

Report No. : EED32O80763103

Page 1 of 34

TEST	REPORT

- Product Trade mark Model/Type reference Serial Number Report Number FCC ID Date of Issue Test Standards Test result
- : WM1110
- Seeed Studio
- : WM1110-A,WM1110-S
- r : N/A
 - : EED32O80763103
 - : Z4T-WM1110
 - : Jun. 29, 2022
 - : 47 CFR Part 15 Subpart C
 - PASS

Prepared for: Seeed Technology Co., Ltd.

9F, G3 Building, TCL International E City, Zhongshanyuan Road, Nanshan District, Shenzhen, Guangdong Province, P.R.C

> Prepared by: Centre Testing International Group Co., Ltd. Hongwei Industrial Zone, Bao'an 70 District, Shenzhen, Guangdong, China TEL: +86-755-3368 3668 FAX: +86-755-3368 3385

1 Contents

Page

						-
1	С	ONTENTS				2
2	v	ERSION				3
3	т	EST SUMMARY				
250						
4	G	ENERAL INFORMATION				5
	4.1	CLIENT INFORMATION				5
	4.2	GENERAL DESCRIPTION OF EU'	Т			5
	4.3	TEST CONFIGURATION				7
	4.4	TEST ENVIRONMENT				
	4.5	DESCRIPTION OF SUPPORT UNI	тѕ			9
5	Т	EST RESULTS AND MEASUR	REMENT DATA			12
	5.1	ANTENNA REQUIREMENT				12
	5.2	MAXIMUM CONDUCTED OUTPU	JT POWER			
	5.3	20DB EMISSION BANDWIDTH				
	5.4	CARRIER FREQUENCY SEPARAT	ГІОЛ			15
	5.5	NUMBER OF HOPPING CHANNE	L			16
	5.6	TIME OF OCCUPANCY				
	5.7	BAND EDGE MEASUREMENTS				
	5.8	CONDUCTED SPURIOUS EMISSIO				
	5.9	RADIATED SPURIOUS EMISSION				
6	Α	PPENDIX A	<u> </u>		<u> </u>	31
7	Р	HOTOGRAPHS OF TEST SET	ГИР			
8	Р	HOTOGRAPHS OF EUT CON	STRUCTIONAL DE	ETAILS		
2				(

2 Version

	Version No	12	Date	10		Descriptio	on	12
(S)	00	Ju	un. 29, 2022	S)		Original		
ŀ	Ì		Ì		Ì		(LA)	

Test Item	Test Requirement	Result
Antenna Requirement	47 CFR Part 15, Subpart C Section 15.203/15.247 (c)	PASS
AC Power Line Conducted Emission	47 CFR Part 15, Subpart C Section 15.207	N/A
Maximum Conducted Output Power	47 CFR Part 15, Subpart C Section 15.247 (b)(1)	PASS
20dB Emission Bandwidth	47 CFR Part 15, Subpart C Section 15.247 (a)(1)	PASS
Carrier Frequency Separation	47 CFR Part 15, Subpart C Section 15.247 (a)(1)	PASS
Number of Hopping Channels	47 CFR Part 15, Subpart C Section 15.247 (a)(1)	PASS
Time of Occupancy	47 CFR Part 15, Subpart C Section 15.247 (a)(1)	PASS
Pseudorandom Frequency Hopping Sequence	47 CFR Part 15, Subpart C Section 15.247(b)(4)	PASS
Band Edge Measurements	47 CFR Part 15, Subpart C Section 15.247(d)	PASS
Conducted Spurious Emissions	47 CFR Part 15, Subpart C Section 15.247(d)	PASS
Radiated Spurious emissions	47 CFR Part 15, Subpart C Section 15.205/15.209	PASS
Restricted bands around fundamental frequency	47 CFR Part 15, Subpart C Section 15.205/15.209	PASS

Remark:

Company Name and Address shown on Report, the sample(s) and sample Information were provided by the applicant who should be responsible for the authenticity which CTI hasn't verified. Model No.:WM1110-A,WM1110-S

Only the model WM1110-S was tested, Their electrical circuit design, layout, components used and internal wiring are identical, the difference is whether it contains an authentication chip or not.

WM1110-S has two different models of encryption chips,WM1110-S will use either of these two encryption chips and the other parts will be exactly the same.


4 General Information

4.1 Client Information

Applicant:	Seeed Technology Co., Ltd.
Address of Applicant:	9F,G3 Building,TCL International E City, Zhongshanyuan Road, Nanshan District, Shenzhen, Guangdong Province, P.R.C
Manufacturer:	SeeedTechnology Co., Ltd.
Address of Manufacturer:	9F,G3 Building,TCLInternational E City, Zhongshanyuan Road, Nanshan District, Shenzhen, Guangdong Province, P.R.C
Factory:	Shenzhen Xinxian Technology Co, Limited
Address of Factory:	F5, Building B17, Hengfeng Industrial City, No.739 Zhoushi Rd, Baoan District, Shenzhen,Guangdong, P.R.C.F5, Building B17, Hengfeng Industrial City, No.739 Zhoushi Rd,Baoan District, Shenzhen, Guangdong, P.R.C.

4.2 General Description of EUT

T . T	Ceneral Description	OI LOI		
	Product Name:	WM1110		6
	Model No.:	WM1110-A,WM1110-S		
	Test Model No.:	WM1110-S		
	Trade Mark:	Seeed Studio		
	Product Type:	Fix Location	(C)	
	Operation Frequency:	902MHz~928MHz		
	Modulation Technique:	Frequency Hopping Spread Spectrum(FHSS)		
2	Modulation Type:	LoRa Chirp Spread Spectrum		
	Number of Channel:	64		(\mathcal{C})
	Hopping Channel Type:	Adaptive Frequency Hopping systems		\smile
	Antenna Type:	Spring Antenna		
	Antenna Gain:	3.17 dBi		
	Power Supply:	DC 3.3V	(\mathcal{O})	
	Test Voltage:	DC 3.3V		
	Sample Received Date:	May 30, 2022		- 0 -
	Sample tested Date:	May 30, 2022 to Jun. 21, 2022		
	~ ~ /			

