



# **TEST REPORT**

Applicant Name : Address :

Report Number : FCC ID: Seeed Technology Co., Ltd 9F, G3 Building, TCL International E City, Zhongshanyuan Road, Nanshan District, Shenzhen, China SZNS1220114-02177E-00A Z4T-XIAONRF52840

### Test Standard (s)

FCC PART 15.247

### Sample Description

| Product:          |
|-------------------|
| Trademark:        |
| Tested Model:     |
| Multiple Product: |
| Multiple Model:   |
| Date Received:    |
| Date of Test:     |
| Report Date:      |

XIAO nRF52840 Sense Seeed Studio XIAO-nRF52840 Sense XIAO nRF52840 2022-01-14 2022-01-25 to 2022-04-12 2022-04-13

Test Result:

Pass\*

\* In the configuration tested, the EUT complied with the standards above.

### **Prepared and Checked By:**

Ting Lü EMC Engineer

### **Approved By:**

Candry . Cr

Candy Li EMC Engineer

Note: This report may contain data that are not covered by the A2LA accreditation and are marked with an asterisk "\* ".

Shenzhen Accurate Technology Co., Ltd. is not responsible for the authenticity of any test data provided by the applicant. Data included from the applicant that may affect test results are marked with an asterisk '\*'. Customer model name, addresses, names, trademarks etc. are not considered data.

This report cannot be reproduced except in full, without prior written approval of the Company. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested. This report is valid only with a valid digital signature. The digital signature may be available only under the Adobe software above version 7.0.

#### Shenzhen Accurate Technology Co., Ltd.

 1/F., Building A, Changyuan New Material Port, Science & Industry Park, Nanshan District, Shenzhen, Guangdong, P.R. China

 Tel: +86 755-26503290
 Fax: +86 755-26503396
 Web: www.atc-lab.com

Version 12: 2021-11-09

Page 1 of 75

FCC-BLE

# **TABLE OF CONTENTS**

| GENERAL INFORMATION                                               | 4  |
|-------------------------------------------------------------------|----|
| PRODUCT DESCRIPTION FOR EQUIPMENT UNDER TEST (EUT)                |    |
| OBJECTIVE                                                         |    |
| Test Methodology<br>Measurement Uncertainty                       |    |
| SYSTEM TEST CONFIGURATION                                         |    |
| DESCRIPTION OF TEST CONFIGURATION                                 |    |
| EQUIPMENT MODIFICATIONS                                           |    |
| EUT EXERCISE SOFTWARE                                             |    |
| DUTY CYCLE                                                        |    |
| SUPPORT EQUIPMENT LIST AND DETAILS                                |    |
| External I/O Cable<br>Block Diagram of Test Setup                 |    |
| SUMMARY OF TEST RESULTS                                           |    |
| TEST EQUIPMENT LIST                                               |    |
| FCC §1.1310 & §2.1091 –MAXIMUM PERMISSIBLE EXPOSURE (MPE)         |    |
|                                                                   |    |
| FCC §15.203 - ANTENNA REQUIREMENT                                 |    |
| Applicable Standard<br>Antenna Connector Construction             |    |
| FCC §15.207 (a) – AC LINE CONDUCTED EMISSIONS                     |    |
|                                                                   |    |
| Applicable Standard<br>EUT Setup                                  |    |
| EMI Test Receiver Setup                                           |    |
| Test Procedure                                                    | 14 |
| Factor & Margin Calculation                                       |    |
| TEST DATA                                                         |    |
| FCC §15.209, §15.205 & §15.247(d) - SPURIOUS EMISSIONS            |    |
| APPLICABLE STANDARD                                               |    |
| EUT SETUP<br>EMI Test Receiver & Spectrum Analyzer Setup          |    |
| EMI TEST RECEIVER & SPECTRUM ANALYZER SETUP<br>TEST PROCEDURE     |    |
| FACTOR & MARGIN CALCULATION                                       |    |
| TEST DATA                                                         |    |
| FCC §15.247(a) (2) – 6 dB EMISSION BANDWIDTH & OCCUPIED BANDWIDTH |    |
| APPLICABLE STANDARD                                               |    |
| TEST PROCEDURE                                                    |    |
| TEST DATA                                                         | -  |
| FCC §15.247(b) (3) - MAXIMUM CONDUCTED OUTPUT POWER               |    |
| APPLICABLE STANDARD                                               |    |
| TEST PROCEDURE<br>TEST DATA                                       | -  |
|                                                                   |    |
| FCC §15.247(d) – 100 kHz BANDWIDTH OF FREQUENCY BAND EDGE         |    |
| Applicable Standard<br>Test Procedure                             |    |
|                                                                   |    |

Version 12: 2021-11-09

FCC-BLE

| Shenzhen | Accurate | Techno | logy | Co   | Ltd |
|----------|----------|--------|------|------|-----|
| Shenzhen | recurate | reenno | logy | co., | Lu  |

| IEST DATA                                       |  |
|-------------------------------------------------|--|
| FCC §15.247(e) - POWER SPECTRAL DENSITY         |  |
| APPLICABLE STANDARD                             |  |
| Test Procedure                                  |  |
| TEST DATA                                       |  |
| APPENDIX BLE                                    |  |
| APPENDIX A: 6DB EMISSION BANDWIDTH              |  |
| APPENDIX B: OCCUPIED CHANNEL BANDWIDTH          |  |
| APPENDIX C: MAXIMUM CONDUCTED PEAK OUTPUT POWER |  |
| APPENDIX D: POWER SPECTRAL DENSITY              |  |
| APPENDIX E: BAND EDGE MEASUREMENTS              |  |
| APPENDIX F: DUTY CYCLE                          |  |
|                                                 |  |

### **GENERAL INFORMATION**

| Product                                | XIAO nRF52840 Sense                                                                        |
|----------------------------------------|--------------------------------------------------------------------------------------------|
| Tested Model                           | XIAO-nRF52840 Sense                                                                        |
| Multiple Product                       | XIAO nRF52840                                                                              |
| Multiple Model                         | XIAO-nRF52840                                                                              |
| Model difference                       | Please refer to the DoS letter                                                             |
| Frequency Range                        | BLE: 2402-2480MHz                                                                          |
| Maximum Conducted Peak<br>Output Power | BLE: 5.04dBm                                                                               |
| Modulation Technique                   | BLE: GFSK                                                                                  |
| Antenna Specification*                 | Chip Antenna: 2dBi (provided by the applicant)                                             |
| Voltage Range                          | DC 5V From USB Port                                                                        |
| Sample serial number                   | SZNS1220114-02177E-RF-S1 (XIAO-nRF52840 Sense)<br>SZNS1220114-02177E-RF-S2 (XIAO-nRF52840) |
| Sample/EUT Status                      | Good condition                                                                             |

### **Product Description for Equipment under Test (EUT)**

### Objective

This test report is in accordance with Part 2-Subpart J, Part 15-Subparts A and C of the Federal Communication Commission's rules.

The tests were performed in order to determine compliance with FCC Part 15, Subpart C, and section 15.203, 15.205, 15.207, 15.209 and 15.247 rules.

### **Test Methodology**

All measurements contained in this report were conducted with ANSI C63.10-2013, American National Standard of Procedures for Compliance Testing of Unlicensed Wireless Devices.

And KDB 558074 D01 15.247 Meas Guidance v05r02.

All emissions measurement was performed at Shenzhen Accurate Technology Co., Ltd. The radiated testing was performed at an antenna-to-EUT distance of 3 meters.

| Parameter                  |                     | Uncertainty        |
|----------------------------|---------------------|--------------------|
| Occupied Channel Bandwidth |                     | 5%                 |
| RF Fr                      | equency             | $0.082^{*10^{-7}}$ |
| RF output po               | wer, conducted      | 0.73dB             |
| Unwanted Emi               | ission, conducted   | 1.6dB              |
| AC Power Lines C           | Conducted Emissions | 2.72dB             |
|                            | 9kHz - 30MHz        | 2.66dB             |
| <b>.</b>                   | 30MHz - 1GHz        | 4.28dB             |
| Emissions,<br>Radiated     | 1GHz - 18GHz        | 4.98dB             |
| Radiated                   | 18GHz - 26.5GHz     | 5.06dB             |
|                            | 26.5GHz - 40GHz     | 4.72dB             |
| Temp                       | berature            | 1 °C               |
| Hur                        | nidity              | 6%                 |
| Supply                     | voltages            | 0.4%               |

#### **Measurement Uncertainty**

Note: The extended uncertainty given in this report is obtained by combining the standard uncertainty times the coverage factor K with the 95% confidence interval. Otherwise required by the applicant or Product Regulations, Decision Rule in this report did not consider the uncertainty.

### **Test Facility**

The test site used by Shenzhen Accurate Technology Co., Ltd. to collect test data is located on the 1/F., Building A, Changyuan New Material Port, Science & Industry Park, Nanshan District, Shenzhen, Guangdong, P.R. China.

The test site has been approved by the FCC under the KDB 974614 D01 and is listed in the FCC Public Access Link (PAL) database, FCC Registration No.: 708358, the FCC Designation No.: CN1189. Accredited by American Association for Laboratory Accreditation (A2LA) The Certificate Number is 429 7.01.

Listed by Innovation, Science and Economic Development Canada (ISEDC), the Registration Number is 5077A.

# SYSTEM TEST CONFIGURATION

### **Description of Test Configuration**

The system was configured for testing in an engineering mode.

### **Equipment Modifications**

No modification was made to the EUT tested.

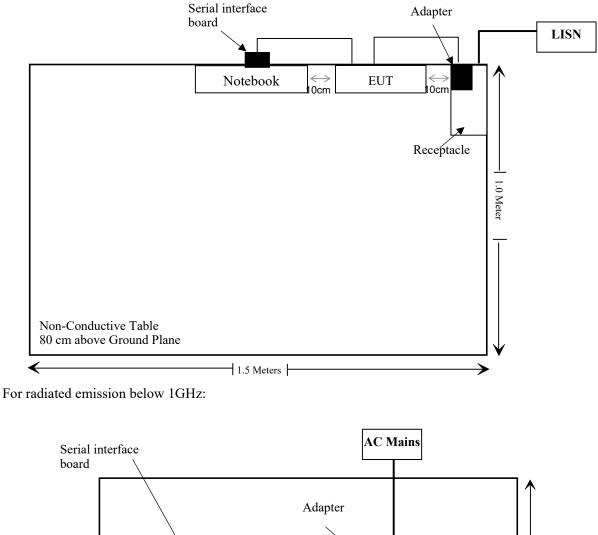
### EUT Exercise Software

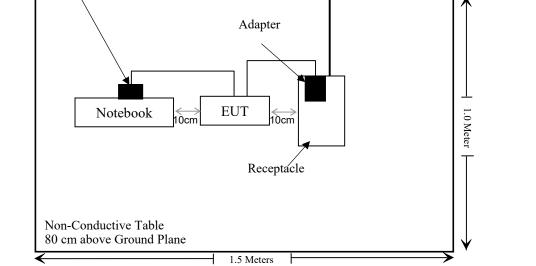
"PUTY"\* exercise software was used for testing and the power level was default\*. The software and power level was provided by the applicant.

### Duty cycle

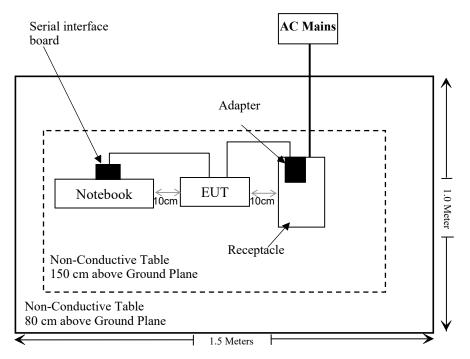
Test Result: Compliant. Please refer to the Appendix BLE.

### Support Equipment List and Details


| Manufacturer | Description            | Model   | Serial Number |
|--------------|------------------------|---------|---------------|
| Apple        | Adapter                | A1357   | Unknown       |
| Lenovo       | Notebook               | T430    | Unknown       |
| Unknown      | Serial interface board | Unknown | Unknown       |


### External I/O Cable

| Cable Description                | Length (m) | From Port | То                        |
|----------------------------------|------------|-----------|---------------------------|
| Unshielded Detachable USB Cable  | 0.75       | EUT       | Adapter                   |
| Unshielded Detachable Data Cable | 0.2        | EUT       | Serial interface<br>board |


### **Block Diagram of Test Setup**

For conducted emission:





For radiated emission above 1GHz:



# SUMMARY OF TEST RESULTS

| FCC Rules                         | Description of Test                             | Result    |
|-----------------------------------|-------------------------------------------------|-----------|
| §15.247 (I), §1.1310 &<br>§2.1091 | Maximum Permissible Exposure (MPE)              | Compliant |
| §15.203                           | Antenna Requirement                             | Compliant |
| §15.207 (a)                       | AC Line Conducted Emissions                     | Compliant |
| §15.205, §15.209,<br>§15.247(d)   | Spurious Emissions                              | Compliant |
| §15.247 (a)(2)                    | 6 dB Emission Bandwidth & Occupied<br>Bandwidth | Compliant |
| §15.247(b)(3)                     | Maximum Conducted Output Power                  | Compliant |
| §15.247(d)                        | 100 kHz Bandwidth of Frequency Band Edge        | Compliant |
| §15.247(e)                        | Power Spectral Density                          | Compliant |

