	1.7 Measurement Uncertainty	8
	1.8 Test Facility	9
2.	TEST SUMMARY	10
3.	TEST SOFTWARE	10
4.	TEST EQUIPMENT	11
5.	CONDUCTED EMISSION TEST	12
	5.1 Test Standard and Limit	12
	5.2 Test Setup	
	5.3 Test Procedure	
	5.4 Deviation From Test Standard	13
	5.5 EUT Operating Mode	13
	5.6 Test Data	13
6.	RADIATED EMISSION TEST	14
	6.1 Test Standard and Limit	14
	6.2 Test Setup	15
	6.3 Test Procedure	16
	6.4 Deviation From Test Standard	17
	6.5 EUT Operating Condition	17
	6.6 Test Data	17
7.	RESTRICTED BANDS AND BAND-EDGE TEST	18
	7.1 Test Standard and Limit	18
	7.2 Test Setup	18
	7.3 Test Procedure	19
	7.4 Deviation From Test Standard	19
	7.5 EUT Operating Condition	19
	7.6 Test Data	
8.	NUMBER OF HOPPING CHANNEL	20
	8.1 Test Standard and Limit	20
	8.2 Test Setup	
	8.3 Test Procedure	20
	8.4 Deviation From Test Standard	
	8.5 EUT Operating Condition	20

Report No.: TB-FCC178499 Page: 3 of 46

	8.6 Test Data	20
9.	AVERAGE TIME OF OCCUPANCY	21
	9.1 Test Standard and Limit	21
	9.2 Test Setup	21
	9.3 Test Procedure	
	9.4 EUT Operating Condition	21
	9.4 Deviation From Test Standard	21
	9.5 Test Data	21
10.	CHANNEL SEPARATION AND BANDWIDTH TEST	22
	10.1 Test Standard and Limit	
	10.2 Test Setup	22
	10.3 Test Procedure	
	10.4 Deviation From Test Standard	
	10.5 EUT Operating Condition	
	10.6 Test Data	22
11.	PEAK OUTPUT POWER TEST	23
	11.1 Test Standard and Limit	23
	11.2 Test Setup	23
	11.3 Test Procedure	23
	11.4 Deviation From Test Standard	23
	11.5 EUT Operating Condition	23
	11.6 Test Data	23
12.	ANTENNA REQUIREMENT	24
	12.1 Standard Requirement	24
	12.2 Deviation From Test Standard	
	12.3 Antenna Connected Construction	24
	12.4 Result	24
ATTA	ACHMENT A CONDUCTED EMISSION TEST DATA	25
ATTA	ACHMENT B RADIATED EMISSION TEST DATA	27
ATTA	ACHMENT C RESTRICTED BANDS REQUIREMENT TEST DATA	32
ATTA	ACHMENT D NUMBER OF HOPPING CHANNEL TEST DATA	38
	ACHMENT E AVERAGE TIME OF OCCUPANCY TEST DATA	
	ACHMENT F CHANNEL SEPARATION AND BANDWIDTH TEST DATA	
	ACHMENT C. DEAK OUTDUT DOWED TEST DATA	45

Report No.: TB-FCC178499 Page: 4 of 46

Revision History

Report No.	Version	Description	Issued Date
TB-FCC178499	Rev.01	Initial issue of report	2021-02-07
	100		
		1000	(1)133
CHU.			
TO SECOND	1000		TOPI
(II)	COMPANY OF	MODE TO	
	TO TO		3 600
33	000	TO SE SELECTION OF THE PERSON	

Page: 5 of 46

1. General Information about EUT

1.1 Client Information

Applicant : ShenZhen Aoni Electronic Industry Co., Ltd.		
Address : HongHui Industrial Park,2nd Liuxian Road, Xin'An streets, Distri		HongHui Industrial Park,2nd Liuxian Road, Xin'An streets, District 68, Bao'an District, Shenzhen, China
Manufacturer : ShenZhen Aoni Electronic Industry Co., Ltd.		ShenZhen Aoni Electronic Industry Co., Ltd.
Address : HongHui Industrial Park,2nd Liuxian Ro Bao'an District, Shenzhen, China		HongHui Industrial Park,2nd Liuxian Road, Xin'An streets, District 68, Bao'an District, Shenzhen, China

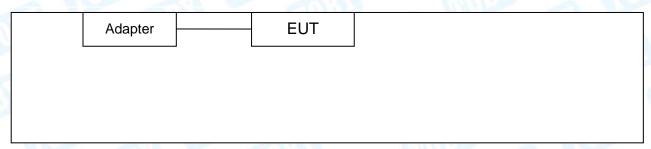
1.2 General Description of EUT (Equipment Under Test)

EUT Name		Baby Monitor		
Models No.	:	E95A		
Model Difference	:	N/A		
)	Operation Frequency:	2406MHz~2475MHz	
THE PERSON NAMED IN		Number of Channel:	24 Channels see Note 2	
Product Description		Max Peak Output Power:	18.155dBm	
Decemplies.		Antenna Gain:	2dBi FPC Antenna	
		Modulation Type:	GFSK (4Mbps)	
Power Rating		DC 5V from Adapter(SAN-05015) Input: 100-240V~, 50/60Hz, 0.35A Max. Output: DC 5V 1.5A		
Software Version	:	XM530_BMS50X20-WVGA_16M_20200622		
Hardware Version	1	BM-ETH V2.01 0308195962		
Remark	1	The adapter and antenna gain provided by the applicant, the verified for the RF conduction test provided by TOBY test lab.		

Note:

⁽¹⁾ For a more detailed features description, please refer to the manufacturer's specifications or the User's Manual.

Page: 6 of 46


(2) Channel List:

	Channel List								
Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)				
01	2406	09	2430	17	2454				
02	2409	10	2433	18	2457				
03	2412	11	2436	19	2460				
04	2415	12	2439	20	2463				
05	2418	13	2442	21	2466				
06	2421	14	2445	22	2469				
07	2424	15	2448	23	2472				
08	2427	16	2451	24	2475				

Note: Test frequencies are lowest channel: 2406 MHz, middle channel: 2442 MHz and highest channel: 2475 MHz.

- (3) The Antenna information about the equipment is provided by the applicant.
- 1.3 Block Diagram Showing the Configuration of System Tested

Adapter & TX Mode

1.4 Description of Support Units

The EUT has been tested as an independent unit.

Page: 7 of 46

1.5 Description of Test Mode

To investigate the maximum EMI emission characteristics generates from EUT, the test system was pre-scanning tested base on the consideration of following EUT operation mode or test configuration mode which possible have effect on EMI emission level. Each of these EUT operation mode(s) or test configuration mode(s) mentioned follow was evaluated respectively.

For Conducted Test					
Final Test Mode Description					
Mode 1	Adapter+ TX Mode				

For Radiated Test					
Final Test Mode	Description				
Mode 1	TX GFSK Mode				
Mode 2	TX Mode(GFSK) Channel 01/13/24				

Note:

(1) For all test, we have verified the construction and function in typical operation. And all the test modes were carried out with the EUT in transmitting operation in maximum power with all kinds of data rate. We have pretested all the test modes above.

According to ANSI C63.10 standards, the measurements are performed at the highest, middle, lowest available channels, and the worst case data rate as follows:

TX Mode: GFSK (4Mbps)

(2) The EUT is considered a Mobile unit; it was pre-tested on the positioned of each 3 axis, X-plane, Y-plane and Z-plane. The worst case was found positioned on X-plane as the normal use. Therefore only the test data of this X-plane was used for radiated emission measurement test.

Page: 8 of 46

1.6 Description of Test Software Setting

During testing channel power controlling software provided by the customer was used to control the operating channel as well as the output power level. The RF output power selection is for the setting of RF output power expected by the customer and is going to be fixed on the firmware of the final end product power parameters of Bluetooth mode.

Test Software Version	Control by pressing the button			
Frequency	2406 MHz	2442 MHz	2475 MHz	
GFSK	DEF	DEF	DEF	

1.7 Measurement Uncertainty

The reported uncertainty of measurement $y \pm U$, where expended uncertainty U is based on a standard uncertainty multiplied by a coverage factor of k=2, providing a level of confidence of approximately 95 %.

