

RADIO TEST REPORT FCC ID: Z63-AUSDOM001

Product:	WIRELESS HEADPHONES
Trade Mark:	AUSDOM
Model No.:	ANC1
Family Model:	ANC1S, ANC1 PRO, ANC10
Report No.:	S21040801903002
Issue Date:	18 May. 2021

Prepared for

Shenzhen Aoni Electronic Industry Co., Ltd. Honghui Industrial Park, 2nd LiuXian Road, Xin'An streets, District 68,Bao'an District, Shenzhen, China

Prepared by

Shenzhen NTEK Testing Technology Co., Ltd. 1/F, Building E, Fenda Science Park, Sanwei Community, Xixiang Street Bao'an District, Shenzhen 518126 P.R. China Tel. 400-800-6106,0755-2320 0050 / 2320 0090 Website: http://www.ntek.org.cn

TABLE OF CONTENTS

ACCREDITED

Certificate #4298.01

1 TE	EST RESULT CERTIFICATION	3
2 SU	IMMARY OF TEST RESULTS	4
3 FA	CILITIES AND ACCREDITATIONS	5
3.1 3.2 3.3	FACILITIES LABORATORY ACCREDITATIONS AND LISTINGS MEASUREMENT UNCERTAINTY	5
4 GI	ENERAL DESCRIPTION OF EUT	6
5 DI	ESCRIPTION OF TEST MODES	8
6 SE	TUP OF EQUIPMENT UNDER TEST	9
6.1 6.2 6.3	BLOCK DIAGRAM CONFIGURATION OF TEST SYSTEM SUPPORT EQUIPMENT EQUIPMENTS LIST FOR ALL TEST ITEMS	
7 TE	EST REQUIREMENTS	
7.1 7.2 7.3	CONDUCTED EMISSIONS TEST RADIATED SPURIOUS EMISSION 6DB BANDWIDTH	
7.4 7.5	DUTY CYCLE PEAK OUTPUT POWER	
7.6 7.7 7.8	POWER SPECTRAL DENSITY CONDUCTED BAND EDGE MEASUREMENT SPURIOUS RF CONDUCTED EMISSIONS	
7.9	ANTENNA APPLICATION	
8 TE	EST RESULTS	
8.1 8.2 8.3	MAXIMUM CONDUCTED OUTPUT POWER Occupied Channel Bandwidth Maximum Power Spectral Density Level	
8.4 8.5	BAND EDGE Conducted RF Spurious Emission	

1 TEST RESULT CERTIFICATION

		
Applicant's name:	Shenzhen Aoni Electronic Industry Co., Ltd.	
Address	Honghui Industrial Park, 2nd LiuXian Road,	
	Xin'An streets, District 68, Bao'an District, Shenzhen, China	
Manufacturer's Name:	Shenzhen Aoni Electronic Industry Co., Ltd.	
Address	Honghui Industrial Park, 2nd LiuXian Road,	
	Xin'An streets, District 68, Bao'an District, Shenzhen, China	
Product description		
Product name:	WIRELESS HEADPHONES	
Model and/or type reference:	ANC1	
Family Model:	ANC1S, ANC1 PRO, ANC10	

Measurement Procedure Used:

APPLICABLE STANDARDS

APPLICABLE STANDARD/ TEST PROCEDURE	TEST RESULT
FCC 47 CFR Part 2, Subpart J	
FCC 47 CFR Part 15, Subpart C	Complied
ANSI C63.10-2013	Complied
KDB 558074 D01 15.247 Meas Guidance v05r02	

This device described above has been tested by Shenzhen NTEK Testing Technology Co., Ltd., and the test results show that the equipment under test (EUT) is in compliance with the FCC requirements. And it is applicable only to the tested sample identified in the report.

This report shall not be reproduced except in full, without the written approval of Shenzhen NTEK Testing Technology Co., Ltd., this document may be altered or revised by Shenzhen NTEK Testing Technology Co., Ltd., personnel only, and shall be noted in the revision of the document.

The test results of this report relate only to the tested sample identified in this report.

Date of Test	:	08 Apr. 2021 ~ 18 May. 2021	
Testing Engineer	:	(Mary Hu)	
Technical Manager	:	(Jason Chen)	
		(Jason Chen)	
Authorized Signatory	:	(Alex Li)	
		(1107 2.)	

FCC Part15 (15.247), Subpart C			
Standard Section	Test Item	Verdict	Remark
15.207	Conducted Emission	PASS	
15.247 (a)(2)	6dB Bandwidth	PASS	
15.247 (b)	Peak Output Power	PASS	
15.209 (a) 15.205 (a)	Radiated Spurious Emission	PASS	
15.247 (e)	Power Spectral Density	PASS	
15.247 (d)	Band Edge Emission	PASS	
15.247 (d)	Spurious RF Conducted Emission	PASS	
15.203	Antenna Requirement	PASS	

Remark:

 "N/A" denotes test is not applicable in this Test Report.
 All test items were verified and recorded according to the standards and without any deviation during the test.

3 FACILITIES AND ACCREDITATIONS

3.1 FACILITIES

All measurement facilities used to collect the measurement data are located at

1/F, Building E, Fenda Science Park, Sanwei Community, Xixiang Street, Bao'an District, Shenzhen 518126 P.R. China.

The sites are constructed in conformance with the requirements of ANSI C63.7, ANSI C63.10 and CISPR Publication 22.

3.2 LABORATORY ACCREDITATIONS AND LISTINGS

Site Description	
CNAS-Lab.	: The Certificate Registration Number is L5516.
IC-Registration	The Certificate Registration Number is 9270A. CAB identifier:CN0074
FCC- Accredited	Test Firm Registration Number: 463705. Designation Number: CN1184
A2LA-Lab.	The Certificate Registration Number is 4298.01
Name of Firm Site Location	 Shenzhen NTEK Testing Technology Co., Ltd. 1/F, Building E, Fenda Science Park, Sanwei Community, Xixiang Street, Bao'an District, Shenzhen 518126 P.R. China.

3.3 MEASUREMENT UNCERTAINTY

The reported uncertainty of measurement $y\pm U$, where expended uncertainty U is based on a standard uncertainty multiplied by a coverage factor of k=2, providing a level of confidence of approximately 95 %.

No.	Item	Uncertainty
1	Conducted Emission Test	±2.80dB
2	RF power, conducted	±0.16dB
3	Spurious emissions, conducted	±0.21dB
4	All emissions, radiated(30MHz~1GHz)	±2.64dB
5	All emissions, radiated(1GHz~6GHz)	±2.40dB
6	All emissions, radiated(>6GHz)	±2.52dB
7	Temperature	±0.5°C
8	Humidity	±2%

4 GENERAL DESCRIPTION OF EUT

Product Feature and Specification		
Equipment	WIRELESS HEADPHONES	
Trade Mark	AUSDOM	
FCC ID	Z63- AUSDOM001	
Model No.	ANC1	
Family Model	ANC1S, ANC1 PRO, ANC10	
Sample serial number	S210408019006	
Model Difference	All models are the same circuit and RF module, except the Model Name	
Operating Frequency	2402MHz~2480MHz	
Modulation	GFSK	
Number of Channels	40 Channels	
Antenna Type	PCB Antenna	
Antenna Gain	0 dBi	
Power supply	DC 3.7V from battery or DC 5V from USB port	
Adapter	N/A	
HW Version	V2	
SW Version	V16	

ACO

Certificate #4298.01

Note 1: Based on the application, features, or specification exhibited in User's Manual, the EUT is considered as an ITE/Computing Device. More details of EUT technical specification, please refer to the User's Manual.

Revision History

ACCREDITED

Certificate #4298.01

Revision History			
Report No.	Version	Description	Issued Date
S21040801903002	Rev.01	Initial issue of report	18 May. 2021

5 DESCRIPTION OF TEST MODES

NTEK 北测

To investigate the maximum EMI emission characteristics generates from EUT, the test system was pre-scanning tested base on the consideration of following EUT operation mode or test configuration mode which possible have effect on EMI emission level. Each of these EUT operation mode(s) or test configuration mode(s) mentioned above was evaluated respectively.

The Transmitter was operated in the normal operating mode. The TX frequency was fixed which was for the purpose of the measurements.

Test of channel included the lowest and middle and highest frequency to perform the test, then record on this report.

Those data rates (1Mbps for GFSK modulation) were used for all test.

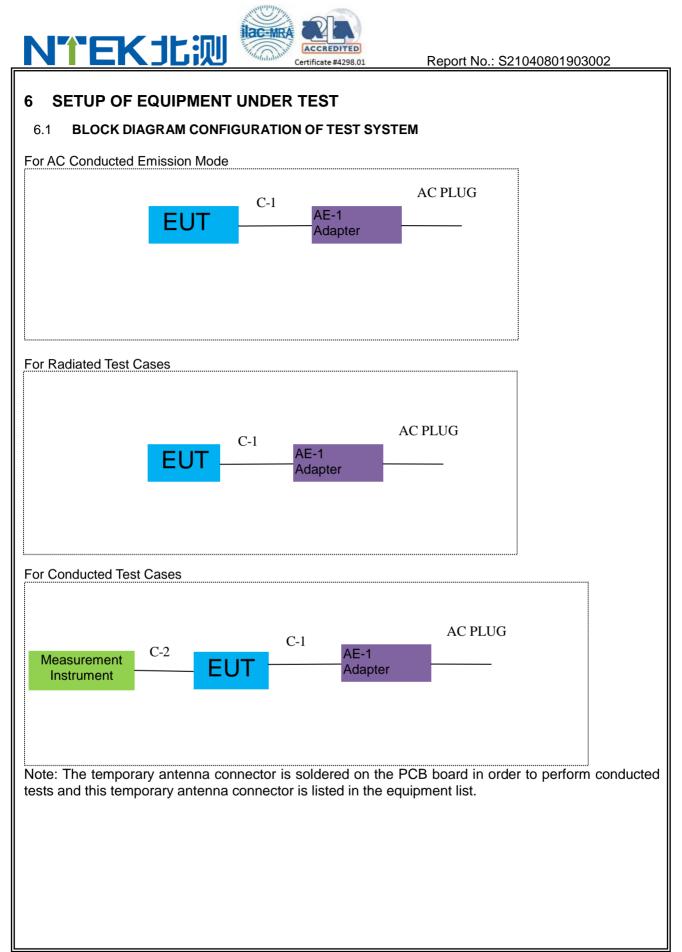
The EUT was pretested with 3 orientations placed on the table for the radiated emission measurement -X, Y, and Z-plane. The X-plane results were found as the worst case and were shown in this report.

Carrier Frequency and Channel list:

Channel	Frequency(MHz)
0	2402
1	2404
	•••
19	2440
20	2442
38	2478
39	2480

Note: fc=2402MHz+k×2MHz k=0 to 39

The following summary table is showing all test modes to demonstrate in compliance with the standard.


Test Cases			
Test Item	Data Rate/ Modulation		
AC Conducted Emission	Mode 1: normal link mode		
	Mode 1: normal link mode		
Radiated Test Cases	Mode 2: GFSK Tx Ch00_2402MHz_1Mbps		
	Mode 3: GFSK Tx Ch19_2440MHz_1Mbps		
	Mode 4: GFSK Tx Ch39_2480MHz_1Mbps		
Conducted Test Cases	Mode 2: GFSK Tx Ch00_2402MHz_1Mbps		
	Mode 3: GFSK Tx Ch19_2440MHz_1Mbps		
	Mode 4: GFSK Tx Ch39_2480MHz_1Mbps		

Note:

1. The engineering test program was provided and the EUT was programmed to be in continuously transmitting mode.

2. AC power line Conducted Emission was tested under maximum output power.

3. For radiated test cases, the worst mode data rate 1Mbps was reported only, because this data rate has the highest RF output power at preliminary tests, and no other significantly frequencies found in conducted spurious emission.

6.2 SUPPORT EQUIPMENT

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

Item	Equipment	Model/Type No.	Series No.	Note
AE-1	Adapter	N/A	N/A	Peripherals

Item	Cable Type	Shielded Type	Ferrite Core	Length
C-1	DC Cable	YES	NO	1.0m
C-2	RF Cable	YES	NO	0.1m

Notes:

- (1) The support equipment was authorized by Declaration of Confirmation.
- (2) For detachable type I/O cable should be specified the length in cm in [Length] column.
- (3) "YES" is means "shielded" "with core"; "NO" is means "unshielded" "without core".

6.3 EQUIPMENTS LIST FOR ALL TEST ITEMS

Radiation& Conducted Test equipment

vaulatio	ona Conducted	rest equipment					
Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Last calibration	Calibrated until	Calibrati on period
1	Spectrum Analyzer	Aglient	E4407B	MY45108040	2020.07.13	2021.07.12	1 year
2	Spectrum Analyzer	Agilent	N9020A	MY49100060	2020.07.13	2021.07.12	1 year
3	Spectrum Analyzer	R&S	FSV40	101417	2020.07.13	2021.07.12	1 year
4	Test Receiver	R&S	ESPI7	101318	2020.07.13	2021.07.12	1 year
5	Bilog Antenna	TESEQ	CBL6111D	31216	2020.07.13	2021.07.12	1 year
6	50Ω Coaxial Switch	Anritsu	MP59B	6200983705	2020.05.11	2023.05.10	3 year
7	Horn Antenna	EM	EM-AH-1018 0	2011071402	2020.07.13	2021.07.12	1 year
8	Broadband Horn Antenna	SCHWARZBE CK	BBHA 9170	803	2020.12.10	2021.12.09	1 year
9	Amplifier	EMC	EMC051835 SE	980246	2020.07.13	2021.07.12	1 year
10	Active Loop Antenna	SCHWARZBE CK	FMZB 1519 B	055	2020.12.10	2021.12.09	1 year
11	Power Meter	DARE	RPR3006W	15I00041SN 084	2020.07.13	2021.07.12	1 year
12	Test Cable (9KHz-30MHz)	N/A	R-01	N/A	2019.08.6	2022.08.05	3 year
13	Test Cable (30MHz-1GHz)	N/A	R-02	N/A	2019.08.6	2022.08.05	3 year
14	High Test Cable(1G-40G Hz)	N/A	R-03	N/A	2019.06.28	2022.06.27	3 year
15	High Test Cable(1G-40G Hz)	N/A	R-04	N/A	2020.07.13	2021.07.12	1 year
16	Filter	TRILTHIC	2400MHz	29	2020.07.13	2021.07.12	1 year
17	temporary antenna connector (Note)	NTS	R001	N/A	N/A	N/A	N/A

Note:

We will use the temporary antenna connector (soldered on the PCB board) When conducted test And this temporary antenna connector is listed within the instrument list

AC Cc	AC Conduction Test equipment						
Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Last calibration	Calibrated until	Calibration period
1	Test Receiver	R&S	ESCI	101160	2020.07.13	2021.07.12	1 year
2	LISN	R&S	ENV216	101313	2020.07.13	2021.07.12	1 year
3	LISN	SCHWARZBE CK	NNLK 8129	8129245	2020.07.13	2021.07.12	1 year
4	50Ω Coaxial Switch	ANRITSU CORP	MP59B	6200983704	2020.05.11	2023.05.10	3 year
5	Test Cable (9KHz-30MH z)	N/A	C01	N/A	2020.05.11	2023.05.10	3 year
6	Test Cable (9KHz-30MH z)	N/A	C02	N/A	2020.05.11	2023.05.10	3 year
7	Test Cable (9KHz-30MH z)	N/A	C03	N/A	2020.05.11	2023.05.10	3 year

Note: Each piece of equipment is scheduled for calibration once a year except the Aux Equipment & Test Cable which is scheduled for calibration every 2 or 3 years.