# **TEST EQUIPMENT LIST**

| Manufacturer             | Description                          | Model                | Serial Number      | Calibration<br>Date | Calibration<br>Due Date |  |  |  |
|--------------------------|--------------------------------------|----------------------|--------------------|---------------------|-------------------------|--|--|--|
| Conducted Emissions Test |                                      |                      |                    |                     |                         |  |  |  |
| Rohde & Schwarz          | EMI Test Receiver                    | ESCI                 | 100784             | 2021/12/13          | 2022/12/12              |  |  |  |
| Rohde & Schwarz          | L.I.S.N.                             | ENV216               | 101314             | 2021/12/13          | 2022/12/12              |  |  |  |
| Anritsu Corp             | 50 Coaxial Switch                    | MP59B                | 6100237248         | 2021/12/13          | 2022/12/12              |  |  |  |
| Unknown                  | RF Coaxial Cable                     | No.17                | N0350              | 2021/12/14          | 2022/12/13              |  |  |  |
|                          | Conducted E                          |                      | tware: e3 19821b ( | V9)                 |                         |  |  |  |
|                          |                                      | Radiated Emissi      | ons Test           |                     |                         |  |  |  |
| Rohde & Schwarz          | Test Receiver                        | ESR                  | 102725             | 2021/12/13          | 2022/12/12              |  |  |  |
| Rohde & Schwarz          | Spectrum Analyzer                    | FSV40                | 101949             | 2021/12/13          | 2022/12/12              |  |  |  |
| SONOMA<br>INSTRUMENT     | Amplifier                            | 310 N                | 186131             | 2021/11/09          | 2022/11/08              |  |  |  |
| A.H. Systems, inc.       | Preamplifier                         | PAM-0118P            | 135                | 2021/11/09          | 2022/11/08              |  |  |  |
| Quinstar                 | Amplifier                            | QLW-184055<br>36-J0  | 15964001002        | 2021/11/11          | 2022/11/10              |  |  |  |
| Schwarzbeck              | Bilog Antenna                        | VULB9163             | 9163-323           | 2021/07/06          | 2024/07/05              |  |  |  |
| Schwarzbeck              | Horn Antenna                         | BBHA9120D            | 9120D-1067         | 2020/01/05          | 2023/01/04              |  |  |  |
| Schwarzbeck              | HORN ANTENNA                         | BBHA9170             | 9170-359           | 2020/01/05          | 2023/01/04              |  |  |  |
| Wainwright               | High Pass Filter                     | WHKX3.6/18<br>G-10SS | 5                  | 2021/12/14          | 2022/12/13              |  |  |  |
| Unknown                  | RF Coaxial Cable                     | No.10                | N050               | 2021/12/14          | 2022/12/13              |  |  |  |
| Unknown                  | RF Coaxial Cable                     | No.11                | N1000              | 2021/12/14          | 2022/12/13              |  |  |  |
| Unknown                  | RF Coaxial Cable                     | No.12                | N040               | 2021/12/14          | 2022/12/13              |  |  |  |
| Unknown                  | RF Coaxial Cable                     | No.13                | N300               | 2021/12/14          | 2022/12/13              |  |  |  |
| Unknown                  | RF Coaxial Cable                     | No.14                | N800               | 2021/12/14          | 2022/12/13              |  |  |  |
| Unknown                  | RF Coaxial Cable                     | No.15                | N600               | 2021/12/14          | 2022/12/13              |  |  |  |
| Unknown                  | RF Coaxial Cable                     | No.16                | N650               | 2021/12/14          | 2022/12/13              |  |  |  |
|                          | Radiated En                          |                      | ware: e3 19821b (V | /9)                 |                         |  |  |  |
|                          |                                      | RF Conducted         |                    |                     |                         |  |  |  |
| Rohde & Schwarz          | Spectrum Analyzer<br>Open Switch and | FSV-40               | 101495<br>101244 ± | 2021/12/13          | 2022/12/12              |  |  |  |
| Rohde & Schwarz          | Control Unit                         | OSP120 +<br>OSP-B157 | 101244 +<br>100866 | 2021/12/13          | 2022/12/12              |  |  |  |
| WEINSCHEL                | 10dB Attenuator                      | 5324                 | AU 3842            | 2021/12/14          | 2022/12/13              |  |  |  |
| Unknown                  | RF Coaxial Cable                     | No.32                | RF-02              | Each                | time                    |  |  |  |
| Unknown                  | RF Coaxial Cable                     | No.31                | RF-01              | Each time           |                         |  |  |  |

\* **Statement of Traceability:** Shenzhen Accurate Technology Co., Ltd. attests that all calibrations have been performed in accordance to requirements that traceable to National Primary Standards and International System of Units (SI).

# FCC §1.1310 & §2.1091 –MAXIMUM PERMISSIBLE EXPOSURE (MPE)

#### Applicable Standard

According to subpart §2.1091 and subpart §1.1310, systems operating under the provisions of this section shall be operated in a manner that ensures that the public is not exposed to radio frequency energy level in excess of the Commission's guidelines.

| (B) Limits for General Population/Uncontrolled Exposure |                             |        |                        |    |  |  |
|---------------------------------------------------------|-----------------------------|--------|------------------------|----|--|--|
| Frequency Range<br>(MHz)                                | Averaging Time<br>(minutes) |        |                        |    |  |  |
| 0.3-1.34                                                | 614                         | 1.63   | *(100)                 | 30 |  |  |
| 1.34-30                                                 | 824/f                       | 2.19/f | *(180/f <sup>2</sup> ) | 30 |  |  |
| 30-300                                                  | 27.5                        | 0.073  | 0.2                    | 30 |  |  |
| 300-1500                                                | /                           | /      | f/1500                 | 30 |  |  |
| 1500-100,000                                            | /                           | /      | 1.0                    | 30 |  |  |

Limits for Maximum Permissible Exposure (MPE) (§1.1310, §2.1091)

f = frequency in MHz; \* = Plane-wave equivalent power density;

According to §1.1310 and §2.1091 RF exposure is calculated.

Calculated Formulary:

Predication of MPE limit at a given distance

 $S = PG/4\pi R^2$  = power density (in appropriate units, e.g. mW/cm<sup>2</sup>);

P = power input to the antenna (in appropriate units, e.g., mW);

G = power gain of the antenna in the direction of interest relative to an isotropic radiator, the power gain factor, is normally numeric gain;

R = distance to the center of radiation of the antenna (appropriate units, e.g., cm);

### Calculated Data:

For worst case:

| Mode | Frequency<br>Range | Anten | Antenna Gain |       | o Output<br>wer | Evaluation<br>Distance | Power<br>Density | MPE Limit   |
|------|--------------------|-------|--------------|-------|-----------------|------------------------|------------------|-------------|
|      | (MHz)              | (dBi) | (numeric)    | (dBm) | ( <b>mW</b> )   | (cm)                   | $(mW/cm^2)$      | $(mW/cm^2)$ |
| BLE  | 2402-2480          | 2     | 1.58         | 6     | 3.98            | 20                     | 0.0013           | 1.0         |

To maintain compliance with the FCC's RF exposure guidelines, place the equipment at least 20cm from nearby persons.

Result: Compliant.

# FCC §15.203 - ANTENNA REQUIREMENT

### **Applicable Standard**

According to § 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the user of a standard antenna jack or electrical connector is prohibited. The structure and application of the EUT were analyzed to determine compliance with section §15.203 of the rules. §15.203 state that the subject device must meet the following criteria:

a. Antenna must be permanently attached to the unit.

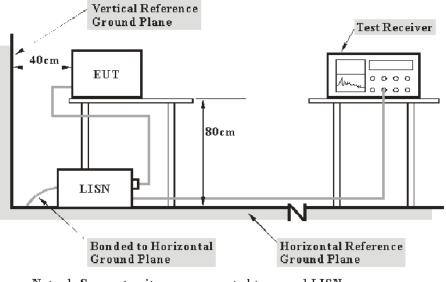
b. Antenna must use a unique type of connector to attach to the EUT.

Unit must be professionally installed, and installer shall be responsible for verifying that the correct antenna is employed with the unit.

And according to FCC 47 CFR section 15.247 (b), if the transmitting antennas of directional gain greater than 6dBi are used, the power shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

### Antenna Connector Construction

The EUT has one Chip antenna arrangement which was permanently attached and the antenna gain is 2dBi, fulfill the requirement of this section. Please refer to the product photos.


Result: Compliant.

# FCC §15.207 (a) – AC LINE CONDUCTED EMISSIONS

### **Applicable Standard**

FCC §15.207(a)

### **EUT Setup**



Note: 1. Support units were connected to second LISN.
2. Both of LISNs (AMN) 80 cm from EUT and at the least 80 cm from other units and other metal planes support units.

The measurement procedure of EUT setup is according with ANSI C63.10-2013. The related limit was specified in FCC Part 15.207.

The spacing between the peripherals was 10 cm.

### EMI Test Receiver Setup

The EMI test receiver was set to investigate the spectrum from 150 kHz to 30 MHz.

During the conducted emission test, the EMI test receiver was set with the following configurations:

| Frequency Range  | IF B/W |
|------------------|--------|
| 150 kHz – 30 MHz | 9 kHz  |

### **Test Procedure**

During the conducted emission test, the device was connected to the outlet of the LISN.

Maximizing procedure was performed on the six (6) highest emissions of the EUT.

All final data was recorded in the Quasi-peak and average detection mode.

### Factor & Margin Calculation

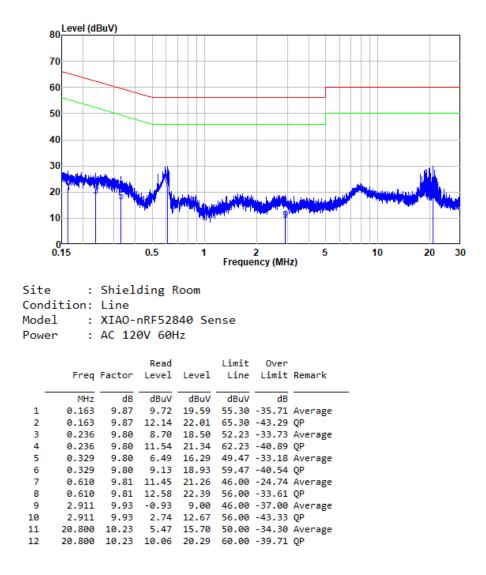
The factor is calculated by adding LISN VDF (Voltage Division Factor) and Cable Loss. The basic equation is as follows:

Factor = LISN VDF + Cable Loss

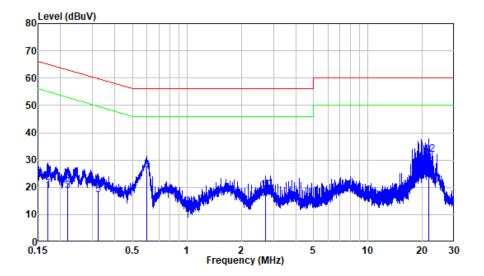
The "**Over limit**" column of the following data tables indicates the degree of compliance with the applicable limit. For example, an Over limit of -7 dB means the emission is 7 dB below the limit. The equation for calculation is as follows:

Over Limit = Level – Limit Level = Read Level + Factor

### Test Data


#### **Environmental Conditions**

| Temperature:              | 25 °C     |
|---------------------------|-----------|
| <b>Relative Humidity:</b> | 64 %      |
| ATM Pressure:             | 101.0 kPa |


The testing was performed by Bin Duan on 2022-01-25.

EUT operation mode: Transmitting (worst case is BLE 2M, low channel for the model of XIAO-nRF52840 Sense)

### AC 120V/60 Hz, Line

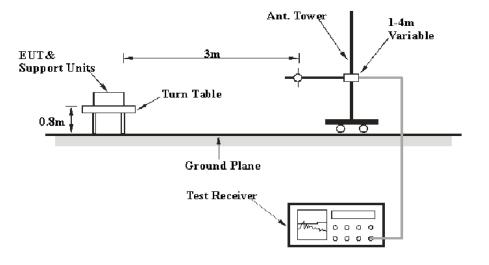


### AC 120V/60 Hz, Neutral

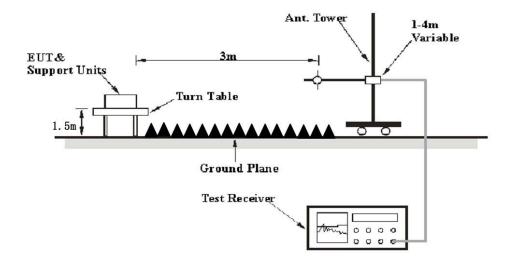


Site : Shielding Room Condition: Neutral Model : XIAO-nRF52840 Sense Power : AC 120V 60Hz

|    | Freq   | Factor | Read<br>Level | Level | Limit<br>Line | Over<br>Limit | Remark  |
|----|--------|--------|---------------|-------|---------------|---------------|---------|
|    | MHz    | dB     | dBuV          | dBuV  | dBuV          | dB            |         |
| 1  | 0.169  | 9.80   | 8.98          | 18.78 | 54.99         | -36.21        | Average |
| 2  | 0.169  | 9.80   | 12.03         | 21.83 | 64.99         | -43.16        | QP -    |
| 3  | 0.219  | 9.80   | 9.05          | 18.85 | 52.86         | -34.01        | Average |
| 4  | 0.219  | 9.80   | 11.81         | 21.61 | 62.86         | -41.25        | QP      |
| 5  | 0.324  | 9.80   | 7.40          | 17.20 | 49.61         | -32.41        | Average |
| 6  | 0.324  | 9.80   | 8.98          | 18.78 | 59.61         | -40.83        | QP      |
| 7  | 0.597  | 9.81   | 15.14         | 24.95 | 46.00         | -21.05        | Average |
| 8  | 0.597  | 9.81   | 16.46         | 26.27 | 56.00         | -29.73        | QP      |
| 9  | 2.723  | 9.83   | 6.16          | 15.99 | 46.00         | -30.01        | Average |
| 10 | 2.723  | 9.83   | 9.14          | 18.97 | 56.00         | -37.03        | QP      |
| 11 | 21.629 | 10.12  | 17.48         | 27.60 | 50.00         | -22.40        | Average |
| 12 | 21.629 | 10.12  | 21.81         | 31.93 | 60.00         | -28.07        | QP      |


# FCC §15.209, §15.205 & §15.247(d) - SPURIOUS EMISSIONS

### **Applicable Standard**


FCC §15.247 (d); §15.209; §15.205;

### **EUT Setup**

### Below 1 GHz:



### Above 1GHz:



The radiated emission tests were performed in the 3 meters test site, using the setup accordance with the ANSI C63.10-2013. The specification used was the FCC 15.209, and FCC 15.247 limits.

#### EMI Test Receiver & Spectrum Analyzer Setup

During the radiated emission test, the EMI test receiver & Spectrum Analyzer Setup were set with the following configurations:

| Frequency Range   | RBW     | Video B/W                       | IF B/W  | Measurement |
|-------------------|---------|---------------------------------|---------|-------------|
| 30 MHz – 1000 MHz | 100 kHz | 300 kHz                         | 120 kHz | QP          |
|                   | 1MHz    | 3 MHz                           | /       | РК          |
| Above 1 GHz       | 1MHz    | $10 \text{ Hz}^{\text{Note 1}}$ | /       | Average     |
|                   | 1MHz    | > 1/T <sup>Note 2</sup>         | /       | Average     |

Note 1: when duty cycle is no less than 98% Note 2: when duty cycle is less than 98%

#### **Test Procedure**

Maximizing procedure was performed on the highest emissions to ensure that the EUT complied with all installation combinations.

Data was recorded in Quasi-peak detection mode for frequency range of 30 MHz-1 GHz, peak and Average detection modes for frequencies above 1 GHz.

### Factor & Margin Calculation

The Factor is calculated by adding the Antenna Factor and Cable Loss, and subtracting the Amplifier Gain. The basic equation is as follows:

Factor = Antenna Factor + Cable Loss - Amplifier Gain

The "**Over Limit/Margin**" column of the following data tables indicates the degree of compliance with the applicable limit. For example, an Over Limit/margin of -7dB means the emission is 7dB below the limit. The equation for calculation is as follows:

Over Limit/Margin = Level / Corrected Amplitude – Limit Level / Corrected Amplitude = Read Level + Factor

#### **Test Data**

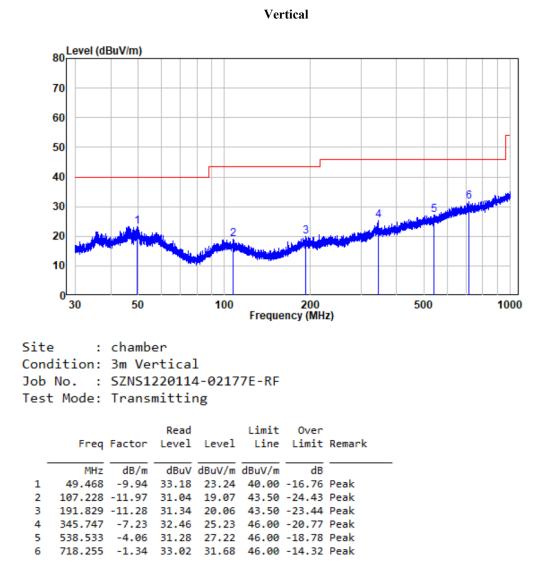

#### **Environmental Conditions**

| Temperature:              | 23 °C     |
|---------------------------|-----------|
| <b>Relative Humidity:</b> | 48 %      |
| ATM Pressure:             | 101.0 kPa |

The testing was performed by Ting Lü on 2022-1-26 for below 1GHz and 2022-4-12 for above 1GHz.