Page 6 of 34

Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
1	902.3MHz	21	906.3MHz	41	910.3MHz	61	914.3MHz
2	902.5MHz	22	906.5MHz	42	910.5MHz	62	914.5MHz
3	902.7MHz	23	906.7MHz	43	910.7MHz	63	914.7MHz
4	902.9MHz	24	906.9MHz	44	910.9MHz	64	914.9MHz
5	903.1MHz	25	907.1MHz	45	911.1MHz		
6	903.3MHz	26	907.3MHz	46	911.3MHz	13	S
7	903.5MHz	27	907.5MHz	47	911.5MHz	6)
8	903.7MHz	28	907.7MHz	48	911.7MHz		
9	903.9MHz	29	907.9MHz	49	911.9MHz		
10	904.1MHz	30	908.1MHz	50	912.1MHz	\	(2
11	904.3MHz	31	908.3MHz	51	912.3MHz		G
12	904.5MHz	32	908.5MHz	52	912.5MHz		
13	904.7MHz	33	908.7MHz	53	912.7MHz		
14	904.9MHz	34	908.9MHz	54	912.9MHz		6
15	905.1MHz	35	909.1MHz	55	913.1MHz	C)
16	905.3MHz	36	909.3MHz	56	913.3MHz		
17	905.5MHz	37	909.5MHz	57	913.5MHz		~0.1
18	905.7MHz	38	909.7MHz	58	913.7MHz		(2
19	905.9MHz	39	909.9MHz	59	913.9MHz		e
20	906.1MHz	40	910.1	60	914.1MHz		

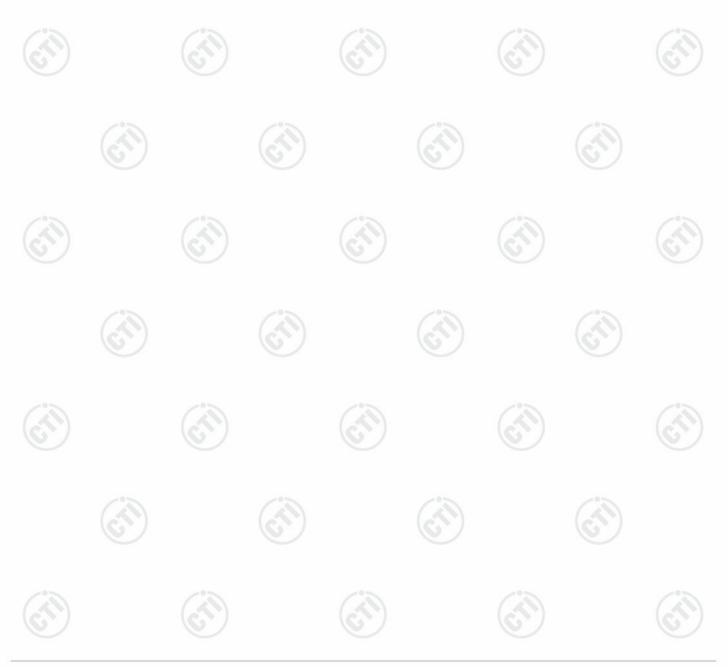
Note:

In section 15.31(m), regards to the operating frequency range over 10 MHz, the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below:

	(6))
Channel	Frequency
The Lowest channel	902.3MHz
The Middle channel	908.5MHz
The Highest channel	914.9MHz

4.3 Test Configuration

EUT Test Software Settir	ngs:	
Software:	Putty	
EUT Power Grade:	Power level is built-in set parameters an	d cannot be changed and selected
Use test software to set the transmitting of the EUT.	e lowest frequency, the middle frequency and t	he highest frequency keep
Mode	Channel	Frequency(MHz)
	CH1	902.3
BW125KHz	CH32	908.5
	CH64	914.9



4.4 Test Environment

	Operating Environmen	t:				
	Radiated Spurious Emi	issions:				
	Temperature:	22~25.0 °C				
13	Humidity:	50~55 % RH		(i)		1
67	Atmospheric Pressure:	1010mbar		(\mathcal{O})		(\mathcal{C})
\sim	RF Conducted:					
	Temperature:	22~25.0 °C				
	Humidity:	50~55 % RH	195		12	
	Atmospheric Pressure:	1010mbar	(\mathcal{A})		(\mathcal{A})	

4.5 Description of Support Units

The EUT has been tested with associated equipment below. support equipment

turer Model No.	Certification	Supplied by
L Latitude 3490	FCC&CE	СТІ

4.6 Test Location

All tests were performed at:

Centre Testing International Group Co., Ltd Building C, Hongwei Industrial Park Block 70, Bao'an District, Shenzhen, China Telephone: +86 (0) 755 33683668 Fax:+86 (0) 755 33683385 No tests were sub-contracted. FCC Designation No.: CN1164

4.7 Measurement Uncertainty (95% confidence levels, k=2)

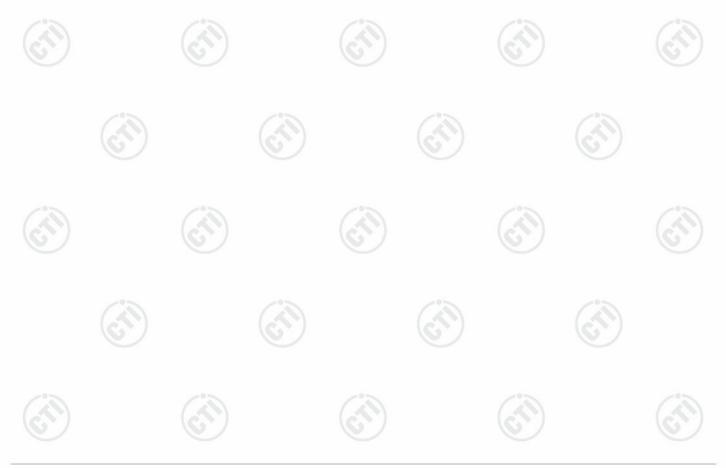
No.	Item	Measurement Uncertainty
1	Radio Frequency	7.9 x 10 ⁻⁸
		0.46dB (30MHz-1GHz)
2	RF power, conducted	0.55dB (1GHz-40GHz)
5)	(25)	3.3dB (9kHz-30MHz)
2	3 Radiated Spurious emission test	4.3dB (30MHz-1GHz)
3		4.5dB (1GHz-18GHz)
		3.4dB (18GHz-40GHz)
4		3.5dB (9kHz to 150kHz)
4	Conduction emission	3.1dB (150kHz to 30MHz)
5	Temperature test	0.64°C
6	Humidity test	3.8%
7	DC power voltages	0.026%