Test Item	Parameters	Expanded Uncertainty (U _{Lab})
Conducted Emission	Level Accuracy: 9kHz~150kHz 150kHz to 30MHz	±3.50 dB ±3.10 dB
Radiated Emission	Level Accuracy: 9kHz to 30 MHz	±4.60 dB
Radiated Emission	Level Accuracy: 30MHz to 1000 MHz	±4.50 dB
Radiated Emission	Level Accuracy: Above 1000MHz	±4.20 dB

Page: 9 of 46

1.8 Test Facility

The testing report were performed by the Shenzhen Toby Technology Co., Ltd., in their facilities located at 1A/F., Bldg.6, Yusheng Industrial Zone, The National Road No.107 Xixiang Section 467, Xixiang, Bao'an, Shenzhen, Guangdong, China. At the time of testing, the following bodies accredited the Laboratory:

CNAS (L5813)

The Laboratory has been accredited by CNAS to ISO/IEC 17025: 2017 General Requirements for the Competence of Testing and Calibration Laboratories for the competence in the field of testing. And the Registration No.: CNAS L5813.

A2LA Certificate No.: 4750.01

The laboratory has been accredited by American Association for Laboratory Accreditation(A2LA) to ISO/IEC 17025: 2017 General Requirements for the Competence of Testing and Calibration Laboratories for the technical competence in the field of Electrical Testing. And the A2LA Certificate No.: 4750.01. FCC Accredited Test Site Number: 854351. Designation Number: CN1223.

IC Registration No.: (11950A)

The Laboratory has been registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing. The site registration: Site# 11950A.

Report No.: TB-FCC178499 Page: 10 of 46

2. Test Summary

FCC Part 15 Subpart C(15.247)/ RSS 247 Issue 2						
Standard Se	ction			Judgment	Remark	
FCC	IC	Test Item	Test Sample(s)			
15.203	الان	Antenna Requirement	20210115-04-1#	PASS	N/A	
15.207	RSS-GEN 7.2.2	Conducted Emission	20210115-04-2#	PASS	N/A	
15.205	RSS-Gen 7.2.3	Restricted Bands	20210115-04-1#	PASS	N/A	
15.247(a)(1)	RSS 247 5.1 (2)	Hopping Channel Separation	20210115-04-1#	PASS	N/A	
15.247(a)(1)	RSS 247 5.1 (4)	Dwell Time	20210115-04-1#	PASS	N/A	
15.247(b)(1)	RSS 247 5.4 (2)	Peak Output Power	20210115-04-1#	PASS	N/A	
15.247(b)(1)	RSS 247 5.1 (4)	Number of Hopping Frequency	20210115-04-1#	PASS	N/A	
15.247(d)	RSS 247 5.5	Band Edge	20210115-04-1#	PASS	N/A	
15.247(c)& 15.209	RSS 247 5.5	Radiated Spurious Emission	20210115-04-2#	PASS	N/A	
15.247(a)	RSS 247 5.1 (1)	99% Occupied Bandwidth & 20dB Bandwidth	20210115-04-1#	PASS	N/A	

3. Test Software

Test Item	Test Software	Manufacturer	Version No.
Conducted Emission	EZ-EMC	EZ	CDI-03A2
Radiation Emission	EZ-EMC	EZ	FA-03A2RE
RF Conducted Measurement	MTS-8310	MWRFtest	V2.0.0.0

Report No.: TB-FCC178499 Page: 11 of 46

4. Test Equipment

Conducted Emission	Test				
Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Due Date
EMI Test Receiver	Rohde & Schwarz	ESCI	100321	Jul. 06, 2020	Jul. 05, 2021
RF Switching Unit	Compliance Direction Systems Inc	RSU-A4	34403	Jul. 06, 2020	Jul. 05, 2021
AMN	SCHWARZBECK	NNBL 8226-2	8226-2/164	Jul. 06, 2020	Jul. 05, 2021
LISN	Rohde & Schwarz	ENV216	101131	Jul. 06, 2020	Jul. 05, 2021
Radiation Emission T	est		:	-	<u>:</u>
Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Due Date
Spectrum Analyzer	Agilent	E4407B	MY45106456	Jul. 06, 2020	Jul. 05, 2021
EMI Test Receiver	Rohde & Schwarz	ESPI	100010/007	Jul. 06, 2020	Jul. 05, 2021
Spectrum Analyzer	Rohde & Schwarz	FSVR	102197	Jul. 06, 2020	Jul. 05, 2021
Bilog Antenna	ETS-LINDGREN	3142E	00117537	Mar.01, 2020	Feb. 28, 2022
Horn Antenna	ETS-LINDGREN	3117	00143207	Mar.01, 2020	Feb. 28, 2022
Horn Antenna	ETS-LINDGREN	BBHA 9170	BBHA9170582	Mar.01, 2020	Feb. 28, 2022
Loop Antenna	SCHWARZBECK	FMZB 1519 B	1519B-059	Jul. 07, 2020	Jul. 06, 2021
Pre-amplifier	Sonoma	310N	185903	Mar.01, 2020	Feb. 28, 2021
Pre-amplifier	HP	8449B	3008A00849	Mar.01, 2020	Feb. 28, 2021
Cable	HUBER+SUHNER	100	SUCOFLEX	Mar.01, 2020	Feb. 28, 2021
Positioning Controller	ETS-LINDGREN	2090	N/A	N/A	N/A
Antenna Conducted I	Emission				
Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Due Date
Spectrum Analyzer	Agilent	E4407B	MY45106456	Jul. 06, 2020	Jul. 05, 2021
Spectrum Analyzer	Rohde & Schwarz	ESCI	100010/007	Jul. 06, 2020	Jul. 05, 2021
MXA Signal Analyzer	Agilent	N9020A	MY49100060	Sep. 11, 2020	Sep. 10, 2021
Vector Signal Generator	Agilent	N5182A	MY50141294	Sep. 11, 2020	Sep. 10, 2021
Analog Signal Generator	Agilent	N5181A	MY50141953	Sep. 11, 2020	Sep. 10, 2021
The same of the sa	DARE!! Instruments	RadiPowerRPR3006W	17I00015SNO26	Sep. 11, 2020	Sep. 10, 2021
	DARE!! Instruments	RadiPowerRPR3006W	17I00015SNO29	Sep. 11, 2020	Sep. 10, 2021
RF Power Sensor	DARE!! Instruments	RadiPowerRPR3006W	17I00015SNO31	Sep. 11, 2020	Sep. 10, 2021

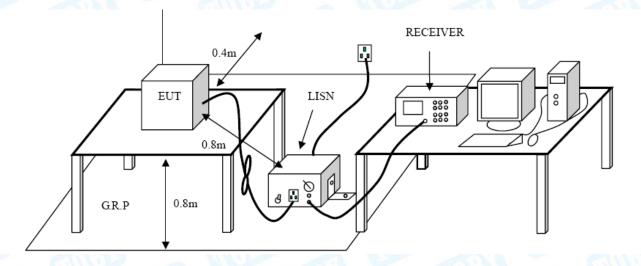
Page: 12 of 46

5. Conducted Emission Test

5.1 Test Standard and Limit

5.1.1Test Standard FCC Part 15.207/RSS-GEN 8.8

5.1.2 Test Limit


Conducted Emission Test Limit

Eroguopov	Maximum RF Line Voltage (dBμV)			
Frequency	Quasi-peak Level	Average Level		
150kHz~500kHz	66 ~ 56 *	56 ~ 46 *		
500kHz~5MHz	56	46		
5MHz~30MHz	60	50		

Notes:

- (1) *Decreasing linearly with logarithm of the frequency.
- (2) The lower limit shall apply at the transition frequencies.
- (3) The limit decrease in line with the logarithm of the frequency in the range of 0.15 to 0.50MHz.

5.2 Test Setup

Page: 13 of 46

5.3 Test Procedure

The EUT was placed 0.8 meters from the horizontal ground plane with EUT being connected to the power mains through a line impedance stabilization network (LISN). All other support equipments powered from additional LISN(s). The LISN provide 50 Ohm/50uH of coupling impedance for the measuring instrument.