*EUT operation mode: Transmitting (Pre-scan in the X, Y and Z axes of orientation, the worst case X-axis of orientation was recorded)* 

#### Worst case is BLE 2M, low channel for the model of XIAO-nRF52840 Sense:




# 30 MHz~1 GHz:

#### Horizontal

Site : chamber Condition: 3m HORIZONTAL Job No. : SZNS1220114-02177E-RF Test Mode: Transmitting

|   | Freq    | Factor |       |        | Limit<br>Line |        | Remark |
|---|---------|--------|-------|--------|---------------|--------|--------|
|   | MHz     | dB/m   | dBuV  | dBuV/m | dBuV/m        | dB     |        |
| 1 | 114.515 | -12.65 | 31.78 | 19.13  | 43.50         | -24.37 | Peak   |
| 2 | 237.164 | -10.94 | 35.23 | 24.29  | 46.00         | -21.71 | Peak   |
| 3 | 279.656 | -9.60  | 34.25 | 24.65  | 46.00         | -21.35 | Peak   |
| 4 | 343.632 | -7.27  | 32.54 | 25.27  | 46.00         | -20.73 | Peak   |
| 5 | 683.546 | -1.50  | 32.43 | 30.93  | 46.00         | -15.07 | Peak   |
| 6 | 786.127 | -0.05  | 32.75 | 32.70  | 46.00         | -13.30 | Peak   |



Note: The results which over 6dB below to the limit were not recorded Quasi-peak.

### Above 1 GHz:

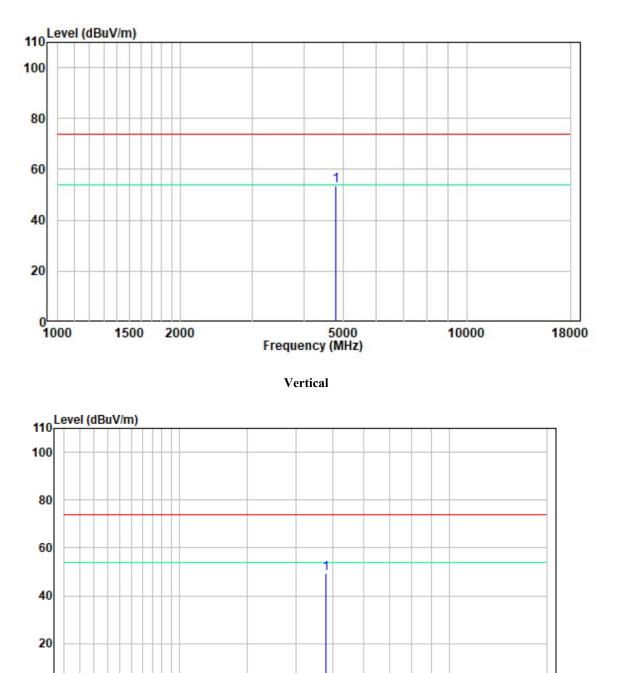
#### For model of XIAO-nRF52840 Sense:

| Engguerer          | Rece              | eiver  | Turntable       | Rx An         | tenna          | Factor | Absolute          | Limit    | Mangin         |
|--------------------|-------------------|--------|-----------------|---------------|----------------|--------|-------------------|----------|----------------|
| Frequency<br>(MHz) | Reading<br>(dBuV) | PK/Ave | Angle<br>Degree | Height<br>(m) | Polar<br>(H/V) | (dB/m) | Level<br>(dBuV/m) | (dBuV/m) | Margin<br>(dB) |
|                    |                   |        |                 | BLE 1M, I     | .ow Chann      | el     |                   |          |                |
| 2310               | 52.54             | РК     | 129             | 1.5           | Н              | -7.23  | 45.31             | 74       | -28.69         |
| 2310               | 48.96             | РК     | 321             | 1.8           | V              | -7.23  | 41.73             | 74       | -32.27         |
| 2390               | 51.52             | PK     | 153             | 1.4           | Н              | -7.21  | 44.31             | 74       | -29.69         |
| 2390               | 50.32             | PK     | 224             | 2.0           | V              | -7.21  | 43.11             | 74       | -30.89         |
| 4804               | 56.88             | PK     | 137             | 1.7           | Н              | -3.52  | 53.36             | 74       | -20.64         |
| 4804               | 52.91             | РК     | 242             | 1.6           | V              | -3.52  | 49.39             | 74       | -24.61         |
|                    |                   |        | Е               | BLE 1M, M     | iddle Chan     | nel    | •                 | •        |                |
| 4880               | 56.48             | РК     | 285             | 2.0           | Н              | -3.37  | 53.11             | 74       | -20.89         |
| 4880               | 52.56             | PK     | 75              | 1.9           | V              | -3.37  | 49.19             | 74       | -24.81         |
|                    |                   |        |                 | BLE 1M, H     | ligh Chann     | el     |                   |          |                |
| 2483.5             | 52.48             | РК     | 135             | 1.0           | Н              | -7.2   | 45.28             | 74       | -28.72         |
| 2483.5             | 52.35             | РК     | 342             | 1.6           | V              | -7.2   | 45.15             | 74       | -28.85         |
| 2500               | 51.25             | РК     | 51              | 1.4           | Н              | -7.18  | 44.07             | 74       | -29.93         |
| 2500               | 51.66             | PK     | 48              | 1.3           | V              | -7.18  | 44.48             | 74       | -29.52         |
| 4960               | 54.56             | PK     | 199             | 1.8           | Н              | -3.01  | 51.55             | 74       | -22.45         |
| 4960               | 51.94             | PK     | 283             | 1.1           | V              | -3.01  | 48.93             | 74       | -25.07         |
|                    |                   |        |                 | BLE 2M, I     | .ow Chann      | el     |                   |          |                |
| 2310               | 50.69             | РК     | 20              | 1.1           | Н              | -7.23  | 43.46             | 74       | -30.54         |
| 2310               | 51.19             | РК     | 215             | 2.1           | V              | -7.23  | 43.96             | 74       | -30.04         |
| 2390               | 52.22             | РК     | 32              | 1.0           | Н              | -7.21  | 45.01             | 74       | -28.99         |
| 2390               | 52.21             | РК     | 115             | 1.0           | V              | -7.21  | 45                | 74       | -29            |
| 4804               | 54.75             | РК     | 157             | 1.7           | Н              | -3.52  | 51.23             | 74       | -22.77         |
| 4804               | 54.97             | РК     | 345             | 1.6           | V              | -3.52  | 51.45             | 74       | -22.55         |
|                    |                   |        | E               | BLE 2M, M     | iddle Chan     | nel    |                   |          | ·              |
| 4880               | 53.7              | PK     | 358             | 1.9           | Н              | -3.37  | 50.33             | 74       | -23.67         |
| 4880               | 54.35             | PK     | 41              | 2.0           | V              | -3.37  | 50.98             | 74       | -23.02         |
|                    |                   |        |                 | BLE 2M, H     | ligh Chann     | el     | •                 | •        |                |
| 2483.5             | 50.42             | РК     | 47              | 1.4           | Н              | -7.2   | 43.22             | 74       | -30.78         |
| 2483.5             | 51.51             | РК     | 100             | 1.8           | V              | -7.2   | 44.31             | 74       | -29.69         |
| 2500               | 49.92             | РК     | 237             | 1.5           | Н              | -7.18  | 42.74             | 74       | -31.26         |
| 2500               | 50.3              | РК     | 180             | 1.8           | V              | -7.18  | 43.12             | 74       | -30.88         |
| 4960               | 53.22             | PK     | 125             | 1.2           | Н              | -3.01  | 50.21             | 74       | -23.79         |
| 4960               | 52.45             | РК     | 125             | 1.4           | V              | -3.01  | 49.44             | 74       | -24.56         |

#### For model of XIAO-nRF52840:

| -                  | Rece                | eiver  | Turntable       | Rx An         | tenna          |                  | Absolute          | <b>.</b>          |                |  |
|--------------------|---------------------|--------|-----------------|---------------|----------------|------------------|-------------------|-------------------|----------------|--|
| Frequency<br>(MHz) | Reading<br>(dBuV)   | PK/Ave | Angle<br>Degree | Height<br>(m) | Polar<br>(H/V) | Factor<br>(dB/m) | Level<br>(dBuV/m) | Limit<br>(dBuV/m) | Margin<br>(dB) |  |
|                    | BLE 1M, Low Channel |        |                 |               |                |                  |                   |                   |                |  |
| 2310               | 49.55               | PK     | 164             | 2.1           | Н              | -7.23            | 42.32             | 74                | -31.68         |  |
| 2310               | 48.27               | PK     | 84              | 1.4           | V              | -7.23            | 41.04             | 74                | -32.96         |  |
| 2390               | 50.53               | PK     | 302             | 2.1           | Н              | -7.21            | 43.32             | 74                | -30.68         |  |
| 2390               | 48.91               | РК     | 113             | 1.7           | V              | -7.21            | 41.7              | 74                | -32.3          |  |
| 4804               | 52.93               | РК     | 148             | 1.0           | Н              | -3.52            | 49.41             | 74                | -24.59         |  |
| 4804               | 52.79               | PK     | 235             | 1.5           | V              | -3.52            | 49.27             | 74                | -24.73         |  |
|                    |                     |        | E               | BLE 1M, M     | iddle Chan     | nel              |                   | •                 | •              |  |
| 4880               | 51.33               | PK     | 337             | 1.5           | Н              | -3.37            | 47.96             | 74                | -26.04         |  |
| 4880               | 50.49               | РК     | 256             | 1.7           | V              | -3.37            | 47.12             | 74                | -26.88         |  |
|                    |                     |        |                 | BLE 1M, H     | ligh Chanr     | nel              |                   |                   |                |  |
| 2483.5             | 48.49               | РК     | 198             | 1.5           | Н              | -7.2             | 41.29             | 74                | -32.71         |  |
| 2483.5             | 52.28               | РК     | 72              | 1.8           | V              | -7.2             | 45.08             | 74                | -28.92         |  |
| 2500               | 46.68               | РК     | 0               | 1.7           | Н              | -7.18            | 39.5              | 74                | -34.5          |  |
| 2500               | 47.19               | РК     | 242             | 1.1           | V              | -7.18            | 40.01             | 74                | -33.99         |  |
| 4960               | 49.76               | РК     | 216             | 1.7           | Н              | -3.01            | 46.75             | 74                | -27.25         |  |
| 4960               | 49.12               | РК     | 313             | 1.3           | V              | -3.01            | 46.11             | 74                | -27.89         |  |
|                    |                     |        |                 | BLE 2M, I     | ow Chann       | el               |                   |                   |                |  |
| 2310               | 44.35               | PK     | 178             | 1.9           | Н              | -7.23            | 37.12             | 74                | -36.88         |  |
| 2310               | 45.07               | PK     | 227             | 1.6           | V              | -7.23            | 37.84             | 74                | -36.16         |  |
| 2390               | 47.71               | PK     | 138             | 1.5           | Н              | -7.21            | 40.5              | 74                | -33.5          |  |
| 2390               | 48.17               | РК     | 138             | 1.4           | V              | -7.21            | 40.96             | 74                | -33.04         |  |
| 4804               | 52.72               | РК     | 266             | 1.6           | Н              | -3.52            | 49.2              | 74                | -24.8          |  |
| 4804               | 56.35               | PK     | 37              | 1.6           | V              | -3.52            | 52.83             | 74                | -21.17         |  |
|                    |                     | I      | E               | BLE 2M, M     | iddle Chan     | nel              | 1                 | 1                 |                |  |
| 4880               | 51.86               | PK     | 133             | 1.2           | Н              | -3.37            | 48.49             | 74                | -25.51         |  |
| 4880               | 52.5                | PK     | 1               | 1.1           | V              | -3.37            | 49.13             | 74                | -24.87         |  |
|                    |                     |        |                 | BLE 2M, H     | ligh Chanr     | nel              | •                 |                   |                |  |
| 2483.5             | 53.32               | PK     | 88              | 1.6           | Н              | -7.2             | 46.12             | 74                | -27.88         |  |
| 2483.5             | 58.01               | РК     | 169             | 1.3           | V              | -7.2             | 50.81             | 74                | -23.19         |  |
| 2500               | 45.06               | РК     | 132             | 1.5           | Н              | -7.18            | 37.88             | 74                | -36.12         |  |
| 2500               | 46.36               | РК     | 283             | 2.1           | V              | -7.18            | 39.18             | 74                | -34.82         |  |
| 4960               | 48.45               | РК     | 358             | 2.1           | Н              | -3.01            | 45.44             | 74                | -28.56         |  |
| 4960               | 49.76               | РК     | 132             | 1.4           | V              | -3.01            | 46.75             | 74                | -27.25         |  |

#### Note:


Factor = Antenna factor (RX) + Cable Loss – Amplifier Factor Absolute Level (Corrected Amplitude) = Factor + Reading Margin = Absolute Level (Corrected Amplitude) – Limit

The other spurious emission which is in the noise floor level was not recorded. For above 1GHz, the test result of peak was 20dB below to the limit of peak, which can be compliant to the average limit, so just peak value was recorded.