4.8 Equipment List

RF test system					
Equipment	Manufacturer	Mode No.	Serial Number	Cal. Date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)
Spectrum Analyzer	Keysight	N9010A	MY54510339	12-24-2021	12-23-2022
Signal Generator	Keysight	N5182B	MY53051549	12-24-2021	12-23-2022
Spectrum Analyzer	R&S	FSV40	101200	08-26-2021	08-25-2022
Signal Generator	Agilent	N5181A	MY46240094	12-24-2021	12-23-2022
DC Power	Keysight	E3642A	MY56376072	12-24-2021	12-23-2022
Power unit	R&S	OSP120	101374	12-24-2021	12-23-2022
RF control unit	JS Tonscend	JS0806-2	158060006	12-24-2021	12-23-2022
Communication test set	R&S	CMW500	120765	08-04-2021	08-03-2022
high-low temperature test chamber	Dong Guang Qin Zhuo	LK-80GA	QZ20150611879	12-24-2021	12-23-2022
Temperature/ Humidity Indicator	biaozhi	HM10	1804186	06-24-2021 06-16-2022	06-23-2022 06-15-2023
BT&WI-FI Automatic test software	JS Tonscend	JS1120-3	2.6.77.0518	<u>v</u>	

TDK R&S warzbeck	Model SAC-3 ESCI7 VULB 9163	Serial No. 100938-003 9163-618	Cal. Date 05/22/2022 10/14/2021 05/22/2022	Due Date 05/21/2025 10/13/2022
R&S	ESCI7		10/14/2021	10/13/2022
	(3)		6	0
warzbeck	VULB 9163	9163-618	05/22/2022	05/04/0000
		0100 010	0312212022	05/21/2023
warzbeck	FMZB 1519B	1519B-076	04-15-2021	04-14-2024
naturo NC	CD/070/10711112		- 6	0
LINGREN	BBHA 9120D	9120D-1869	04/15/2021	04/14/2024
Agilent	8449B	3008A02425	06/23/2021 06/20/2022	06/22/2022 06/19/2023
-	LINGREN	LINGREN BBHA 9120D	LINGREN BBHA 9120D 9120D-1869	LINGREN BBHA 9120D 9120D-1869 04/15/2021

		3M full-anechoi	c Chamber			
Equipment	Manufacturer	Model No.	Serial Number	Cal. Date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)	
RSE Automatic test software	JS Tonscend	JS36-RSE	10166			
Receiver	Keysight	N9038A	MY57290136	03-01-2022	02-28-2023	
Spectrum Analyzer	Keysight	N9020B	MY57111112	02-23-2022	02-22-2023	
Spectrum Analyzer	Keysight	N9030B	MY57140871	02-23-2022	02-22-2023	
TRILOG Broadband Antenna	Schwarzbeck	VULB 9163	9163-1148	04-28-2021	04-27-2024	
Horn Antenna	Schwarzbeck	BBHA 9170	9170-832	04-15-2021	04-14-2024	
Horn Antenna	ETS-LINDGREN	3117	57407	07-04-2021	07-03-2024	
Preamplifier	EMCI	EMC184055SE	980597	04-20-2022	04-19-2023	
Preamplifier	EMCI	EMC001330	980563	04-01-2022	03-31-2023	
Preamplifier	JS Tonscend	980380	EMC051845SE	12-24-2021	12-23-2022	
Communication test set	R&S	CMW500	102898	12-24-2021	12-23-2022	
Temperature/ Humidity Indicator	biaozhi	GM1360	EE1186631	04-11-2022	04-10-2023	
Fully Anechoic Chamber	TDK	FAC-3	(2)	01-09-2021	01-08-2024	
Cable line	Times	SFT205-NMSM-2.50M	394812-0001			
Cable line	Times	SFT205-NMSM-2.50M	394812-0002			
Cable line	Times	SFT205-NMSM-2.50M	394812-0003	(J)-	(&	
Cable line	Times	SFT205-NMSM-2.50M	393495-0001			
Cable line	Times	EMC104-NMNM-1000	SN160710			
Cable line	Times	SFT205-NMSM-3.00M	394813-0001	(3	- 69	
Cable line	Times	SFT205-NMNM-1.50M	381964-0001			
Cable line	Times	SFT205-NMSM-7.00M	394815-0001	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		
Cable line	Times	HF160-KMKM-3.00M	393493-0001	(S)	(6	



5 Test results and Measurement Data

5.1 Antenna Requirement

Standard requirement:	47 CFR Part 15C Section 15.203 /247(c)
15.203 requirement:	
responsible party shall be u antenna that uses a unique	I be designed to ensure that no antenna other than that furnished by the used with the device. The use of a permanently attached antenna or of an e coupling to the intentional radiator, the manufacturer may design the unit an be replaced by the user, but the use of a standard antenna jack or ibited.
antennas with directional g section, if transmitting ante power from the intentional	er limit specified in paragraph (b) of this section is based on the use of ains that do not exceed 6 dBi. Except as shown in paragraph (c) of this nnas of directional gain greater than 6 dBi are used, the conducted output radiator shall be reduced below the stated values in paragraphs (b)(1), ction, as appropriate, by the amount in dB that the directional gain of the
EUT Antenna:	Please see Internal photos

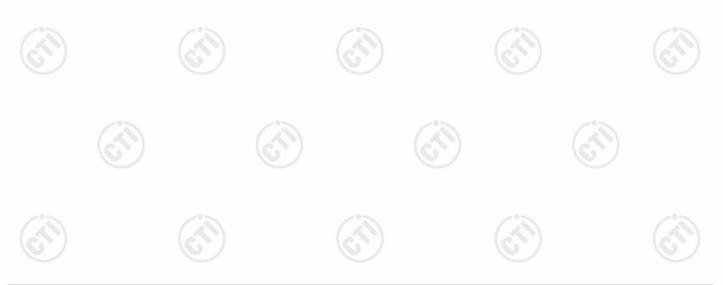
The antenna is Spring antenna. The best case gain of the antenna is 3.17dBi.