7 TEST REQUIREMENTS

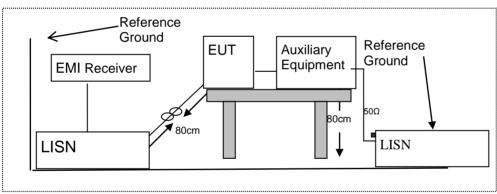
7.1 CONDUCTED EMISSIONS TEST

7.1.1 Applicable Standard

According to FCC Part 15.207(a)

7.1.2 Conformance Limit

	Conducted Emission Limit		
Frequency(MHz)	Quasi-peak	Average	
0.15-0.5	66-56*	56-46*	
0.5-5.0	56	46	
5.0-30.0	60	50	


Note: 1. *Decreases with the logarithm of the frequency

- 2. The lower limit shall apply at the transition frequencies
 - 3. The limit decreases in line with the logarithm of the frequency in the range of 0.15 to 0.50MHz.

7.1.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

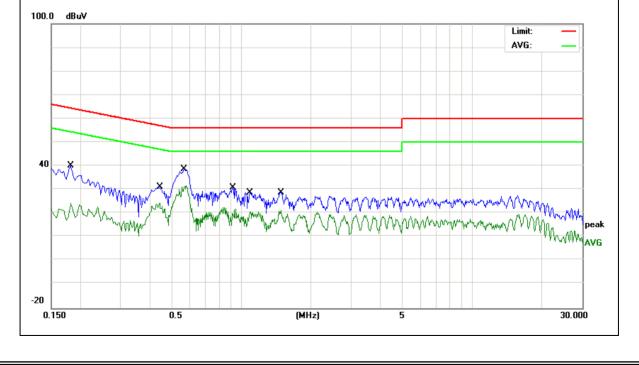
7.1.4 Test Configuration

7.1.5 Test Procedure

According to the requirements in Section 13.1.4.1 of ANSI C63.10-2013 Conducted emissions the EUT measured in the frequency range between 0.15 MHz and 30 MHz using CISPR Quasi-Peak and average detector mode.

- 1. The EUT was placed 0.4 meter from the conducting wall of the shielding room.
- 2. The EUT was placed on a table which is 0.8m above ground plane.
- 3. Connect EUT to the power mains through a line impedance stabilization network (LISN). All other support equipments powered from additional LISN(s). The LISN provide 50 Ohm/ 50uH of coupling impedance for the measuring instrument.
- 4. Interconnecting cables that hang closer than 40 cm to the ground plane shall be folded back and forth in the center forming a bundle 30 to 40cm long.
- 5. I/O cables that are not connected to a peripheral shall be bundled in the center. The end of the cable may be terminated, if required, using the correct terminating impedance. The overall length shall not exceed 1 m.
- 6. LISN at least 80 cm from nearest part of EUT chassis.
- 7. The frequency range from 150KHz to 30MHz was searched.
- 8. Set the test-receiver system to Peak Detect Function and specified bandwidth(IF bandwidth=9KHz) with Maximum Hold Mode
- 9. For the actual test configuration, please refer to the related Item -EUT Test Photos.

7.1.6 Test Results


EUT:	WIRELESS HEADPHONES	Model Name :	ANC1
Temperature:	21.5 ℃	Relative Humidity:	55%
Pressure:	1010hPa	Phase :	L
Test Voltage :	DC 5V from Adapter AC 120V/60Hz	Test Mode:	Mode 1

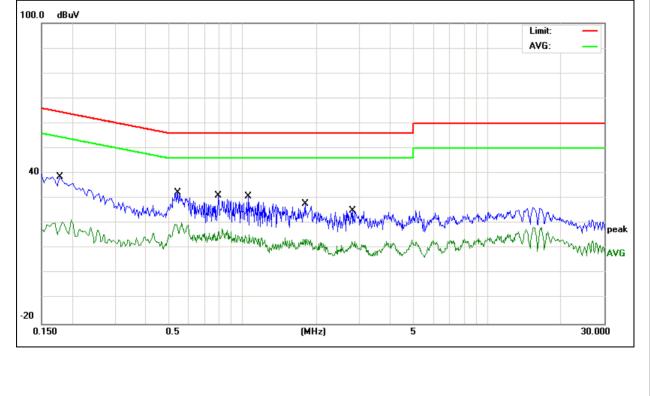
Frequency	Reading Level	Correct Factor	Measure-ment	Limits	Margin	Demeril
(MHz)	(dBµV)	(dB)	(dBµV)	(dBµV)	(dB)	Remark
0.1819	30.72	9.55	40.27	64.39	-24.12	QP
0.1819	14.70	9.55	24.25	54.39	-30.14	AVG
0.4420	21.71	9.55	31.26	57.02	-25.76	QP
0.4420	14.67	9.55	24.22	47.02	-22.80	AVG
0.5660	29.21	9.55	38.76	56.00	-17.24	QP
0.5660	22.29	9.55	31.84	46.00	-14.16	AVG
0.9220	21.21	9.56	30.77	56.00	-25.23	QP
0.9220	12.37	9.56	21.93	46.00	-24.07	AVG
1.0900	19.34	9.56	28.90	56.00	-27.10	QP
1.0900	11.16	9.56	20.72	46.00	-25.28	AVG
1.4819	19.25	9.56	28.81	56.00	-27.19	QP
1.4819	11.66	9.56	21.22	46.00	-24.78	AVG

Remark:

1. All readings are Quasi-Peak and Average values.

ACCREDITED

Certificate #4298.01


EUT:	WIRELESS HEADPHONES	Model Name :	ANC1
Temperature:	21.5 ℃	Relative Humidity:	55%
Pressure:	1010hPa	Phase :	N
Test Voltage :	DC 5V from Adapter AC 120V/60Hz	Test Mode:	Mode 1

Frequency	Reading Level	Correct Factor	Measure-ment	Limits	Margin	Demerik
(MHz)	(dBµV)	(dB)	(dBµV)	(dBµV)	(dB)	Remark
0.1780	29.08	9.54	38.62	64.57	-25.95	QP
0.1780	10.98	9.54	20.52	54.57	-34.05	AVG
0.5420	22.68	9.54	32.22	56.00	-23.78	QP
0.5420	10.72	9.54	20.26	46.00	-25.74	AVG
0.7940	21.72	9.54	31.26	56.00	-24.74	QP
0.7940	8.45	9.54	17.99	46.00	-28.01	AVG
1.0540	21.34	9.55	30.89	56.00	-25.11	QP
1.0540	6.15	9.55	15.70	46.00	-30.30	AVG
1.7940	18.19	9.57	27.76	56.00	-28.24	QP
1.7940	4.20	9.57	13.77	46.00	-32.23	AVG
2.8179	15.67	9.59	25.26	56.00	-30.74	QP
2.8179	3.39	9.59	12.98	46.00	-33.02	AVG

Remark:

1. All readings are Quasi-Peak and Average values.

2. Factor = Insertion Loss + Cable Loss.

7.2 RADIATED SPURIOUS EMISSION

7.2.1 Applicable Standard

According to FCC Part 15.247(d) and 15.209 and ANSI C63.10-2013

7.2.2 Conformance Limit

According to FCC Part 15.247(d): radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)). According to FCC Part15.205, Restricted bands

According to Foo Fait 15.205, Restricted bands				
MHz	MHz	MHz	GHz	
0.090-0.110	16.42-16.423	399.9-410	4.5-5.15	
0.495-0.505	16.69475-16.69525	608-614	5.35-5.46	
2.1735-2.1905	16.80425-16.80475	960-1240	7.25-7.75	
4.125-4.128	25.5-25.67	1300-1427	8.025-8.5	
4.17725-4.17775	37.5-38.25	1435-1626.5	9.0-9.2	
4.20725-4.20775	73-74.6	1645.5-1646.5	9.3-9.5	
6.215-6.218	74.8-75.2	1660-1710	10.6-12.7	
6.26775-6.26825	123-138	2200-2300	14.47-14.5	
8.291-8.294	149.9-150.05	2310-2390	15.35-16.2	
8.362-8.366	156.52475-156.52525	2483.5-2500	17.7-21.4	
8.37625-8.38675	156.7-156.9	2690-2900	22.01-23.12	
8.41425-8.41475	162.0125-167.17	3260-3267	23.6-24.0	
12.29-12.293	167.72-173.2	3332-3339	31.2-31.8	
12.51975-12.52025	240-285	3345.8-3358	36.43-36.5	
12.57675-12.57725	322-335.4	3600-4400	(2)	
13.36-13.41				

20dBc in any 100 kHz bandwidth outside the operating frequency band. In case the emission fall within the restricted band specified on 15.205(a), then the 15.209(a) limit in the table below has to be followed.

Restricted Frequency(MHz)	Field Strength (µV/m)	Field Strength (dBµV/m)	Measurement Distance
0.009~0.490	2400/F(KHz)	20 log (uV/m)	300
0.490~1.705	24000/F(KHz)	20 log (uV/m)	30
1.705~30.0	30	29.5	30
30-88	100	40	3
88-216	150	43.5	3
216-960	200	46	3
Above 960	500	54	3

Limits of Radiated Emission Measurement(Above 1000MHz)

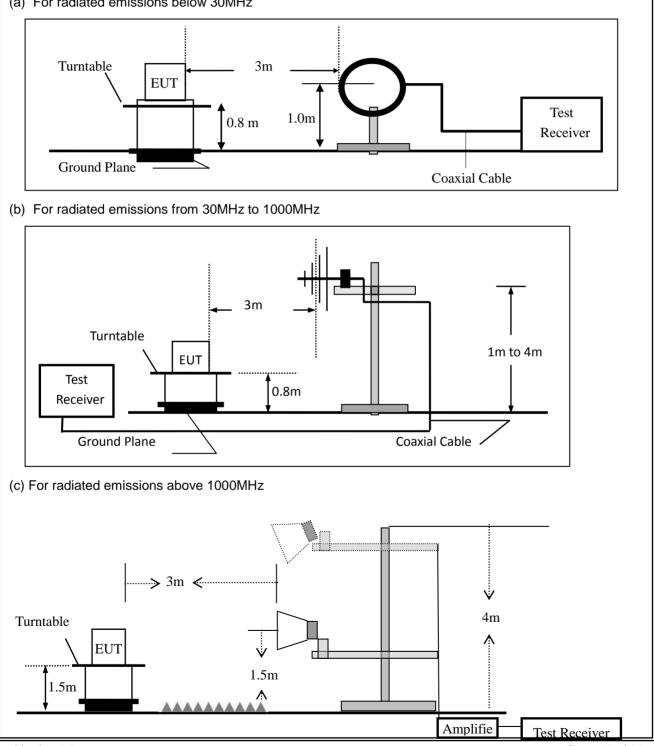
Eroquonov(MHz)	Class B (dBuV/m) (at 3M)		
Frequency(MHz)	PEAK	AVERAGE	
Above 1000	74	54	

Remark :1. Emission level in dBuV/m=20 log (uV/m)

2. Measurement was performed at an antenna to the closed point of EUT distance of meters.

3. For Frequency 9kHz~30MHz: Distance extrapolation factor =40log(Specific distance/ test distance)(dB); Limit line=Specific limits(dBuV) + distance extrapolation factor.

For Frequency above 30MHz: Distance extrapolation factor =20log(Specific distance/ test distance)(dB); Limit line=Specific limits(dBuV) + distance extrapolation factor.


7.2.3 **Measuring Instruments**

N

The Measuring equipment is listed in the section 6.3 of this test report.

Test Configuration 7.2.4

(a) For radiated emissions below 30MHz

7.2.5 Test Procedure

The test site semi-anechoic chamber has met the requirement of NSA tolerance 4 dB according to the standards: ANSI C63.10-2013. The test distance is 3m. The setup is according to the requirements in Section 13.1.4.1 of ANSI C63.10-2013 and CAN/CSA-CEI/IEC CISPR 22.

This test is required for any spurious emission that falls in a Restricted Band, as defined in Section 15.205. It must be performed with the highest gain of each type of antenna proposed for use with the EUT. Use the following spectrum analyzer settings:

Spectrum Parameter	Setting					
Attenuation	Auto					
Start Frequency	1000 MHz					
Stop Frequency	10th carrier harmonic					
RB / VB (emission in restricted band)	1 MHz / 1 MHz for Peak, 1 MHz / 1MHz for Average					

Receiver Parameter	Setting
Attenuation	Auto
Start ~ Stop Frequency	9kHz~150kHz / RB 200Hz for QP
Start ~ Stop Frequency	150kHz~30MHz / RB 9kHz for QP
Start ~ Stop Frequency	30MHz~1000MHz / RB 120kHz for QP

- a. The measuring distance of at 3 m shall be used for measurements at frequency up to 1GHz. For frequencies above 1GHz, any suitable measuring distance may be used.
- b. The EUT was placed on the top of a rotating table 0.8 m for below 1GHz and 1.5m for above 1GHz the ground at a 3 meter. The table was rotated 360 degrees to determine the position of the highest radiation.
- c. The height of the equipment or of the substitution antenna shall be 0.8 m for below 1GHz and 1.5m for above 1GHz; the height of the test antenna shall vary between 1 m to 4 m. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For the radiated emission test above 1GHz: Place the measurement antenna away from each area of the EUT determined to be a source of emissions at the specified measurement distance, while keeping the measurement antenna aimed at the source of emissions at each frequency of significant emissions, with polarization oriented for maximum response. The measurement antenna may have to be higher or lower than the EUT, depending on the radiation pattern of the emission and staying aimed at the emission source for receiving the maximum signal. The final measurement antenna elevation shall be that which maximizes the emissions. The measurement antenna elevation for maximum emissions shall be restricted to a range of heights of from 1 m to 4 m above the ground or reference ground plane.
- e. The initial step in collecting conducted emission data is a spectrum analyzer peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak detector mode re-measured.
- f. If the Peak Mode measured value compliance with and lower than Quasi Peak Mode Limit, the EUT shall be deemed to meet QP Limits and then no additional QP Mode measurement performed.
- g. For the actual test configuration, please refer to the related Item –EUT Test Photos. Note:

Both horizontal and vertical antenna polarities were tested and performed pretest to three orthogonal axis. The worst case emissions were reported

During the radiated emission to	During the radiated emission test, the Spectrum Analyzer was set with the following configurations:										
Frequency Band (MHz)	Function	Resolution bandwidth	Video Bandwidth								
30 to 1000	QP	120 kHz	300 kHz								
Above 1000	Peak	1 MHz	1 MHz								
Above 1000	Average	1 MHz	1 MHz								

Note: for the frequency ranges below 30 MHz, a narrower RBW is used for these ranges but the measured value should add a RBW correction factor (RBWCF) where RBWCF [dB] =10*lg(100 [kHz]/narrower RBW [kHz]). , the narrower RBW is 1 kHz and RBWCF is 20 dB for the frequency 9 kHz to 150 kHz, and the narrower RBW is 10 kHz and RBWCF is 10 dB for the frequency 150 kHz to 30 MHz.

