

Report No.: EED32O81002004 Page 1 of 30

TEST REPORT

Product Air Temperature and Humidity Sensor

seeed studio Trade mark

Model/Type reference S2101 **Serial Number** N/A

Report Number EED32O81002004

FCC ID Z4T-S210X Date of Issue Jul. 25, 2022

Test Standards 47 CFR Part 15 Subpart C

Test result PASS

Prepared for:

Seeed Technology Co., Ltd.

9F, G3 Building, TCL International E City, Zhongshanyuan Road, Nanshan District, Shenzhen, Guangdong Province, P.R.C

Prepared by:

Centre Testing International Group Co., Ltd. Hongwei Industrial Zone, Bao'an 70 District, Shenzhen, Guangdong, China

> TEL: +86-755-3368 3668 FAX: +86-755-3368 3385

Compiled by:

mark, chen Mark Chen

Reviewed by:

Tom Chen

Javon Ma

Aaron Ma

Date of issue:

Jul. 25, 2022

Check No.:5130070722

Page 2 of 30 Report No.: EED32O81002004

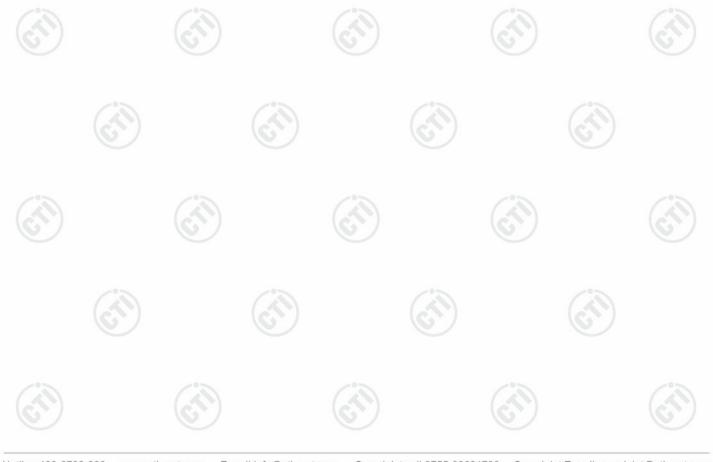
Content

1 COVER PAGE	•••••	•••••	
2 CONTENT			
3 VERSION			
4 TEST SUMMARY			
5 GENERAL INFORMATION			
5.1 CLIENT INFORMATION	DENCE LEVELS, K=2)		
6 EQUIPMENT LIST			
7 TEST RESULTS AND MEASUREMENT DAT	ΓΑ		1
7.1 ANTENNA REQUIREMENT 7.2 MAXIMUM CONDUCTED OUTPUT POWER 7.3 DTS BANDWIDTH 7.4 MAXIMUM POWER SPECTRAL DENSITY 7.5 BAND EDGE MEASUREMENTS AND CONDUCTOR RESTRICTOR SPURIOUS EMISSION & RESTRICTOR &	TED SPURIOUS EMISSION	ON	
8 APPENDIX A	•••••		
9 PHOTOGRAPHS OF TEST SETUP			
10 PHOTOGRAPHS OF EUT CONSTRUCTION	NAL DETAILS		

Report No.: EED32O81002004

3 Version

Version No. Date Descri			Description	escription		
00	Jul. 25, 2022		Original			
	*		(3)			
- (,		(6/2)	(62)	(0,7)		