5.2 Maximum Conducted Output Power

	Test Requirement:	47 CFR Part 15C Section 15.247 (b)(1)	
	Test Method:	ANSI C63.10:2013	
Ĩ	Test Setup:	Control Computer Computer Computer Computer Computer Computer Computer Computer Computer Computer Computer Computer Computer Power Suppy Table	(Sti
<u>s</u>	Test Procedure:	Remark: Offset=Cable loss+ attenuation factor. Use the following spectrum analyzer settings: Span = approximately 5 times the 20 dB bandwidth, centered on a hopping channel RBW > the 20 dB bandwidth of the emission being measured VBW ≥ RBW Sweep = auto Detector function = peak Trace = max hold	(ci)
_*>	Limit:	Allow the trace to stabilize. Use the marker-to-peak function to set the marker to the peak of the emission. 21dBm	~
	Exploratory Test Mode:	Non-hopping transmitting with all kind of modulation and all kind of	of data type

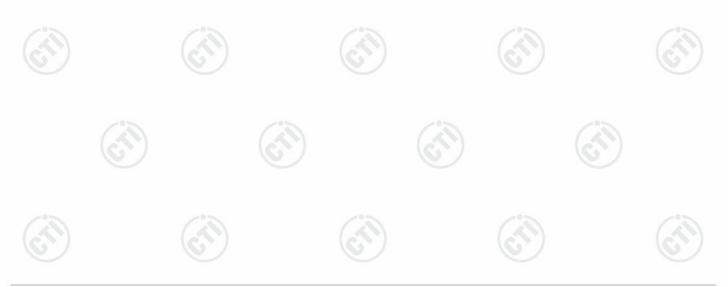
5.3 20dB Emission Bandwidth

measurement. 2. Set to the maximum power setting and enable the EUT transmit continuously. 3. Use the following spectrum analyzer settings for 20dB Bandwidth measurement. Span = approximately 2 to 5 times the 20 dB bandwidth, centered on a hopping channel; 1%≤RBW ≤5% of the 20 dB bandwidth; VBW≥3RBW; Sweep = auto; Detector function = peak; Trace = max hold. Limit: NA Exploratory Test Mode: Non-hopping transmitting with all kind of modulation and all kind of data type		
Test Setup: Image: Construction of the sector of the s	Test Requirement:	47 CFR Part 15C Section 15.247 (a)(1)
Test Procedure: 1. The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement. 2. Set to the maximum power setting and enable the EUT transmit continuously. 3. Use the following spectrum analyzer settings for 20dB Bandwidth measurement. 2. Set to the maximum power setting and enable the EUT transmit continuously. 3. Use the following spectrum analyzer settings for 20dB Bandwidth measurement. 2. Set to the maximum power setting and enable the EUT transmit continuously. 3. Use the following spectrum analyzer settings for 20dB Bandwidth measurement. 2. Set to the maximum power setting and enable the EUT transmit continuously. 3. Use the following spectrum analyzer settings for 20dB Bandwidth measurement. 2. Measure and record the results in the test report. NA Limit: NA Exploratory Test Mode: Non-hopping transmitting with all kind of modulation and all kind of data type	Test Method:	ANSI C63.10:2013
Test Procedure: 1. The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement. 2. Set to the maximum power setting and enable the EUT transmit continuously. 3. Use the following spectrum analyzer settings for 20dB Bandwidth measurement. Span = approximately 2 to 5 times the 20 dB bandwidth, centered on a hopping channel; 1%≤RBW ≤5% of the 20 dB bandwidth; VBW≥3RBW; Sweep = auto; Detector function = peak; Trace = max hold. Limit: NA Exploratory Test Mode: Non-hopping transmitting with all kind of modulation and all kind of data type	Test Setup:	Control Congular Pothy P
Exploratory Test Mode: Non-hopping transmitting with all kind of modulation and all kind of data type	Test Procedure:	 The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement. Set to the maximum power setting and enable the EUT transmit continuously. Use the following spectrum analyzer settings for 20dB Bandwidth measurement. Span = approximately 2 to 5 times the 20 dB bandwidth, centered on a hopping channel; 1%≤RBW ≤5% of the 20 dB bandwidth; VBW≥3RBW; Sweep = auto; Detector function = peak; Trace = max hold.
	Limit:	NA
Test Results: Refer to Annendix A	Exploratory Test Mode	Non-hopping transmitting with all kind of modulation and all kind of data type
	Test Results:	Refer to Appendix A



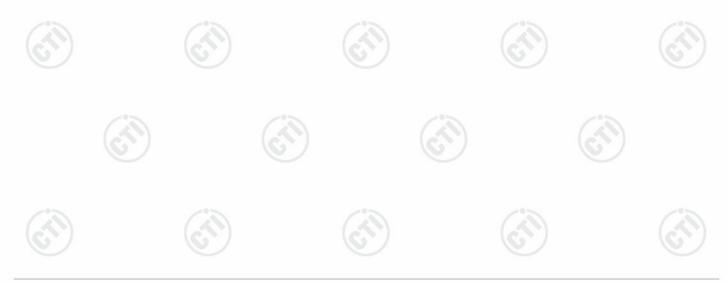
5.4 Carrier Frequency Separation

Test Requirement:	47 CFR Part 15C Section 15.247 (a)(1)					
Test Method:	ANSI C63.10:2013					
Test Setup:	Control Control Control Power Supply Power Toble RF test System Instrument					
	Remark: Offset=Cable loss+ attenuation factor.					
Test Procedure:	 The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement. Set to the maximum power setting and enable the EUT transmit continuously. Enable the EUT hopping function. Use the following spectrum analyzer settings: Span = wide enough to capture the peaks of two adjacent channels; RBW is set to approximately 30% of the channel spacing, adjust as necessary to best identify the center of each individual channel; VBW≥RBW; Sweep = auto; Detector function = peak; Trace = max hold. Use the marker-delta function to determine the separation between the peaks of the adjacent channels. Record the value in report. 					
Limit:	Frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater.					
Exploratory Test Mode:	Hopping transmitting with all kind of modulation and all kind of data type					
Test Results:	Refer to Appendix A					