7.2.6 Test Results

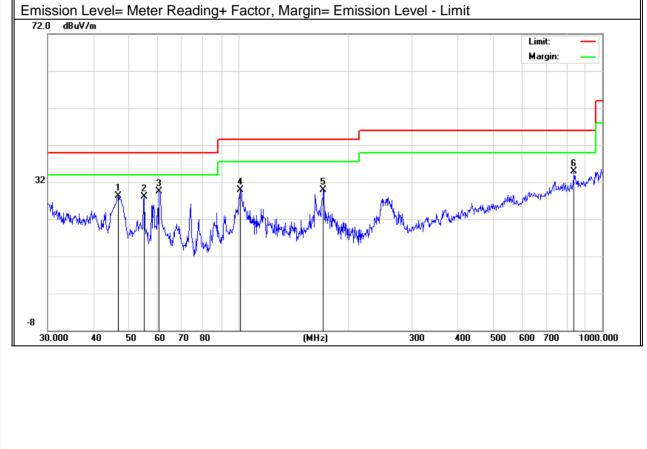
Spurious Em	ission below 30	0MHz (9KHz to	9 30MHz)

EUT:	WIRELESS HEADPHONES	Model No.:	ANC1
Temperature:	20 ℃	Relative Humidity:	48%
Test Mode:	Mode2/Mode3/Mode4	Test By:	Mary Hu

Freq.	Ant.Pol.	Emission L	.evel(dBuV/m)	Limit 3	m(dBuV/m)	Over(dB)		
(MHz)	H/V	PK ÀV		PK AV		PK	AV	

Note: the amplitude of spurious emission that is attenuated by more than 20dB below the permissible limit has no need to be reported.

Spurious Emission below 1GHz (30MHz to 1GHz) All the modulation modes have been tested, and the


All the modulatior	modes have been tested,	and the worst result was	report as below:

EUT:	WIRELESS HEADPHONES	Model Name :	ANC1
Temperature:	25.4 ℃	Relative Humidity:	47%
Pressure:	1010hPa	Loct Modo.	GFSK Tx Ch19_2440MHz_1Mbps
Test Voltage :	DC 3.7V		

Polar	Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Remark	
(H/V)	(MHz)	(dBuV)	(dB)	(dBuV/m)	(dBuV/m)	(dB)		
V	46.8303	17.47	10.74	28.21	40.00	-11.79	QP	
V	55.2207	21.47	6.73	28.20	40.00	-11.80	QP	
V	60.4919	23.64	5.96	29.60	40.00	-10.40	QP	
V	101.2883	18.82	11.08	29.90	43.50	-13.60	QP	
V	171.3925	19.38	10.62	30.00	43.50	-13.50	QP	
V	836.2441	9.05	25.95	35.00	46.00	-11.00	QP	

Remark:

N

Polar	Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Remark
(H/V)	(MHz)	(dBuV)	(dB)	(dBuV/m)	(dBuV/m)	(dB)	
Н	111.3468	15.17	11.53	26.70	43.50	-16.80	QP
Н	164.9072	21.20	10.60	31.80	43.50	-11.70	QP
Н	256.5210	15.96	14.20	30.16	46.00	-15.84	QP
Н	349.2500	17.47	16.03	33.50	46.00	-12.50	QP
Н	370.7022	18.64	16.96	35.60	46.00	-10.40	QP
H Remark:	752.7432	7.98	24.92	32.90	46.00	-13.10	QP
	⊔Level= Meter R ₩/m	eading+ Fact	or, Margin=	Emission Lev	el - Limit	Limit: Margin:	
					45		
has perman	that we have a start of the sta	www.www.wh	A Marine Ma Marine Marine Mari	Man Man	WWW W W WWWWW	S Provy - Many Provide United	
-8 30.000	40 50 60	70 80			300 400	500 600 700	1000.000
30.000	40 50 60	70 80	(MI	12)	300 400	500 600 700	1000.000

Spurious E	Emission Ab	ove 1Gł	Hz (1GHz	to 25GHz)					
EUT:	WIRELESS HEADPHONES			Model	odel No.: ANC1					
Temperature:	20 ℃			Relativ	e Humidity:	48%	48%			
Test Mode:	Mode2	/Mode3/	/Mode4	Test By	/:	Mary Hu				
					, 	,				
Frequency	Read Level	Cable loss	Antenna Factor	Preamp Factor	Emission Level	Limits	Margin	Remarl	Comment	
(MHz)	(dBµV)	(dB)	dB/m	(dB)	(dBµV/m)	(dBµV/m)	(dB)			
		L	ow Channe	el (2402 M	Hz)(GFSK)	Above 1G				
4802.40	61.42	5.21	35.59	44.30	57.92	74.00	-16.08	Pk	Vertical	
4802.40	43.27	5.21	35.59	44.30	39.77	54.00	-14.23	AV	Vertical	
7206.67	62.78	6.48	36.27	44.60	60.93	74.00	-13.07	Pk	Vertical	
7206.67	43.87	6.48	36.27	44.60	42.02	54.00	-11.98	AV	Vertical	
4804.61	63.85	5.21	35.55	44.30	60.31	74.00	-13.69	Pk	Horizontal	
4804.61	43.81	5.21	35.55	44.30	40.27	54.00	-13.73	AV	Horizontal	
7206.40	64.87	6.48	36.27	44.52	63.10	74.00	-10.90	Pk	Horizontal	
7206.40	43.22	6.48	36.27	44.52	41.45	54.00	-12.55	AV	Horizontal	
					Hz)(GFSK)		T	н т		
4880.35	62.61	5.21	35.66	44.20	59.28	74.00	-14.72	Pk	Vertical	
4880.35	43.70	5.21	35.66	44.20	40.37	54.00	-13.63	AV	Vertical	
7320.30	62.16	7.10	36.50	44.43	61.33	74.00	-12.67	Pk	Vertical	
7320.30	43.09	7.10	36.50	44.43	42.26	54.00	-11.74	AV	Vertical	
4880.79	60.02	5.21	35.66	44.20	56.69	74.00	-17.31	Pk	Horizontal	
4880.79	43.35	5.21	35.66	44.20	40.02	54.00	-13.98	AV	Horizontal	
7320.05	62.00	7.10	36.50	44.43	61.17	74.00	-12.83	Pk	Horizontal	
7320.05	43.63	7.10	36.50	44.43	42.80	54.00	-11.20	AV	Horizontal	
			-	-	Hz)(GFSK)					
4960.56	62.88	5.21	35.52	44.21	59.40	74.00	-14.60	Pk	Vertical	
4960.56	43.34	5.21	35.52	44.21	39.86	54.00	-14.14	AV	Vertical	
7440.07	60.58	7.10	36.53	44.60	59.61	74.00	-14.39	Pk	Vertical	
7440.07	43.65	7.10	36.53	44.60	42.68	54.00	-11.32	AV	Vertical	
4960.01	62.70	5.21	35.52	44.21	59.22	74.00	-14.78	Pk	Horizontal	
4960.01	43.68	5.21	35.52	44.21	40.20	54.00	-13.80	AV	Horizontal	
7440.48	62.94	7.10	36.53	44.60	61.97	74.00	-12.03	Pk	Horizontal	
7440.48	43.13	7.10	36.53	44.60	42.16	54.00	-11.84	AV	Horizontal	

Note:

(1) Emission Level= Antenna Factor + Cable Loss + Read Level - Preamp Factor

(2)All other emissions more than 20dB below the limit.

(3)Only the worst data is recorded in the report, the data rates (1Mbps for GFSK modulation) test result is the worst

EUT:	WIRELE	ESS HE/	ADPHONE	PHONES Model No.:				ANC1			
Temperature	e: 20 ℃			F	Relat	ive Humidit	y:	48%			
Test Mode:	Mode2/	Mode4		Т	Fest I	By:		Mary	Hu		
Frequency	Meter Reading	Cable Loss	Antenna Factor	Prea Fac		Emission Level	Limits		Margin	Detector	Comment
(MHz)	(dBµV)	(dB)	dB/m	(dE	В)	(dBµV/m)	(dBµ	V/m)	(dB)	Туре	
					C	FSK					
2310.00	60.99	2.97	27.80	43.	80	47.96	7	4	-26.04	Pk	Horizonta
2310.00	39.98	2.97	27.80	43.	80	26.95	5	4	-27.05	AV	Horizonta
2310.00	64.14	2.97	27.80	43.	80	51.11	7	4	-22.89	Pk	Vertical
2310.00	43.57	2.97	27.80	43.	80	30.54	5	4	-23.46	AV	Vertical
2390.00	64.85	3.14	27.21	43.	80	51.40	7	4	-22.60	Pk	Vertical
2390.00	43.90	3.14	27.21	43.	80	30.45	5	4	-23.55	AV	Vertical
2390.00	62.83	3.14	27.21	43.	80	49.38	7	4	-24.62	Pk	Horizonta
2390.00	43.89	3.14	27.21	43.	80	30.44	5	4	-23.56	AV	Horizonta
2483.50	61.34	3.58	27.70	44.0	00	48.62	7	4	-25.38	Pk	Vertical
2483.50	43.91	3.58	27.70	44.0	00	31.19	5	4	-22.81	AV	Vertical
2483.50	61.20	3.58	27.70	44.0	00	48.48	7	4	-25.52	Pk	Horizonta
2483.50	43.56	3.58	27.70	44.0	00	30.84	5	4	-23.16	AV	Horizonta

Note: (1) All other emissions more than 20dB below the limit.

(2)Only the worst data is recorded in the report, the data rates (1Mbps for GFSK modulation) test result is the worst

EUT: WIRELESS HEADPHONES		S Model	Model No.:		ANC1				
Temperature: 20 °C		Relativ	Relative Humidity:		48%				
Test Mode: Mode2/ M		/ Mode4				Mary Hu			
					,	,			
Frequency	Reading Level	Cable Loss	Antenna Factor	Preamp Factor	Emission Level	Limits	Margin	Detector	Comment
(MHz)	(dBµV)	(dB)	dB/m	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре	
3260	61.15	4.04	29.57	44.70	50.06	74	-23.94	Pk	Vertical
3260	43.15	4.04	29.57	44.70	32.06	54	-21.94	AV	Vertical
3260	60.29	4.04	29.57	44.70	49.20	74	-24.80	Pk	Horizontal
3260	43.54	4.04	29.57	44.70	32.45	54	-21.55	AV	Horizontal
3332	63.51	4.26	29.87	44.40	53.24	74	-20.76	Pk	Vertical
3332	43.00	4.26	29.87	44.40	32.73	54	-21.27	AV	Vertical
3332	63.21	4.26	29.87	44.40	52.94	74	-21.06	Pk	Horizontal
3332	43.53	4.26	29.87	44.40	33.26	54	-20.74	AV	Horizontal
17797	49.00	10.99	43.95	43.50	60.44	74	-13.56	Pk	Vertical
17797	34.04	10.99	43.95	43.50	45.48	54	-8.52	AV	Vertical
17788	49.97	11.81	43.69	44.60	60.87	74	-13.13	Pk	Horizontal
17788	34.56	11.81	43.69	44.60	45.46	54	-8.54	AV	Horizontal

Note: (1) All other emissions more than 20dB below the limit. (2)Only the worst data is recorded in the report, the data rates (1Mbps for GFSK modulation) test result is the worst

7.3 6DB BANDWIDTH

7.3.1 Applicable Standard

According to FCC Part 15.247(a)(2) and KDB 558074 D01 15.247 Meas Guidance v05r02 Section 8.2.

7.3.2 Conformance Limit

The minimum permissible 6dB bandwidth is 500 kHz.

7.3.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

7.3.4 Test Setup

Please refer to Section 6.1 of this test report.

7.3.5 Test Procedure

The testing follows Subclause 11.8 of ANSI C63.10

The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator.

The path loss was compensated to the results for each measurement.

Set to the maximum power setting and enable the EUT transmit continuously.

The EUT was operating in controlled its channel.

Use the following spectrum analyzer settings:

- a) Set RBW = 100 kHz.
- b) Set the video bandwidth (VBW) \geq 3*RBW.
- c) Detector = Peak.
- d) Trace mode = max hold.
- e) Sweep = auto couple.
- f) Allow the trace to stabilize.

g) Measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 6 dB relative to the maximum level measured in the fundamental emission.

7.3.6 Test Results

	WIRELESS HEADPHONES	Model No.:	ANC1
Temperature:	20 ℃	Relative Humidity:	48%
Test Mode:	Mode2/Mode3/Mode4	Test By:	Mary Hu

7.4 DUTY CYCLE

7.4.1 Applicable Standard

According to KDB 558074 D01 15.247 Meas Guidance v05r02s Section 6.

7.4.2 Conformance Limit

No limit requirement.

7.4.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

7.4.4 Test Setup

Please refer to Section 6.1 of this test report.

7.4.5 Test Procedure

The zero-span mode on a spectrum analyzer or EMI receiver if the response time and spacing between bins on the sweep are sufficient to permit accurate measurements of the on and off times of the transmitted signal. Set the center frequency of the instrument to the center frequency of the transmission. Set RBW \ge OBW if possible; otherwise, set RBW to the largest available value. Set VBW \ge RBW. Set detector = peak or average. The zero-span measurement method shall not be used unless both RBW and VBW are > 50/T and the number of sweep points across duration T exceeds 100. (For example, if VBW and/or RBW are limited to 3 MHz, then the zero-span method of measuring duty cycle shall not be used if T \le 16.7 microseconds.)

The transmitter output is connected to the Spectrum Analyzer. We tested accroding to the zero-span measurement method, 6.0)b) in KDB 558074

The largest available value of RBW is 8 MHz and VBW is 50 MHz. The zero-span method of measuring duty cycle shall not be used if $T \le 6.25$ microseconds. (50/6.25 = 8)

The zero-span method was used because all measured T data are > 6.25 microseconds and both RBW and VBW are > 50/T.

The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement. Set to the maximum power setting and enable the EUT transmit continuously. The EUT was operating in controlled its channel. Use the following spectrum analyzer settings: Span = Zero Span RBW = 8MHz(the largest available value) VBW = 8MHz (\geq RBW) Number of points in Sweep >100 Detector function = peak Trace = Clear write Measure T_{total} and T_{on} Calculate Duty Cycle = T_{on}/T_{total}

7.4.6 Test Results

	WIRELESS HEADPHONES	Model No.:	ANC1
Temperature:	20 ℃	Relative Humidity:	48%
Test Mode:	N/A	Test By:	N/A

Note: Not Applicable

7.5 **PEAK OUTPUT POWER**

7.5.1 Applicable Standard

According to FCC Part 15.247(b)(3) and KDB 558074 D01 15.247 Meas Guidance v05r02 Section 8.3.1.