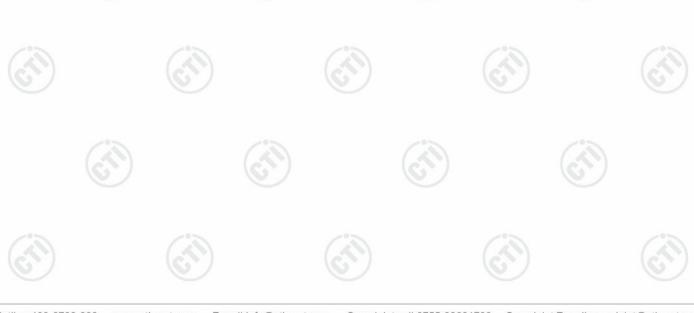

Report No.: EED32O81002004 Page 4 of 30

4 Test Summary

Test Item	Test Requirement	Result	
Antenna Requirement	47 CFR Part 15 Subpart C Section 15.203/15.247 (c)	PASS	
AC Power Line Conducted Emission	47 CFR Part 15 Subpart C Section 15.207	NA (
DTS Bandwidth	47 CFR Part 15 Subpart C Section 15.247 (a)(2)	PASS	
Maximum Conducted Output Power	47 CFR Part 15 Subpart C Section 15.247 (b)(3)	PASS	
Maximum Power Spectral Density	47 CFR Part 15 Subpart C Section 15.247 (e)	PASS	
Band Edge Measurements	47 CFR Part 15 Subpart C Section 15.247(d)	PASS	
Conducted Spurious Emissions	47 CFR Part 15 Subpart C Section 15.247(d)	PASS	
Radiated Spurious Emission & Restricted bands	47 CFR Part 15 Subpart C Section 15.205/15.209	PASS	

Remark:

Company Name and Address shown on Report, the sample(s) and sample Information were provided by the applicant who should be responsible for the authenticity which CTI hasn't verified.


5 General Information

5.1 Client Information

Applicant:	Seeed Technology Co., Ltd.			
Address of Applicant:	9F, G3 Building, TCL International E City, Zhongshanyuan Road, Nanshan District, Shenzhen, Guangdong Province, P.R.C			
Manufacturer:	Seeed Technology Co., Ltd.			
Address of Manufacturer:	9F, G3 Building, TCL International E City, Zhongshanyuan Road, Nanshan District, Shenzhen, Guangdong Province, P.R.C			
Factory:	Shenzhen Xinxian Technology Co., Limited			
Address of Factory:	F5, Building B17, Hengfeng Industrial City, No. 739 Zhoushi Rd, Baoan District, Shenzhen, Guangdong, P.R.C.			

5.2 General Description of EUT

Product Name:	Air Temperature and Humidity Sensor
Model No.:	S2101
Trade mark:	seeed studio
Product Type:	Fix Location
Operation Frequency:	902MHz~928MHz
Modulation Type:	LORA Chirp Spread Spectrum
Transfer Bandwidth:	⊠ 500kHz
Number of Channel:	8
Antenna Type:	Shrapnel Antenna
Antenna Gain:	1.70 dBi
Power Supply:	DC 3.6V
Test Voltage:	DC 3.6V
Sample Received Date:	Jul. 07, 2022
Sample tested Date:	Jul. 07, 2022 to Jul. 18, 2022

Report No.: EED32O81002004 Page 6 of 30

Channel	Frequency
1	903MHz
2	904.6MHz
3	906.2MHz
4	907.8MHz
5	909.4MHz
6	911MHz
7	912.6MHz
8	914.2MHz

Note:

In section 15.31(m), regards to the operating frequency range over 10 MHz, the lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below:

Channel	Frequency
The lowest channel (CH1)	903MHz
The middle channel (CH4)	907.8MHz
The highest channel (CH8)	914.2MHz

5.3 Test Configuration

EUT Test Software Settings:								
Software:		sscom						
EUT Power Grade:		Power leve	Power level is built-in set parameters and cannot be changed and selected					
Use test software to transmitting of the E		st frequenc	cy, the middle frequen	cy and the highest f	requency keep			
Test Mode	Modu	ılation	Bandwidth	Channel	Frequency(MHz)			
Mode a	LO	RA	500kHz	CH1	903			
Mode b	LO	RA	500kHz	CH4	907.8			
Mode c	LO	RA	500kHz	CH8	914.2			
Y I	1			1 -7	1 2.0			

Page 7 of 30 Report No.: EED32O81002004

5.4 Test Environment

	Operating Environment	t:					
	Radiated Spurious Emi	Radiated Spurious Emissions:					
12	Temperature:	22~25.0 °C		(41)		(4)	
	Humidity:	50~55 % RH		(0)		(0)	
	Atmospheric Pressure:	1010mbar					
	RF Conducted:						
	Temperature:	22~25.0 °C	(3)		(20)		
	Humidity:	50~55 % RH	(0,)		(0,)		
	Atmospheric Pressure:	1010mbar					