Interconnecting cables that hang closer than 40 cm to the ground plane shall be folded back and forth in the center forming a bundle 30 to 40 cm long.

I/O cables that are not connected to a peripheral shall be bundled in the center. The end of the cable may be terminated, if required, using the correct terminating impedance. The overall length shall not exceed 1 m.

LISN at least 80 cm from nearest part of EUT chassis

The bandwidth of EMI test receiver is set at 9kHz, and the test frequency band is from 0.15MHz to 30MHz.

5.4 Deviation From Test Standard

No deviation

5.5 EUT Operating Mode

Please refer to the description of test mode.

5.6 Test Data

Please refer to the Attachment A.

Page: 14 of 46

6. Radiated Emission Test

6.1 Test Standard and Limit

6.1.1 Test Standard FCC Part 15.209/RSS-GEN 8.9

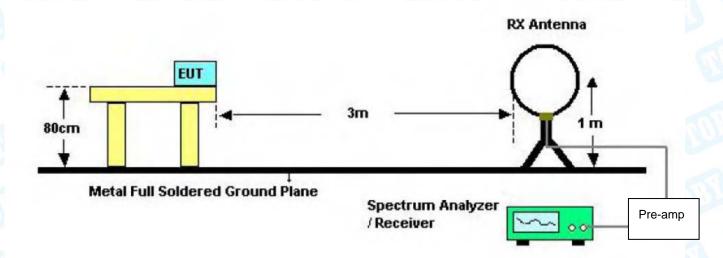
6.1.2 Test Limit

Radiated Emission Limit (9 kHz~1000MHz)

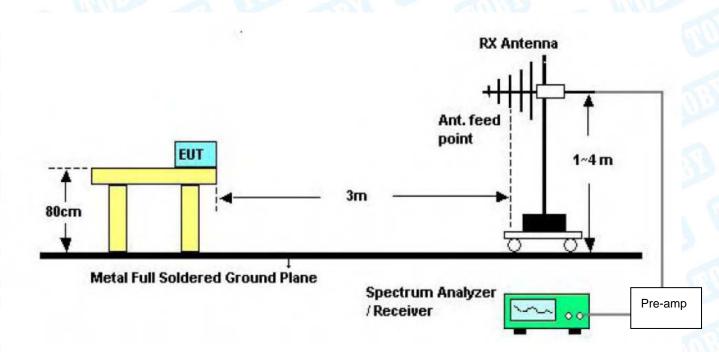
Frequency	Field Strength	Measurement Distance
(MHz	(microvolt/meter)	(meters)
0.009~0.490	2400/F(KHz)	300
0.490~1.705	24000/F(KHz)	30
1.705~30.0	30	30
30~88	100	3
88~216	150	3
216~960	200	3
Above 960	500	3

Radiated Emission Limit (Above 1000MHz)

Frequency	Distance Meters(at 3m)		
(MHz)	Peak	Average	
Above 1000	74	54	

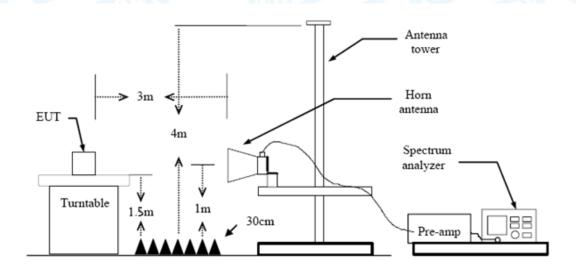

Note:

- (1) The tighter limit applies at the band edges.
- (2) Emission Level (dBuV/m)=20log Emission Level (uV/m)



Page: 15 of 46

6.2 Test Setup


Below 30MHz Test Setup

Below 1000MHz Test Setup

Page: 16 of 46

Above 1GHz Test Setup

6.3 Test Procedure

- (1) Measurements at frequency above 1GHz. The EUT was placed on a rotating 1.5m high above the ground. RF absorbers covered the ground plane with a minimum area of 3.0m by 3.0m between the EUT and measurement receiver antenna. The RF absorber shall not exceed 30cm in high above the conducting floor. The table was rotated 360 degrees to determine the position of the highest radiation.
- (2) Measurements at frequency Below 1GHz. The EUT was placed on a rotating 0.8m high above the ground. RF absorbers covered the ground plane with a minimum area of 3.0m by 3.0m between the EUT and measurement receiver antenna. The RF absorber shall not exceed 30cm in high above the conducting floor. The table was rotated 360 degrees to determine the position of the highest radiation.
- (3) The Test antenna shall vary between 1m and 4m, Both Horizontal and Vertical antenna are set to make measurement.
- (4) The initial step in collecting conducted emission data is a spectrum analyzer peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak detector mode re-measured.
- (5) If the Peak Mode measured value compliance with and lower than Quasi Peak Mode Limit Bellow 1 GHz, the EUT shall be deemed to meet QP Limits and then no additional QP Mode measurement performed. But the Peak Value and average value both need to comply with applicable limit above 1 GHz.
- (6) Testing frequency range below 1GHz the measuring instrument use VBW=120 kHz with Quasi-peak detection.
- (7) Testing frequency range above 1GHz the measuring instrument use RBW=1 MHz and VBW=3 MHz with Peak Detector for Peak Values, and use RBW=1 MHz and VBW=10 Hz with Peak Detector for Average Values.
- (8) For the actual test configuration, please see the test setup photo.

Page: 17 of 46

6.4 Deviation From Test Standard

No deviation

6.5 EUT Operating Condition

The Equipment Under Test was set to Continual Transmitting in maximum power.

6.6 Test Data

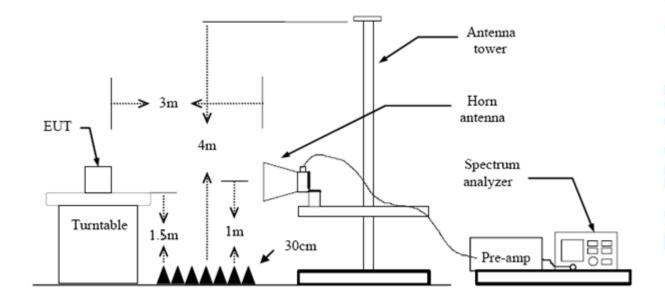
Remark: During testing above 1GHz the measuring instrument use RBW=1 MHz and VBW=3 MHz with Peak Detector for Peak Values, and use RBW=1 MHz and VBW=10 Hz with Peak Detector for Average Values.

Please refer to the Attachment B.

Page: 18 of 46

7. Restricted Bands and Band-edge test

7.1 Test Standard and Limit


7.1.1 Test Standard FCC Part 15.209&15.205 RSS-GEN 8.9&8.10

7.1.2 Test Limit

Restricted Frequency	Distance N	leters(at 3m)
Band (MHz)	Peak	Average
2310 ~2390	74	54
2483.5 ~2500	74	54

Note: All restriction bands have been tested, only the worst case is reported.

7.2 Test Setup

Page: 19 of 46

7.3 Test Procedure

(1) The measuring distance of 3m shall be used for measurements at frequency up to 1GHz and above 1 GHz. The EUT was placed on a rotating 0.8m high above ground, the table was rotated 360 degrees to determine the position of the highest radiation.

- (2) Measurements at frequency above 1GHz. The EUT was placed on a rotating 1.5m high above the ground. RF absorbers covered the ground plane with a minimum area of 3.0m by 3.0m between the EUT and measurement receiver antenna. The RF absorber shall not exceed 30cm in high above the conducting floor. The table was rotated 360 degrees to determine the position of the highest radiation.
- (3) The Test antenna shall vary between 1m and 4m, Both Horizontal and Vertical antenna are set to make measurement.
- (4) The initial step in collecting conducted emission data is a spectrum analyzer peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak detector mode re-measured.
- (5) If the Peak Mode measured value compliance with and lower than Quasi Peak Mode Limit Bellow 1 GHz, the EUT shall be deemed to meet QP Limits and then no additional QP Mode measurement performed. But the Peak Value and average value both need to comply with applicable limit above 1 GHz.
- (6) Testing frequency range below 1GHz the measuring instrument use VBW=120 kHz with Quasi-peak detection.
- (7) Testing frequency range above 1GHz the measuring instrument use RBW=1 MHz and VBW=3 MHz with Peak Detector for Peak Values, and use RBW=1 MHz and VBW=10 Hz with AVG Detector for Average Values.
- (8) For the actual test configuration, please see the test setup photo.