7.5.2 Conformance Limit

The maximum peak conducted output power of the intentional radiator for systems using digital modulation in the 2400 - 2483.5 MHz bands shall not exceed: 1 Watt (30dBm). If transmitting antenna of directional gain greater than 6dBi is used, the peak output power from the intentional radiator shall be reduced below the above stated value by the amount in dB that the directional gain of the antenna exceeds 6 dBi. In case of point-to-point operation, the limit has to be reduced by 1dB for every 3dB that the directional gain of the antenna exceeds 6dBi.

7.5.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

7.5.4 Test Setup

Please refer to Section 6.1 of this test report.

7.5.5 Test Procedure

The testing follows Subclause 11.9.1.1 of ANSI C63.10 The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement. Set to the maximum power setting and enable the EUT transmit continuously. The EUT was operating in controlled its channel. Use the following spectrum analyzer settings: Set the RBW \geq DTS bandwidth. Set VBW =3*RBW. Set the span \geq 3*RBW Set Sweep time = auto couple. Set Detector = peak. Set Trace mode = max hold. Allow trace to fully stabilize. Use peak marker function to determine the peak amplitude level.

7.5.6 Test Results

	WIRELESS HEADPHONES	Model No.:	ANC1
Temperature:	20 °C	Relative Humidity:	48%
Test Mode:	Mode2/Mode3/Mode4	Test By:	Mary Hu

7.6 POWER SPECTRAL DENSITY

7.6.1 Applicable Standard

According to FCC Part 15.247(e) and KDB 558074 D01 15.247 Meas Guidance v05r02 Section 8.4.

7.6.2 Conformance Limit

The transmitter power spectral density conducted from the transmitter to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission.

7.6.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

7.6.4 Test Setup

Please refer to Section 6.1 of this test report.

7.6.5 Test Procedure

The testing follows Measurement Procedure Subclause 11.10.2 of ANSI C63.10 This procedure shall be used if maximum peak conducted output power was used to demonstrate compliance, and is optional if the maximum conducted (average) output power was used to demonstrate compliance.

The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement.

Set to the maximum power setting and enable the EUT transmit continuously.

The EUT was operating in controlled its channel.

a) Set analyzer center frequency to DTS channel center frequency.

b) Set the span to 1.5*DTS bandwidth.

c) Set the RBW to: $3 \text{ kHz} \leq \text{RBW} \leq 100 \text{ kHz}$.

d) Set the VBW \geq 3 RBW.

e) Detector = peak.

f) Sweep time = auto couple.

g) Trace mode = max hold.

h) Allow trace to fully stabilize.

i) Use the peak marker function to determine the maximum amplitude level within the RBW.

j) If measured value exceeds limit, reduce RBW (no less than 3 kHz) and repeat.

7.6.6 Test Results

EUT:	WIRELESS HEADPHONES	Model No.:	ANC1
Temperature:	20 ℃	Relative Humidity:	48%
Test Mode:	Mode2/Mode3/Mode4	Test By:	Mary Hu

7.7 CONDUCTED BAND EDGE MEASUREMENT

7.7.1 Applicable Standard

According to FCC Part 15.247(d) and KDB 558074 D01 15.247 Meas Guidance v05r02 Section 8.7.

7.7.2 Conformance Limit

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB.

7.7.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

7.7.4 Test Setup

Please refer to Section 6.1 of this test report.

7.7.5 Test Procedure

The testing follows FCC KDB 558074 D01 15.247 Meas Guidance v05r02 Section 8.7.

The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator.

The path loss was compensated to the results for each measurement.

Set to the maximum power setting and enable the EUT transmit continuously.

The EUT was operating in controlled its channel.

Set RBW to 100 kHz and VBW of spectrum analyzer to 300 kHz with a convenient frequency span including 100 kHz bandwidth from band edge.

Measure the highest amplitude appearing on spectral display and set it as a reference level. Plot the graph with marking the highest point and edge frequency.

Repeat above procedures until all measured frequencies were complete.

7.7.6 Test Results

	UT: WIRELESS HEADPHONES		ANC1
Temperature:	20 ℃	Relative Humidity:	48%
Test Mode:	Mode2/Mode4	Test By:	Mary Hu

7.8 SPURIOUS RF CONDUCTED EMISSIONS

7.8.1 Conformance Limit

1. Below -20dB of the highest emission level in operating band.

2. Fall in the restricted bands listed in section 15.205. The maximum permitted average field strength is listed in section 15.209.

7.8.2 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

7.8.3 Test Setup

Please refer to Section 6.1 of this test report.

7.8.4 Test Procedure

The Spurious RF conducted emissions compliance of RF radiated emission should be measured by following the guidance in ANSI C63.10-2013 with respect to maximizing the emission by rotating the EUT, measuring the emission while the EUT is situated in three orthogonal planes (if appropriate), adjusting the measurement antenna height and polarization etc. Set RBW=100kHz and VBW= 300KHz to measure the peak field strength , and measure frequency range from 30MHz to 26.5GHz.

7.8.5 Test Results

Remark: The measurement frequency range is from 30MHz to the 10th harmonic of the fundamental frequency. The lowest, middle and highest channels are tested to verify the spurious emissions and bandege measurement data.

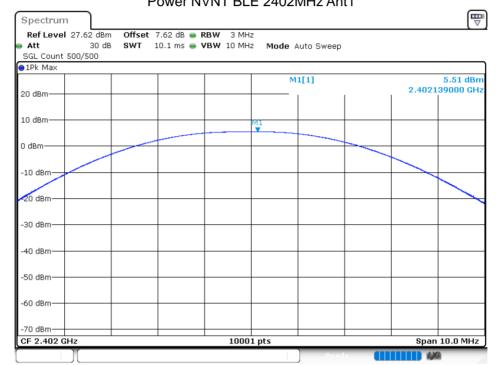
7.9 ANTENNA APPLICATION

7.9.1 Antenna Requirement

15.203 requirement: For intentional device, according to 15.203: an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device.

7.9.2 Result

The EUT antenna is permanent attached PCB antenna (Gain: 0dBi). It comply with the standard requirement.

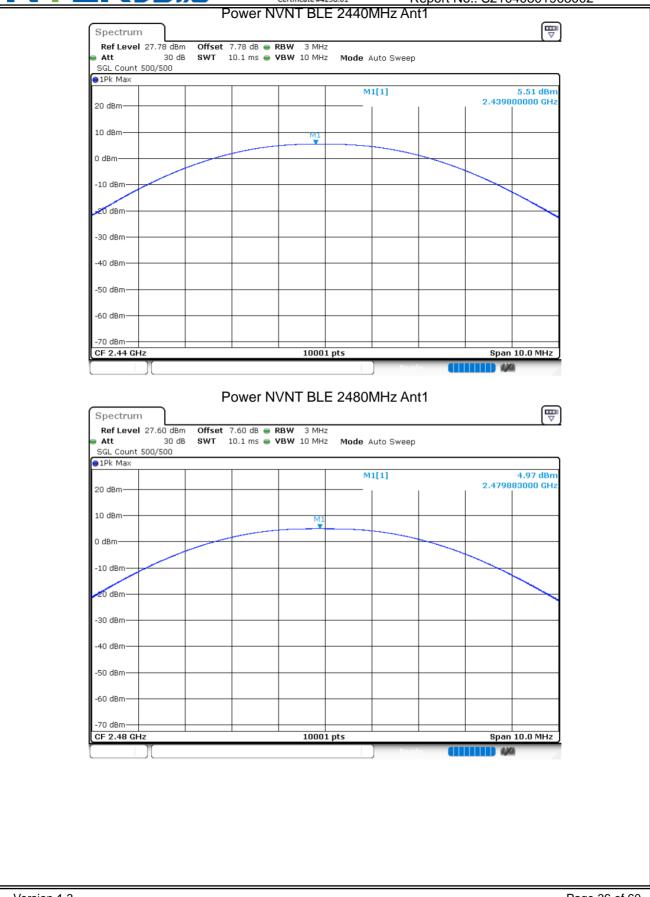


TEST RESULTS 8

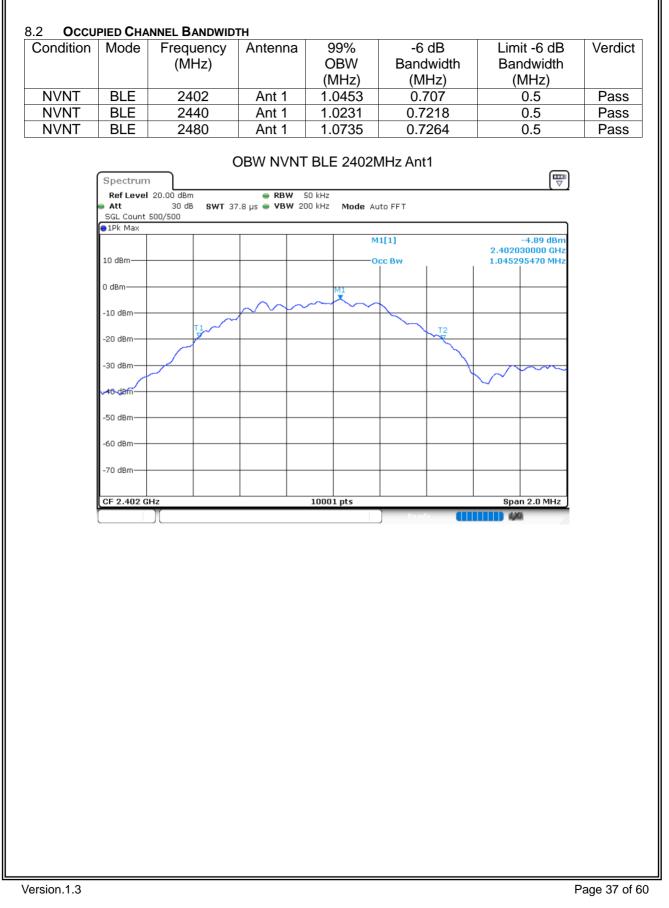
1M

8.1 MAXIMUM CONDUCTED OUTPUT POWER

Condition	Mode	Frequency (MHz)	Antenna	Conducted Power (dBm)	Limit (dBm)	Verdict
NVNT	BLE	2402	Ant 1	5.51	30	Pass
NVNT	BLE	2440	Ant 1	5.51	30	Pass
NVNT	BLE	2480	Ant 1	4.97	30	Pass



Power NVNT BLE 2402MHz Ant1



Certificate #4298.01

Report No.:	S21040801903002
-------------	-----------------

				Certificate #4					
		-6 0	JR RAA	NVNIB	SLE 2402	IMHZ A	Ant'i		_
Spectrum									T T
Ref Level Att				BW 100 kHz BW 300 kHz	Mode Auto) FFT			
SGL Count 5									
●1Pk Max					M1[[1]			-3.14 dBi
10 dBm								2.402	188580 GH
					M2[M1	[1]		2,401	-9.15 dBi 565800 GH
0 dBm		M2	\sim			мз			
-10 dBm		-				×			
-20 dBm									
-30 dBm								~	
-40 dBm									
-50 dBm									
-60 dBm									
-70 dBm									1
CF 2.402 G	Hz			1000	1 pts			Sn	an 2.0 MHz
Marker									
Type Ref	1 Trc	2.402188		<u>Y-value</u> -3.14 dB	Functio	on	Fund	tion Resu	lt
M2	1	2.40156	58 GHz	-9.15 dB	3m				
M3	1	2.402272	28 GHZ	-9.14 dB	sm			-	1474
					E 2440M				
Ref Level Att	20.00 dBm 30 dB	1		3W 50 kHz BW 200 kHz	Mode Auto	D FFT			
Ref Level Att SGL Count 2	20.00 dBm 30 dB	1				D FF T			T
Att SGL Count 2	20.00 dBm 30 dB	1						2.440	-5.67 dBi
Ref Level Att SGL Count 2	20.00 dBm 30 dB	1			Mode Auto				
Ref Level Att SGL Count 2 1Pk Max	20.00 dBm 30 dB	1			Mode Auto	[1]			-5.67 dBi 030400 GH
Ref Level Att SGL Count 2 1Pk Max 10 dBm 0 dBm	20.00 dBm 30 dB	1			Mode Auto	[1]			-5.67 dBi 030400 GH
Ref Level Att SGL Count 2 1Pk Max	20.00 dBm 30 dB	SWT 37			Mode Auto	[1]			-5.67 dBi 030400 GH
Ref Level Att SGL Count 2 PIPK Max 10 dBm -10 dBm	20.00 dBm 30 dB	1			Mode Auto	[1]	T2		-5.67 dBi 030400 GH
Ref Level Att SGL Count 2 PK Max 10 dBm 0 dBm	20.00 dBm 30 dB	SWT 37.			Mode Auto	[1]			-5.67 dBi 030400 GH
Ref Level Att SGL Count 2 PIPK Max 10 dBm 0 dBm -10 dBm	20.00 dBm 30 dB	SWT 37.			Mode Auto	[1]			-5.67 dBi 030400 GH
Ref Level Att SGL Count 2 IPk Max 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm	20.00 dBm 30 dB	SWT 37.			Mode Auto	[1]			-5.67 dBi 030400 GH
Ref Level Att SGL Count 2 1Pk Max 10 dBm 0 dBm -10 dBm -20 dBm	20.00 dBm 30 dB	SWT 37.			Mode Auto	[1]			-5.67 dBi 030400 GH
Ref Level Att SGL Count 2 IPk Max 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm	20.00 dBm 30 dB	SWT 37.			Mode Auto	[1]			-5.67 dBi 030400 GH
Ref Level Att SGL Count 2 IPK Max 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -50 dBm	20.00 dBm 30 dB	SWT 37.			Mode Auto	[1]			-5.67 dBi 030400 GH
Ref Level Att SGL Count 2 PIPK Max 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm 40 dBm	20.00 dBm 30 dB	SWT 37.			Mode Auto	[1]			-5.67 dBi 030400 GH
Ref Level Att SGL Count 2 IPK Max 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -50 dBm -60 dBm	20.00 dBm 30 dB	SWT 37.			Mode Auto	[1]			-5.67 dBi 030400 GH
Ref Level Att SGL Count 2 IPK Max 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -50 dBm	20.00 dBm 30 dB	SWT 37.			Mode Auto	[1]			-5.67 dBi 030400 GH
Ref Level Att SGL Count 2 IPk Max 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -50 dBm -60 dBm -70 dBm	20.00 dBm 30 dB 200/200	SWT 37.		BW 200 kHz	Mode Auto	[1]		1.023	-5.67 dBi
Ref Level Att SGL Count 2 ID dBm 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -50 dBm -60 dBm	20.00 dBm 30 dB 200/200	SWT 37.			Mode Auto	[1]		1.023	-5.67 dBi
Ref Level Att SGL Count 2 ID dBm 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -50 dBm -60 dBm	20.00 dBm 30 dB 200/200	SWT 37.		BW 200 kHz	Mode Auto	[1]		1.023	-5.67 dBi
Ref Level Att SGL Count 2 ID dBm 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -50 dBm -60 dBm	20.00 dBm 30 dB 200/200	SWT 37.		BW 200 kHz	Mode Auto	[1]		1.023	-5.67 dBi
Ref Level Att SGL Count 2 ID dBm 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -50 dBm -60 dBm	20.00 dBm 30 dB 200/200	SWT 37.		BW 200 kHz	Mode Auto	[1]		1.023	-5.67 dBi
Ref Level Att SGL Count 2 ID dBm 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -50 dBm -60 dBm	20.00 dBm 30 dB 200/200	SWT 37.		BW 200 kHz	Mode Auto	[1]		1.023	-5.67 dBi
Ref Level Att SGL Count 2 IO dBm 10 dBm -10 dBm -20 dBm -30 dBm -50 dBm -60 dBm -70 dBm	20.00 dBm 30 dB 200/200	SWT 37.		BW 200 kHz	Mode Auto	[1]		1.023	-5.67 dBi
Ref Level Att SGL Count 2 IPk Max 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -50 dBm -60 dBm -70 dBm	20.00 dBm 30 dB 200/200	SWT 37.		BW 200 kHz	Mode Auto	[1]		1.023	-5.67 dBi
Ref Level Att SGL Count 2 IPk Max 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -60 dBm -70 dBm	20.00 dBm 30 dB 200/200	SWT 37.		BW 200 kHz	Mode Auto	[1]		1.023	-5.67 dBi