Report No. : EED32O81002004 Page 8 of 30

5.5 Description of Support Units

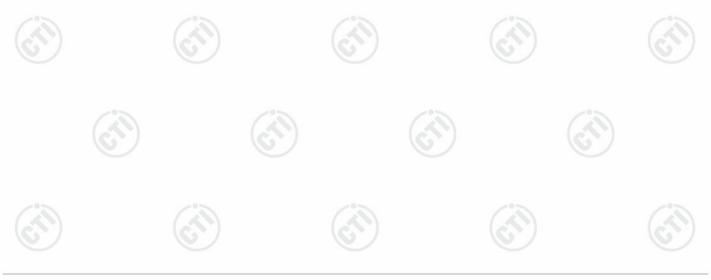
The EUT has been tested with associated equipment below. support equipment

Description	Manufacturer	Model No.	Certification	Supplied by
Netbook	DELL	Latitude 3490	FCC&CE	СТІ

5.6 Test Location

All tests were performed at:

Centre Testing International Group Co., Ltd


Building C, Hongwei Industrial Park Block 70, Bao'an District, Shenzhen, China

Telephone: +86 (0) 755 33683668 Fax:+86 (0) 755 33683385

No tests were sub-contracted. FCC Designation No.: CN1164

5.7 Measurement Uncertainty (95% confidence levels, k=2)

No.	ltem	Measurement Uncertainty
1	Radio Frequency	7.9 x 10 ⁻⁸
2	DE newer conducted	0.46dB (30MHz-1GHz)
S ² /	RF power, conducted	0.55dB (1GHz-40GHz)
		3.3dB (9kHz-30MHz)
3	Radiated Spurious emission test	4.3dB (30MHz-1GHz)
3		4.5dB (1GHz-18GHz)
		3.4dB (18GHz-40GHz)
4	Conduction emission	3.5dB (9kHz to 150kHz)
4	Conduction emission	3.1dB (150kHz to 30MHz)
5	Temperature test	0.64°C
6	Humidity test	3.8%
7	DC power voltages	0.026%

Report No.: EED32O81002004 Page 9 of 30

6 Equipment List

		RF test	system		
Equipment	Manufacturer	Mode No.	Serial Number	Cal. Date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)
Spectrum Analyzer	Keysight	N9010A	MY54510339	12-24-2021	12-23-2022
Signal Generator	Keysight	N5182B	MY53051549	12-24-2021	12-23-2022
Spectrum Analyzer	R&S	FSV40	101200	08-26-2021	08-25-2022
Signal Generator	Agilent	N5181A	MY46240094	12-24-2021	12-23-2022
DC Power	Keysight	E3642A	MY56376072	12-24-2021	12-23-2022
Power unit	R&S	OSP120	101374	12-24-2021	12-23-2022
RF control unit	JS Tonscend	JS0806-2	158060006	12-24-2021	12-23-2022
Communication test set	R&S	CMW500	120765	08-04-2021	08-03-2022
high-low temperature test chamber	Dong Guang Qin Zhuo	LK-80GA	QZ20150611879	12-24-2021	12-23-2022
Temperature/ Humidity Indicator	biaozhi	HM10	1804186	06-16-2022	06-15-2023
BT&WI-FI Automatic test software	JS Tonscend	JS1120-3	2.6.77.0518		

	3M Semi-anechoic Chamber (2)- Radiated disturbance Test											
Equipment	Manufacturer	Model	Serial No.	Cal. Date	Due Date							
3M Chamber & Accessory Equipment	TDK	SAC-3		05/22/2022	05/21/2025							
Receiver	R&S	ESCI7	100938-003	10/14/2021	10/13/2022							
TRILOG Broadband Antenna	Broadband schwarzbeck		9163-618	05/22/2022	05/21/2023							
Multi device Controller	maturo	NCD/070/10711112	(28)	(2	·							
Horn Antenna	ETS-LINGREN	BBHA 9120D	9120D-1869	04/15/2021	04/14/2024							
Loop Antenna	Schwarzbeck	FMZB 1519B	1519B-076	04-15-2021	04-14-2024							
Microwave Preamplifier	Agilent	8449B	3008A02425	06/21/2022	06/20/2023							