7.4 Deviation From Test Standard

No deviation

7.5 EUT Operating Condition

The Equipment Under Test was set to Continual Transmitting in maximum power.

7.6 Test Data

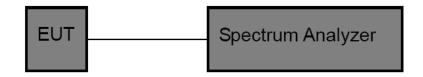
Remark: During testing above 1GHz the measuring instrument use RBW=1 MHz and VBW=3 MHz with Peak Detector for Peak Values, and use RBW=1 MHz and VBW=10 Hz with Peak Detector for Average Values.

All restriction bands have been tested, only the worst case is reported.

Please refer to the Attachment C.

Page: 20 of 46

8. Number of Hopping Channel


8.1 Test Standard and Limit

8.1.1 Test Standard FCC Part 15.247 (a)(1) / RSS 247 5.1(4)

8.1.2 Test Limit

Section	Test Item	Limit
15.247	Number of Hopping Channel	>15

8.2 Test Setup

8.3 Test Procedure

- (1) The EUT was directly connected to the spectrum analyzer and antenna output port as show in the block diagram above.
- (2) Spectrum Setting: RBW=100 KHz, VBW=100 KHz, Sweep time= Auto.

8.4 Deviation From Test Standard

No deviation

8.5 EUT Operating Condition

The EUT was set to the Hopping Mode by the Customer.

8.6 Test Data

Please refer to the Attachment D.

Page: 21 of 46

9. Average Time of Occupancy


9.1 Test Standard and Limit

9.1.1 Test Standard FCC Part 15.247 (a)(1) / RSS 247 5.1(d)

9.1.2 Test Limit

Test Item	Limit
Average Time of Occupancy	0.4 sec

9.2 Test Setup

9.3 Test Procedure

- (1) The EUT was directly connected to the spectrum analyzer and antenna output port as show in the block diagram above.
- (2) Spectrum Setting: RBW=100KHz, VBW=300KHz.
- (3) Use video trigger with the trigger level set to enable triggering only on full pulses.
- (4) Sweep Time is more than once pulse time.
- (5) Set the center frequency on any frequency would be measure and set the frequency span to zero.
- (6) Measure the maximum time duration of one single pulse.
- (7) Set the EUT for packet transmitting.
- (8) Measure the maximum time duration of one single pulse.

9.4 EUT Operating Condition

The average time of occupancy on any channel within the Period can be calculated with formulas:

The Dwell Time = Burst Width * Total Hops. The detailed calculations are showed as follows:

The duration for dwell time calculation: 0.4 [s] * hopping number = 0.4 [s] * 20 [ch] = 8.0 [s*ch];

The burst width, which is directly measured, refers to the duration on one channel hop.

The maximum number of hopping channels in 8.0s = 3*(8.0/0.24) = 100

The lowest, middle and highest channels are selected to perform testing to record the dwell time of each occupation measured in this channel, which is called Pulse Time here.

The EUT was set to the Hopping Mode by the Customer.

9.4 Deviation From Test Standard

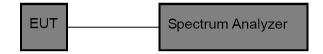
No deviation

9.5 Test Data

Please refer to the Attachment E.

Page: 22 of 46

10. Channel Separation and Bandwidth Test


10.1 Test Standard and Limit

10.1.1 Test Standard FCC Part 15.247/RSS 247 5.1(b)

10.1.2 Test Limit

Test Item	Limit	Frequency Range(MHz)
Bandwidth	<=1 MHz (20dB bandwidth)	2400~2483.5
Channel Separation	>25KHz or >two-thirds of the 20 dB bandwidth Which is greater	2400~2483.5

10.2 Test Setup

10.3 Test Procedure

- (1) The EUT was directly connected to the spectrum analyzer and antenna output port as show in the block diagram above.
- (2) Spectrum Setting:

Channel Separation: RBW=100 kHz, VBW=100 kHz.

Bandwidth: RBW=30 kHz, VBW=100 kHz.

- (3) The bandwidth is measured at an amplitude level reduced 20dB from the reference level. The reference level is the level of the highest amplitude signal observed from the transmitter at the fundamental frequency. Once the reference level is established, the equipment is conditioned with typical modulating signal to produce the worst –case (i.e the widest) bandwidth.
 - (4) Measure the channel separation the spectrum analyzer was set to Resolution Bandwidth:30 kHz, and Video Bandwidth:100 kHz. Sweep Time set auto.

10.4 Deviation From Test Standard

No deviation

10.5 EUT Operating Condition

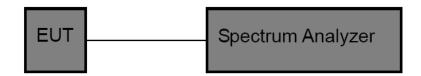
The EUT was set to the Hopping Mode for Channel Separation Test and continuously transmitting for the Bandwidth Test.

10.6 Test Data

Please refer to the Attachment F.

Page: 23 of 46

11. Peak Output Power Test


11.1 Test Standard and Limit

11.1.1 Test Standard FCC Part 15.247 (b) (1)/RSS 247 5.4(b)

11.1.2 Test Limit

Test Item	Limit	Frequency Range(MHz)
Peak Output Power	Hopping Channels>75 Power<1W(30dBm) Other <125 mW(21dBm)	2400~2483.5

11.2 Test Setup

11.3 Test Procedure

- (1) The EUT was directly connected to the spectrum analyzer and antenna output port as show in the block diagram above.
- (2) Spectrum Setting:

Peak Detector: RBW=1 MHz, VBW=3 MHz for bandwidth less than 1MHz. RBW=3 MHz, VBW=3 MHz for bandwidth more than 1MHz.

11.4 Deviation From Test Standard

No deviation

11.5 EUT Operating Condition

The EUT was set to continuously transmitting in the max power during the test.

11.6 Test Data

Please refer to the Attachment G.

Page: 24 of 46

12. Antenna Requirement

12.1 Standard Requirement

12.1.1 Standard FCC Part 15.203

12.1.2 Requirement

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this Section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

12.2 Deviation From Test Standard

No deviation

12.3 Antenna Connected Construction

The gains of the antenna used for transmitting is 2dBi, and the antenna connector is de-signed with permanent attachment and no consideration of replacement. Please see the EUT photo for details.

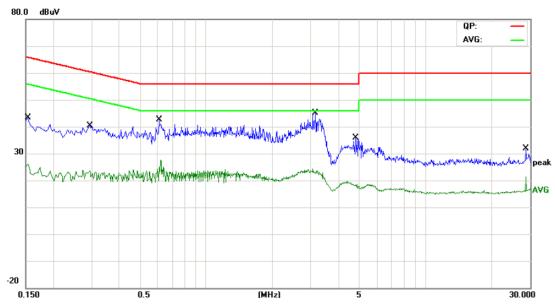
12.4 Result

The EUT antenna is a FPC Antenna. It complies with the standard requirement.