#### For model of XIAO-nRF52840 Sense:

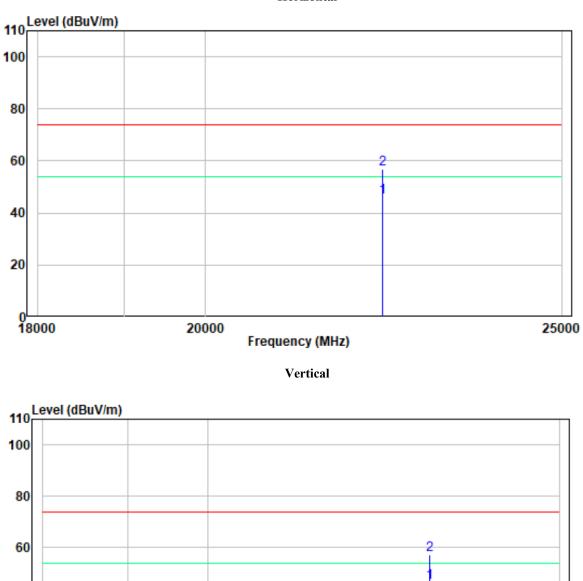
1-18 GHz: Pre-scan plots:

BLE 1M Low Channel Horizontal

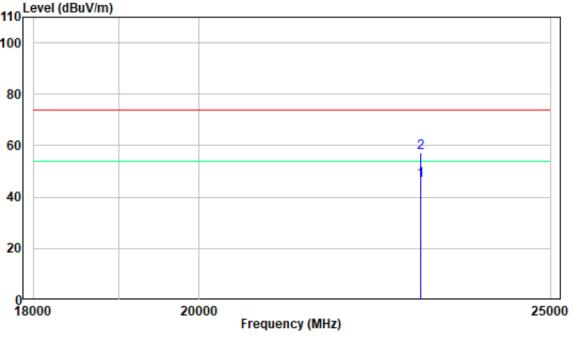


0 1000

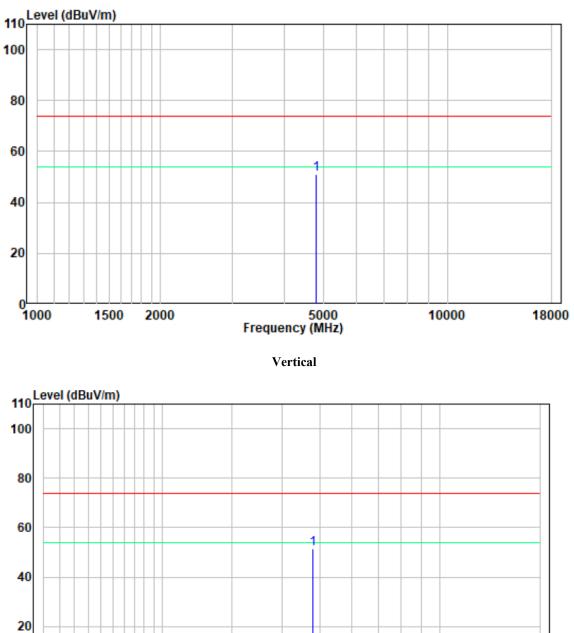
1500


2000

5000 Frequency (MHz)


18000

10000


### 18 -25GHz: **Pre-scan plots:**



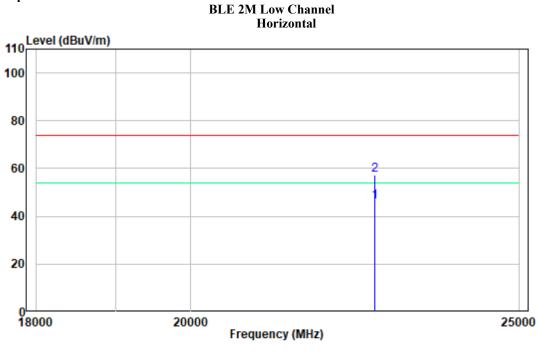
**BLE 1M Low Channel** Horizontal



#### 1-18 GHz: **Pre-scan plots:**

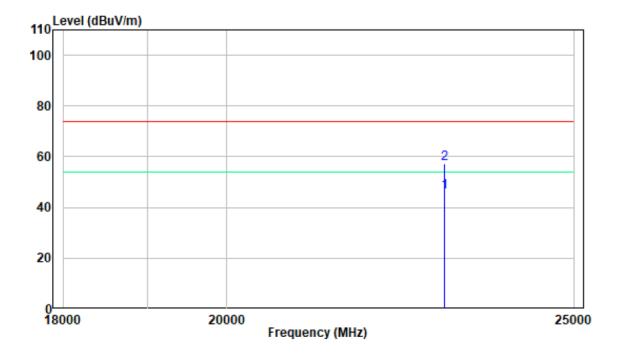


**BLE 2M Low Channel** Horizontal


0 1000 5000 Frequency (MHz)

2000

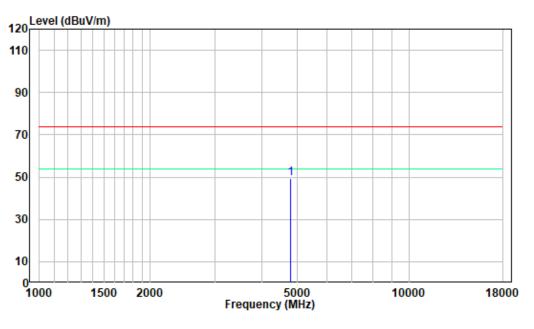
1500


18000

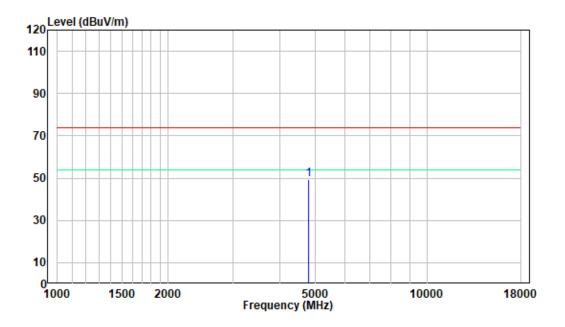
10000



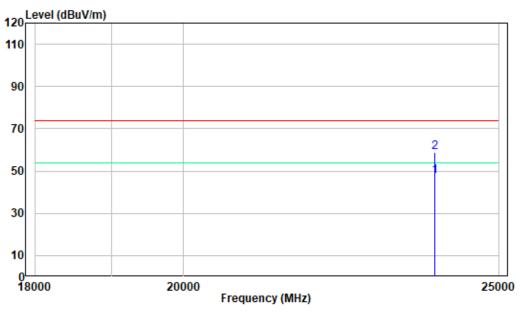
#### 18 -25GHz: Pre-scan plots:





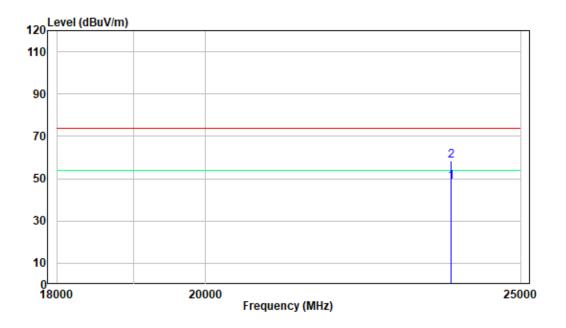


#### For model of XIAO-nRF52840:

#### 1-18 GHz: Pre-scan plots:


BLE 1M Low Channel Horizontal

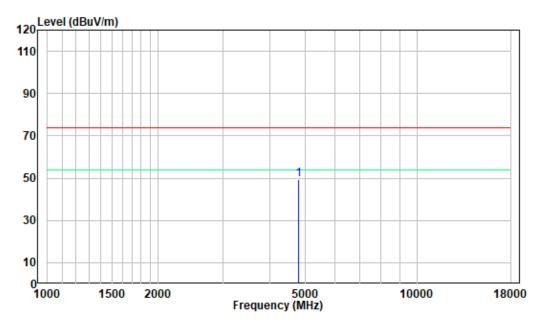




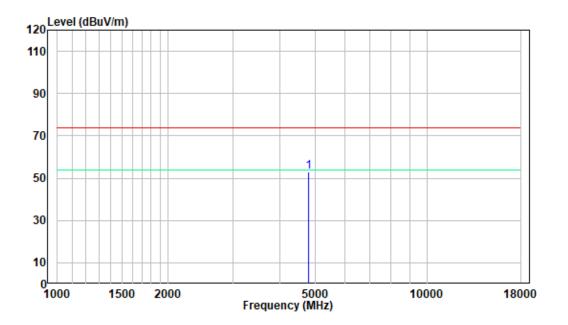



#### 18 -25GHz: Pre-scan plots:



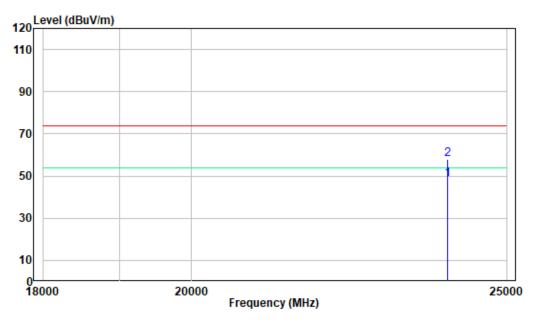

BLE 1M Low Channel Horizontal



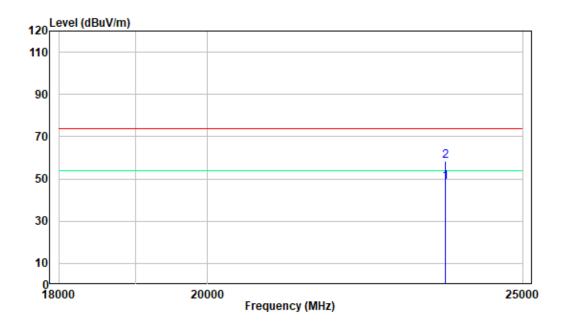



#### 1-18 GHz: Pre-scan plots:

BLE 2M Low Channel Horizontal





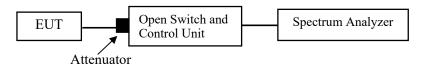

#### 18 -25GHz: Pre-scan plots:

BLE 2M Low Channel Horizontal








# FCC §15.247(A) (2) – 6 DB EMISSION BANDWIDTH & OCCUPIED BANDWIDTH

### **Applicable Standard**

Systems using digital modulation techniques may operate in the 902–928 MHz, 2400–2483.5 MHz, and 5725–5850 MHz bands. The minimum 6 dB bandwidth shall be at least 500 kHz.

### **Test Procedure**

- 1. Check the calibration of the measuring instrument using either an internal calibrator or a known signal from an external generator.
- 2. Position the EUT without connection to measurement instrument. Turn on the EUT and connect it to measurement instrument. Then set it to any one convenient frequency within its operating range. Set a reference level on the measuring instrument equal to the highest peak value.
- 3. Measure the frequency difference of two frequencies that were attenuated 6 dB from the reference level. Record the frequency difference as the emission bandwidth.
- 4. Repeat above procedures until all frequencies measured were complete.



### Test Data

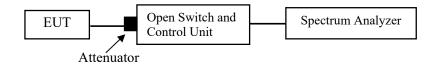
### **Environmental Conditions**

| Temperature:              | 25.9 °C   |
|---------------------------|-----------|
| <b>Relative Humidity:</b> | 47 %      |
| ATM Pressure:             | 101.0 kPa |

The testing was performed by Paul Liu from 2022-01-26 to 2022-04-12.

EUT operation mode: Transmitting

Test Result: Compliant. Please refer to the Appendix BLE.


# FCC §15.247(b) (3) - MAXIMUM CONDUCTED OUTPUT POWER

### Applicable Standard

According to FCC §15.247(b) (3), for systems using digital modulation in the 902-928 MHz, 2400-2483.5 MHz, and 5725-5850 MHz bands: 1 Watt. As an alternative to a peak power measurement, compliance with the one Watt limit can be based on a measurement of the maximum conducted output power. Maximum Conducted Output Power is defined as the total transmit power delivered to all antennas and antenna elements averaged across all symbols in the signaling alphabet when the transmitter is operating at its maximum power control level. Power must be summed across all antennas and antenna elements. The average must not include any time intervals during which the transmitter is off or is transmitting at a reduced power level. If multiple modes of operation are possible (e.g., alternative modulation methods), the maximum conducted output power is the highest total transmit power occurring in any mode.

### **Test Procedure**

- 1. Place the EUT on a bench and set it in transmitting mode.
- 2. Remove the antenna from the EUT and then connect a low loss RF cable from the antenna port to one test equipment.
- 3. Add a correction factor to the display.



### Test Data

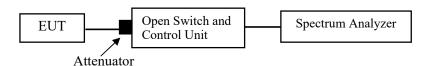
### **Environmental Conditions**

| Temperature:              | 25.9 °C   |
|---------------------------|-----------|
| <b>Relative Humidity:</b> | 47 %      |
| ATM Pressure:             | 101.0 kPa |

The testing was performed by Paul Liu from 2022-01-26 to 2022-04-12.

EUT operation mode: Transmitting

Test Result: Compliant. Please refer to the Appendix BLE.


# FCC §15.247(d) – 100 kHz BANDWIDTH OF FREQUENCY BAND EDGE

#### Applicable Standard

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)).

### **Test Procedure**

- 1. Check the calibration of the measuring instrument using either an internal calibrator or a known signal from an external generator.
- 2. Position the EUT without connection to measurement instrument. Turn on the EUT and connect its antenna terminal to measurement instrument via a low loss cable. Then set it to any one measured frequency within its operating range, and make sure the instrument is operated in its linear range.
- 3. Set RBW to 100 kHz and VBW of spectrum analyzer to 300 kHz with a convenient frequency span including 100 kHz bandwidth from band edge.
- 4. Measure the highest amplitude appearing on spectral display and set it as a reference level. Plot the graph with marking the highest point and edge frequency.
- 5. Repeat above procedures until all measured frequencies were complete.



### **Test Data**

#### **Environmental Conditions**

| Temperature:              | 25.9 °C   |
|---------------------------|-----------|
| <b>Relative Humidity:</b> | 47 %      |
| ATM Pressure:             | 101.0 kPa |

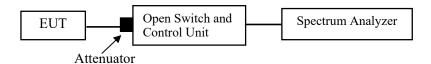
The testing was performed by Paul Liu from 2022-01-26 to 2022-04-12.

EUT operation mode: Transmitting

Test Result: Compliant.

### **Conducted Band Edge Result:**

Please refer to the Appendix BLE.


# FCC §15.247(e) - POWER SPECTRAL DENSITY

### Applicable Standard

For digitally modulated systems, the power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission. This power spectral density shall be determined in accordance with the provisions of paragraph (b) of this section. The same method of determining the conducted output power shall be used to determine the power spectral density.

### **Test Procedure**

- 1. Use this procedure when the maximum peak conducted output power in the fundamental emission is used to demonstrate compliance.
- 2. Set the RBW to:  $3kHz \le RBW \le 100 kHz$ .
- 3. Set the VBW  $\geq 3 \times RBW$ .
- 4. Set the span to 1.5 times the DTS bandwidth.
- 5. Detector = peak.
- 6. Sweep time = auto couple.
- 7. Trace mode = max hold.
- 8. Allow trace to fully stabilize.
- 9. Use the peak marker function to determine the maximum amplitude level within the RBW.
- 10. If measured value exceeds limit, reduce RBW (no less than 3 kHz) and repeat.



### **Test Data**

### **Environmental Conditions**

| Temperature:              | 25.9 °C   |
|---------------------------|-----------|
| <b>Relative Humidity:</b> | 47 %      |
| ATM Pressure:             | 101.0 kPa |

The testing was performed by Paul Liu from 2022-01-26 to 2022-04-12.

EUT operation mode: Transmitting

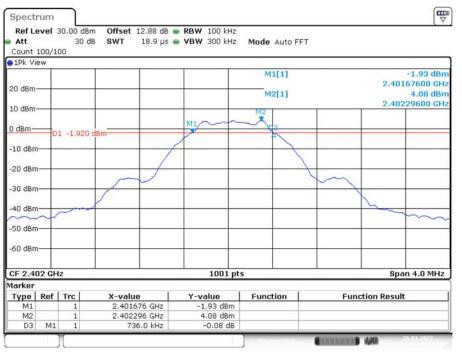
Test Result: Compliant. Please refer to the Appendix BLE.