ACCREDITED

ACCREDITED

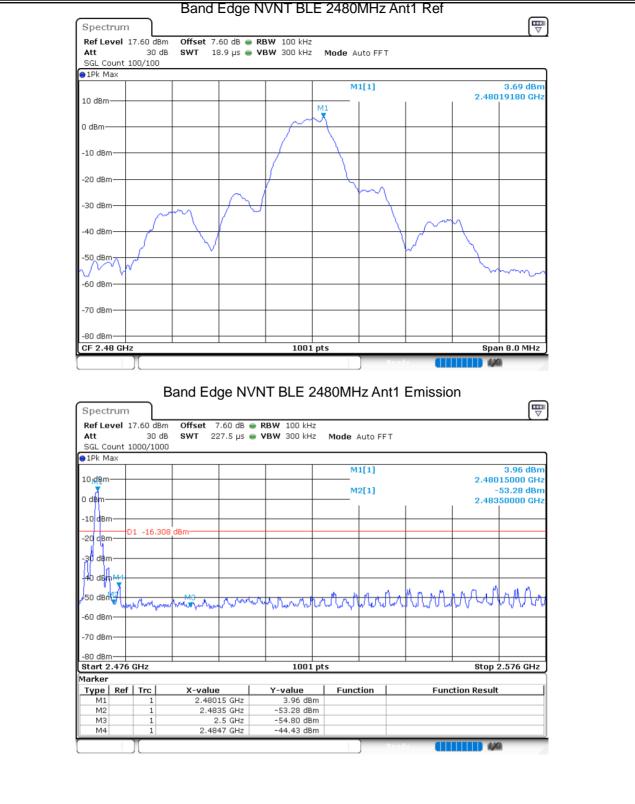
	IJ	The ful and a	Certificate #429		Report N	o.: S21040801	9030
		-6 dB BV	V NVNT BL	E 2480MH			
Spectrum							
Ref Level 3 Att SGL Count 2	30 d	в SWT 18.9 µs 🖷	RBW 100 kHz VBW 300 kHz	Mode Auto FFT			
∋1Pk Max							
				M1[1]		-3.62 dB	
10 dBm				MOLT		2.480194380 Gł -9.62 dB	
				M2[1]		2.479567000 Gł	
0 dBm				<u>M1</u>		2.1175007000 0	12
-10 dBm		M2		M3			
-10 UBIII							
-20 dBm							_
-30 dBm 🚽							_
-40 dBm							-
-50 dBm							
-50 übili							
-60 dBm							_
-70 dBm							_
CF 2.48 GHz			10001	ots		Span 2.0 MH	z
1arker							
Type Ref	Trc	X-value	Y-value	Function	Fund	ction Result	
M1	1	2.48019438 GHz	-3.62 dBm				
M2	1	2.479567 GHz	-9.62 dBm				_
M3	1	2.4802934 GHz	-9.62 dBm				
	Л				Ready 🚺		

ACO

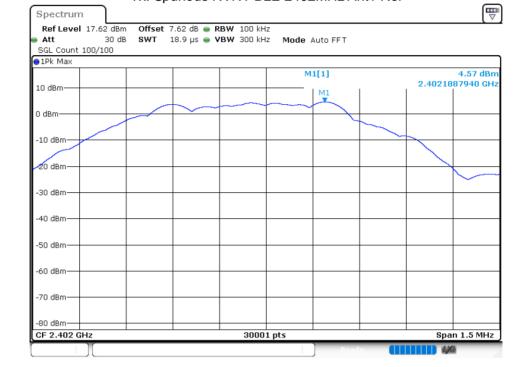
REDITED

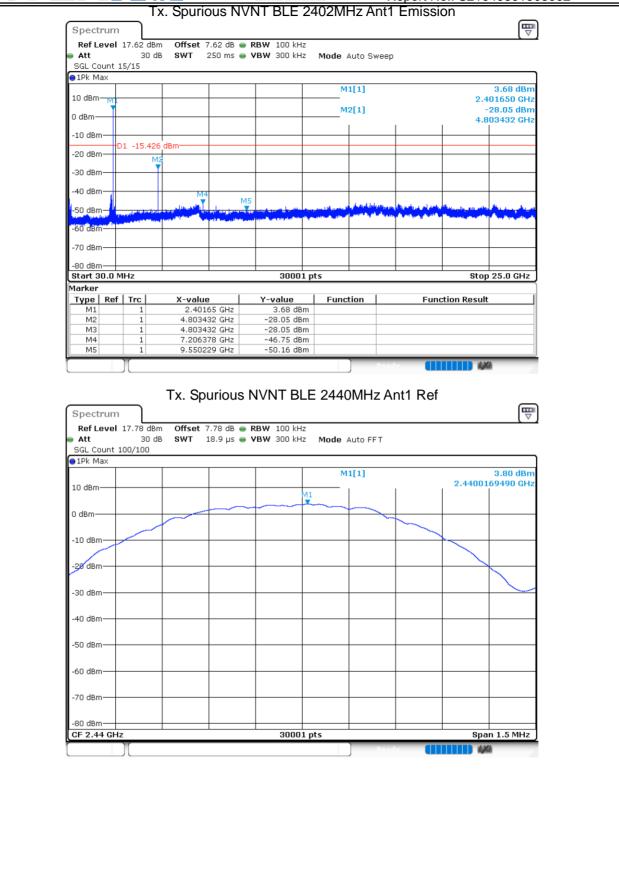
1

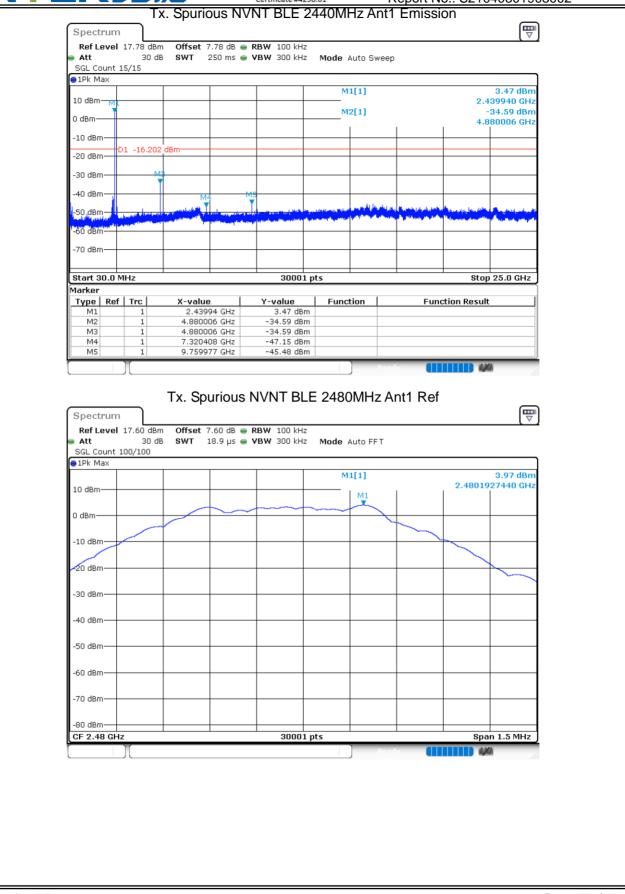
Condition	Mode	Frequency (MHz)	Antenna		: PSD /3kHz)		Limit m/3kHz)	Verdict
NVNT	BLE	2402	Ant 1		.95	,	8	Pass
NVNT	BLE	2440	Ant 1		0.30		8	Pass
NVNT	BLE	2480	Ant 1	-11	1.14		8	Pass
NVNT	Spectrum Ref Level Att SGL Count IPK Max 20 dBm 10 dBm	PSI 27.62 dBm Offset 7.62 30 dB SWT 632	D NVNT BLE	E 2402MH: Mode Auto M1[1]	z Ant1		-9.95 dBm 032340 GHz	Pass
	-50 dBm							
	oo abiii							
	-70 dBm							
	CF 2.402 G		1000	1 pts	Doady	span 1	.0605 MHz	

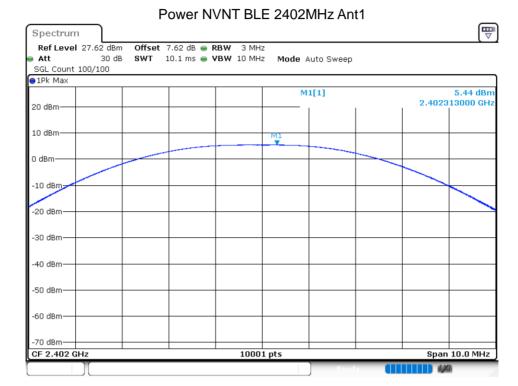

		-						
20 dBm				M	1[1]	1		10.30 dBm 35620 GHz
10 dDm								
10 dBm								
0 dBm								
-10 dBm		A A And	-	M1				
-20 dBm	manananan	ATA WE WE "YMY	Mil hild may a 1 a h	and a traditional for the second	provin Marry	MAN AND	Mnd	
WAN WAN							" " " WWWWWW	Munnulur.
-30 dBm								CA WWW
-40 dBm								
-50 dBm								
-60 dBm								
-70 dBm CF 2.44 GHz			1000	1 pts			Span 1.	0827 MHz
Spectrum Ref Level 27.6 Att SGL Count 1000,	30 dB SWT	7.60 dB 🧉	VNT BLE RBW 3 kH	2480M		1		
Spectrum Ref Level 27.6 Att SGL Count 1000,	30 dB SWT	7.60 dB 🧉	VNT BLE	2480M		1		
Spectrum Ref Level 27.6 Att SGL Count 1000, 1Pk Max	30 dB SWT	7.60 dB 🧉	VNT BLE	2480M ^z Mode A		1		
Spectrum Ref Level 27.6 Att SGL Count 1000, 1Pk Max 20 dBm	30 dB SWT	7.60 dB 🧉	VNT BLE	2480M ^z Mode A	auto FFT	1		₩ ₩ 11.14 dBm
Spectrum Ref Level 27.6 Att SGL Count 1000,	30 dB SWT	7.60 dB 🧉	VNT BLE	2480M ^z Mode A	auto FFT	1		₩ ₩ 11.14 dBm
Spectrum Ref Level 27.6 Att SGL Count 1000/ 1Pk Max 20 dBm	30 dB SWT	7.60 dB 🧉	VNT BLE	2480M ^z Mode A	auto FFT	× •••••		₩ ₩ 11.14 dBm
Spectrum Ref Level 27.6 Att SGL Count 1000, OIPK Max 20 dBm 10 dBm 0 dBm	30 dB SWT /1000	7.60 dB 632.2 μs	VNT BLE	z 2480M	1[1]		2.480	
Spectrum Ref Level 27.6 Att SGL Count 1000, 10 dBm 10 dBm -10 dBm -20 gBm/	30 dB SWT /1000	7.60 dB 632.2 μs	VNT BLE	z 2480M	1[1]		2.480	
Spectrum Ref Level 27.6 Att SGL Count 1000, 1Pk Max 20 dBm 10 dBm -10 dBm -20 gBm	30 dB SWT /1000	7.60 dB 632.2 μs	VNT BLE	z 2480M	1[1]		2.480	
Spectrum Ref Level 27.6 Att SGL Count 1000, 1Pk Max 20 dBm 10 dBm 0 dBm -10 dBm -20 qBm, -30 dBm -30 dBm	30 dB SWT /1000	7.60 dB 632.2 μs	VNT BLE	z 2480M	1[1]			
Spectrum Ref Level 27.6 Att SGL Count 1000, 1Pk Max 20 dBm 10 dBm 0 dBm -10 dBm -20 gBm -30 dBm	30 dB SWT /1000	7.60 dB 632.2 μs	VNT BLE	z 2480M	1[1]		2.480	
Spectrum Ref Level 27.6 Att SGL Count 1000, 10 dBm 10 dBm -10 dBm -20 gBm -30 dBm	30 dB SWT /1000	7.60 dB 632.2 μs	VNT BLE	z 2480M	1[1]		2.480	
Spectrum Ref Level 27.6 Att SGL Count 1000, OIPK Max 20 dBm 10 dBm 0 dBm -10 dBm -20 dBm, -30 dBm -40 dBm	30 dB SWT /1000	7.60 dB 632.2 μs	VNT BLE	z 2480M	1[1]		2.480	
Spectrum Ref Level 27.6 Att SGL Count 1000, • IPk Max 20 dBm 10 dBm 0 dBm -10 dBm -30 dBm -40 dBm	30 dB SWT /1000	7.60 dB 632.2 μs	VNT BLE	22480M	1[1]		2.480	