Hotline:400-6788-333 www.cti-cert.com E-mail:info@cti-cert.com Complaint call:0755-33681700 Complaint E-mail:complaint@cti-cert.com

Report No.: EED32O81002004 Page 10 of 30

		201			
		3M full-anechoi	c Chamber		
Equipment	Manufacturer	Model No.	Serial Number	Cal. Date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)
RSE Automatic test software	JS Tonscend	JS36-RSE	10166		-
Receiver	Keysight	N9038A	MY57290136	03-01-2022	02-28-2023
Spectrum Analyzer	Keysight	N9020B	MY57111112	02-23-2022	02-22-2023
Spectrum Analyzer	Keysight	N9030B	MY57140871	02-23-2022	02-22-2023
TRILOG Broadband Antenna	Schwarzbeck	VULB 9163	9163-1148	04-28-2021	04-27-2024
Horn Antenna	Schwarzbeck	BBHA 9170	9170-832	04-15-2021	04-14-2024
Horn Antenna	ETS-LINDGREN	3117	57407	07-04-2021	07-03-2024
Preamplifier	EMCI	EMC184055SE	980597	04-20-2022	04-19-2023
Preamplifier	EMCI	EMC001330	980563	04-01-2022	03-31-2023
Preamplifier	JS Tonscend	980380	EMC051845SE	12-24-2021	12-23-2022
Communication test set	R&S	CMW500	102898	12-24-2021	12-23-2022
Temperature/ Humidity Indicator	biaozhi	GM1360	EE1186631	04-11-2022	04-10-2023
Fully Anechoic Chamber	TDK	FAC-3	(C.)	01-09-2021	01-08-2024
Cable line	Times	SFT205-NMSM-2.50M	394812-0001		
Cable line	Times	SFT205-NMSM-2.50M	394812-0002	- C	730
Cable line	Times	SFT205-NMSM-2.50M	394812-0003	<u></u>	70.
Cable line	Times	SFT205-NMSM-2.50M	393495-0001		
Cable line	Times	EMC104-NMNM-1000	SN160710	- (3	(a)
Cable line	Times	SFT205-NMSM-3.00M	394813-0001	(6)	/
Cable line	Times	SFT205-NMNM-1.50M	381964-0001		
Cable line	Times	SFT205-NMSM-7.00M	394815-0001		7
Cable line	Times	HF160-KMKM-3.00M	393493-0001	<u></u>	(0)

Report No.: EED32O81002004 Page 11 of 30

7 Test results and Measurement Data

7.1 Antenna Requirement

Standard requirement: 47 CFR Part 15C Section 15.203 /247(c)

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(b) (4) requirement:

The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

EUT Antenna: Please see Internal photos

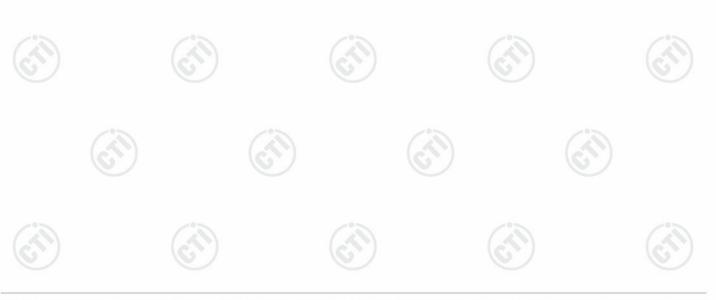
The antenna is Shrapnel Antenna. The best case gain of the antenna is 1.70dBi.