# **APPENDIX BLE**

# Appendix A: 6dB Emission Bandwidth

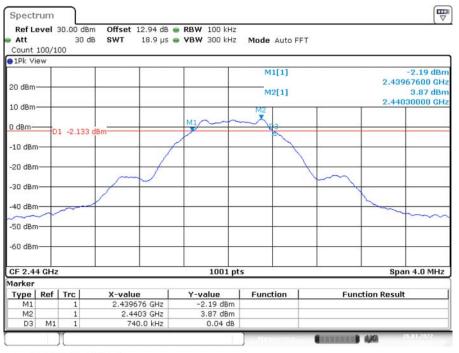
### **Test Result**

| TestMode | Antenna | Channel | DTS BW [MHz] | FL[MHz]  | FH[MHz]  | Limit[MHz] | Verdict |
|----------|---------|---------|--------------|----------|----------|------------|---------|
| BLE_1M   | Ant1    | 2402    | 0.736        | 2401.676 | 2402.412 | 0.5        | PASS    |
|          |         | 2440    | 0.740        | 2439.676 | 2440.416 | 0.5        | PASS    |
|          |         | 2480    | 0.728        | 2479.676 | 2480.404 | 0.5        | PASS    |
| BLE_2M   | Ant1    | 2402    | 1.344        | 2401.340 | 2402.684 | 0.5        | PASS    |
|          |         | 2440    | 1.260        | 2439.436 | 2440.696 | 0.5        | PASS    |
|          |         | 2480    | 1.224        | 2479.468 | 2480.692 | 0.5        | PASS    |


### For model of XIAO-nRF52840 Sense

#### For model of XIAO-nRF52840

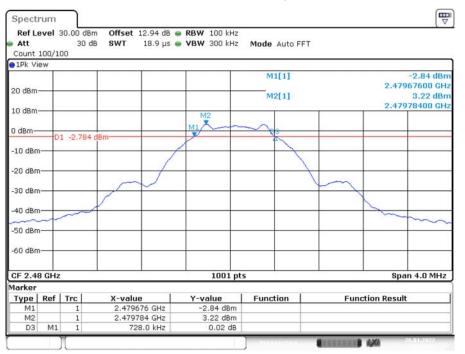
| TestMode | Antenna | Channel | DTS BW [MHz] | FL[MHz]  | FH[MHz]  | Limit[MHz] | Verdict |
|----------|---------|---------|--------------|----------|----------|------------|---------|
| BLE_1M   | Ant1    | 2402    | 0.736        | 2401.668 | 2402.404 | 0.5        | PASS    |
|          |         | 2440    | 0.740        | 2439.672 | 2440.412 | 0.5        | PASS    |
|          |         | 2480    | 0.712        | 2479.692 | 2480.404 | 0.5        | PASS    |
| BLE_2M   | Ant1    | 2402    | 1.308        | 2401.404 | 2402.712 | 0.5        | PASS    |
|          |         | 2440    | 1.284        | 2439.420 | 2440.704 | 0.5        | PASS    |
|          |         | 2480    | 1.188        | 2479.428 | 2480.616 | 0.5        | PASS    |


### **Test Graphs**

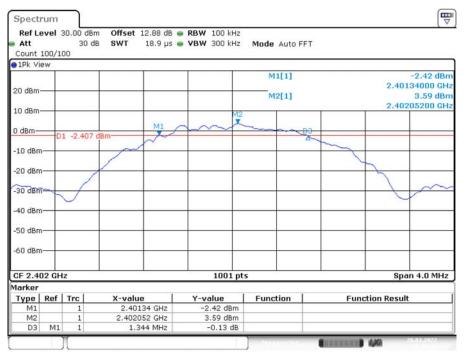
#### For model of XIAO-nRF52840 Sense



#### 6dB Bandwidth, BLE 1M Low Channel

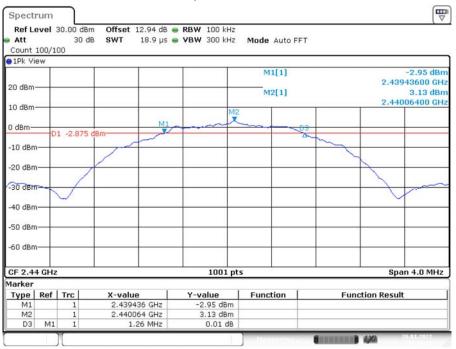

Date: 26.JAN.2022 15:50:42




6dB Bandwidth, BLE 1M Middle Channel

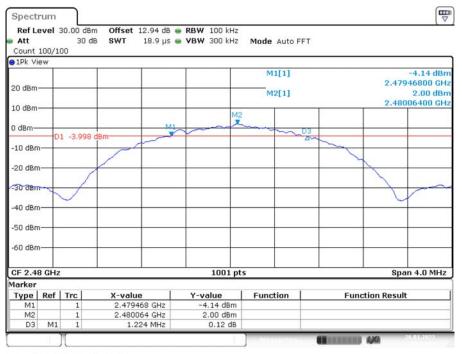
Date: 26.JAN.2022 15:54:25






Date: 26.JAN.2022 15:57:01

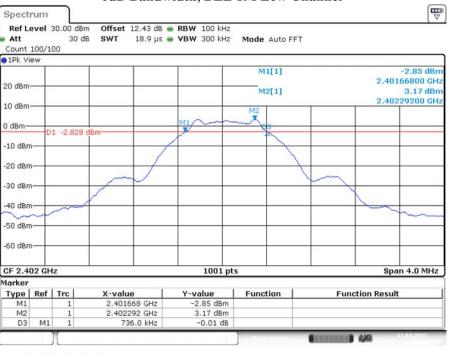



6dB Bandwidth, BLE 2M Low Channel

Date: 26.JAN.2022 16:06:36

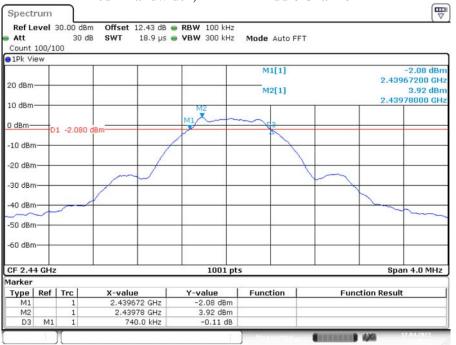


#### 6dB Bandwidth, BLE 2M Middle Channel


Date: 26.JAN.2022 16:10:30



# 6dB Bandwidth, BLE 2M High Channel


Date: 26.JAN.2022 16:14:54

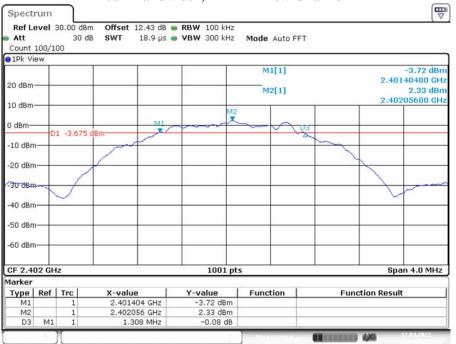
#### For model of XIAO-nRF52840



#### 6dB Bandwidth, BLE 1M Low Channel

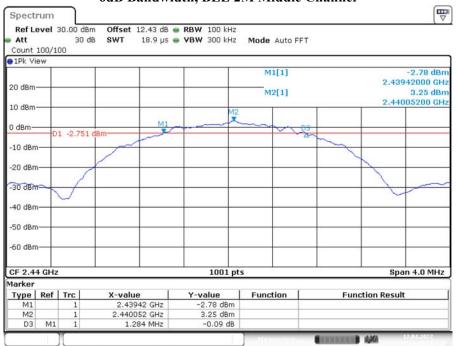
Date: 12.APR.2022 11:51:00




6dB Bandwidth, BLE 1M Middle Channel

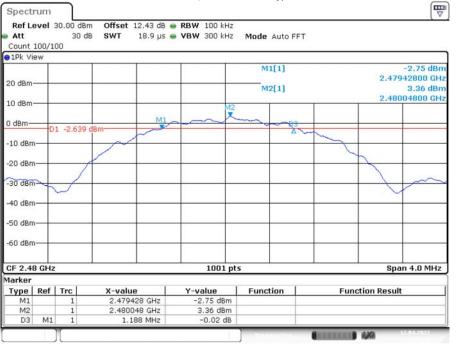
Date: 12.APR.2022 11:29:24




#### 6dB Bandwidth, BLE 1M High Channel

Date: 12.APR.2022 11:30:47




#### 6dB Bandwidth, BLE 2M Low Channel

Date: 12.APR.2022 11:35:20



#### 6dB Bandwidth, BLE 2M Middle Channel

Date: 12.APR.2022 11:40:12



#### 6dB Bandwidth, BLE 2M High Channel

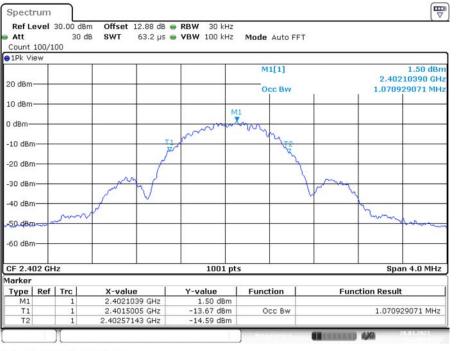
Date: 12.APR.2022 11:41:34

# **Appendix B: Occupied Channel Bandwidth**

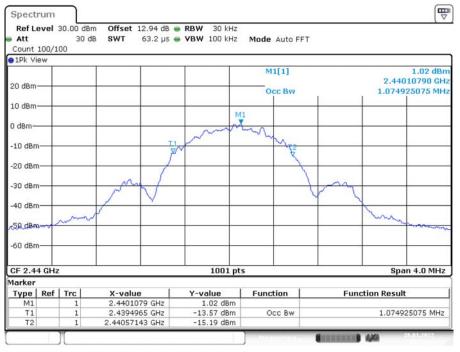
#### Test Result

#### For model of XIAO-nRF52840 Sense

| TestMode | Antenna | Channel | OCB [MHz] | FL[MHz]  | FH[MHz]  | Limit[MHz] | Verdict |
|----------|---------|---------|-----------|----------|----------|------------|---------|
|          |         | 2402    | 1.071     | 2401.500 | 2402.571 |            | PASS    |
| BLE_1M   | Ant1    | 2440    | 1.075     | 2439.497 | 2440.571 |            | PASS    |
|          |         | 2480    | 1.071     | 2479.500 | 2480.571 |            | PASS    |
|          |         | 2402    | 2.062     | 2401.001 | 2403.063 |            | PASS    |
| BLE_2M   | Ant1    | 2440    | 2.086     | 2438.985 | 2441.071 |            | PASS    |
|          |         | 2480    | 2.102     | 2478.977 | 2481.079 |            | PASS    |

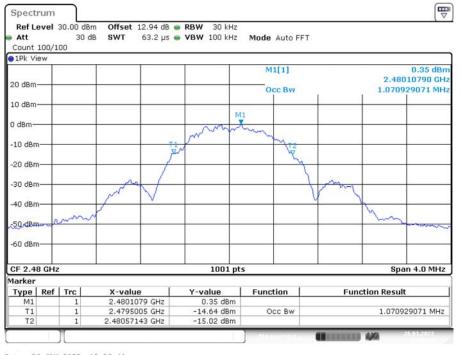

#### For model of XIAO-nRF52840

| TestMode | Antenna | Channel | OCB [MHz] | FL[MHz]  | FH[MHz]  | Limit[MHz] | Verdict |
|----------|---------|---------|-----------|----------|----------|------------|---------|
|          |         | 2402    | 1.071     | 2401.497 | 2402.567 |            | PASS    |
| BLE_1M   | Ant1    | 2440    | 1.079     | 2439.493 | 2440.571 |            | PASS    |
|          |         | 2480    | 1.079     | 2479.493 | 2480.571 |            | PASS    |
| BLE_2M   |         | 2402    | 2.086     | 2400.989 | 2403.075 |            | PASS    |
|          | Ant1    | 2440    | 2.086     | 2438.985 | 2441.071 |            | PASS    |
|          |         | 2480    | 2.082     | 2478.985 | 2481.067 |            | PASS    |