Version.1.3

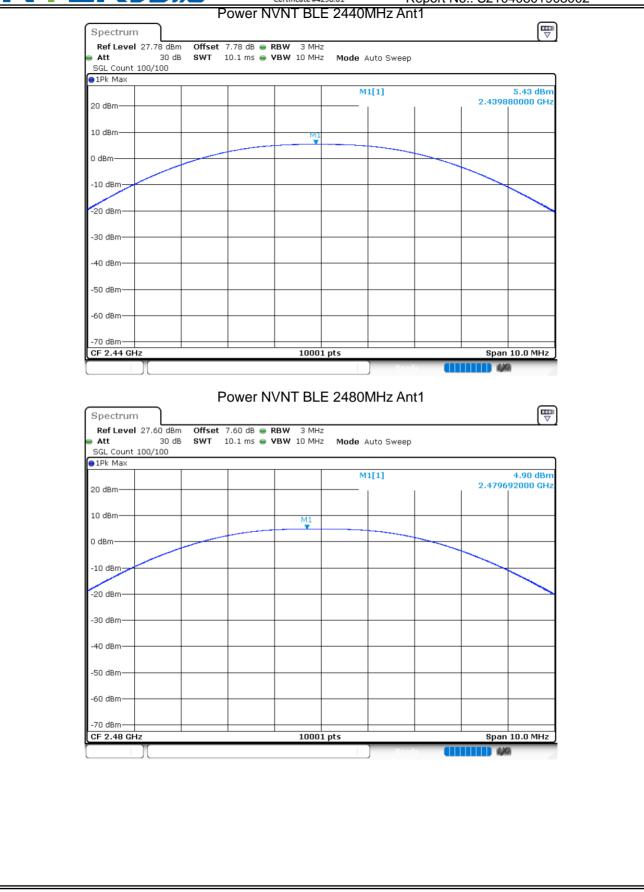

	-							
				A . 1				
ndition	Mode	Frequenc			Max Value		Limit (dB	,
VNT	BLE	240)2	Ant 1	-46.2	2	-20	Pas
VNT	BLE	248	30	Ant 1	-48.1	1	-20	Pas
		2.0		, une i	1011	•	20	1 40
		Dand				1 Dof		
_		Band	Eage INV	INT BLE 24	102MHz Ant	Ref		
Spe	ctrum]						
Ref I	evel 17.62	dBm Offset 7.	.62 dB 🔵 RBN	₩ 100 kHz				
Att			8.9 µs 👄 VB I	W 300 kHz Mo	de Auto FFT			
SGL	Count 100/1	.00						
UTER					M1[1]		4.25	5 dBm
10 dB	m						2.4020160	
10 00				MI				
0 dBm								
0 0.0.1								
-10 d	Bm-			\downarrow \downarrow	<u> </u>			
				()				
-20 d	Bm-			/				
					Vin I			
-30 d	Bm		1/~~4		\rightarrow			
		m				m	n l	
-40 d	Bm /							
	12					~	<u>ц</u>	
-50 d	Bm						<u> </u>	
m	m						~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	\sim
-60 di	Bm-							~
-70 d	8m		1 1		1 1			
	5							
	5							
-80 di	Bm							
				1001 pts			Span 8.0	MHz
	Bm			1001 pts	Ready		Span 8.0	MHz
	Bm				Ready	(111		MHz
	Bm	Band Ed	ge NVN1		MHz Ant1 E	Emissior		MHz
CF 2	Bm	Band Ed	ge NVN1		MHz Ant1 E	Emissior		
CF 2	8m		ge NVN7	Г BLE 2402	MHz Ant1 E	Emission		MHz
CF 2	evel 17.62	dBm Offset 7	7.62 dB 🖷 RB	F BLE 2402	MHz Ant1 E	Emission		
Sper Ref I Att	2m 402 GHz ctrum .evel 17.62 3 Count 100/1	dBm Offset 7 30 dB SWT 22	7.62 dB 🖷 RB	F BLE 2402		Emissior		
CF 2. Spe- Ref I Att	2m 402 GHz ctrum .evel 17.62 3 Count 100/1	dBm Offset 7 30 dB SWT 22	7.62 dB 🖷 RB	F BLE 2402	ode Auto FFT	Emission	איז	
Sper Ref I Att	8m 402 GHz ctrum .evel 17.62 3 Count 100/1 Max	dBm Offset 7 30 dB SWT 22	7.62 dB 🖷 RB	F BLE 2402		Emission	1 1 4.29 2.4019500	₩ Ø dBm Ø GHz
Sper Refil Att SGL 10 dB	8m 402 GHz ctrum Level 17.62 3 Count 100/1 Max m	dBm Offset 7 30 dB SWT 22	7.62 dB 🖷 RB	F BLE 2402	ode Auto FFT	Emission	4.25 2.4019500 -32.52	₩ Ø dBm Ø GHz 2 ÅBm
Sper Ref I Att SGL	8m 402 GHz ctrum Level 17.62 3 Count 100/1 Max m	dBm Offset 7 30 dB SWT 22	7.62 dB 🖷 RB	F BLE 2402	M1[1]	Emission	1 1 4.29 2.4019500	₩ Ø dBm ØrGHz 2 ØBm
Sper Refil Att SGL 10 dB	8m	dBm Offset 7 30 dB SWT 22	7.62 dB 🖷 RB	F BLE 2402	M1[1]	Emission	4.25 2.4019500 -32.52	e dBm RiGHz 2 ∰Bm
CF 2. Ref I Att SGL 10 dB 0 dBrd -10 dI	8m 402 GHz ctrum .evel 17.62 3 Count 100/1 Max m 	dBm Offset 7 30 dB SWT 22	7.62 dB 🖷 RB	F BLE 2402	M1[1]	Emission	4.25 2.4019500 -32.52	e dBm RiGHz 2 ∰Bm
CF 2. Sper RefI Att SGL 0 dBm 0 dBm	8m 402 GHz ctrum .evel 17.62 3 Count 100/1 Max m 	dBm Offset 7 30 dB SWT 22 00	7.62 dB 🖷 RB	F BLE 2402	M1[1]	Emission	4.29 2.4019500 -32.52 2.4000000	Ø dBm Ø GHz Ø GHz
CF 2. Ref I Att SGL 10 dB 0 dBrd -10 dI	Bm	dBm Offset 7 30 dB SWT 22 00	7.62 dB 🖷 RB	F BLE 2402	M1[1]	Emission	4.25 2.4019500 -32.52	Ø dBm Ø GHz Ø GHz
CF 2. Sper Ref I Att SGL ● 1Pk 10 dB 0 dBm -10 dI -20 dI -30 dI	Bm	dBm Offset 7 30 dB SWT 22 00	7.62 dB 🖷 RB	F BLE 2402	M1[1]	Emission	4.29 2.4019500 -32.52 2.4000000	Ø dBm Ø GHz Ø GHz
CF 2. Spe- Ref I Att SGL 0 dBm -10 dB -20 db	Bm	dBm Offset 7 30 dB SWT 22 00 5.751 dBm	7.62 dB 🖷 RB	F BLE 2402	M1[1]	Emission	4.29 2.4019500 -32.52 2.4000000	Ø dBm Ø GHz Ø GHz
CF 2. Spe- Ref I Att SGL ● 1Pk 10 dBm -10 dI -20 dI -30 dI -40 dI	Bm .402 GHz .402 GHz	dBm Offset 7 30 dB SWT 22 00 5.751 dBm	7.62 dB • RB 27.5 μs • VB	Г BLE 2402	M1[1] M2[1]		4.25 2.4019500 -32.52 2.4000000	Ø dBm Ø GHz Ø GHz
CF 2. Spe- Ref I Att SGL ● 1Pk 10 dB -10 dI -20 dI -30 dI -30 dI -40 dI	Bm 402 GHz .402 GHz 3 .evel 17.62 .g 3 Count 100/1 Max 3 m 3 Bm 3 Bm 3 Bm 3	dBm Offset 7 30 dB SWT 22 00 5.751 dBm	7.62 dB • RB 27.5 μs • VB	F BLE 2402	M1[1] M2[1]		4.29 2.4019500 -32.52 2.4000000	Ø dBm Ø GHz Ø GHz
CF 2. Spe- Ref I Att SGL ● 1Pk 10 dBm -10 dI -20 dI -30 dI -40 dI	Bm 402 GHz .402 GHz 3 .evel 17.62 .g 3 Count 100/1 Max 3 m 3 Bm 3 Bm 3 Bm 3	dBm Offset 7 30 dB SWT 22 00 5.751 dBm	7.62 dB • RB 27.5 μs • VB	Г BLE 2402	M1[1] M2[1]		4.25 2.4019500 -32.52 2.4000000	Ø dBm Ø GHz Ø GHz
CF 2. Spe- Ref I Att SGL ● 1Pk 10 dB -10 dI -20 dI -30 dI -40 dI -50 dI	Bm	dBm Offset 7 30 dB SWT 22 00 5.751 dBm	7.62 dB • RB 27.5 μs • VB	Г BLE 2402	M1[1] M2[1]		4.25 2.4019500 -32.52 2.4000000	Ø dBm Ø GHz Ø GHz
CF 2. Spe- Ref I Att ● 1Pk 10 dB -10 dI -20 dI -30 dI -40 dI -50 dI -70 dI	Add Content and the second sec	dBm Offset 7 30 dB SWT 22 00 5.751 dBm	7.62 dB • RB 27.5 μs • VB	Г BLE 2402	M1[1] M2[1]		4.25 2.4019500 -32.52 2.4000000	Ø dBm Ø GHz Ø GHz
CF 2. Spe- Ref I Att SGL ● 1Pk 10 dB 0 dBm -10 dI -20 dI -30 dI -30 dI -40 dI -50 dI -70 dI -70 dI -80 dI	Add Content and the second sec	5.751 dBm M4	7.62 dB • RB 27.5 μs • VB	Г BLE 2402	M1[1] M2[1]		4.25 2.4019500 -32.55 2.4000000	Ø dBm ØıGHz 2 7Bm Ø GHz
CF 2. Spe: Ref I Att SGL ● 1Pk 10 dB 0 dBm -10 dI -20 dI -30 dI -30 dI -40 dI -50 dI -70 dI -70 dI -80 dI	Bm	5.751 dBm M4	7.62 dB • RB 27.5 μs • VB	Г BLE 2402	M1[1] M2[1]		4.25 2.4019500 -32.52 2.4000000	Ø dBm Øı⊊Hz 2 7Bm Ø GHz
CF 2. Spe: Ref I Att SGL 10 dB 0 dBm -10 dI -20 dI -20 dI -30 dI -30 dI -40 dI -50 dI -40 dI 50 dI -70 dI Start Marke Type	Bm	dBm Offset 7 30 dB SWT 22 .00	7.62 dB • RB 27.5 μs • VB	Г BLE 2402	M1[1] M2[1]	have been a free of the second s	4.25 2.4019500 -32.55 2.4000000	Ø dBm Øı⊊Hz 2 1Bm Ø GHz
CF 2. Ref I Att SGL ● 1Pk 10 dB 0 dBm -10 dI -20 dI -30 dI -30 dI -40 dI -50 dI -70 dI -80 dI Startto Type Marke	Bm .402 GHz .402 GHz	dBm Offset 7 30 dB SWT 22 00 5.751 dBm 5 M4 1 1 2 X-value 1	7,62 dB • RB 27.5 μs • VB	F BLE 2402 W 100 kHz W 300 kHz W 300 kHz W U<	M1[1] M2[1] Multiple Multiple	have been a free of the second s	1 4.25 2.4019500 -32.52 2.4000000 	Ø dBm Øı⊊Hz 2 1Bm Ø GHz
CF 2. Spe- Ref I Att SGL ● 1Pk 10 dB 0 dBm -10 dI -20 dI -20 dI -30 dI -30 dI -50 dI -40 dI -50 dI -50 dI -70 dI -80 dI Marke Type	Bm	dBm Offset 7 30 dB SWT 22 00	7.62 dB • RB 27.5 μs • VB	Г BLE 2402	M1[1] M2[1] Multiple Multiple	have been a free of the second s	1 4.25 2.4019500 -32.52 2.4000000 	Ø dBm Øı⊊Hz 2 1Bm Ø GHz
Spe Ref I Att SGL 10 dB 0 dBr -10 dI -20 dI -30 dI -50 dI -60 dI -70 dI -80 dI Start Marke Type M	Bm	dBm Offset T 30 dB SWT 22 00	7.62 dB	Г BLE 2402	M1[1] M2[1] Multiple Multiple	have been a free of the second s	1 4.25 2.4019500 -32.52 2.4000000 	Ø dBm Øı⊊Hz 2 1Bm Ø GHz




8.5 **CONDUCTED RF SPURIOUS EMISSION** Mode Frequency (MHz) Condition Antenna Max Value (dBc) Limit (dBc) Verdict NVNT BLE 2402 Ant 1 -32.62 -20 Pass -20 NVNT BLE 2440 -38.38 Pass Ant 1 -20 NVNT BLE 2480 Ant 1 -31.73 Pass Tx. Spurious NVNT BLE 2402MHz Ant1 Ref ₽ Spectrum


Ref Level Att	17.60 dBn 30 dB		 RBW 100 kHz VBW 300 kHz 	Mode Auto Sv	veen	
SGL Count 1				nicae nato or		
∋1Pk Max						
10 10-				M1[1]		3.17 dB
10 dBm						2.479890 GH
0 dBm				M2[1]		-27.76 dB 4.959910 GF
				1	1	4.939910 Gr
-10 dBm——		+ +				
-20 dBm-	1 -16.031					
-20 ubiii-	M	19				
-30 dBm —						
-40 dBm		M4	Ma			
-50 dBm			T	مراكلا الدور أتراده بالمريدين	فالمحرية وحجاراته أحواه أأمه	Manual Accellence of the strategic of the
المستعرون أكرمتها		And a state of the state of the state of	the set of particular property of the set	and a star provide the start of the start	and a state of the design of the state	of the second as the second state of the second
-60 GBM						
-70 dBm						
-/U aBm						
-80 dBm						
Start 30.0 M	1Hz		30001 pt	ts		Stop 25.0 GH
Marker						
	Trc	X-value	Y-value	Function	Fun	ction Result
M1	1	2.47989 GHz	3.17 dBm			
M2	1	4.95991 GHz	-27.76 dBm			
M3	1	4.95991 GHz	-27.76 dBm			
M4	1	7.351204 GHz	-50.23 dBm			

2M


8.6 MAXIMUM CONDUCTED OUTPUT POWER

Condition	Mode	Frequency (MHz)	Antenna	Conducted Power (dBm)	Limit (dBm)	Verdict
NVNT	BLE	2402	Ant 1	5.44	30	Pass
NVNT	BLE	2440	Ant 1	5.43	30	Pass
Condition NVNT NVNT NVNT	BLE	2480	Ant 1	4.90	30	Pass