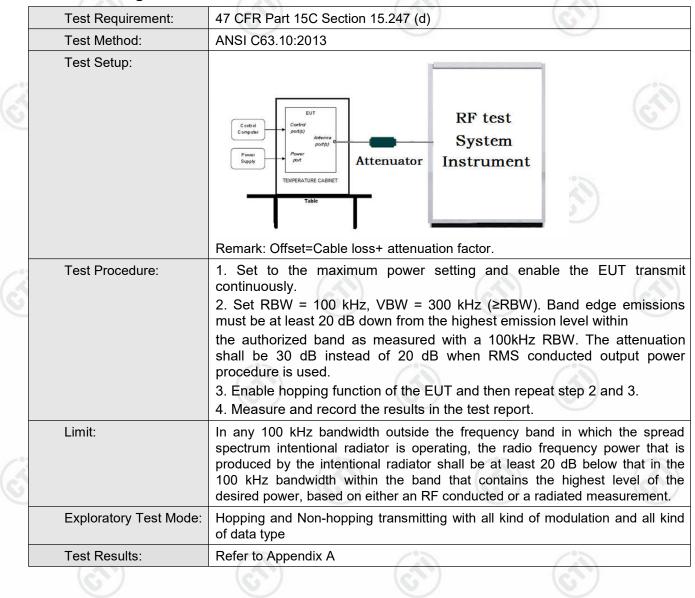

5.5 Number of Hopping Channel

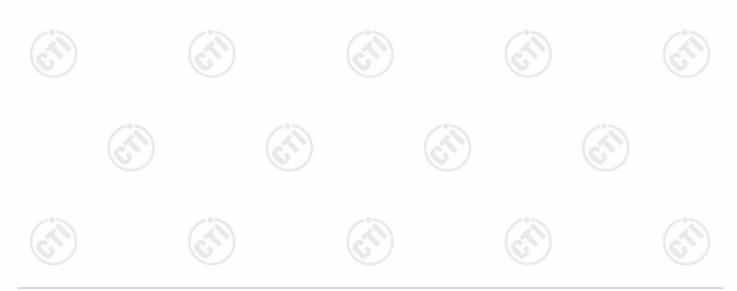
6		(23)		(\sim)	(6	(2)	
Test Re	quirement:	47 CFR Part 15C Section 15.247 (a)(1)					
Test Me	thod:	ANSI C63.10:2013					
Test Set	tup:	Control Computer Power Supply	EUT Control pontp) Power pontp) Power TEMPERATURE CABNET Table	Attenuator	RF test System Instrument		
		Remark: O)ffset=Cable	oss+ attenua	tion factor.	_	
Test Pro	ocedure:	cable and each meas 2. Set to continuous	attenuator. surement. the maximu sly.	The path loss	was compensate	rum analyzer by RF ed to the results for e the EUT transmit	
		3. Enable t	the EUT hop	ping function.			
		band of op or the 20 c	peration; set B bandwidth	the RBW to l	ess than 30% of t s smaller; VBW≥I	an = the frequency the channel spacing RBW; Sweep= auto;	
a la		total chann	nel.	ping frequend ment data in i		d as the number of	
Limit:			hopping sys			z band shall use at	
Test Mo	de:	Hopping tra	ansmitting wi	th all kind of	modulation		
Test Re	sults:	Refer to Ap			6	(1)	
		U.		U	6	S S S S S S S S S S S S S S S S S S S	



5.6 Time of Occupancy

Test Requirement:	47 CFR Part 15C Section 15.247 (a)(1)
Test Method:	ANSI C63.10:2013
Test Setup:	C arteur C arteur Power Power Toble Table RF test System Instrument
	Remark: Offset=Cable loss+ attenuation factor.
Test Procedure:	 The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement. Set to the maximum power setting and enable the EUT transmit continuously. Enable the EUT hopping function. Use the following spectrum analyzer settings: Span = zero span, centered on a hopping channel; RBW shall be ≤ channel spacing and where possible RBW should be set >> 1 / T, where T is the expected dwell time per channel; VBW≥RBW; Sweep = as necessary to capture the entire dwell time per hopping channel; Detector function = peak; Trace = max hold. Measure and record the results in the test report.
Limit:	The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed.
Test Mode:	Hopping transmitting with all kind of modulation and all kind of data type.
Test Results:	Refer to Appendix A
67	