## **Test Graphs**

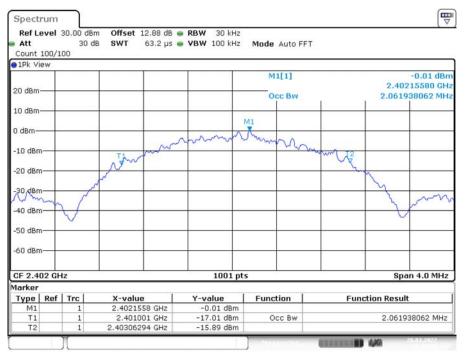
#### For model of XIAO-nRF52840 Sense

#### 99% Bandwidth, BLE 1M Low Channel



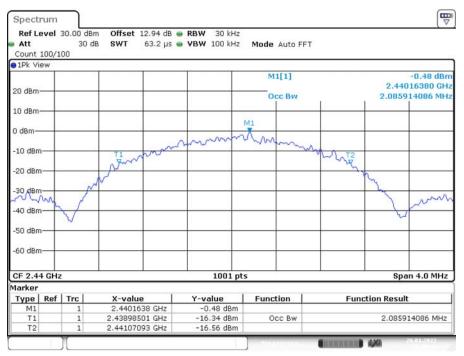

Date: 26.JAN.2022 15:50:59




#### 99% Bandwidth, BLE 1M Middle Channel

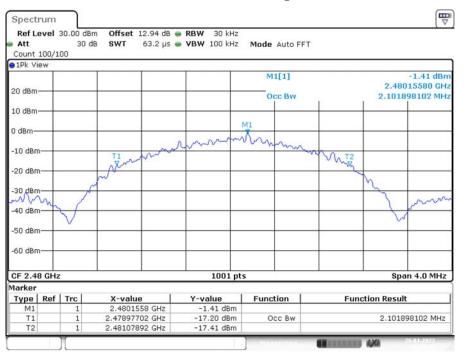
Date: 26.JAN.2022 15:54:41




# 99% Bandwidth, BLE 1M High Channel

Date: 26.JAN.2022 15:58:40

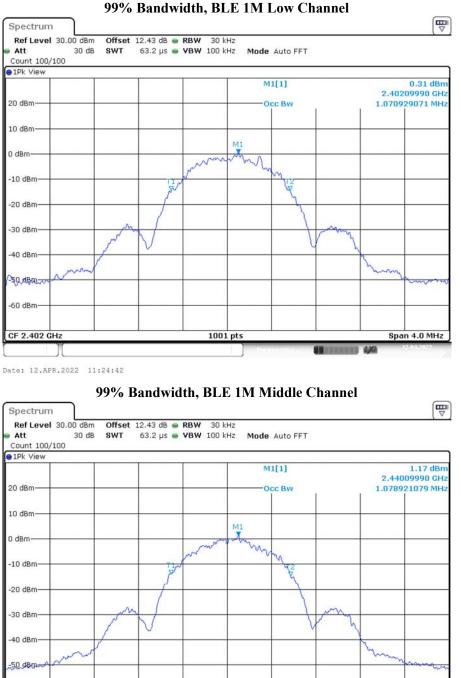



99% Bandwidth, BLE 2M Low Channel

Date: 26.JAN.2022 16:06:53



#### 99% Bandwidth, BLE 2M Middle Channel


Date: 26.JAN.2022 16:10:46



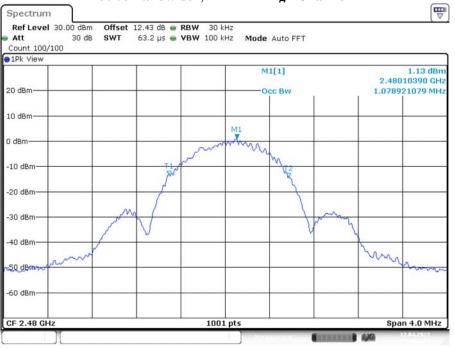
99% Bandwidth, BLE 2M High Channel

Date: 26.JAN.2022 16:15:12

### For model of XIAO-nRF52840

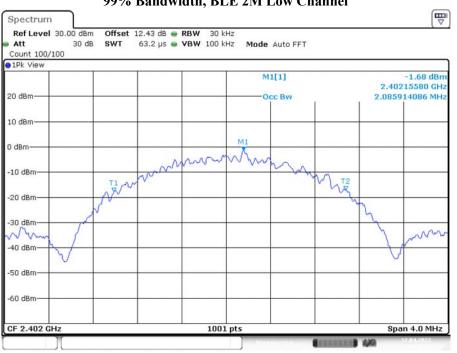


Date: 12.APR.2022 11:29:41


-60 dBm-

CF 2.44 GHz

1001 pts


Span 4.0 MHz

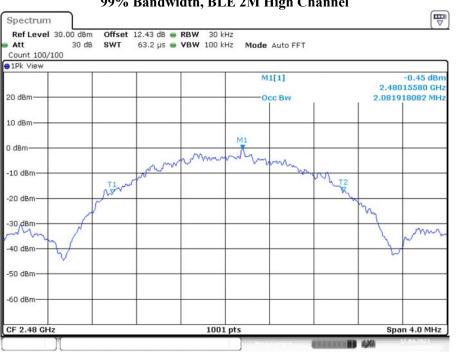
110



99% Bandwidth, BLE 1M High Channel

Date: 12.APR.2022 11:31:04




# 99% Bandwidth, BLE 2M Low Channel

Date: 12.APR.2022 11:35:37



99% Bandwidth, BLE 2M Middle Channel

Date: 12.APR.2022 11:40:29



# 99% Bandwidth, BLE 2M High Channel

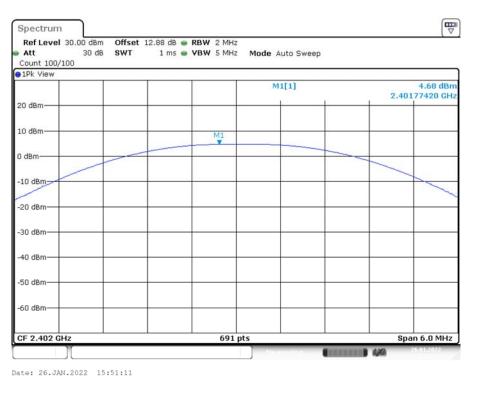
Date: 12.APR.2022 11:41:51

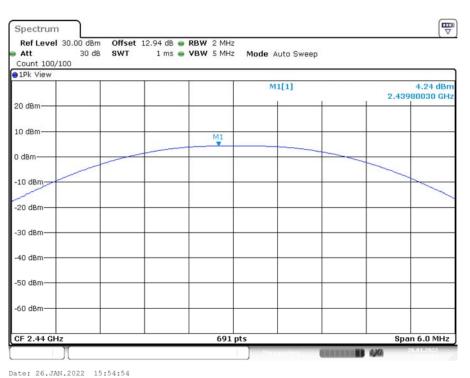
# Appendix C: Maximum conducted Peak output power

# **Test Result**

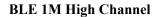
#### For model of XIAO- nRF52840 Sense

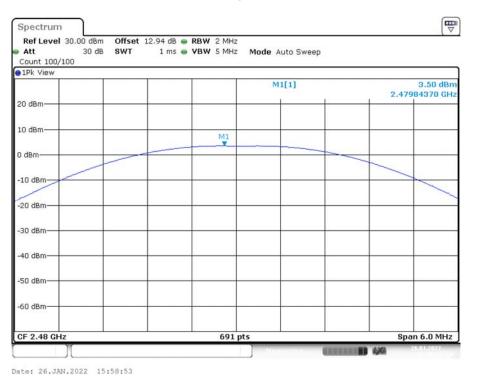
| TestMode | Antenna | Channel | Result[dBm] | Limit[dBm] | Verdict |
|----------|---------|---------|-------------|------------|---------|
|          |         | 2402    | 4.68        | <=30       | PASS    |
| BLE_1M   | Ant1    | 2440    | 4.24        | <=30       | PASS    |
|          |         | 2480    | 3.5         | <=30       | PASS    |
|          |         | 2402    | 4.74        | <=30       | PASS    |
| BLE_2M   | Ant1    | 2440    | 4.26        | <=30       | PASS    |
|          |         | 2480    | 3.47        | <=30       | PASS    |

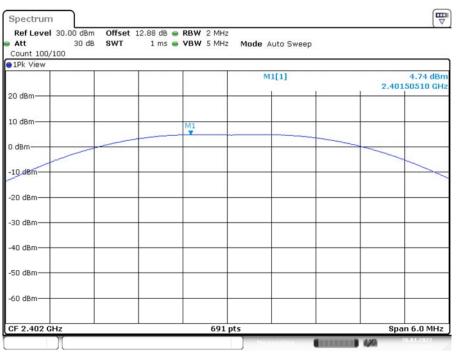

#### For model of XIAO-nRF52840


| TestMode | Antenna | Channel | Result[dBm] | Limit[dBm] | Verdict |
|----------|---------|---------|-------------|------------|---------|
|          |         | 2402    | 5.04        | <=30       | PASS    |
| BLE_1M   | Ant1    | 2440    | 4.35        | <=30       | PASS    |
|          |         | 2480    | 4.3         | <=30       | PASS    |
|          |         | 2402    | 3.54        | <=30       | PASS    |
| BLE_2M   | Ant1    | 2440    | 3.74        | <=30       | PASS    |
|          |         | 2480    | 3.01        | <=30       | PASS    |

# **Test Graphs**

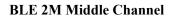

#### For model of XIAO- nRF52840 Sense


# **BLE 1M Low Channel**

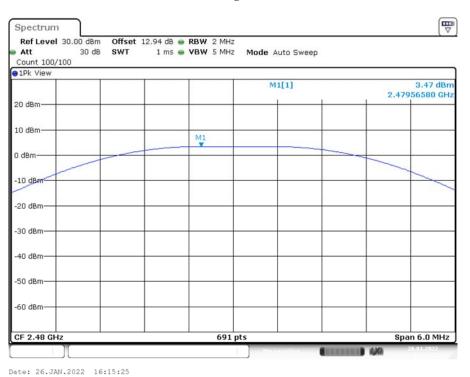





#### **BLE 1M Middle Channel**





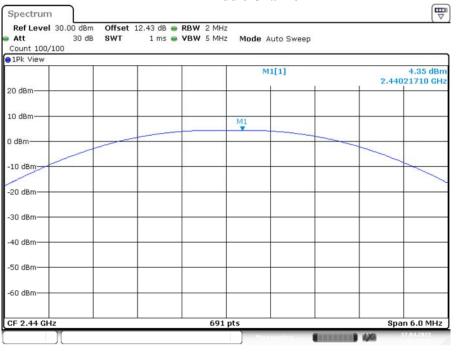




#### **BLE 2M Low Channel**

Date: 26.JAN.2022 16:07:06

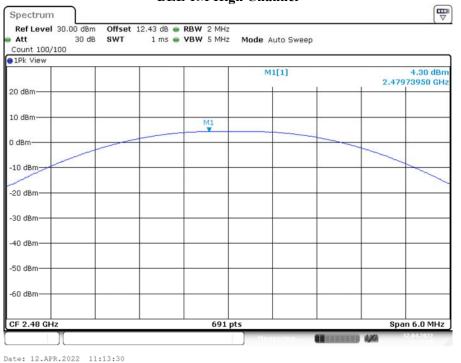



|             | Hfset 12.94 dB ● RBW 2 MHz<br>WT 1 ms ● VBW 5 MHz |              |                           |
|-------------|---------------------------------------------------|--------------|---------------------------|
| 1Pk View    |                                                   | 1000 00000 U |                           |
|             |                                                   | M1[1]        | 4.26 dBn<br>2.43953110 GH |
| 20 dBm      |                                                   |              |                           |
|             |                                                   |              |                           |
| .0 dBm      | M1                                                |              |                           |
| ) dBm       |                                                   |              |                           |
|             |                                                   |              |                           |
| 10 dBm      |                                                   |              |                           |
| 20 dBm      |                                                   |              |                           |
|             |                                                   |              |                           |
| 30 dBm      |                                                   |              |                           |
| 40 dBm      |                                                   |              |                           |
|             |                                                   |              |                           |
| 50 dBm      |                                                   |              |                           |
| 60 dBm      |                                                   |              |                           |
|             |                                                   |              |                           |
| CF 2.44 GHz | 691                                               | pts          | Span 6.0 MHz              |
| Y           |                                                   |              | 26.01.2022                |

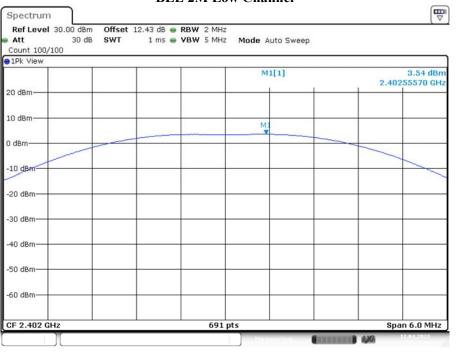



#### **BLE 2M High Channel**

For model of XIAO-nRF52840 BLE 1M Low Channel

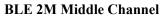


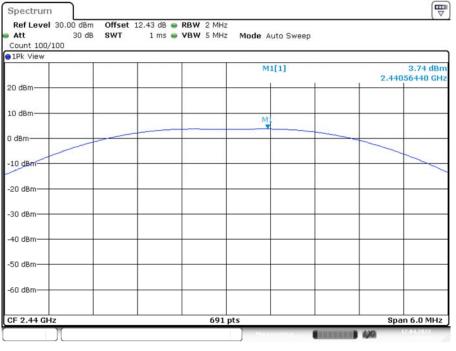

Version 12: 2021-11-09



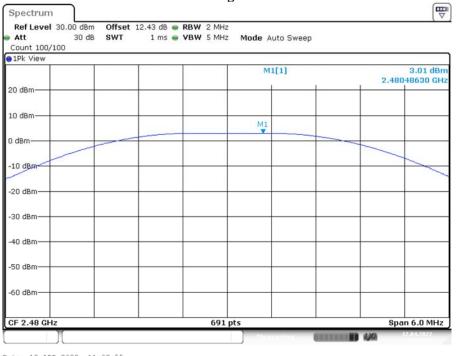

# **BLE 1M Middle Channel**

Date: 12.APR.2022 11:12:56





#### **BLE 1M High Channel**




#### **BLE 2M Low Channel**

Date: 12.APR.2022 11:21:24





Date: 12.APR.2022 11:11:34



## **BLE 2M High Channel**

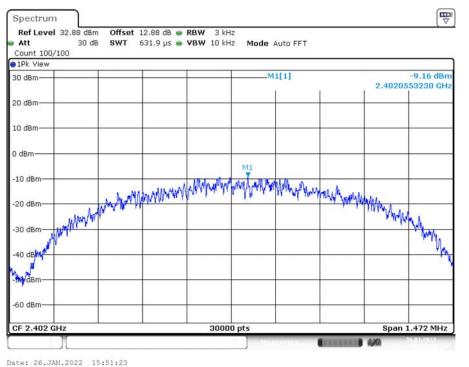
Date: 12.APR.2022 11:02:55

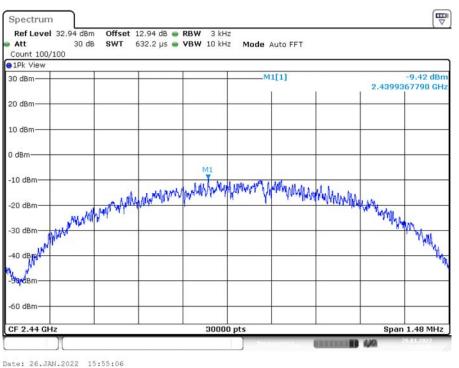
# **Appendix D: Power spectral density**

# **Test Result**

# For model of XIAO-nRF52840 Sense

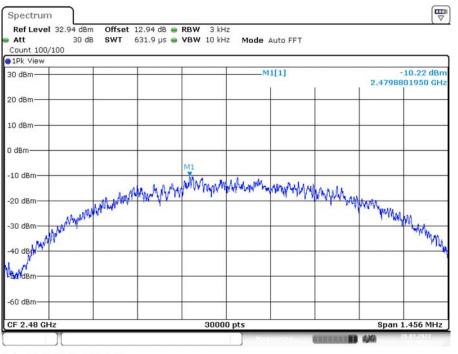
| TestMode | Antenna | Channel | Result[dBm/3kHz] | Limit[dBm/3kHz] | Verdict |
|----------|---------|---------|------------------|-----------------|---------|
|          |         | 2402    | -9.16            | <=8             | PASS    |
| BLE_1M   | Ant1    | 2440    | -9.42            | <=8             | PASS    |
|          |         | 2480    | -10.22           | <=8             | PASS    |
|          |         | 2402    | -11.04           | <=8             | PASS    |
| BLE_2M   | Ant1    | 2440    | -10.41           | <=8             | PASS    |
|          |         | 2480    | -11.71           | <=8             | PASS    |


#### For model of XIAO-nRF52840

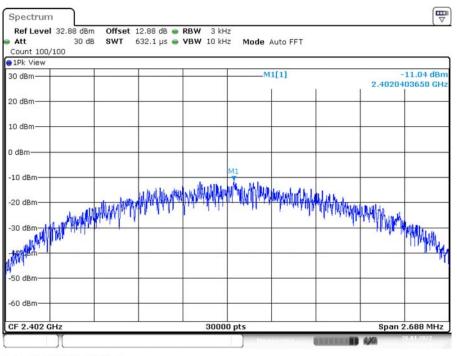

| TestMode | Antenna | Channel | Result[dBm/3kHz] | Limit[dBm/3kHz] | Verdict |
|----------|---------|---------|------------------|-----------------|---------|
|          |         | 2402    | -9.88            | <=8             | PASS    |
| BLE_1M   | Ant1    | 2440    | -9.26            | <=8             | PASS    |
|          |         | 2480    | -7.14            | <=8             | PASS    |
|          |         | 2402    | -11.78           | <=8             | PASS    |
| BLE_2M   | Ant1    | 2440    | -11.35           | <=8             | PASS    |
|          |         | 2480    | -12.13           | <=8             | PASS    |