Antenna Type				
20	Permanent attached antenna	W.B.		
0000				
	Professional installation antenna	BI		

Page:

Attachment A-- Conducted Emission Test Data


Temperature:	23.3℃	-	111	Relative H	lumidity	': 41	%
Test Voltage:	AC 120	0V/60Hz				MIN I	
Terminal:	Line		THE P		a V		TIT!
Test Mode:	TX GF	SK Mode 2	408MHz		13		WILL STATE
Remark:	All cha	nnels have	been teste	d and Show	s only th	e worst	channels.
80.0 dBuV							
						QP:	
		, ,		×			
\$ Morrow	www.dytonyl	General de de la company	million polar liberario	* *			
30	المدال	1 k.	, , , , , , , , , , , , , , , , , , ,			Yeshit Marablant James Marie	www.man.m
7/1/1/1/W	JVW-JWA-V-4-ALJANJULIJ.	Williams	Hermonesta Habitania managan	mandred	hage mentioned and the same of	**************************************	AV0
-20							
0.150	0.5		(MHz)	5			30.000
		Reading	Correct	Measure-			
No. Mk.	Freq.	Level	Factor	ment	Limit	Over	
	MHz	dBuV	dB	dBuV	dBuV	dB	Detector
1	0.1539	28.10	9.70	37.80	65.78	-27.98	QP
2	0.1539	14.57	9.70	24.27	55.78	-31.51	AVG
3	0.6180	30.46	9.70	40.16	56.00	-15.84	QP
4 *	0.6180	21.77	9.70	31.47	46.00	-14.53	AVG
5	1.1300	24.01	9.79	33.80	56.00	-22.20	QP
6	1.1300	12.23	9.79	22.02		-23.98	AVG
7	3.0380	25.45	9.90	35.35		-20.65	QP
8	3.0380	11.50	9.90	21.40		-24.60	AVG
9	4.7619	14.12	9.90	24.02		-31.98	QP
10	4.7619	7.77	9.90	17.67		-28.33	AVG
	5.5220						
	ココノノロ	14.77	9.87	24.64	OU.U0	-35.36	QP
11	5.5220	8.27	9.87	18.14	F0 00	-31.86	AVG

- 1. Corr. Factor (dB) = LISN Factor (dB) + Cable Loss (dB)
- 2. Margin (dB) =QuasiPeak/Average (dBuV)-Limit (dBuV)

Page: 26 of 46

Temperature:	23.3℃	Relative Humidity:	41%		
Test Voltage:	AC 120V/60Hz				
Terminal:	Neutral		A AMOUNT		
Test Mode:	TX GFSK Mode 2408MHz	The state of the s	133		
Remark:	All channels have been tested and Shows only the worst channels.				

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB	dBuV	dBuV	dB	Detector
1		0.1539	27.48	9.80	37.28	65.78	-28.50	QP
2		0.1539	13.54	9.80	23.34	55.78	-32.44	AVG
3		0.2940	25.33	9.80	35.13	60.41	-25.28	QP
4		0.2940	11.87	9.80	21.67	50.41	-28.74	AVG
5	*	0.6100	26.34	9.80	36.14	56.00	-19.86	QP
6		0.6100	12.29	9.80	22.09	46.00	-23.91	AVG
7		3.1460	25.21	9.80	35.01	56.00	-20.99	QP
8		3.1460	11.08	9.80	20.88	46.00	-25.12	AVG
9		4.7980	15.61	9.80	25.41	56.00	-30.59	QP
10		4.7980	6.84	9.80	16.64	46.00	-29.36	AVG
11		28.6700	17.29	10.15	27.44	60.00	-32.56	QP
12		28.6700	9.31	10.15	19.46	50.00	-30.54	AVG

- Remark:
 1. Corr. Factor (dB) = LISN Factor (dB) + Cable Loss (dB)
- 2. Margin (dB) =QuasiPeak/Average (dBuV)-Limit (dBuV)

Page: 27 of 46

Attachment B-- Radiated Emission Test Data

9KHz~30MHz

From 9KHz to 30MHz: Conclusion: PASS

Note: The amplitude of spurious emissions which are attenuated by more than 20dB

below the permissible value has no need to be reported.

30MHz~1GHz

Гетр	erature:		23.2	2℃			Relative	Humidity:	: 41%	
Test V	/oltage:		AC	120V/	60Hz	MADE		6.30		N.
Ant. F	Pol.		Hori	izontal	33		MILL		Alto	
Test N	Mode:		TX (GFSK	Mode	2406MHz				01
Rema	rk:		Only	y wors	e case	is reported			TO STATE	
90.0	dBuV/m									
			+					(RF)FCC	15C 3M Radiation	n
			-						Margin -6	dB
40				Щ.				6		
	1			—		.4	5 *	X		1. [4]
زرا	MM .	۸n		2		3 A	i	Walland who	rumahanna	JUNE MAN
N ^C			my	MXM	yma.		Lyman !	- MA-CON-		
		-V	+		- VANAN-	WM Man				
-										
-10			-	70.00				100		1000 000
30.00	00 40	50	60	70 80		(MHz)	300	400	500 600 700	1000.000
NI-	NAI-	_			ading	Correct	Measure-	Limit	Over	
INC	o. Mk.	Fre			evel	Factor	ment			
		MH			BuV	dB/m	dBuV/m	dBuV/m	dB	Detector
1	(32.63	340	41	1.54	-14.91	26.63	40.00	-13.37	peak
2	8	31.78	333	42	2.10	-22.35	19.75	40.00	-20.25	peak
3	1	35.5	062	43	3.91	-22.37	21.54	43.50	-21.96	peak
				40	3.48	-19.80	28.68	43.50	-14.82	peak
4	1	89.7	385	40	7.40					
4 5		89.7 97.2			7.96	-16.34	31.62	46.00	-14.38	peak


^{*:}Maximum data x:Over limit !:over margin

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. QuasiPeak (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = QuasiPeak (dB μ V/m)-Limit QPK(dB μ V/m)

Page: 28 of 46

Temperature:	23.2℃	Relative Humidity:	41%
Test Voltage:	AC 120V/60Hz		MAN
Ant. Pol.	Vertical		
Test Mode:	TX GFSK Mode 2406MHz		
Remark:	Only worse case is reported		CHILL STREET

No.	. Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector
1	İ	34.0365	51.28	-15.96	35.32	40.00	-4.68	peak
2	*	44.4308	57.26	-21.15	36.11	40.00	-3.89	QP
3		81.2117	50.08	-22.38	27.70	40.00	-12.30	peak
4		189.7385	53.35	-19.80	33.55	43.50	-9.95	peak
5		286.9823	46.04	-16.54	29.50	46.00	-16.50	peak
6		404.6665	44.43	-12.25	32.18	46.00	-13.82	peak

^{*:}Maximum data x:Over limit !:over margin

- Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
 QuasiPeak (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = QuasiPeak (dB μ V/m)-Limit QPK(dB μ V/m)

Page: 29 of 46

Above 1GHz (Only worse case is reported)

					,						
Temp	eratu	ıre:	23.2	\mathbb{C}		Relative H	lumidity:	41%			
Test \	/oltaç	ge:	AC '	120V/60Hz	NIN -	Min		- N	MILL		
Ant. F	ol.		Hori	Horizontal							
Test Mode:			TX	TX GFSK Mode 2406MHz							
Rema	rk:			eport for the cribed limit.	emission w	hich more tha	an 10 dB b	elow the			
No.	Mk	. Fre	eq.	Reading Level	Correct Factor	Measure- ment	Limit	Over			
		MH	z	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector		
1	*	4811.	806	35.70	13.07	48.77	54.00	-5.23	AVG		
2		4811.	864	48.16	13.07	61.23	74.00	-12.77	peak		
-											

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)

23.2℃		Relative Hum	nidity:	41%					
AC 120V/60Hz	AC 120V/60Hz								
Vertical		N. W.		1	-0				
TX GFSK Mode	TX GFSK Mode 2406MHz								
No report for the prescribed limit.	emission w	hich more tha	an 10 dB l	oelow the					
Reading eq. Level	Correct Factor	Measure- ment	Limit	Over					
Hz dBu∨	dB/m	dBuV/m	dBuV/m	dB	Detector				
748 45.40	13.07	58.47	74.00	-15.53	peak				
992 32.63	13.07	45.70	54.00	-8.30	AVG				
	AC 120V/60Hz Vertical TX GFSK Mode No report for the prescribed limit. Reading eq. Level Hz dBuV 748 45.40	AC 120V/60Hz Vertical TX GFSK Mode 2406MHz No report for the emission was prescribed limit. Reading Correct Factor Hz dBuV dB/m 748 45.40 13.07	AC 120V/60Hz Vertical TX GFSK Mode 2406MHz No report for the emission which more that prescribed limit. Reading Correct Measure-eq. Level Factor ment Hz dBuV dB/m dBuV/m 748 45.40 13.07 58.47	AC 120V/60Hz Vertical TX GFSK Mode 2406MHz No report for the emission which more than 10 dB to prescribed limit. Reading Correct Measure-eq. Level Factor ment Limit etc. Az dBuV dB/m dBuV/m dBuV/m dBuV/m 748 45.40 13.07 58.47 74.00	AC 120V/60Hz Vertical TX GFSK Mode 2406MHz No report for the emission which more than 10 dB below the prescribed limit. Reading Correct Measure-eq. Level Factor ment Limit Over dB/m dBuV/m dBuV/m dB 748 45.40 13.07 58.47 74.00 -15.53				