7.2 Maximum Conducted Output Power

Test Requirement:	47 CFR Part 15C Section 15.247 (b)(3)	
Test Method:	ANSI C63.10 2013	
Test Setup:		
	Control Congrues Power Supply Power port Power Table RF test System Instrument Table	
	Remark: Offset=Cable loss+ attenuation factor.	(0)
Test Procedure:	 a) Set the RBW ≥ DTS bandwidth. b) Set VBW ≥ 3 × RBW. c) Set span ≥ 3 x RBW d) Sweep time = auto couple. e) Detector = peak. f) Trace mode = max hold. g) Allow trace to fully stabilize. h) Use peak marker function to determine the peak amplitude level. 	
Limit:	30dBm	(617)
Test Mode:	Refer to clause 5.3	
Test Results:	Refer to Appendix A	

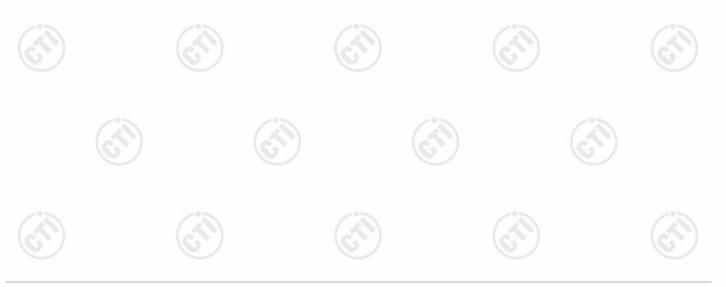
7.3 DTS Bandwidth

Test Requirement:	47 CFR Part 15C Section 15.247 (a)(2)
Test Method:	ANSI C63.10 2013
Test Setup:	
	Control Control Control Power Power Supply Attenuator Table RF test System System Instrument
	Remark: Offset=Cable loss+ attenuation factor.
Test Procedure:	 a) Set RBW = 100 kHz. b) Set the VBW ≥[3 × RBW]. c) Detector = peak. d) Trace mode = max hold. e) Sweep = auto couple. f) Allow the trace to stabilize. g) Measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 6 dB relative to the maximum level measured in the fundamental emission.
Limit:	≥ 500 kHz
Test Mode:	Refer to clause 5.3
Test Results:	Refer to Appendix A