# **Test Graphs**

#### For model of XIAO-nRF52840 Sense


#### Power Spectral Density, BLE 1M Low Channel





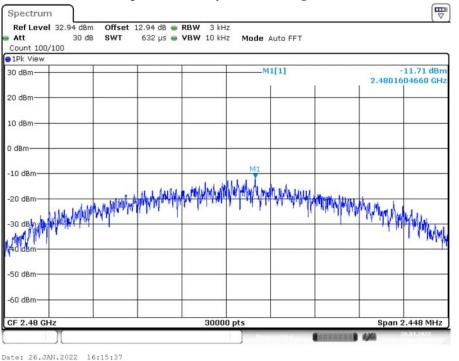

Power Spectral Density, BLE 1M Middle Channel

#### Power Spectral Density, BLE 1M High Channel



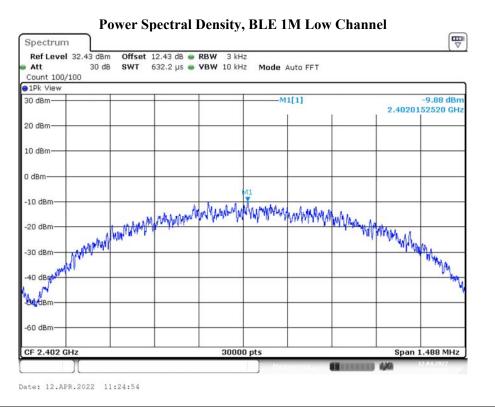

Date: 26.JAN.2022 15:59:05



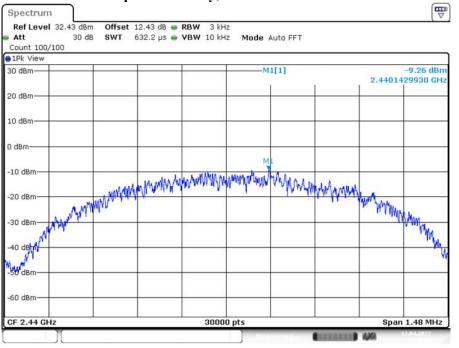

Power Spectral Density, BLE 2M Low Channel

Date: 26.JAN.2022 16:07:18



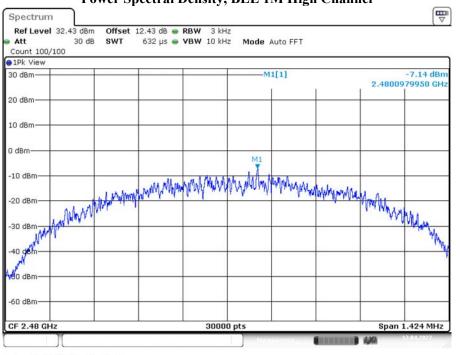

Power Spectral Density, BLE 2M Middle Channel

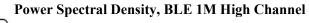
Date: 26.JAN.2022 16:11:11



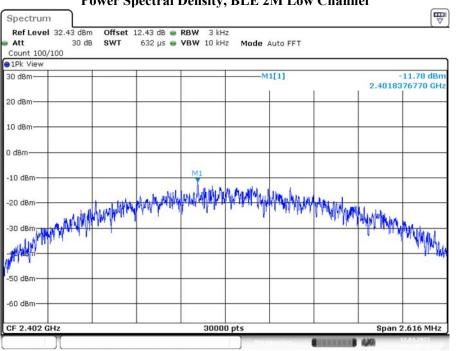

Power Spectral Density, BLE 2M High Channel

# For model of XIAO-nRF52840



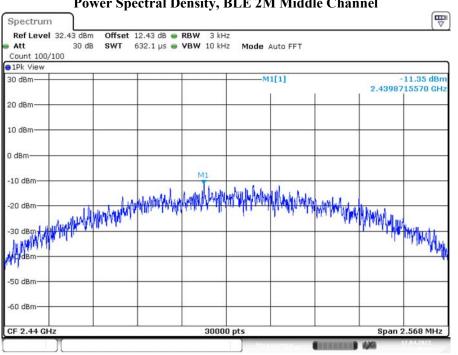


Version 12: 2021-11-09




Power Spectral Density, BLE 1M Middle Channel

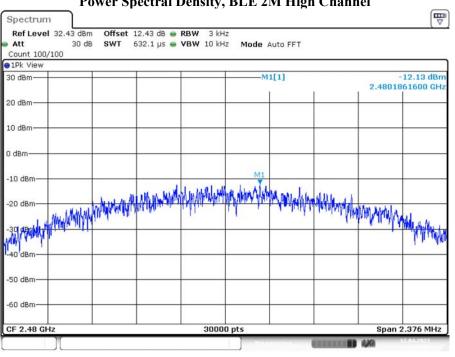
Date: 12.APR.2022 11:29:52






Date: 12.APR.2022 11:31:15




Power Spectral Density, BLE 2M Low Channel

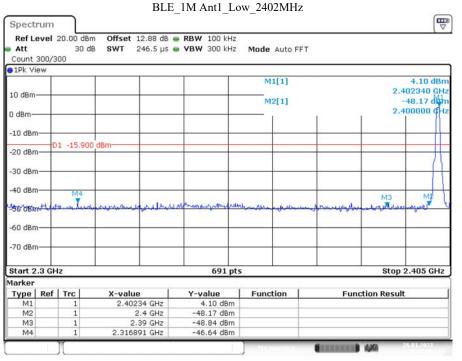
Date: 12.APR.2022 11:35:49



# Power Spectral Density, BLE 2M Middle Channel

Date: 12.APR.2022 11:40:40



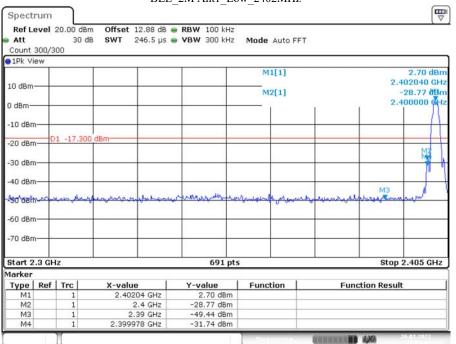

Power Spectral Density, BLE 2M High Channel

Date: 12.APR.2022 11:42:02

# **Appendix E: Band edge measurements**

### **Test Graphs**

#### For model of XIAO-nRF52840 Sense




Date: 26.JAN.2022 15:51:38

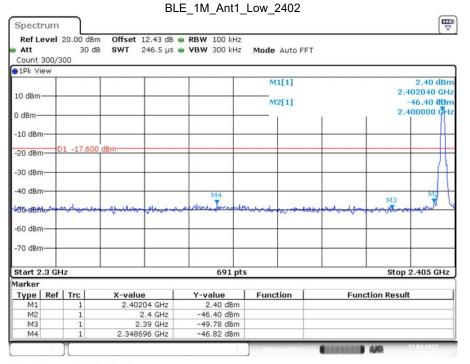
| Ref Lo<br>Att<br>Count |       | 20.00 dB<br>30 d<br>00 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <ul> <li>RBW 100 kHz</li> <li>VBW 300 kHz</li> </ul> | Mode Auto S    | Sweep                 |                     |
|------------------------|-------|------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------|----------------|-----------------------|---------------------|
| 1Pk Vi                 | ew    |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                      |                |                       |                     |
|                        |       |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                      | M1[1]          |                       | 3.25 dBn            |
| 10 dBm                 |       | /1                     | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -                                                    |                |                       | 2.479780 GH         |
|                        |       | Y.                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                      | M2[1]          |                       | -43.50 dBn          |
| 0 dBm-                 | -     | n –                    | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -                                                    |                | 1                     | 2.483500 GH         |
|                        |       | Here                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                      |                |                       |                     |
| -10 dBm                |       |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                      |                |                       |                     |
| 20 dBm                 | D     | 1 -16.75               | 0 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                      |                |                       |                     |
| 20 001                 | ·     |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                      |                |                       |                     |
| -30 dBm                |       | -                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                      |                |                       |                     |
|                        | ° 11  |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                      | M4             |                       |                     |
| -40 dBm                |       | M2                     | merer fame                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                      |                |                       | and manufacture     |
|                        | 1000  | - Aller                | and a second from the second s | mound                                                | and the second | and the second second | and a survey of the |
| -50 dBm                |       |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                      |                |                       |                     |
| -60 dBm                |       |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                      |                |                       |                     |
| 00 001                 |       |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                      |                |                       |                     |
| -70 dBm                |       |                        | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                      |                |                       |                     |
|                        |       |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                      |                |                       |                     |
| Start 2                | .47 G | Hz                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 691 pts                                              |                |                       | Stop 2.55 GHz       |
| 1arker                 |       |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                      |                |                       |                     |
| Type                   | Ref   | Trc                    | X-value                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Y-value                                              | Function       | Fund                  | ction Result        |
| M1                     |       | 1                      | 2.47978 GHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 3.25 dBm                                             |                |                       |                     |
| M2                     |       | 1                      | 2.4835 GHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -43.50 dBm                                           |                |                       |                     |
| M3                     |       | 1                      | 2.5 GHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -44.42 dBm                                           |                |                       |                     |
| M4                     |       | 1                      | 2.519507 GHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -41.45 dBm                                           |                |                       |                     |

BLE\_1M Ant1\_High\_2480MHz

Date: 26.JAN.2022 15:59:20



BLE\_2M Ant1\_Low\_2402MHz


Date: 26.JAN.2022 16:07:33

| Att<br>Count |           | 20.00 dB<br>30 d<br>00 |              | <ul> <li>RBW 100 kHz</li> <li>VBW 300 kHz</li> </ul> | Mode Auto S   | weep        |                           |
|--------------|-----------|------------------------|--------------|------------------------------------------------------|---------------|-------------|---------------------------|
| 1Pk Vi       |           |                        |              |                                                      |               |             |                           |
|              |           |                        |              |                                                      | M1[1]         |             | 1.75 dBn                  |
| 10 dBm       |           | 1121                   |              |                                                      | MOLT          |             | 2.480130 GH               |
|              |           | M1                     |              |                                                      | M2[1]         |             | -42.88 dBn<br>2.483500 GH |
| 0 dBm-       |           | A                      |              | +                                                    |               | 1           | 2.483300 GH               |
| -10 dBm      |           | $\langle \rangle$      |              |                                                      |               |             |                           |
| -10 aBn      | 1         |                        |              |                                                      |               |             |                           |
| -20 dBm      | p p       | 1 -18.25               | i0 dBm       |                                                      |               |             |                           |
|              |           |                        |              |                                                      |               |             |                           |
| -30 dBm      | <b>⊢∦</b> | 4                      |              |                                                      |               |             |                           |
|              | ľ         | M2                     | M            |                                                      | M4            |             |                           |
| 40 dBm       | had       | V.                     |              | moundhurph                                           | nentrumandars | manufacture | mannemener                |
| 50 dBm       |           |                        |              |                                                      |               |             |                           |
|              | ·         |                        |              |                                                      |               |             |                           |
| -60 dBm      | +         |                        |              |                                                      |               |             |                           |
|              |           |                        |              |                                                      |               |             |                           |
| -70 dBm      |           |                        |              |                                                      |               |             |                           |
| Start 2      | 47.6      | Hz                     |              | 691 pts                                              |               |             | Stop 2.55 GHz             |
| larker       |           | 112                    |              | 051 pc                                               |               |             | 0100 2:00 012             |
| Type         | Ref       | Trc                    | X-value      | Y-value                                              | Function      | Functio     | n Result                  |
| M1           |           | 1                      | 2.48013 GHz  | 1.75 dBm                                             |               |             |                           |
| M2           |           | 1                      | 2.4835 GHz   | -42.88 dBm                                           |               |             |                           |
| M3           |           | 1                      | 2.5 GHz      | -43.29 dBm                                           |               |             |                           |
| M4           |           | 1                      | 2.515101 GHz | -42.03 dBm                                           |               |             |                           |

BLE\_2M Ant1\_High\_2480MHz

Date: 26.JAN.2022 16:15:52

#### For model of XIAO-nRF52840



Date: 12.APR.2022 11:25:09

#### BLE\_1M\_Ant1\_High\_2480

| Spectrum                        |           |                         |                                                      |             |        |                           |
|---------------------------------|-----------|-------------------------|------------------------------------------------------|-------------|--------|---------------------------|
| Ref Level<br>Att<br>Count 300/3 | 30 0      |                         | <ul> <li>RBW 100 kHz</li> <li>VBW 300 kHz</li> </ul> | Mode Auto S | weep   |                           |
| 1Pk View                        |           |                         |                                                      |             |        |                           |
|                                 |           |                         |                                                      | M1[1]       |        | 4.07 dBn                  |
| 10 dBm                          | MI        |                         |                                                      | 100[1]      |        | 2.479780 GH<br>-43.36 dBn |
|                                 | H         |                         |                                                      | M2[1]       |        | -43.36 dBn<br>2.483500 GH |
| 0 dBm                           |           |                         |                                                      |             | 1 1    | 2.400000 011              |
| -10 dBm                         | 11        |                         |                                                      |             |        |                           |
|                                 | 01 -15.93 | 0 dBm                   |                                                      |             |        |                           |
| -20 dBm                         | 1         | o dom                   | -                                                    |             |        |                           |
|                                 | 14        |                         |                                                      |             |        |                           |
| -30 dBm                         |           |                         |                                                      |             |        |                           |
| -40 dBm                         | M2        | M                       |                                                      | M4          |        |                           |
| Men und work                    | Like      | rannan man mark         | the work work and                                    | outementer  | monor  | draw man                  |
| -50 dBm                         |           |                         |                                                      |             |        |                           |
| -60 dBm                         |           |                         |                                                      |             |        |                           |
|                                 |           |                         |                                                      |             |        |                           |
| -70 dBm                         |           | -                       | -                                                    |             |        |                           |
| 101010-0010-0010-               |           |                         |                                                      |             |        |                           |
| Start 2.47 (                    | Hz        |                         | 691 pts                                              | 8           |        | Stop 2.55 GHz             |
| 1arker                          |           |                         |                                                      |             |        |                           |
|                                 | Trc       | X-value                 | Y-value                                              | Function    | Functi | on Result                 |
| M1                              | 1         | 2.47978 GHz             | 4.07 dBm                                             |             |        |                           |
| M2                              | 1         | 2.4835 GHz              | -43.36 dBm                                           |             |        |                           |
| M3<br>M4                        | 1         | 2.5 GHz<br>2.518812 GHz | -45.01 dBm<br>-42.76 dBm                             |             |        |                           |
| 111-1                           | ( L )     | 2.010012 GHz            | -+2.70 UBIN                                          |             |        |                           |

Date: 12.APR.2022 11:31:30

| Ref Lo<br>Att<br>Count |                  | 20.00 dB<br>30 d |                              | <ul> <li>RBW 100 kHz</li> <li>VBW 300 kHz</li> </ul> |                              | FT                 |                           |
|------------------------|------------------|------------------|------------------------------|------------------------------------------------------|------------------------------|--------------------|---------------------------|
| 1Pk Vi                 | ew               |                  |                              |                                                      |                              |                    |                           |
|                        |                  |                  |                              |                                                      | M1[1]                        |                    | 2.31 dBn                  |
| 10 dBm                 | -                |                  |                              |                                                      |                              |                    | 2.402040 GH               |
|                        |                  |                  |                              |                                                      | M2[1]                        |                    | -28.88 dBn<br>2.400000 dH |
| 0 dBm—                 | -                |                  | -                            | -                                                    |                              | i î                | 2.400000 00               |
|                        |                  |                  |                              |                                                      |                              |                    |                           |
| -10 dBm                | 1                |                  |                              |                                                      |                              |                    |                           |
| -20 dBm                | D                | 1 -17.69         | 0 dBm                        |                                                      |                              |                    |                           |
| 20 UBI                 | -                |                  |                              |                                                      |                              |                    | M2                        |
| -30 dBm                |                  |                  |                              |                                                      |                              |                    | M                         |
|                        |                  |                  |                              |                                                      |                              |                    |                           |
| -40 dBm                | ۱ <del>-  </del> |                  |                              | _                                                    |                              |                    |                           |
|                        |                  | and the second   | and the second second second | manufame                                             | in the second                | Silver Index on 18 | M3                        |
| 50°08.                 | to a start       | month            | many to to and               | Address Marchen                                      | and the second second second | Martin an ashed    | and the sand the call     |
| -60 dBm                |                  |                  |                              |                                                      |                              |                    |                           |
| -60 UBII               | '                |                  |                              |                                                      |                              |                    |                           |
| -70 dBm                |                  |                  |                              |                                                      |                              |                    |                           |
| 70 abii                |                  |                  |                              |                                                      |                              |                    |                           |
| Start 2                | .3 GH            | z                |                              | 691 pt                                               | s                            |                    | Stop 2.405 GHz            |
| larker                 |                  |                  |                              |                                                      |                              |                    |                           |
| Type                   | Ref              | Trc              | X-value                      | Y-value                                              | Function                     | Func               | tion Result               |
| M1                     |                  | 1                | 2.40204 GHz                  | 2.31 dBm                                             |                              |                    |                           |
| M2                     |                  | 1                | 2.4 GHz                      | -28.88 dBm                                           |                              |                    |                           |
| M3                     |                  | 1                | 2.39 GHz                     | -50.19 dBm                                           |                              |                    |                           |
| M4                     |                  | 1                | 2.399978 GHz                 | -33.28 dBm                                           |                              |                    |                           |