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)

Page: 30 of 46

Temp	eratu	ıre:	23.2	$2^{\circ}\mathbb{C}$		Relative Hur	nidity:	41%			
Test Voltage:			AC	120V/60Hz	818	Ω_{DD}	100	- 1	THILL		
Ant. Pol.			Hori	Horizontal							
Test Mode:			TX (TX GFSK Mode 2442MHz							
Remark:				eport for the cribed limit.	emission v	which more th	an 10 dB	below the			
No	. Mk	. Fre	eq.	Reading Level	Correct Factor	Measure- ment	Limit	Over			
,		MH	z	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector		
1	*	4883.	748	32.41	13.59	46.00	54.00	-8.00	AVG		
2		4883.	878	45.94	13.60	59.54	74.00	-14.46	peak		
D											

- Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
 Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)

Tempe	eratu	re:	23.2	$^{\circ}$		Relative H	lumidity:	41%			
Test V	oltag	je:	AC 1	120V/60Hz			CHIL				
Ant. P	ol.		Verti	/ertical							
Test N	lode:	!	TX	SFSK Mode 2	2442MHz	MAIN.		630	-6		
				eport for the cribed limit.	emission w	hich more tha	an 10 dB b	elow the) W		
No.	Mk	. Fre	eq.	Reading Level	Correct Factor	Measure- ment	Limit	Over			
		MH	Ηz	dBu∨	dB/m	dBuV/m	dBuV/m	dB	Detector		
1	*	4883.	748	35.11	13.59	48.70	54.00	-5.30	AVG		
2		4884.	.064	48.55	13.60	62.15	74.00	-11.85	peak		
l											

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB) 2. Peak/AVG (dB μ V/m)= Corr. (dB/m)+ Read Level (dB μ V)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)

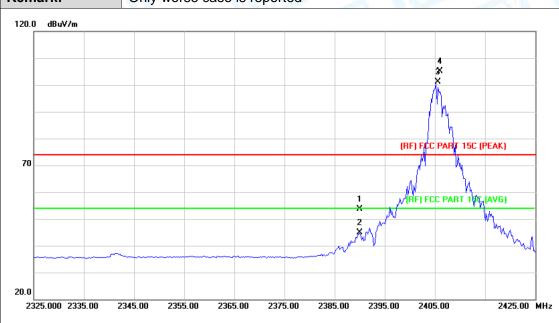
Page: 31 of 46

Temperature:	23.2℃		Relative F	lumidity:	41%				
Test Voltage:	AC 120V/60Hz		A COLOR	200	- 1	All Dis			
Ant. Pol.	Horizontal		W C		18.0				
Test Mode:	TX GFSK Mode	TX GFSK Mode 2475MHz							
Remark:	No report for the prescribed limit.		hich more the	an 10 dB b	elow the	والمعتل			
No. Mk. Fr	Reading eq. Level	Correct Factor	Measure- ment	Limit	Over				
M	Hz dBu∨	dB/m	dBuV/m	dBuV/m	dB	Detector			
1 * 4949	0.836 36.86	14.08	50.94	54.00	-3.06	AVG			
2 4950	.228 50.15	14.08	64.23	74.00	-9.77	peak			

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)

Temperature:	23.2℃	Relative Humidity:	41%
Test Voltage:	AC 120V/60Hz	THE STATE OF THE S	COUNTY OF
Ant. Pol.	Vertical	The same	000
Test Mode:	TX GFSK Mode 2475MHz	THU	0
Remark:	No report for the emission v prescribed limit.	vhich more than 10 dB	below the
No. Mk. Fr	Reading Correct eq. Level Factor	Measure- ment Limit	Over
MI	Hz dBuV dB/m	dBuV/m dBuV/m	dB Detector
1 4949	.756 46.19 14.08	60.27 74.00	-13.73 peak
2 * 4950	.168 32.57 14.08	46.65 54.00	-7.35 AVG

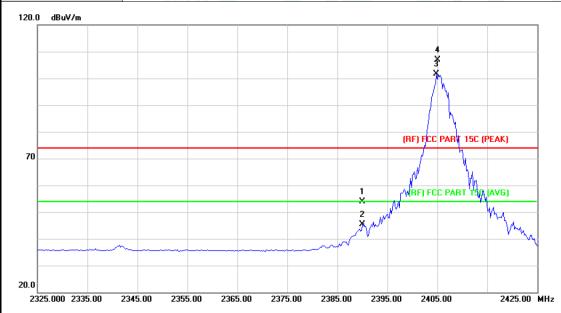
- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)



Report No.: TB-FCC178499 Page: 32 of 46

Attachment C-- Restricted Bands Requirement Test Data

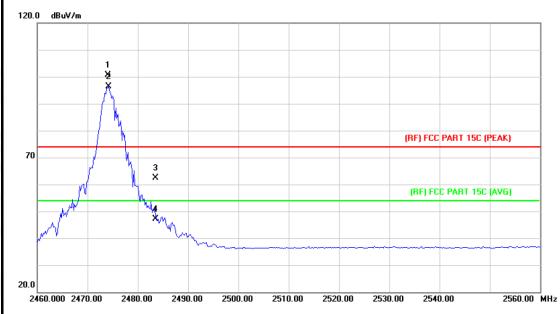
(1) Radiation Test


No.	Mk	. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBu∀	dB/m	dBuV/m	dBuV/m	dB	Detector
1		2390.000	52.37	1.28	53.65	74.00	-20.35	peak
2		2390.000	43.55	1.28	44.83	54.00	-9.17	AVG
3	*	2405.600	99.70	1.35	101.05	Fundamental	Frequency	AVG
4	X	2406.000	103.88	1.35	105.23	Fundamental	Frequency	peak

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)

Page: 33 of 46

	Temperature:	23.2℃	Relative Humidity:	41%					
	Test Voltage:	AC 120V/60Hz	CHILL	(1 V)					
	Ant. Pol.	Vertical	/ertical						
	Test Mode:	TX GFSK Mode 2406MHz							
1	Remark:	Only worse case is reported	CHILL ST.	I WILL					


No.	. Mk	. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBu∀	dB/m	dBuV/m	dBuV/m	dB	Detector
1		2390.000	52.52	1.28	53.80	74.00	-20.20	peak
2		2390.000	44.09	1.28	45.37	54.00	-8.63	AVG
3	*	2404.800	100.18	1.34	101.52	Fundamental F	requency	AVG
4	Χ	2405.000	105.57	1.34	106.91	Fundamental F	requency	peak

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)

Report No.: TB-FCC178499 34 of 46

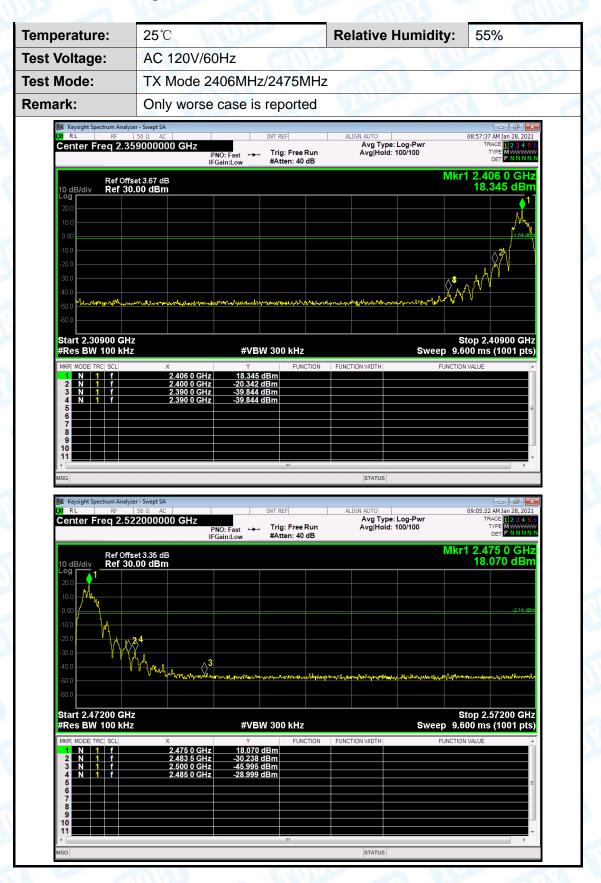
Temperature:	23.2℃	Relative Humidity:	41%
Test Voltage:	AC 120V/60Hz	THE PARTY OF THE P	(1 L)
Ant. Pol.	Horizontal		
Test Mode:	TX GFSK Mode 2475 MHz		
Remark:	Only worse case is reported	MUSE	I ROLL