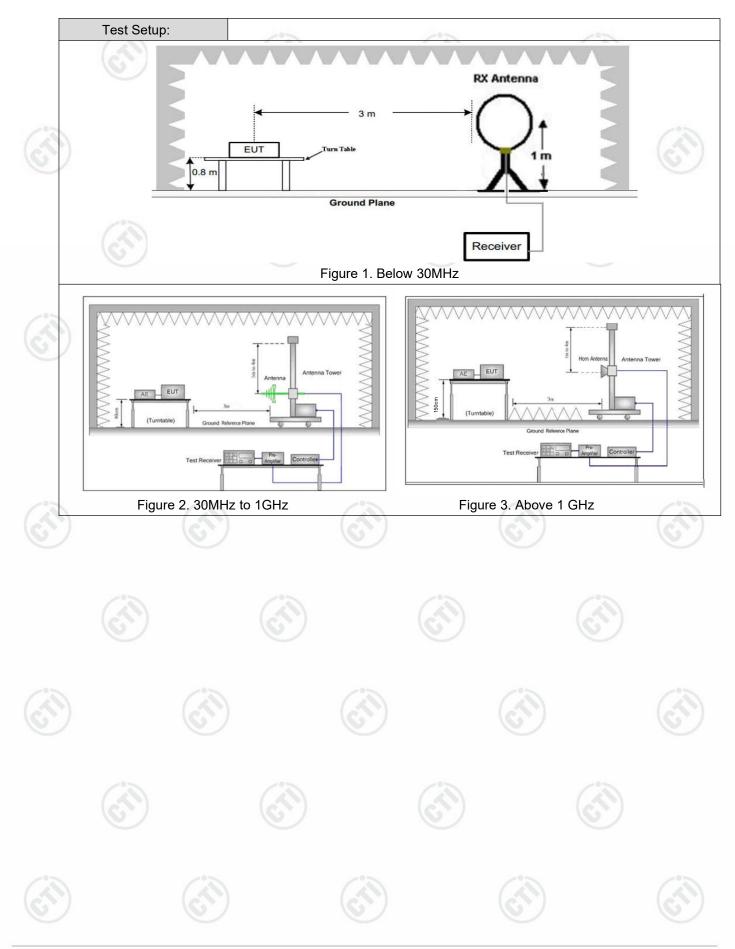
5.7 Band edge Measurements

5.8 Conducted Spurious Emissions

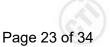
	Test Requirement:	47 CFR Part 15C Section 15.247 (d)
	Test Method:	ANSI C63.10:2013
Ĩ	Test Setup:	Control Computer Dorfty Power Supph Table RF test System Instrument
		Remark: Offset=Cable loss+ attenuation factor.
	Test Procedure:	 The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement. Set to the maximum power setting and enable the EUT transmit continuously. Set RBW = 100 kHz, VBW = 300kHz, scan up through 10th harmonic. All harmonics / spurs must be at least 20 dB down from the highest emission level within the authorized band as measured with a 100kHz RBW. Measure and record the results in the test report. The RF fundamental frequency should be excluded against the limit line in the operating frequency band.
Ś	Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.
	Exploratory Test Mode:	Non-hopping transmitting with all kind of modulation and all kind of data type
	Test Results:	Refer to Appendix A

5.9 Radiated Spurious Emission & Restricted bands

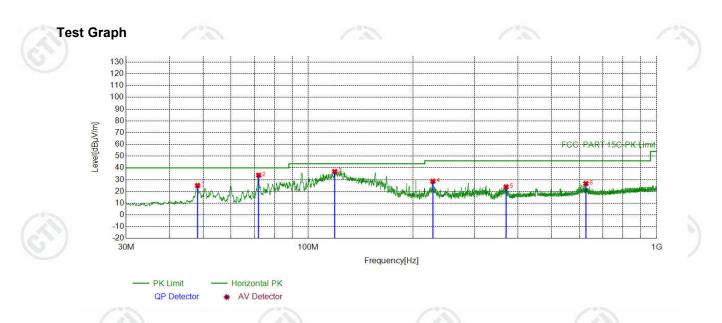
	Test Requirement:	47 CFR Part 15C Secti	on 1	5.209 and 15	.205	G)
	Test Method:	ANSI C63.10: 2013	ANSI C63.10: 2013				
	Test Site:	Measurement Distance	: 3m	n (Semi-Anech	noic Cham	ber)	
	Receiver Setup:	Frequency		Detector	RBW	VBW	Remark
		0.009MHz-0.090MH	z	Peak	10kHz	2 30kHz	Peak
		0.009MHz-0.090MH	z	Average	10kHz	30kHz	Average
		0.090MHz-0.110MH	z	Quasi-peak	10kHz	2 30kHz	Quasi-peak
		0.110MHz-0.490MH	z	Peak	10kHz	30kHz	Peak
		0.110MHz-0.490MH	z	Average	10kHz	30kHz	Average
		0.490MHz -30MHz		Quasi-peak	10kHz	2 30kHz	Quasi-peak
		30MHz-1GHz		Peak	100 kH	z 300kHz	Peak
				Peak	1MHz	3MHz	Peak
		Above 1GHz		Peak	1MHz	10kHz	Average
	Limit:	Frequency		eld strength crovolt/meter)	Limit (dBuV/m)	Remark	Measuremer distance (m
		0.009MHz-0.490MHz	2	400/F(kHz)	-	-	300
		0.490MHz-1.705MHz	24000/F(kHz)		-	-73	30
		1.705MHz-30MHz	30		-	0	30
		30MHz-88MHz		100	40.0	Quasi-peak	3
		88MHz-216MHz		150	43.5	Quasi-peak	3
		216MHz-960MHz		200	46.0	Quasi-peak	3
		960MHz-1GHz	P)	500	54.0	Quasi-peak	3
-		Above 1GHz	/	500	54.0	Average	3
		Note: 15.35(b), Unless emissions is 20df applicable to the peak emission lev	3 ab equi	ove the maxin pment under t	num permi test. This p	tted average	emission limit



Page 21 of 34

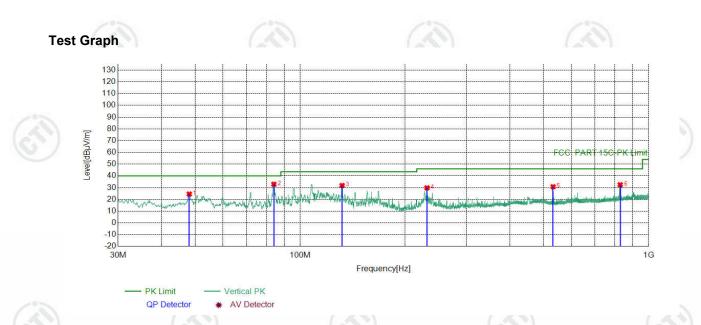


Exploratory Test Mode	 Repeat above procedures until all frequencies measured was complete. Non-hopping transmitting mode with all kind of modulation and all kind of
	 f. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet. g. Test the EUT in the lowest channel (2402MHz),the middle channel (2441MHz),the Highest channel (2480MHz) h. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is the worst case.
	 d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading. e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
	 distance, while keeping the measurement antenna aimed at the source of emissions at each frequency of significant emissions, with polarization oriented for maximum response. The measurement antenna may have to be higher or lower than the EUT, depending on the radiation pattern of the emission and staying aimed at the emission source for receiving the maximum signal. The final measurement antenna elevation shall be that which maximizes the emissions. The measurement antenna elevation for maximum emissions shall be restricted to a range of heights of from 1 m to 4 m above the ground or reference ground plane. b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower. c. The antenna height is varied from one meter to four meters above the
Test Procedure:	 a. 1) Below 1G: The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter semi-anechoic camber. The table was rotated 360 degrees to determine the position of the highest radiation. 2) Above 1G: The EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter semi-anechoic camber. The table was rotated 360 degrees to determine the position of the highest radiation. Note: For the radiated emission test above 1GHz: Place the measurement antenna away from each area of the EUT determined to be a source of emissions at the specified measurement