BLE\_2M\_Ant1\_Low\_2402

Date: 12.APR.2022 11:36:04



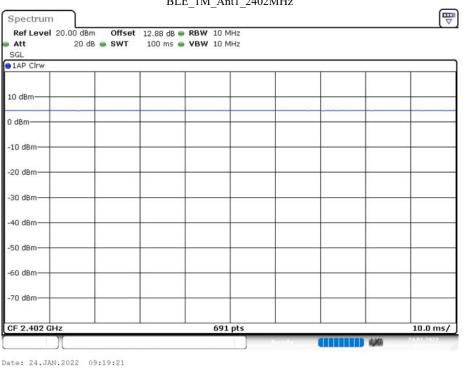
| Spectrur                     | n                       |                         |                                                      |             |                                          |                                        |
|------------------------------|-------------------------|-------------------------|------------------------------------------------------|-------------|------------------------------------------|----------------------------------------|
| Ref Leve<br>Att<br>Count 300 | 1 20.00 d<br>30<br>/300 |                         | <ul> <li>RBW 100 kHz</li> <li>VBW 300 kHz</li> </ul> | Mode Auto S | Sweep                                    |                                        |
| 1Pk View                     |                         |                         |                                                      |             |                                          |                                        |
| 10 dBm                       | M1                      |                         |                                                      | M1[1]       |                                          | 3.25 dBm<br>2.480010 GHz<br>-44.07 dBm |
| 0 dBm                        | A                       |                         |                                                      |             | i i                                      | 2.483500 GHz                           |
| -10 dBm—                     | $\left  \right\rangle$  |                         |                                                      |             |                                          |                                        |
| -20 dBm—                     | D1 -16.7                | 50 dBm                  |                                                      |             |                                          |                                        |
| -30 dBm—                     | NY                      |                         |                                                      |             |                                          |                                        |
| -40 dBm-                     | M2                      |                         | M4                                                   | mulanto     | une warme                                | hoursenance                            |
| -50 dBm-                     |                         |                         |                                                      |             |                                          |                                        |
| -60 dBm—                     |                         |                         |                                                      |             |                                          |                                        |
| -70 dBm                      |                         |                         |                                                      |             |                                          |                                        |
| Start 2.47                   | GHz                     |                         | 691 pts                                              | 8           |                                          | Stop 2.55 GHz                          |
| Marker                       | 12. 63                  |                         |                                                      | e           | 5                                        |                                        |
| Type Re                      | f Trc                   | X-value                 | Y-value                                              | Function    | Fun                                      | ction Result                           |
| M1                           | 1                       | 2.48001 GHz             | 3.25 dBm                                             |             |                                          |                                        |
| M2                           | 1                       | 2.4835 GHz              | -44.07 dBm                                           |             |                                          |                                        |
| M3<br>M4                     | 1                       | 2.5 GHz<br>2.508957 GHz | -44.97 dBm<br>-41.83 dBm                             |             |                                          |                                        |
|                              | 1                       |                         |                                                      | Measuring   | C. C | 4/0 000000                             |

Date: 12.APR.2022 11:42:17

# **Appendix F: Duty Cycle**

# **Test Result**

# For model of XIAO-nRF52840 Sense

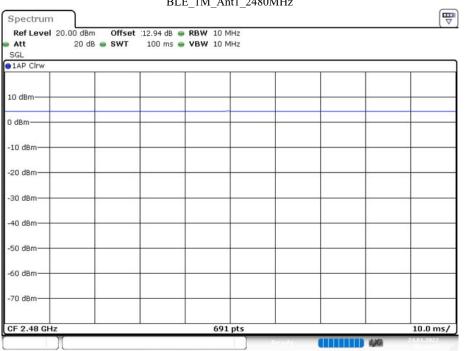

| TestMode | Antenna | tenna Channel Transm<br>Duratio |      | Transmission<br>Period [ms] | Duty Cycle [%] |        |
|----------|---------|---------------------------------|------|-----------------------------|----------------|--------|
|          |         | 2402                            | 100  | 100                         | 100.00         |        |
| BLE_1M   | Ant1    | 2440                            | 100  | 100                         | 100.00         |        |
|          |         | 2480                            | 100  | 100                         | 100.00         |        |
|          | 2M Ant1 | 2402                            | 100  | 100                         | 100.00         |        |
| BLE_2M   |         | 2440                            | 100  | 100                         | 100.00         |        |
|          |         |                                 | 2480 | 100                         | 100            | 100.00 |

#### For model of XIAO-nRF52840

| TestMode | Antenna | Antenna Channel Transmission<br>Duration [ms] |     | Transmission<br>Period [ms] | Duty Cycle [%] |  |
|----------|---------|-----------------------------------------------|-----|-----------------------------|----------------|--|
|          |         | 2402                                          | 100 | 100                         | 100.00         |  |
| BLE_1M   | Ant1    | 2440                                          | 100 | 100                         | 100.00         |  |
|          |         | 2480                                          | 100 | 100                         | 100.00         |  |
|          | 2M Ant1 | 2402                                          | 100 | 100                         | 100.00         |  |
| BLE_2M   |         | 2440                                          | 100 | 100                         | 100.00         |  |
|          |         | 2480                                          | 100 | 100                         | 100.00         |  |

# **Test Graphs**

# For model of XIAO-nRF52840 Sense




# BLE\_1M\_Ant1\_2402MHz



BLE\_1M\_Ant1\_2440MHz

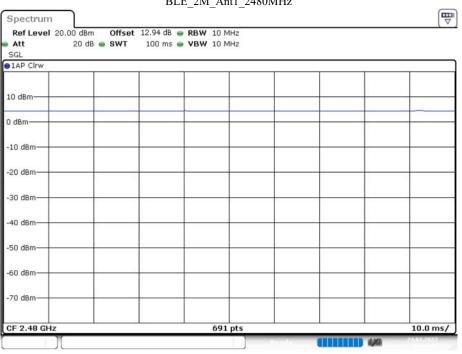
Date: 24.JAN.2022 09:20:33





Date: 24.JAN.2022 09:23:35

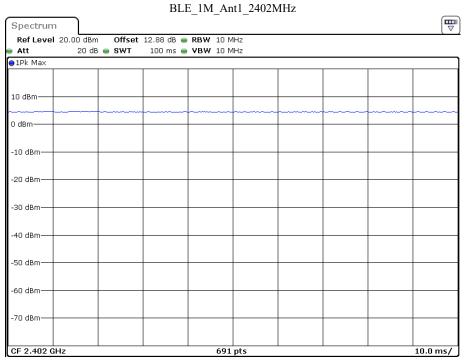
 $BLE\_2M\_Ant1\_2402MHz$ Spectrum Ref Level 20.00 dBm Offset 12.88 dB 🖷 RBW 10 MHz Att 20 dB 🖷 SWT 100 ms 曼 VBW 10 MHz SGL ●1AP Cirw 10 dBm-0 dBm--10 dBm -20 dBm--30 dBm--40 dBm -50 dBm -60 dBm--70 dBm-CF 2.402 GHz 691 pts 10.0 ms/ Date: 24.JAN.2022 09:20:46 BLE\_2M\_Ant1\_2440MHz Spectrum Ref Level 20.00 dBm Offset 12.94 dB 📾 RBW 10 MHz Att 20 dB 🖷 SWT 100 ms 👄 VBW 10 MHz SGL ●1AP Clrw 10 dBm-0 dBm--10 dBm -20 dBm--30 dBm


Date: 24.JAN.2022 09:22:53

-40 dBm -50 dBm--60 dBm--70 dBm-

CF 2.44 GHz

691 pts

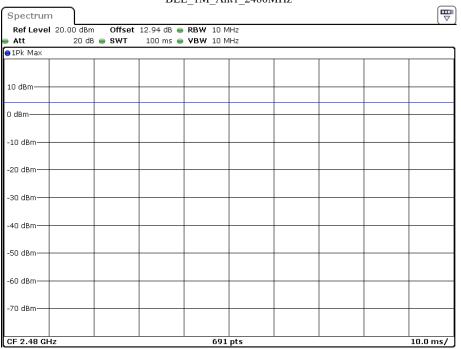

10.0 ms/



BLE\_2M\_Ant1\_2480MHz

Date: 24.JAN.2022 09:27:42

#### For model of XIAO-nRF52840




Date: 12.APR.2022 17:47:55

|             | $\neg$ |       | 521      |                 |     |      | Ē        |
|-------------|--------|-------|----------|-----------------|-----|------|----------|
| Spectrum    |        |       |          |                 |     |      |          |
| Ref Level 2 |        |       |          |                 |     |      |          |
|             | 20 dB  | ■ SWT | 100 ms 👄 | <b>VBW</b> 10 M | IHz |      |          |
| ●1Pk Max    |        |       |          |                 |     | <br> | <br>     |
|             |        |       |          |                 |     |      |          |
| 10.10       |        |       |          |                 |     |      |          |
| 10 dBm      |        |       |          |                 |     |      |          |
|             |        |       |          |                 |     | <br> | <br>     |
| 0 dBm       |        |       |          |                 |     |      |          |
|             |        |       |          |                 |     |      |          |
| -10 dBm     |        |       |          |                 |     | <br> |          |
|             |        |       |          |                 |     |      |          |
| -20 dBm     |        |       |          |                 |     |      |          |
|             |        |       |          |                 |     |      |          |
| -30 dBm     |        |       |          |                 |     |      |          |
| 00 00       |        |       |          |                 |     |      |          |
| 10.15       |        |       |          |                 |     |      |          |
| -40 dBm     |        |       |          |                 |     |      |          |
|             |        |       |          |                 |     |      |          |
| -50 dBm     |        |       |          |                 |     |      |          |
|             |        |       |          |                 |     |      |          |
| -60 dBm     |        |       |          |                 |     |      |          |
|             |        |       |          |                 |     |      |          |
| -70 dBm     |        |       |          |                 |     |      |          |
|             |        |       |          |                 |     |      |          |
|             |        |       |          |                 |     |      |          |
| CF 2.44 GHz |        |       |          | 691             | pts |      | 10.0 ms/ |

BLE 1M Ant1 2440MHz

Date: 12.APR.2022 17:55:51



BLE\_1M\_Ant1\_2480MHz

Date: 12.APR.2022 17:59:47

|            |             |        | DLI        | $2_2 M_A$       | t1_2402N | ΠZ |      | _          |
|------------|-------------|--------|------------|-----------------|----------|----|------|------------|
| Spectrun   | n           |        |            |                 |          |    |      | (₩         |
| Ref Leve   | l 20.00 dBm | Offset | 12.88 dB 👄 | <b>RBW</b> 10 M | 1Hz      |    |      |            |
| 🛛 Att      | 20 dB       | SWT 🖷  | 100 ms 👄   | <b>VBW</b> 10 M | 1Hz      |    |      |            |
| ⊖1Pk Max   |             |        |            |                 |          |    |      |            |
|            |             |        |            |                 |          |    |      |            |
|            |             |        |            |                 |          |    |      |            |
| 10 dBm     |             |        |            |                 |          |    |      |            |
|            |             |        |            |                 |          |    | <br> |            |
| 0 dBm      |             |        |            |                 |          |    |      |            |
|            |             |        |            |                 |          |    |      |            |
| -10 dBm    |             |        |            |                 |          |    |      |            |
|            |             |        |            |                 |          |    |      |            |
| -20 dBm    |             |        |            |                 |          |    |      |            |
|            |             |        |            |                 |          |    |      |            |
| -30 dBm    |             |        |            |                 |          |    |      |            |
| 00 00.00   |             |        |            |                 |          |    |      |            |
| -40 dBm    |             |        |            |                 |          |    |      |            |
| -40 UBIII  |             |        |            |                 |          |    |      |            |
|            |             |        |            |                 |          |    |      |            |
| -50 dBm    |             |        |            |                 |          |    |      |            |
|            |             |        |            |                 |          |    |      |            |
| -60 dBm    |             |        |            |                 |          |    |      |            |
|            |             |        |            |                 |          |    |      |            |
| -70 dBm—   |             |        |            |                 |          |    |      |            |
|            |             |        |            |                 |          |    |      |            |
| CF 2.402 C | <br>3Hz     |        |            | 691             | nts      |    |      | 10.0 ms/   |
| 01 2.702 0 | 31.12       |        |            | 091             | PC       |    |      | 10.0 /115/ |

BLE\_2M\_Ant1\_2402MHz

Date: 12.APR.2022 18:01:00

| Spectrum    |                              |          |
|-------------|------------------------------|----------|
|             | Offset 12.94 dB 👄 RBW 10 MHz | <br>( ~  |
|             | SWT 100 ms • VBW 10 MHz      |          |
| ●1Pk Max    |                              |          |
|             |                              |          |
| 10 dBm      |                              |          |
| 0 dBm       |                              |          |
| -10 dBm     |                              |          |
| -20 dBm     |                              |          |
| -30 dBm     |                              |          |
| -40 dBm     |                              |          |
| -50 dBm     |                              |          |
| -60 dBm     |                              |          |
| -70 dBm     |                              |          |
|             |                              |          |
| CF 2.44 GHz | 691 pts                      | 10.0 ms/ |

# BLE\_2M\_Ant1\_2440MHz

Date: 12.APR.2022 18:02:15

|             |               | BLE_             | 2M_Ant1_248      | 30MHz | _        |
|-------------|---------------|------------------|------------------|-------|----------|
| Spectrum    |               |                  |                  |       |          |
| Ref Level 2 | 20.00 dBm Off | set 12.94 dB 👄 R | BW 10 MHz        |       |          |
| 🕨 Att       | 20 dB 😑 SW    | 'T 100 ms 👄 V    | <b>BW</b> 10 MHz |       |          |
| ●1AP Clrw   |               |                  |                  |       |          |
|             |               |                  |                  |       |          |
| 10 dBm      |               |                  |                  | _     |          |
| 0 dBm       |               |                  |                  |       |          |
| -10 dBm     |               |                  |                  |       |          |
| -20 dBm     |               |                  |                  |       |          |
|             |               |                  |                  |       |          |
| -30 dBm     |               |                  |                  |       |          |
| -40 dBm     |               |                  |                  |       |          |
| -50 dBm     |               |                  |                  | + +   |          |
| -60 dBm     |               |                  |                  |       | <br>     |
| -70 dBm     |               |                  |                  | _     | <br>     |
| 05.0.40.00  |               |                  | (01              |       | 10.0     |
| CF 2.48 GHz |               |                  | 691 pts          |       | 10.0 ms/ |

BLE\_2M\_Ant1\_2480MHz

Date: 12.APR.2022 15:18:13

# \*\*\*\*\* END OF REPORT \*\*\*\*\*