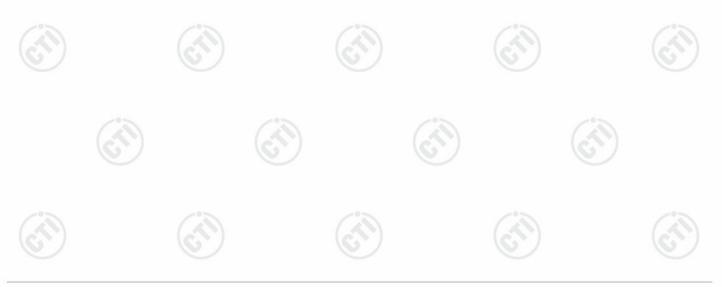
7.4 Maximum Power Spectral Density

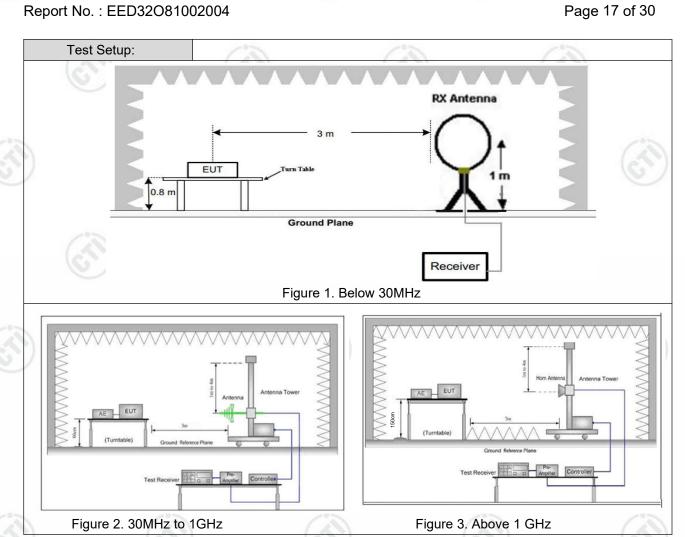
Test Requirement:	47 CFR Part 15C Section 15.247 (e)	
Test Method:	ANSI C63.10 2013	
Test Setup:		
	Control Computer Power Supply Temperature CABNET Control Cont	em
	Remark: Offset=Cable loss+ attenuation factor.	(1)
Test Procedure:	 a) Set analyzer center frequency to DTS channed b) Set the span to 1.5 times the DTS bandwidthe c) Set the RBW to 3 kHz < RBW < 100 kHz. d) Set the VBW > [3 × RBW]. e) Detector = RMS. f) Sweep time = auto couple. g) Trace mode = average. h) Allow trace to fully stabilize. i) Use the peak marker function to determine within the RBW. j) If measured value exceeds requirement, the than 3 kHz) and repeat. 	the maximum amplitude level
Limit:	≤8.00dBm/3kHz	
Test Mode:	Refer to clause 5.3	
Test Results:	Refer to Appendix A	



7.5 Band Edge measurements and Conducted Spurious Emission

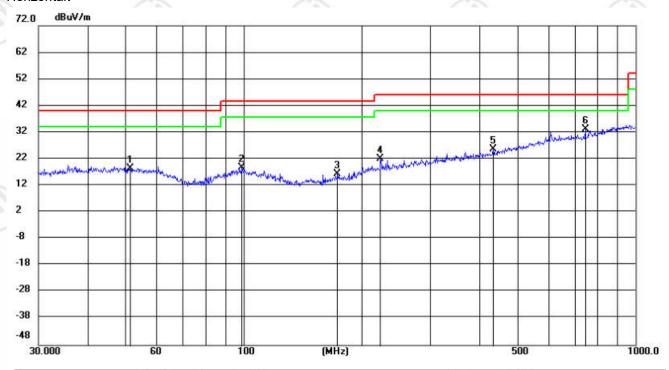
	16.	
	Test Requirement:	47 CFR Part 15C Section 15.247 (d)
	Test Method:	ANSI C63.10 2013
5.00	Test Setup:	Control Control Control Power Poorts Attenuator Table RF test System System Instrument
		Remark: Offset=Cable loss+ attenuation factor.
7600	Test Procedure:	a) Set RBW =100KHz. b) Set VBW = 300KHz. c) Sweep time = auto couple. d) Detector = RMS. e) Trace mode = max hold. f) Allow trace to fully stabilize. g) Use peak marker function to determine the peak amplitude level.
	Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB.
	Test Mode:	Refer to clause 5.3
	Test Results:	Refer to Appendix A




7.6 Radiated Spurious Emission & Restricted bands

A 60° A V			(6)		10.	<i>f</i>						
Test Requirement:	47 CFR Part 15C Secti	on 1	5.209 and 15	.205								
Test Method:	ANSI C63.10 2013											
Test Site:	Measurement Distance	Measurement Distance: 3m (Semi-Anechoic Chamber)										
Receiver Setup:	Frequency		Detector	RBW	VBW	Remark						
	0.009MHz-0.090MH	z	Peak	10kHz	30kHz	Peak						
	0.009MHz-0.090MH	z	Average	10kHz	30kHz	Average						
	0.090MHz-0.110MH	Z	Quasi-peak	10kHz	30kHz	Quasi-peak						
	0.110MHz-0.490MH	z	Peak	10kHz	30kHz	Peak						
	0.110MHz-0.490MH	z	Average	10kHz	30kHz	Average						
	0.490MHz -30MHz		Quasi-peak	10kHz	30kHz	Quasi-peak						
	30MHz-1GHz		Quasi-peak	100 kH	z 300kHz	Quasi-peak						
	Abovo 1CHz		Peak	1MHz	3MHz	Peak						
	Above 1GHz	Peak	1MHz	10kHz	Average							
Limit:	Frequency		eld strength crovolt/meter)	Limit (dBuV/m)	Remark	Measuremen distance (m						
	0.009MHz-0.490MHz	2	400/F(kHz)	-	-/0>	300						
	0.490MHz-1.705MHz	24	1000/F(kHz)	-	(A)	30						
	1.705MHz-30MHz		30	-	-	30						
	30MHz-88MHz		100	40.0	Quasi-peak	3						
	88MHz-216MHz		150	43.5	Quasi-peak	3						
	216MHz-960MHz	6	200	46.0	Quasi-peak	3						
	960MHz-1GHz		500	54.0	Quasi-peak	3						
	Above 1GHz		500	54.0	Average	3						
	Note: 15.35(b), Unle frequency emissions is 20d limit applicable to the equip peak emission level radiated		dB above the oment under t	maximum est. This p	permitted ave	erage emission						