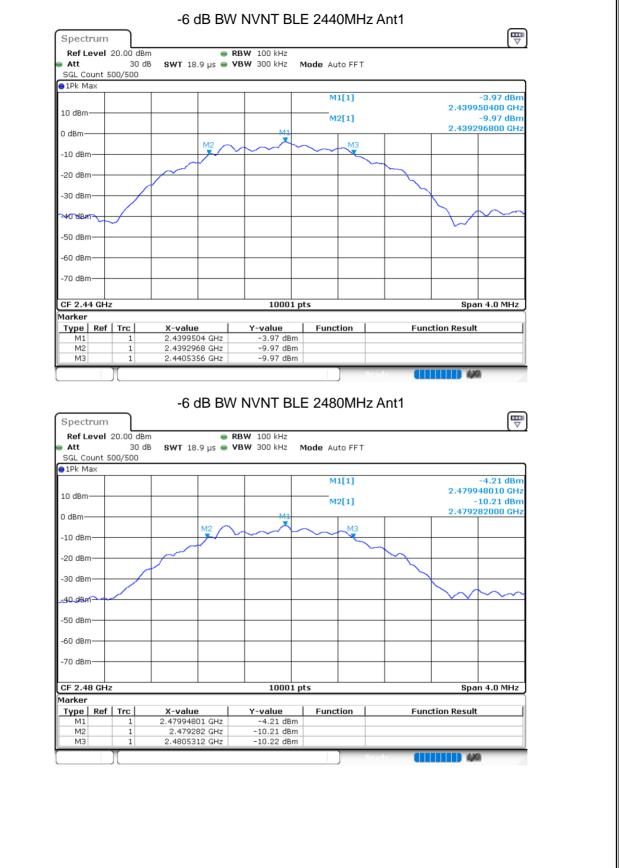
8.7 **OCCUPIED CHANNEL BANDWIDTH** Condition Frequency -6 dB Limit -6 dB Verdict Mode Antenna (MHz) Bandwidth Bandwidth (MHz) (MHz) NVNT BLE 2402 Pass Ant 1 1.2884 0.5 NVNT BLE 2440 Ant 1 1.2388 0.5 Pass NVNT Pass BLE 2480 Ant 1 1.2492 0.5 -6 dB BW NVNT BLE 2402MHz Ant1 ₽ Spectrum RBW 100 kHz Ref Level 20.00 dBm 30 dB **SWT** 18.9 μs 🖷 **VBW** 300 kHz **Mode** Auto FFT Att SGL Count 500/500 ●1Pk Max M1[1] -4.78 dBn 2.401999200 GHz 10 dBm-M2[1] -10.75 dBn 2.401260800 GHz 0 dBm-.мз -10 dBm--20 dBm--30 dBm 40 d8n -50 dBm -60 dBm -70 dBm CF 2.402 GHz 10001 pts Span 4.0 MHz Marker Type | Ref | Trc X-value Y-value Function Function Result -4.78 dBm -10.75 dBm 2.4019992 GHz

-10.77 dBm

M1 M2

MЗ

1


1

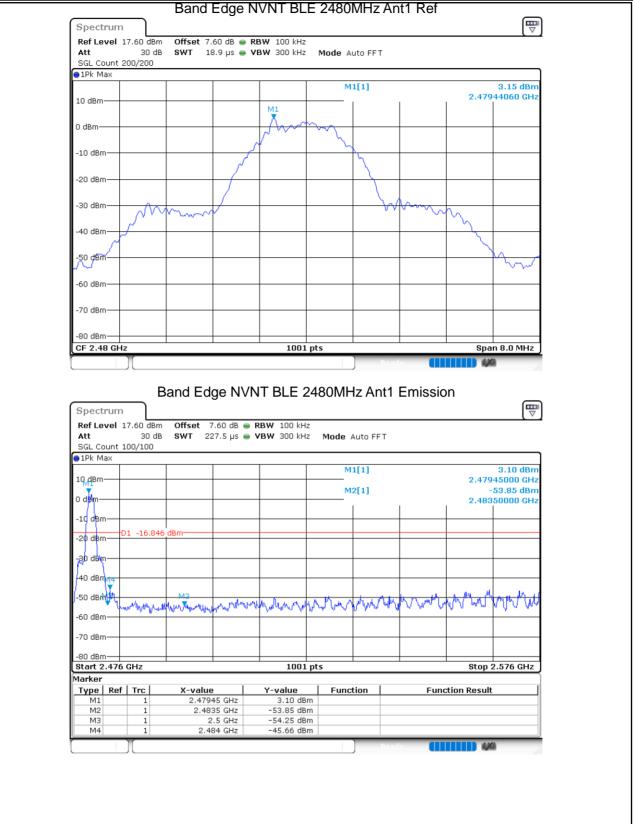
1

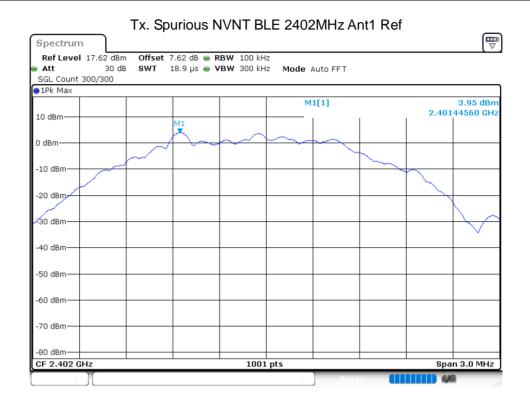
2.4012608 GHz

2.4025492 GHz

ondition	Mode	Frequency (MHz)	Antenna	Max PSD (dBm/3kHz)	Limit (dBm/3kHz)	Verdic
NVNT	BLE	2402	Ant 1	-12.81	8	Pass
NVNT	BLE	2440	Ant 1	-13.60	8	Pass
NVNT	BLE	2480	Ant 1	-13.65	8	Pass
	Spectrum	_	D NVNT BLE	2402MHz Ant1		
	Ref Level Att SGL Count I 1Pk Max	30 dB SWT 632	dB 👄 RBW 3 kHz µs 👄 VBW 10 kHz	Mode Auto FFT		
	20 dBm			M1[1]	-12.81 dBm 2.401981640 GHz	
	10 dBm					
	-10 dBm		M1	han a finale set a se		
	-20 dBm -20 dBm -30 dBm	war hat hat hat hat had and for the	Mayor and a Marken all and a second of the		adjarine aller for a for a start	
	-40 dBm					
	-50 dBm					
	-60 dBm					
	CF 2.402 G	Hz	1000	L pts	Span 1.9326 MHz	

ACCREDITED


Spectrum Image: Spectrum Ref Level 27.78 dbm Offset 7.78 db RBW 3 kHz Att 30 db SWT 632 µs VBW 10 kHz Mode Auto FFT SGL Count 500/500 PIPk Max
Att 30 db SWT 632 µs VBW 10 kHz Mode Auto FFT SGL Count 500/500 -13.60 df -13.60 df -13.60 df 20 dBm -13.60 df 2.439984950 df -13.60 df 10 dBm -10 dBm -10 df -10 df -10 df -10 dBm -10 df -10 df -10 df -10 df -20 dBm -10 df -10 df -10 df -10 df -10 dBm -10 df -10 df -10 df -10 df -20 dBm -10 df -10 df -10 df -10 df -10 dBm -10 df -10 df -10 df -10 df -20 dBm -10 df -10 df -10 df -10 df -50 dBm -10 df -10 df -10 df -10 df -50 dBm -10 df -10 df -10 df -10 df -70 dBm -10 df -10 df -10 df -10 df Spectrum -10 df -10 df -10 df -10 df 10 df -10 df -10
SGL Count 500/500 9 TPk Max 20 dBm 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -50 dBm -50 dBm -70 dBm
20 dBm
20 dBm
20 dBm 0 dBm 0 dBm 0 dBm -10 dBm 0 dBm 0 dBm 0 dBm 0 dBm -20 dBm 0 dBm 0 dBm 0 dBm 0 dBm -30 dBm 0 dBm 0 dBm 0 dBm 0 dBm -50 dBm 0 dBm 0 dBm 0 dBm 0 dBm -60 dBm 0 dBm 0 dBm 0 dBm 0 dBm -60 dBm 0 dBm 0 dBm 0 dBm 0 dBm -60 dBm 0 dBm 0 dBm 0 dBm 0 dBm -60 dBm 0 dBm 0 dBm 0 dBm 0 dBm -70 dBm 0 dBm 0 dBm 0 dBm 0 dBm -60 dBm 0 dBm 0 dBm 0 dBm 0 dBm -70 dBm 0 dBm 0 dBm 0 dBm 0 dBm -70 dBm 0 dBm 0 dBm 0 dBm 0 dBm -70 dBm 0 dBm 0 dBm 0 dBm 0 dBm -70 dBm 0 dBm 0 dBm 0 dBm 0 dBm Spectrum 0 dBm 0 dBm 0 dBm 0 dBm 0 dBm <td< td=""></td<>
0 dBm
-10 dBm -20 dBm -20 dBm -20 dBm -30 dBm -40 dBm -50 dBm -50 dBm -50 dBm -70
-10 dBm -20 dBm -20 dBm -20 dBm -30 dBm -40 dBm -50 dBm -50 dBm -50 dBm -70
-20 dBm -30 dBm -30 dBm -40 dBm -50 dBm -50 dBm -60 dBm -70 dBm -7 -70 dBm -7 -70 dBm -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -
-20 dBm -30 dBm -30 dBm -40 dBm -50 dBm -50 dBm -60 dBm -70 dBm -7 -70 dBm -7 -70 dBm -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -
-40 dBm -50 dBm -50 dBm -60 dBm -60 dBm -60 dBm -60 dBm -60 dBm -60 dBm -60 dBm -70 dBm -70 dBm -70 dBm -70 dBm -70 dBm -70 dBm -70 dBm -70 dBm -70 dBm -70 dBm -70 dBm -70 dBm -70 dBm -70 dBm -70 dBm -70 dBm -70 dBm -70 dBm -70 dBm -70 dBm -70 dBm -70 dBm -70 dBm -70 dBm -70 dBm -70 dBm -70 dBm -70 dBm -70 dBm -70 dBm -70 dBm -70 dBm -70 dBm -70 dBm -70 dBm -70 dBm -70 dBm -70 dBm -70 dBm -70 dBm -70 dBm -70 dBm -70 dBm -70 dBm -70 dBm -70 dBm -70 dBm -70 dBm -70 dBm -70 dBm -70 dBm -70 dBm -70 dBm -70 dBm -70 dBm -70 dBm -70 dBm -70 dBm -70 dBm -71 dBm
-40 dBm -50 dBm -50 dBm -60 dBm -60 dBm -60 dBm -60 dBm -60 dBm -60 dBm -60 dBm -70 dBm -70 dBm -70 dBm -70 dBm -70 dBm -70 dBm -70 dBm -70 dBm -70 dBm -70 dBm -70 dBm -70 dBm -70 dBm -70 dBm -70 dBm -70 dBm -70 dBm -70 dBm -70 dBm -70 dBm -70 dBm -70 dBm -70 dBm -70 dBm -70 dBm -70 dBm -70 dBm -70 dBm -70 dBm -70 dBm -70 dBm -70 dBm -70 dBm -70 dBm -70 dBm -70 dBm -70 dBm -70 dBm -70 dBm -70 dBm -70 dBm -70 dBm -70 dBm -70 dBm -70 dBm -70 dBm -70 dBm -70 dBm -70 dBm -70 dBm -70 dBm -70 dBm -70 dBm -70 dBm -70 dBm -70 dBm -70 dBm -70 dBm -70 dBm -71 dBm
-40 dBm -50 dBm -50 dBm -60 dBm -60 dBm -60 dBm -60 dBm -60 dBm -60 dBm -60 dBm -70 dBm -70 dBm -70 dBm -70 dBm -70 dBm -70 dBm -70 dBm -70 dBm -70 dBm -70 dBm -70 dBm -70 dBm -70 dBm -70 dBm -70 dBm -70 dBm -70 dBm -70 dBm -70 dBm -70 dBm -70 dBm -70 dBm -70 dBm -70 dBm -70 dBm -70 dBm -70 dBm -70 dBm -70 dBm -70 dBm -70 dBm -70 dBm -70 dBm -70 dBm -70 dBm -70 dBm -70 dBm -70 dBm -70 dBm -70 dBm -70 dBm -70 dBm -70 dBm -70 dBm -70 dBm -70 dBm -70 dBm -70 dBm -70 dBm -70 dBm -70 dBm -70 dBm -70 dBm -70 dBm -70 dBm -70 dBm -70 dBm -70 dBm -70 dBm -70 dBm -70 dBm -71 dBm -71 dBm -71 dBm -71 dBm -70
-50 dBm -60 dBm -70 dBm -71 dBm -7
-50 dBm -60 dBm -70 dBm -70 dBm CF 2.44 GHz PSD NVNT BLE 2480MHz Ant1 Spectrum Ref Level 27.60 dBm SWT 632 μs • VBW 10 kHz Mode Auto FFT SGL Count 500/500 • 1Pk Max -13.65 df 20 dBm 10 dBm -10 dBm -13.65 df 2.479980140 G
-60 dBm -70 dBm CF 2.44 GHz DSD NVNT BLE 2480MHz Ant1 Spectrum Ref Level 27.60 dBm SWT 632 μs • VBW 10 kHz Mode Auto FFT SGL Count 500/500 • 1Pk Max 10 dBm 10 dBm 10 dBm
-70 dBm Span 1.8582 MF CF 2.44 GHz 10001 pts Span 1.8582 MF PSD NVNT BLE 2480MHz Ant1 Prode Militian Spectrum Mode Auto FFT Sca Count S00/500 Militian • Att 30 dB SWT 632 µs • VBW 10 kHz Mode Auto FFT SGL Count S00/500 • 110 dBm • 13.65 db • 2.479980140 G
-70 dBm Span 1.8582 MF CF 2.44 GHz 10001 pts Span 1.8582 MF PSD NVNT BLE 2480MHz Ant1 Prode Max Ref Level 27.60 dBm Offset 7.60 dB RBW 3 kHz Mode Auto FFT SGL Count 500/500 MI[1] -13.65 db PIPK Max MI[1] -13.65 db 10 dBm Max MI[1] -13.65 db
CF 2.44 GHz 10001 pts Span 1.8582 MH PSD NVNT BLE 2480MHz Ant1 PSD NVNT BLE 2480MHz Ant1 Spectrum Ref Level 27.60 dBm Offset 7.60 dB RBW 3 kHz Att 30 dB SWT 632 µs VBW 10 kHz Mode Auto FFT SGL Count 500/500 IPk Max MI[1] -13.65 dt 20 dBm MI[1] -13.65 dt 10 dBm MI[1] -13.65 dt
Postv PSD NVNT BLE 2480MHz Ant1 Pspectrum Ref Level 27.60 dB SWT 632 µs VBW 10 kHz Mode Auto FFT SGL Count 500/500 IPk Max Discrete for the second
PSD NVNT BLE 2480MHz Ant1 Spectrum Ref Level 27.60 dBm Offset 7.60 dB RBW 3 kHz Att 30 dB SWT 632 µs VBW 10 kHz Mode Auto FFT SGL Count 500/500 1Pk Max 20 dBm 10 dBm 10 dBm
20 dBm 2.479980140 G
10 dBm
0 dBm
0 dBm
-10 dBm
-20 dBm
-20 dBm
-40 dBm
-50 dBm
-60 dBm
-70 dBm CF 2.48 GHz 10001 pts Span 1.8738 MH
CF 2.48 GHz 10001 pts Span 1.8738 MH


Report No.: S21040801903002

8.10 CONDUCTED RF SPURIOUS EMISSION

Condition	Mode	Frequency (MHz)	Antenna	Max Value (dBc)	Limit (dBc)	Verdict
NVNT	BLE	2402	Ant 1	-32.77	-20	Pass
NVNT	BLE	2440	Ant 1	-40.76	-20	Pass
NVNT	BLE	2480	Ant 1	-31.5	-20	Pass