Radiated Spurious Emission below 1GHz:

During the test, the Radiates Emission from 30MHz to 1GHz was performed in all modes, only the worst case lowest channel of LORA was recorded in the report.


	Suspe	cted List			_					
	NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	1	48.1408	-17.17	42.17	25.00	40.00	15.00	PASS	Horizontal	PK
G	2	72.1022	-21.17	54.96	33.79	40.00	6.21	PASS	Horizontal	PK
9	3	119.1519	-19.93	56.82	36.89	43.50	6.61	PASS	Horizontal	PK
	4	227.9968	-17.05	45.68	28.63	46.00	17.37	PASS	Horizontal	PK
	5	369.7280	-13.55	37.40	23.85	46.00	22.15	PASS	Horizontal	PK
	6	626.7067	-8.43	35.15	26.72	46.00	19.28	PASS	Horizontal	PK
		G		67		6			G	



Page 24 of 34

Suspe	cted List								
NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	48.0438	-17.17	41.75	24.58	40.00	15.42	PASS	Vertical	PK
2	84.0344	-21.58	54.53	32.95	40.00	7.05	PASS	Vertical	PK
3	131.9572	-21.66	53.53	31.87	43.50	11.63	PASS	Vertical	PK
4	231.1981	-16.96	46.79	29.83	46.00	16.17	PASS	Vertical	PK
5	531.9282	-10.21	40.99	30.78	46.00	15.22	PASS	Vertical	PK
6	828.7779	-6.10	38.59	32.49	46.00	13.51	PASS	Vertical	PK
1					C				

Radiated Spurious Emission above 1GHz:

						10 m h		1		
	Mode	:	LC	ORA Transmit	ting		Channel:		902.3 MH	z
	NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
-	1	1318.0212	-26.70	61.52	34.82	74.00	39.18	Pass	н	PK
1	2	1993.0662	-23.65	62.66	39.01	74.00	34.99	Pass	н	PK
9	3	2707.1138	-22.24	61.60	39.36	74.00	34.64	Pass	н	PK
	4	4248.6166	-17.64	60.48	42.84	74.00	31.16	Pass	н	PK
	5	5936.5291	-13.41	56.16	42.75	74.00	31.25	Pass	н	PK
	6	7830.2554	-11.45	55.30	43.85	74.00	30.15	Pass	Н	PK
	7	1499.8333	-26.87	66.23	39.36	74.00	34.64	Pass	V	PK
	8	1999.6666	-23.61	63.47	39.86	74.00	34.14	Pass	V	PK
	9	2707.1138	-22.24	61.26	39.02	74.00	34.98	Pass	V	PK
	10	3981.5988	-18.93	59.10	40.17	74.00	33.83	Pass	V	PK
1	11	5738.5159	-13.64	56.10	42.46	74.00	31.54	Pass	V	PK
2	12	7427.0285	-11.53	55.62	44.09	74.00	29.91	Pass	V	PK
-	1	•		•						

	Mode	:		LORA Transmi	itting		Channel:		908.5 MH	z
	NO	Freq. [MHz]	Factor [dB]	r Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
	1	1334.2223	-26.72	2 63.46	36.74	74.00	37.26	Pass	н	PK
	2	2029.0686	-23.46	60.77	37.31	74.00	36.69	Pass	н	PK
	3	2663.3109	-22.44	63.73	41.29	74.00	32.71	Pass	н	PK
1	4	3415.7611	-20.48	3 59.06	38.58	74.00	35.42	Pass	Н	PK
	5	5060.4707	-15.87	7 55.99	40.12	74.00	33.88	Pass	Н	PK
-	6	7772.6515	-11.37	7 55.12	43.75	74.00	30.25	Pass	Н	PK
	7	1594.6396	-26.15	65.78	39.63	74.00	34.37	Pass	V	PK
	8	2298.4866	-23.88	60.71	36.83	74.00	37.17	Pass	V	PK
	9	3199.7467	-20.62	2 59.51	38.89	74.00	35.11	Pass	V	PK
	10	3982.1988	-18.93	61.76	42.83	74.00	31.17	Pass	V	PK
	11	5652.1101	-13.97	7 55.58	41.61	74.00	32.39	Pass	V	PK
	12	6643.3762	-12.88	3 57.68	44.80	74.00	29.20	Pass	V	PK

CTI 华测检测 Report No.: EED32080763103

Page 26 of 34

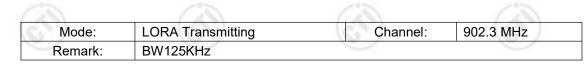
	Mode:		L	ORA Transmit	ting		Channel:		914.9 MH	z
	NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
	1	1661.2441	-25.60	63.07	37.47	74.00	36.53	Pass	н	PK
6	2	2393.2929	-23.81	61.56	37.75	74.00	36.25	Pass	Н	PK
1	3	3109.1406	-21.15	59.78	38.63	74.00	35.37	Pass	Н	PK
2	4	3995.3997	-18.87	59.50	40.63	74.00	33.37	Pass	Н	PK
	5	5320.2880	-14.76	57.04	42.28	74.00	31.72	Pass	Н	PK
	6	6865.3910	-12.20	54.84	42.64	74.00	31.36	Pass	Н	PK
	7	1217.8145	-26.61	60.21	33.60	74.00	40.40	Pass	V	PK
	8	1999.6666	-23.61	61.97	38.36	74.00	35.64	Pass	V	PK
	9	2666.3111	-22.43	66.37	43.94	74.00	30.06	Pass	V	PK
	10	3516.5678	-20.42	59.51	39.09	74.00	34.91	Pass	V	PK
	11	5310.0873	-14.81	60.26	45.45	74.00	28.55	Pass	V	PK
2	12	6382.9589	-12.93	57.54	44.61	74.00	29.39	Pass	V	PK
			1631		16.7		10.7	1		1057