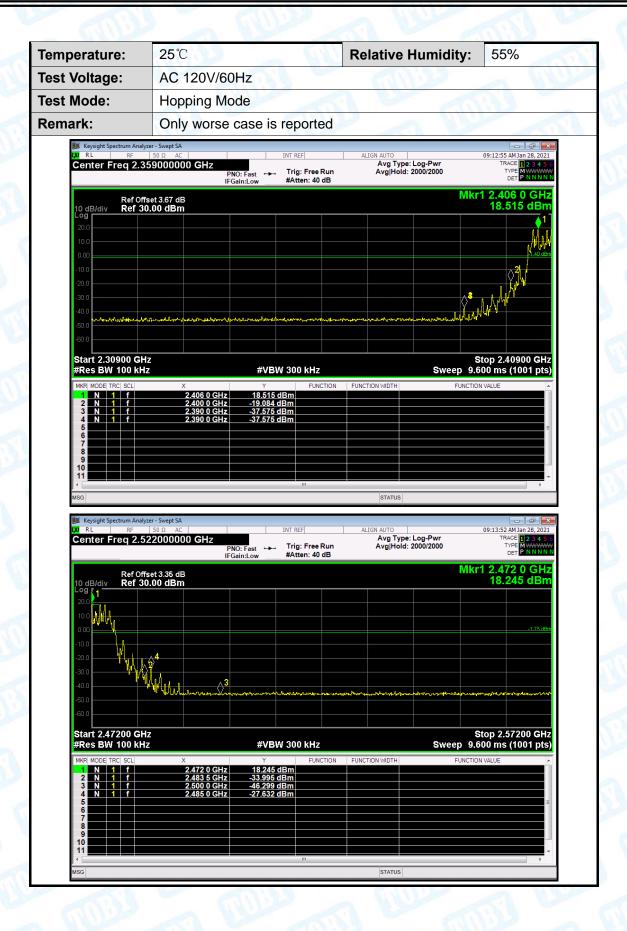
No	. Mk	. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBu∀	dB/m	dBuV/m	dBuV/m	dB	Detector
1	X	2474.000	98.79	1.81	100.60	Fundamental	Frequency	peak
2	*	2474.200	94.55	1.81	96.36	Fundamental	Frequency	AVG
3		2483.500	60.55	1.88	62.43	74.00	-11.57	peak
4		2483.500	45.32	1.88	47.20	54.00	-6.80	AVG

- Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
 Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)

Report No.: TB-FCC178499 Page: 35 of 46

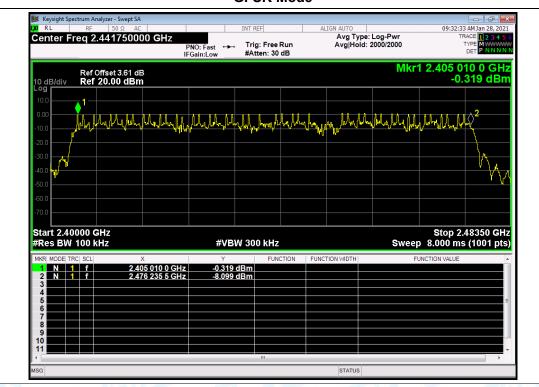
Tem	peratu	re:	23.2	2℃			(1)	Re	lative	Humi	dity:	41%		
Tes	t Voltaç	je:	AC	120V/6	0Hz	N)			Fall	11/2/8			HA)	الليا
Ant	. Pol.		Vert	ical	MA			WI .			1	M.		
Test	t Mode	•	TX	GFSK I	Mode :	2475	MHz	No.		2	MP)		4	
Ren	nark:		Only	y worse	case	is re	ported	6		33				
120.0) dBuV/m													7
70		1 *	2 ×	3 X								ART 15C (PEA		
20.0														
24	157.000 24	67.00 2	477.00	2487.00			2507.00	251	7.00	2527.00	2537.0)0	2557.00	MHz
N	o. Mk	. Fre	eq.	Read Lev			rect ctor		asure ent	- Lin	nit	Over		
		MH	z	dBı	uV	dB	/m	dB	uV/m	dBı	uV/m	dB	Dete	ctor
1	*	2473.	800	96.	49	1.8	81	98	3.30	Funda	amenta	Frequency	A۷	/G
2	X	2476.	000	99.	61	1.8	83	10	1.44	Funda	amenta	l Frequency	ре	ak
3		2483.	500	63.	15	1.8	88	65	5.03	74	.00	-8.97	ре	ak
4		2483.	500	47.	22	1.8	88	49	9.10	54	.00	-4.90	A۷	/G


- Remark:
 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)


Page: 36 of 46

(2) Conducted Band Edge Test

37 of 46 Page:



Page: 38 of 46

Attachment D-- Number of Hopping Channel Test Data

Temperature:	25℃		Relative Humidity:	55%
Test Voltage:	AC 1	20V/60Hz		333
Test Mode:	Hopp	oing Mode	MULTINE TO THE	
Frequency Ran	ige	Test Mode	Quantity of Hopping Channel	Limit
2406MHz~2475N	ИНz	GFSK	16	>15
		1	1	'

GFSK Mode

Page: 39 of 46

Attachment E-- Average Time of Occupancy Test Data

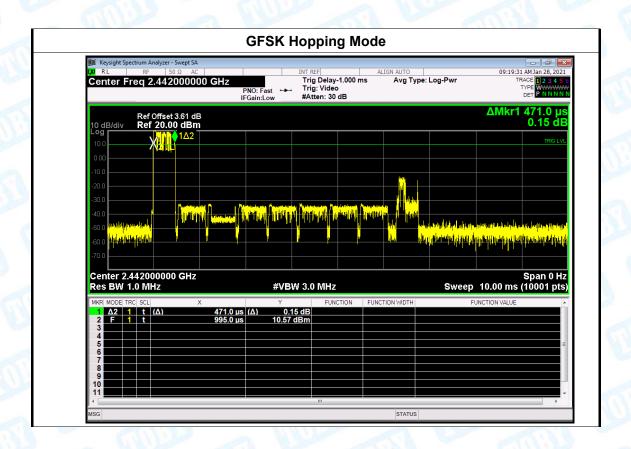
Temper	ature:	25°	C	Rela	tive Humidity:	55%	Millian
Test Vo	Itage:	AC	120V/60Hz		Charles of	533	
Test Mo	de:	Hop	oping Mode (GFSk	()		Liber 1	
Remark	(:	The	number of total h	opping frequen	cies up to 24.	(1)	Miles.
Test	Chan	nel	Reading Time	Total hops	Test Result	Limit	Result
Mode	(MH	z)	(ms)	(N)	(ms)	(ms)	Result
GFSK	244	2	0.471	24	51.81	400	PASS

The Dwell Time = Burst Width * Total Hops. The detailed calculations are showed as follows:


The duration for dwell time calculation: 0.4 [s] * hopping number = 0.4 [s] * 24[ch] =9.6[s*ch];

The burst width, which is directly measured, refers to the duration on one channel hop.