⊖1Pk Max						M1[11			2.37 dBm
10 dBm—	<u>vi</u>					M2[2.4120 GHz -28.82 dBm
0 dBm—	1							I	1	4.7993 GHz
-10 dBm-	D1 -	16.052	dBm							
-20 dBm—		Ma			_					
-30 dBm-		Í								
-40 dBm-	<u> </u>		M	4	M5		and and a	Andurut		
-50 dBm-	Hondhar	mand	and the state of the second	all when the	Collection and and and and and and and and and an	e postania orgonal pr	o yo wa	ar Craintean Chaire	1 mile bagette	<u>الاست</u> مام المراجع
-60 dBm-										
-70 dBm-										
-80 dBm- Start 30	0 MHz				100	1 pts			Sto	p 25.0 GHz
Marker Type F	ef T	rc I	X-valu	e	Y-value	Functio	on I	Fun	ction Resu	lt l
M1 M2		1	2.4	+12 GHz 993 GHz	2.37 d -28.82 d	lBm				
M3		1 1	4.79	993 GHz	-28.82 d	lBm				
M4		1		964 GHz 935 GHz	-47.94 d -48.45 d					
Spectru Ref Lev Att SGL Cour	el 17. nt 300,	30 dE	Offset	7.78 dB (RBW 100 k	BLE 2440N ^{Hz} Mode Au		nt1 Ref		×
Spectru Ref Lev Att SGL Cour 1Pk Max	el 17. nt 300,	30 dE	Offset	7.78 dB (RBW 100 k	Hz	ito FFT	nt1 Ref		₩
Spectru Ref Lev Att SGL Cou	el 17. nt 300,	30 dE	Offset	7.78 dB (RBW 100 k	Hz Hz Mode Au M1[ito FFT	nt1 Ref		3.52 dBm
Spectru Ref Lev Att SGL Cour 1Pk Max	el 17. nt 300,	30 dE	Offset	7.78 dB (■ RBW 100 k ■ VBW 300 k	Hz Hz Mode Au M1[ito FFT	nt1 Ref		3.52 dBm
Spectru Ref Lev Att SGL Cou 1Pk Max 10 dBm—	el 17. nt 300,	30 dE	Offset	7.78 dB (■ RBW 100 k ■ VBW 300 k	Hz Hz Mode Au M1[ito FFT	nt1 Ref		3.52 dBm
Spectru Ref Lev Att SGL Cou 1Pk Max 10 dBm- 0 dBm- -10 dBm-	el 17. nt 300,	30 dE	Offset	7.78 dB (■ RBW 100 k ■ VBW 300 k	Hz Hz Mode Au M1[ito FFT	nt1 Ref		3.52 dBm
Spectru Ref Lev Att SGL Cour 10 dBm- 0 dBm- -10 dBm- -20 dBm-	el 17. nt 300,	30 de	Offset	7.78 dB (■ RBW 100 k ■ VBW 300 k	Hz Hz Mode Au M1[ito FFT	nt1 Ref		3.52 dBm
Spectru Ref Lev Att SGL Cou 1Pk Max 10 dBm- 0 dBm- -10 dBm-	el 17. nt 300,	30 de	Offset	7.78 dB (■ RBW 100 k ■ VBW 300 k	Hz Hz Mode Au M1[ito FFT	nt1 Ref		3.52 dBm
Spectru Ref Lev Att SGL Cour 10 dBm- 0 dBm- -10 dBm- -20 dBm-	el 17. nt 300,	30 de	Offset	7.78 dB (■ RBW 100 k ■ VBW 300 k	Hz Hz Mode Au M1[ito FFT	nt1 Ref		3.52 dBm
Spectru Ref Lev Att SGL Cour 1Pk Max 10 dBm- -10 dBm- -20 dBm- -20 dBm-	el 17. nt 300,	30 de	Offset	7.78 dB (■ RBW 100 k ■ VBW 300 k	Hz Hz Mode Au M1[ito FFT	nt1 Ref		3.52 dBm
Spectru Ref Lev Att SGL Cou 1Pk Max 10 dBm- -10 dBm- -20 dBm- -20 dBm- -30 dBm- -30 dBm- -50 dBm-	el 17. nt 300,	30 de	Offset	7.78 dB (■ RBW 100 k ■ VBW 300 k	Hz Hz Mode Au M1[ito FFT	nt1 Ref		3.52 dBm
Spectru Ref Lev Att SGL Cou 1Pk Max 10 dBm- -10 dBm- -20 dBm- -30 dBm- -40 dBm-	el 17. nt 300,	30 de	Offset	7.78 dB (■ RBW 100 k ■ VBW 300 k	Hz Hz Mode Au M1[ito FFT	nt1 Ref		3.52 dBm
Spectru Ref Lev Att SGL Cou 1Pk Max 10 dBm- -10 dBm- -20 dBm- -20 dBm- -30 dBm- -30 dBm- -50 dBm-	el 17. nt 300,	30 de	Offset	7.78 dB (■ RBW 100 k ■ VBW 300 k	Hz Hz Mode Au M1[ito FFT	nt1 Ref		3.52 dBm
Spectru Ref Lev Att SGL Coui 1Pk Max 10 dBm- -10 dBm- -20 dBm- -20 dBm- -30 dBm- -30 dBm- -50 dBm- -50 dBm-	el 17. nt 300,	30 de	Offset	7.78 dB (■ RBW 100 k ■ VBW 300 k	Hz Hz Mode Au M1[ito FFT	nt1 Ref		3.52 dBm
Spectru Ref Lex Att SGL Coui 1Pk Max 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -40 dBm -50 dBm -50 dBm -60 dBm -70 dBm	el 17.	30 de	Offset	7.78 dB (RBW 100 k	Hz Hz Mode Au M1[ito FFT	nt1 Ref	2.43	3.52 dBm 997000 GHz
Spectru Ref Lev SGL Cour 110 dBm- 0 dBm- -10 dBm- -20 dBm- -20 dBm- -30 dBm- -50 dBm- -60 dBm- -70 dBm- -80 dBm-	el 17.	30 de	Offset	7.78 dB (RBW 100 k	Hz Mode Au	ito FFT	nt1 Ref	2.43	3.52 dBm 997000 GHz
Spectru Ref Lev SGL Cour 110 dBm- 0 dBm- -10 dBm- -20 dBm- -20 dBm- -30 dBm- -50 dBm- -60 dBm- -70 dBm- -80 dBm-	el 17.	30 de	Offset	7.78 dB (RBW 100 k	Hz Mode Au	ito FFT	nt1 Ref	2.43	3.52 dBm 997000 GHz

●1Pk Max					M	1[1]			1.24 dBm
10 dBm ML						2[1]			2.4370 GHz -37.24 dBm
0 dBm						1	1		4.8742 GHz
-10 dBm	01 -16.480	dBro							
-20 dBm	/1 -10.480	ивш							
-30 dBm	Ma								
-40 dBm	ĭ	N	M15	2					
-50 dBm	manutiture	A Philadelian Contraction	mound	, where the second s	and the second second	LIVN VIA	howwww	and make we have a server where	a Marily and a sugar
-60 dBm									
-70 dBm									
Start 30.0 M Marker	IHZ			1001	l pts			Stop	25.0 GHz
	1 Trc	X-value	a 37 GHz	Y-value 1.24 dB	Func	tion	Fun	ction Result	t
M2	1	4.87	42 GHz	-37.24 dB	Sm				
M3 M4	1		42 GHz 96 GHz	-37.24 dB -49.37 dB	3m				
M5	1	9.76	83 GHz	-45.76 dB	3m				
Spectrum Ref Level Att SGL Count 3 1Pk Max	17.60 dBm 30 dB	Offset 7	7.60 dB 👄 F	IVNT B	iz Iz Mode	Auto FFT	nt1 Ref		
Ref Level Att SGL Count 3	17.60 dBm 30 dB	Offset 7	7.60 dB 👄 F	RBW 100 kH VBW 300 kH	Iz Mode M		unt1 Ref		2.16 dBm 000300 GHz
Ref Level Att SGL Count 3 P1Pk Max 10 dBm	17.60 dBm 30 dB	Offset 7	7.60 dB 👄 F	RBW 100 kH VBW 300 kH	iz Iz Mode	Auto FFT	.nt1 Ref		2.16 dBm
Ref Level Att SGL Count 3 9 1Pk Max	17.60 dBm 30 dB	Offset 7	7.60 dB 👄 F	RBW 100 kH VBW 300 kH	Iz Mode M	Auto FFT	.nt1 Ref		2.16 dBm
Ref Level Att SGL Count 3 P1Pk Max 10 dBm	17.60 dBm 30 dB	Offset 7	7.60 dB 👄 F	RBW 100 kH VBW 300 kH	Iz Mode M	Auto FFT	.nt1 Ref		2.16 dBm
Ref Level Att SGL Count 3 PIPK Max 10 dBm 0 dBm	17.60 dBm 30 dB	Offset 7	7.60 dB 👄 F	RBW 100 kH VBW 300 kH	Iz Mode M	Auto FFT	.nt1 Ref		2.16 dBm
Ref Level Att SGL Count 3 1Pk Max 10 dBm -10 dBm	17.60 dBm 30 dB	Offset 7	7.60 dB 👄 F	RBW 100 kH VBW 300 kH	Iz Mode M	Auto FFT	.nt1 Ref		2.16 dBm
Ref Level Att SGL Count 3 1Pk Max 10 dBm -10 dBm -20 dBm	17.60 dBm 30 dB	Offset 7	7.60 dB 👄 F	RBW 100 kH VBW 300 kH	Iz Mode M	Auto FFT	.nt1 Ref		2.16 dBm
Ref Level Att SGL Count 3 PIPk Max 10 dBm -10 dBm -20 dBm -30 dBm	17.60 dBm 30 dB	Offset 7	7.60 dB 👄 F	RBW 100 kH VBW 300 kH	Iz Mode M	Auto FFT	.nt1 Ref		2.16 dBm
Ref Level Att SGL Count 3 PIPK Max 10 dBm 0 dBm -10 dBm -20 dBm -20 dBm -30 dBm -40 dBm -50 dBm	17.60 dBm 30 dB	Offset 7	7.60 dB 👄 F	RBW 100 kH VBW 300 kH	Iz Mode M	Auto FFT	.nt1 Ref		2.16 dBm
Ref Level Att SGL Count 3 • IPk Max 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -40 dBm -50 dBm -60 dBm	17.60 dBm 30 dB	Offset 7	7.60 dB 👄 F	RBW 100 kH VBW 300 kH	Iz Mode M	Auto FFT	.nt1 Ref		2.16 dBm
Ref Level Att SGL Count 3 ID dBm 0 dBm -10 dBm -20 dBm -30 dBm -50 dBm	17.60 dBm 30 dB	Offset 7	7.60 dB 👄 F	RBW 100 kH VBW 300 kH	Iz Mode M	Auto FFT			2.16 dBm
Ref Level Att SGL Count 3 • IPk Max 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -50 dBm -60 dBm -70 dBm -80 dBm	17.60 dBm 30 dB 300/300	Offset 7	7.60 dB 👄 F		I Contraction of the second se	Auto FFT	.nt1 Ref	2.480	2.16 dBm 000300 GHz
Ref Level Att SGL Count 3 • IPk Max 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -40 dBm -50 dBm -60 dBm	17.60 dBm 30 dB 300/300	Offset 7	7.60 dB 👄 F	RBW 100 kH VBW 300 kH	I Contraction of the second se	Auto FFT	nt1 Ref	2.480	2.16 dBm 000300 GHz
Ref Level Att SGL Count 3 • IPk Max 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -50 dBm -60 dBm -70 dBm -80 dBm	17.60 dBm 30 dB 300/300	Offset 7	7.60 dB 👄 F		I Contraction of the second se	Auto FFT	ant1 Ref	2.480	2.16 dBm 000300 GHz
Ref Level Att SGL Count 3 ID dBm 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -40 dBm -50 dBm -60 dBm -70 dBm -80 dBm	17.60 dBm 30 dB 300/300	Offset 7	7.60 dB 👄 F		I Contraction of the second se	Auto FFT		2.480	2.16 dBm 000300 GHz

	evel	17.60 dB	m Offset 7.60) dB 😑 F	RBW 100 kHz					
Att		30 (dB SWT 250) ms 👄 🎙	/BW 300 kHz	Mode Auto St	weep			
SGL Co		0/20								
∋1Pk M	ax									
							M1[1]		1.41 dBr 2.4870 GH	
10 dBm										
0 dBm-						M2[1]			29.34 dBr	
Jubin						1		4	4.9491 GH	
-10 dBn	n — —		+ +							
		1 -17.84								
-20 dBn	∩— [∪]		M8							
-30 dBn										
50 abn	' I									
-40 dBn	n —		_							
			M4	м	ō		han Administ	. Jolk et		
		put the type buy	- a	M	ت مىرىلىمىرىمىرىمىرىمى ئىرىكى تىلىلىكى ئىلىكى ئىل	we are given the particle of	mundanne	4 algund and dealer that a be	Aurabury	
-50 dBn	Sand la	pullikeline kun	- a	M	ة ليوف المشروفين ويتريك	hije adh gilten Physics Why P	many Antonio	ارمام ^{ین} اری ^{یلر} اهد. خصف بالساملی	Ay, adama	
-50 dBn	Sand la	pur filmente	- a	M	ō Legith <u>arata</u> tarininia	esperation of france of france of the form	Warry Antonio 1	4,ahr ¹⁶ (1 ²⁻¹ an, is an island and	Ay, adaay	
-50 dBn «տղունը տղ -60 dBn		and the second second	- a	M	õ	ene with a floor of front with a fl	Warning Antonio and	المعامية والمعالمين والمعادماتين	La, a sura,	
-50 dBn -60 dBn -70 dBn	n	had the transmission	- a	M	p Marentartartartartartartartartartartartartart	espension of frank of	the the second of the second o	ترمانيك رياميا عير تيريني تانيا والمحاسبا	ن ^{یر} و میروند میروند. ا	
-50 dBn -60 dBn -70 dBn -80 dBn			- a	M			totoria da de la dela de la dela dela dela del			
-50 dBn -60 dBn -70 dBn -80 dBn Start 3			- a	M	ة <u>مريني بالمريني</u> مريني 1001 pt:		totoria da de la companya de la comp		کی ک	
-50 dBn -60 dBn -70 dBn -80 dBn Start 3 1arker	n	IHz			بری برینی میشوند بین میشوند این م 1001 pt:	s		Stop	25.0 GHz	
-50 dBn -60 dBn -70 dBn -80 dBn Start 3 1arker Type		Hz	X-value	we w	1001 pt: Y-value				25.0 GHz	
-50 dBn -60 dBn -70 dBn -80 dBn Start 3 Iarker Type M1	n	Hz Trc	X-value 2.487	GHz	1001 pt: Y-value 1.41 dBm	s		Stop	25.0 GHz	
-50 dBn -60 dBn -70 dBn -80 dBn Start 3 Iarker Type M1 M2	n	Hz	X-value 2.487 4.9491 (GHz GHz	1001 pt: 1.41 dBm -29.34 dBm	s		Stop	25.0 GHz	
	n	Hz Trc	X-value 2.487	GHZ GHZ	1001 pt: Y-value 1.41 dBm	s		Stop	25.0 GHz	

END OF REPORT