

849 NW STATE ROAD 45 NEWBERRY, FL 32669 USA PH: 888.472.2424 OR 352.472.5500 FAX: 352.472.2030 EMAIL: <u>INFO@TIMCOENGR.COM</u> <u>HTTP://WWW.TIMCOENGR.COM</u>

FCC PART 90 Addendum Report

APPLICANT	DAMM CELLULAR SYSTEMS A/S				
	MOLLEGADE 68				
	6400 SONDERBORG DENMARK				
FCC ID	Z5W-104028				
IC CERTIFICATION	10159A-104028				
MODEL NUMBER	TR412H TRANSCEIVER 805-825/851-869 MHz				
PRODUCT DESCRIPTION	800 MHz Transceiver				
TESTED BY	Mario de Aranzeta				
APPROVED BY	Mario R. de Aranzeta				
TIMCO REPORT NO.	1130UT12TestReport.doc				
TEST RESULTS	\square PASS \square FAIL				

THE ATTACHED REPORT SHALL NOT BE REPRODUCED EXCEPT IN FULL WITHOUT THE WRITTEN APPROVAL OF TIMCO ENGINEERING, INC.

TABLE OF CONTENTS

GENERAL REMARKS	.3
GENERAL INFORMATION	
GENERAL INFORMATION (cont'd)	. 5
GENERAL INFORMATION (cont'd)	.6
TEST PROCEDURES	.7
MODULATION CHARACTERISTICS	. 8
OCCUPIED BANDWIDTH	.9
EMC EQUIPMENT LIST	11

GENERAL REMARKS

The attached report shall not be reproduced except in full without the written permission of Timco Engineering Inc.

The test results relate only to the items tested.

Attestations

This equipment has been tested in accordance with the standards identified in this test report. To the best of my knowledge and belief, these tests were performed using the measurement procedures described in this report.

All instrumentation and accessories used to test products for compliance to the indicated standards are calibrated regularly in accordance with ISO 17025: 2005 requirements.

Testing Certificate # 0955-01

I attest that the necessary measurements were made, under my supervision, at:

Timco Engineering Inc. 849 NW State Road 45 Newberry, Fl 32669

Authorized Signatory Name:

Mario de Aranzeta C.E.T. Compliance Engineer/ Lab. Supervisor

Date: May 4, 2012

GENERAL INFORMATION DUT Specification

DUT Description	Transceiver 0.2(modified) and 0.35 TETRA				
FCC ID	Z5W-104028				
IC Certification	10159A-104028				
Model Number	TR412H transceiver 800 MHz				
Serial Number	N/A				
Operating Frequency	RX = 805 - 825 TX = 851 - 869				
Test Frequencies	856 MHz, 863 MHz, 869 MHz				
Type of Emission	21K0D1W, 21K0D1D, 21K0D1E, & 21K0D7W 20K0D1W, 20K0D1D, 20K0D1E, & 20K0D7W				
Modulation	0.35 TETRA, 0.20 modified TETRA				
DUT Power Source	⊠ 110–120Vac/50– 60Hz				
	DC Power 12V				
	Battery Operated Exclusively				
Test Item	Prototype				
	Pre-Production				
	Production				
	⊠ Fixed				
Type of Equipment	Mobile				
	Portable				
Test Conditions	Temperature was 26°C Relative humidity of 50%.				
Modification to the DUT	None				
Test Exercise	The DUT was placed in continuous transmit mode.				
Applicable Standards	ANSI/TIA 603-C:2004, FCC CFR 47 Part 90, IC RSS- 119, RSS-GEN				
Test Facility	Timco Engineering Inc. at 849 NW State Road 45 Newberry, FL 32669 USA.				

GENERAL INFORMATION (cont'd) DUT Specification

The system as tested consists of the transceiver module combined with a power supply module, CPU module, and broadband filter assembly. This is combined in a single 19inch rack assembly. The unit is detailed in the user's manual.

GENERAL INFORMATION (cont'd) DUT Specification

TR-412H Transceiver

TEST PROCEDURES

Power Line Conducted Interference: The procedure used was ANSI/TIA 603-C: 2004 using a 50uH LISN. Both lines were observed with the DUT transmitting. The bandwidth of the spectrum analyzer was 10 kHz with an appropriate sweep speed.

Bandwidth 20 dB: The measurements were made with the spectrum analyzer's resolution bandwidth (RBW) = 1 MHz and the video bandwidth (VBW) = 3 MHz and the span set as shown on plot.

Power Output: The RF power output was measured at the antenna feed point using a peak power meter.

Antenna Conducted Emissions: The RBW = 100 kHz, VBW = 300 kHz and the span set to 10.0 MHz and the spectrum was scanned from 30 MHz to the 10th harmonic of the fundamental. Above 1 GHz the resolution bandwidth was 1 MHz and the VBW = 3 MHz and the span to 50 MHz.

Radiation Interference: The test procedure used was ANSI/TIA 603-C: 2004 using an Agilent spectrum receiver with pre-selector. The bandwidth (RBW) of the spectrum receiver was 100 kHz up to 1 GHz and 1 MHz above 1 GHz with an appropriate sweep speed. The VBW above 1 GHz was 3 MHz. The analyzer was calibrated in dB above a micro volt at the output of the antenna.

MODULATION CHARACTERISTICS

Part 2.1033(c) Part 2.1033(c) (4) FCC Part 90.209, IC RSS-119 5.5 FCC Part 90.207

Type of Emission: $\pi/4DQPSK$ TETRA as defined in EN 300 392-2. TETRA is a digital, trunked radio technology that operates with Time Division Multiple Access (TDMA) in four-slot channels within a twenty-five kilohertz bandwidth.