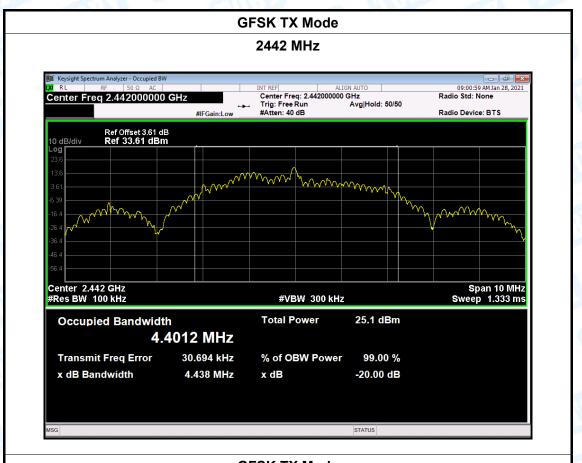
The maximum number of hopping channels in 9.6s is 110.


Reading Time=0.471ms*110=51.81ms

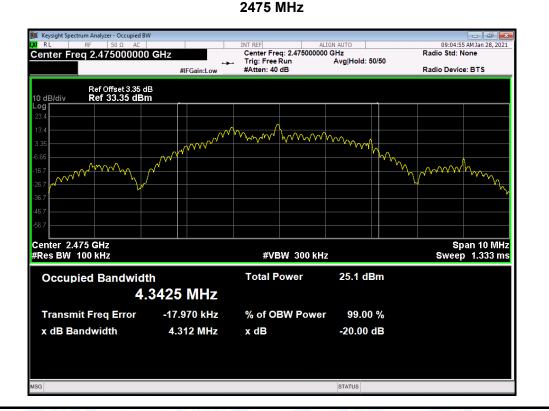
Hopping Channels in 9.6s

Page: 40 of 46

Page: 41 of 46

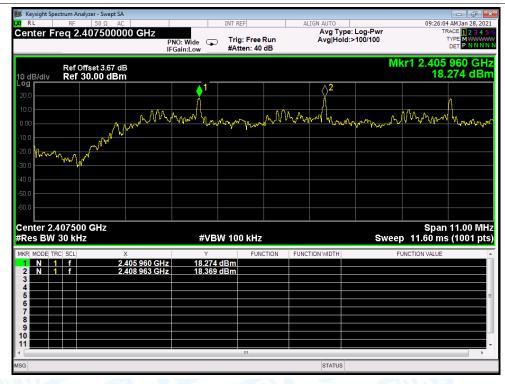

Attachment F-- Channel Separation and Bandwidth Test Data

Temperature:	25℃		Relative Humidity:	55%
Test Voltage:	AC 1	20V/60Hz		CINIDA A
Test Mode:	TX N	lode (GFSK)		
Channel freque	ency	99% OBW (kHz)	20dB Bandwidth (kHz)	20dB Bandwidth *2/3 (kHz)
2406		4359.7	4348	2898.67
2442		4401.2	4438	2958.67
2475		4342.5	4312	2874.67
	"	GFSK T	ΓX Mode	1
		2406	S MHz	



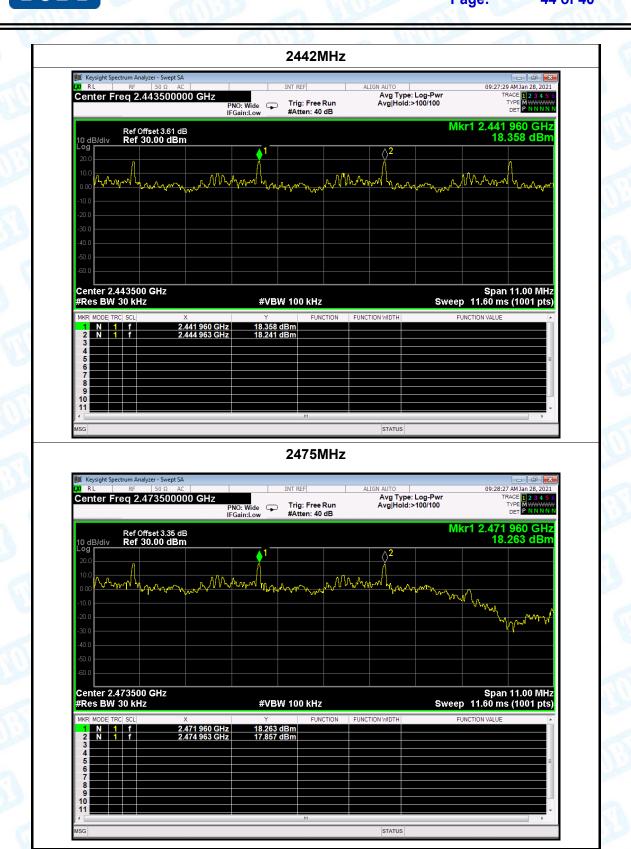
Page: 42 of 46

GFSK TX Mode



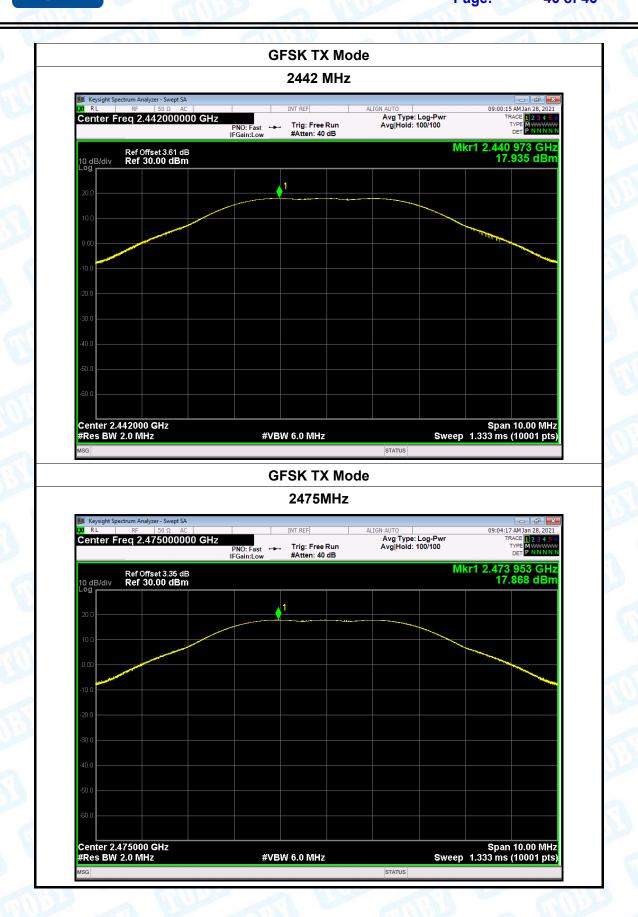
Page: 43 of 46

Channel Separation Test data:


Temperature:	25℃	201	Relative Humidity	7: 55%		
Test Voltage:	AC 120V/	60Hz	COUNTY OF	A MULICIA		
Test Mode:	Test Mode: Hopping Mode (GFSK)					
Remark:	We test a	ll channel and wor	se case recorded in	the report.		
Channel frequ	iency	Separation Re	ad Value S	Separation Limit		
(MHz)		(kHz)		(kHz)		
2406		3003		2898.67		
2442		3003		2958.67		
2475		3003		2874.67		
		Hopping N	lode			

2406 MHz

Page: 44 of 46



Attachment G-- Peak Output Power Test Data

nperature:	25℃		Relative H	umidity:	55%	
st Voltage:	AC 120V	/60Hz		1	13.1 F	
st Mode:	TX Mode	(GFSK)		2 MA		
annel frequenc	cy (MHz)	Test Resu	Test Result (dBm)			
2406		18.1	55			
2442		17.93	35		30	
2475		17.80	68			
		GFSK TX	(Mode			
		2406 N	ИНz			
Keysight Spectrum Analyzer	- Swept SA 50 Ω AC	INT REF	ALIGN AUTO		08:56:36 AM Jan 28, 2021	
Center Freq 2.406		PNO: Fast →→ Trig: Free I IFGain:Low #Atten: 40			TRACE 1 2 3 4 5 6 TYPE MWWWWW DET PNNNNN	
Ref Offset	t 3.67 dB 00 dBm			Mkr	1 2.404 932 GHz 18.155 dBm	
Log		1				
20.0						
				-		
10.0						
0.00						
0.00						
-10.0						
-10.0						
-10.0						
-10.0						

Page: 46 of 46

----END OF REPORT----