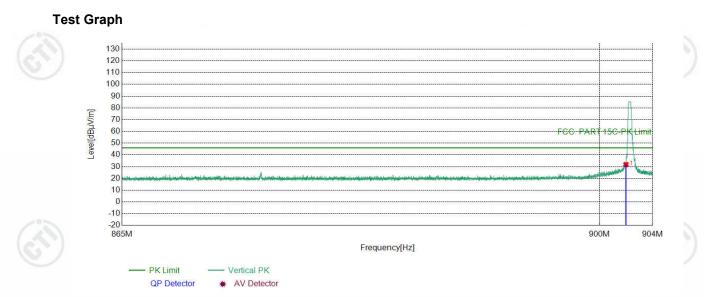
Remark:


1) The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

Final Test Level = Receiver Reading + Antenna Factor + Cable Factor – Preamplifier Factor

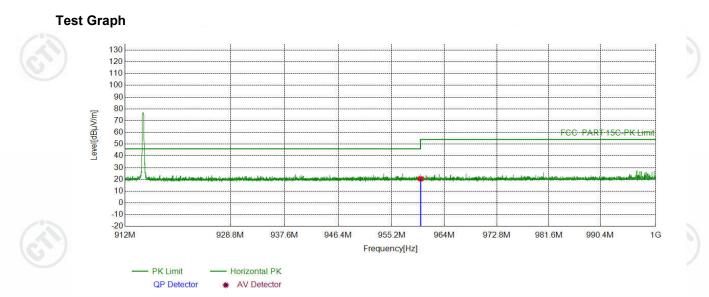
2) Scan from 9kHz to 25GHz, the disturbance above 10GHz and below 30MHz was very low. As shown in this section, for frequencies above 1GHz, the field strength limits are based on average limits. However, the peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation. So, only the peak measurements were shown in the report.



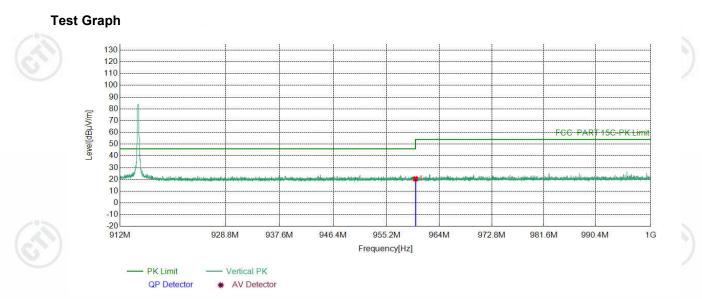


Test p	lot as follows:								
	Mode: Remark:)RA Transm V125KHz	nitting		Channel:	902.	3 MHz	
Test G	- 2.0				12				
	100 90 80 70 60 50 40						Fi	CC PART 15C-PCL	imit
-	30 20 10	an a		e de la composition de la confection de la	anin falation an in false and a false and	haningthe section of the section of	and the state of the		
	20		lorizontal PK AV Detector	Free	guency[Hz]			900M	904M
	20			Free Level [dBµV/m]	guency[Hz]	Margin [dB]	Result	900M	904M
Suspe	20 10 0 -10 -20 865M PK Limit QP Dete ected List Freq. [MHz] 902.0000	Factor	AV Detector Reading [dBµV] 30.63	Level [dBµV/m] 25.67	Limit [dBµV/m] 46.00	[dB] 20.33	Result	Polarity Horizontal	
Suspe	20 10 0 -10 -20 865M 	Factor [dB]	AV Detector Reading [dBµV]	Level [dBµV/m] 25.67	Limit [dBµV/m]	[dB] 20.33		Polarity	Ren
Suspe	20 10 0 -10 -20 865M 	Factor [dB]	AV Detector Reading [dBµV] 30.63	Level [dBµV/m] 25.67	Limit [dBµV/m] 46.00	[dB] 20.33		Polarity Horizontal	Ren

Suspect	ted List								
NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	902.0000	-4.96	36.78	31.82	46.00	14.18	PASS	Vertical	PK



Suspec	ted List								
NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	960.0000	-4.38	24.94	20.56	46.00	25.44	PASS	Horizontal	PK



Suspec	ted List								
NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	960.0000	-4.38	24.86	20.48	46.00	25.52	PASS	Vertical	PK

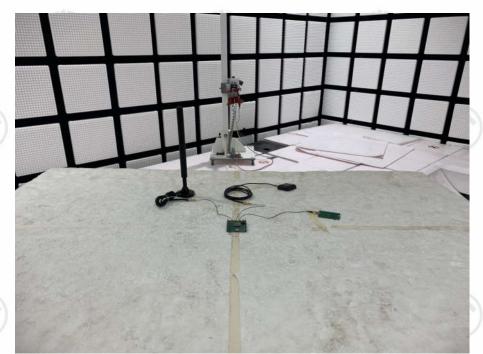
Note:

The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows: Final Test Level =Receiver Reading - Correct Factor

Correct Factor = Preamplifier Factor-Antenna Factor-Cable Factor

Refer to Appendix: LORA FHSS of EED32O80763103

Page 32 of 34


7 PHOTOGRAPHS OF TEST SETUP

Test model No.: WM1110-S

Radiated spurious emission Test Setup-1(Below 1GHz)

Radiated spurious emission Test Setup-2(Above 1GHz)

8 PHOTOGRAPHS OF EUT Constructional Details

Refer to Report No.EED32O80763101 for EUT external and internal photos.

The test report is effective only with both signature and specialized stamp, The result(s) shown in this report refer only to the sample(s) tested. Without written approval of CTI, this report can't be reproduced except in full.