This unit has two distinct and different but similar modulation schemes. One being as defined above and the second mode which is similar and implemented through a software change only where:

Description of the modified modulation:

From ETSI EN 300 392-2 part 5.5 the requirement for the output spectrum of a TETRA signal G(f) is:

$$\begin{aligned} G(f) &= 1 & \text{for} & |f| \leq (1 - \alpha)/2T \\ G(f) &= \sqrt{0.5(1 - \sin(\pi (2|f|T - 1)/2\alpha))} & \text{for} & (1 - \alpha)/2T \leq |f| \leq (1 + \alpha)/2T \\ G(f) &= 0 & \text{for} & |f| \geq (1 + \alpha)/2T \end{aligned}$$

Where α is the roll-off factor, which determines the width of the transmission band at a given symbol rate. For TETRA the value of α shall be 0.35.

This spectrum can't fulfill the requirement of the FCC. Therefore the shape of the output spectrum has been modified by changing a from 0.35 to 0.20. This gives a narrowed spectrum that meets the FCC requirements for the 20 kHz bandwidth.

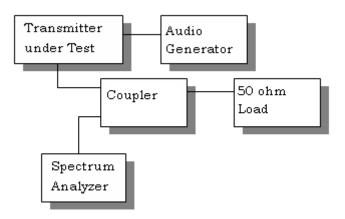
The TETRA and modified modulation meets the spectrum efficiency requirements of Part 90.

OCCUPIED BANDWIDTH

FCC Part 2.1049(c), RSS-GEN 4.6 EMISSION BANDWIDTH FCC Part 90.210(b) RSS-119 4.2 25 kHz Channel Spacing

Data in the plots show that on any frequency removed from the assigned frequency by more than 50%, but not more than 100%: At least 25dB. On any frequency removed from the assigned frequency by more than 100%, but not more than 250%: At least 35 dB. On any frequency removed from the assigned frequency by more than 250%, of the authorized bandwidth: At least 43 + 10log(P)dB.

Part 90.210(c) 25 kHz Channel Spacing Not Equipped with a Low Pass Filter

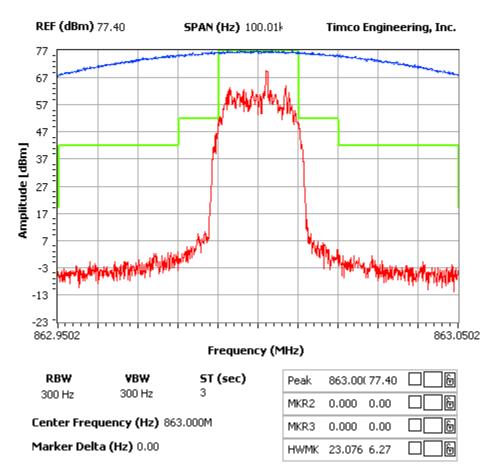

For transmitters that are not equipped with an audio low pass filter pursuant to S90.211 (b), the power of any emission must be attenuated below the un-modulated carrier output power as follows; (1) On any frequency removed from the center of the authorized bandwidth by a displacement frequency (fd in kHz) of more than 5 kHz but not more than10 kHz: At least 83 log (fd/5) dB; (2) ON any frequency removed from the center of the authorized bandwidth by a displacement frequency (fd in kHz) of more than 10 kHz, but not more than 250% of the authorized bandwidth: At least 29 log(fd2/11)dB or 50 dB, whichever is the lesser attenuation; (3) On any frequency removed from the center of the authorized bandwidth: At least 43+10 log(Po)dB.

OCCUPIED BANDWIDTH MEASUREMENT

Test procedure: ANSI/TIA-603-C:2004 para 2.2.11.

Test Setup Diagram:

OCCUPIED BANDWIDTH MEASUREMENT


Test Data: See the plots below

25.0 kHz - DIGITAL 0.2 modified

NOTES:

FCC 90.210 Mask B

EMC EQUIPMENT LIST

Device	Manufacturer	Model	Serial Number	Cal/Char Date	Due Date
3-Meter Semi- Anechoic Chamber	Panashield	N/A	N/A	Listed 5/10/10	5/10/12
AC Voltmeter	HP	400FL	2213A14499	CAL 6/12/11	6/12/13
Antenna: Active Loop	ETS-Lindgren	6502	00062529	CAL 9/23/10	9/23/12
Frequency Counter	HP	5385A	2730A03025	CAL 8/17/11	8/17/13
Hygro- Thermometer	Extech	445703	0602	CAL 6/15/11	6/15/13
Modulation Analyzer	HP	8901A	3435A06868	CAL 7/18/11	7/18/13
Digital Multimeter	Fluke	FLUKE-77	35053830	CAL 9/9/11	9/9/13
Analyzer Tan Tower Preamplifier	HP	8449B-H02	3008A00372	CAL 10/28/11	10/28/13
Analyzer Tan Tower Quasi- Peak Adapter	HP	85650A	3303A01690	CAL 10/28/11	10/28/13
Analyzer Tan Tower RF Preselector	HP	85685A	3221A01400	CAL 10/28/11	10/28/13
Analyzer Tan Tower Spectrum Analyzer	HP	8566B Opt 462	3138A07786 3144A20661	CAL 10/28/11	10/28/13
Temperature Chamber	Tenney Engineering	TTRC	11717-7	CHAR 4/25/10	4/25/12
Antenna	ETS	3117	41534	9/22/2010	9/22/2012
Antenna	Electro metrics	LPA-25	1122	5/04/2011	5/04/2013
Antenna	Electro metrics	94455-1	1096	5/4/2011	5/4/2013