Test Procedure:	 a. 1) Below 1G: The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter semi-anechoic camber. The table was rotated 360 degrees to determine the position of the highest radiation. 2) Above 1G: The EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter semi-anechoic camber. The table was rotated 360 degrees to determine the position of the highest radiation. Note: For the radiated emission test above 1GHz:
	Place the measurement antenna away from each area of the EUT determined to be a source of emissions at the specified measurement distance, while keeping the measurement antenna aimed at the source of emissions at each frequency of significant emissions, with polarization oriented for maximum response. The measurement antenna may have to be higher or lower than the EUT, depending on the radiation pattern of the emission and staying aimed at the emission source for receiving the maximum signal. The final measurement antenna elevation shall be that which maximizes the emissions. The measurement antenna elevation for maximum emissions shall be restricted to a range of heights of from 1 m to 4 m above the ground or reference ground plane.
	 b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower. c. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
	 d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading. e. The test-receiver system was set to Peak Detect Function and Specified
	Bandwidth with Maximum Hold Mode. f. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet. g. Test the EUT in the lowest channel (2402MHz),the middle channel
	 (2440MHz), the Highest channel (2480MHz) h. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is the worst case.
	i. Repeat above procedures until all frequencies measured was complete.
Test Mode:	Refer to clause 5.3
Test Results:	Pass



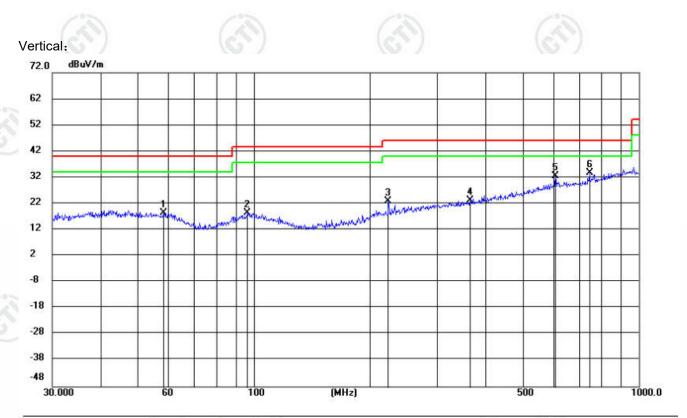
Report No.: EED32O81002004 Page 19 of 30

Radiated Spurious Emission below 1GHz:

During the test, the Radiates Emission from 30MHz to 1GHz was performed in all modes, only the worst case lowest channel of LoRa 500KHz was recorded in the report.

Horizontal:

No. Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin		Antenna Height	Table Degree	
	MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	cm	degree	Comment
1	51.4807	4.41	14.16	18.57	40.00	-21.43	QP	100	221	
2	99.1797	4.93	13.93	18.86	43.50	-24.64	QP	100	254	
3	173.8135	5.07	11.28	16.35	43.50	-27.15	QP	200	4	
4	223.7333	7.54	14.60	22.14	46.00	-23.86	QP	100	71	
5	434.0650	5.49	20.12	25.61	46.00	-20.39	QP	100	146	
6 *	744.8660	7.80	25.48	33.28	46.00	-12.72	QP	200	4	



Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin		Antenna Height	Table Degree	
	MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	cm	degree	Comment
	58.4074	4.87	13.68	18.55	40.00	-21.45	QP	200	9	
	96.4361	5.02	13.56	18.58	43.50	-24.92	QP	100	320	
1000	223.7333	8.38	14.60	22.98	46.00	-23.02	QP	100	341	
	364.2595	4.53	18.63	23.16	46.00	-22.84	QP	100	42	
	607.7867	8.50	24.08	32.58	46.00	-13.42	QP	200	328	
*	744.8660	8.16	25.48	33.64	46.00	-12.36	QP	100	4	
		MHz 58.4074 96.4361 223.7333 364.2595 607.7867	Mk. Freq. Level MHz dBuV 58.4074 4.87 96.4361 5.02 223.7333 8.38 364.2595 4.53 607.7867 8.50	Mk. Freq. Level Factor MHz dBuV dB 58.4074 4.87 13.68 96.4361 5.02 13.56 223.7333 8.38 14.60 364.2595 4.53 18.63 607.7867 8.50 24.08	Mk. Freq. Level Factor ment MHz dBuV dB dBuV/m 58.4074 4.87 13.68 18.55 96.4361 5.02 13.56 18.58 223.7333 8.38 14.60 22.98 364.2595 4.53 18.63 23.16 607.7867 8.50 24.08 32.58	Mk. Freq. Level Factor ment Limit MHz dBuV dB dBuV/m dBuV/m 58.4074 4.87 13.68 18.55 40.00 96.4361 5.02 13.56 18.58 43.50 223.7333 8.38 14.60 22.98 46.00 364.2595 4.53 18.63 23.16 46.00 607.7867 8.50 24.08 32.58 46.00	Mk. Freq. Level Factor ment Limit Margin MHz dBuV dB dBuV/m dBuV/m dB 58.4074 4.87 13.68 18.55 40.00 -21.45 96.4361 5.02 13.56 18.58 43.50 -24.92 223.7333 8.38 14.60 22.98 46.00 -23.02 364.2595 4.53 18.63 23.16 46.00 -22.84 607.7867 8.50 24.08 32.58 46.00 -13.42	Mk. Freq. Level Factor ment Limit Margin MHz dBuV dB dBuV/m dBuV/m dB Detector 58.4074 4.87 13.68 18.55 40.00 -21.45 QP 96.4361 5.02 13.56 18.58 43.50 -24.92 QP 223.7333 8.38 14.60 22.98 46.00 -23.02 QP 364.2595 4.53 18.63 23.16 46.00 -22.84 QP 607.7867 8.50 24.08 32.58 46.00 -13.42 QP	Mk. Freq. Level Factor ment Limit Margin Height MHz dBuV dB dBuV/m dBuV/m dB Detector cm 58.4074 4.87 13.68 18.55 40.00 -21.45 QP 200 96.4361 5.02 13.56 18.58 43.50 -24.92 QP 100 223.7333 8.38 14.60 22.98 46.00 -23.02 QP 100 364.2595 4.53 18.63 23.16 46.00 -22.84 QP 100 607.7867 8.50 24.08 32.58 46.00 -13.42 QP 200	Mk. Freq. Level Factor ment Limit Margin Height Degree MHz dBuV dB dBuV/m dB uV/m dB Detector cm degree 58.4074 4.87 13.68 18.55 40.00 -21.45 QP 200 9 96.4361 5.02 13.56 18.58 43.50 -24.92 QP 100 320 223.7333 8.38 14.60 22.98 46.00 -23.02 QP 100 341 364.2595 4.53 18.63 23.16 46.00 -22.84 QP 100 42 607.7867 8.50 24.08 32.58 46.00 -13.42 QP 200 328

Radiated Spurious Emission above 1GHz:

500KHz:

Mode	:	LORA Tran	smitting		Channel:		903 MHz		
NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	1330.6220	-26.72	68.10	41.38	74.00	32.62	Pass	Н	PK
2	1805.8537	-24.66	75.73	51.07	74.00	22.93	Pass	Н	PK
3	2807.9205	-21.85	64.54	42.69	74.00	31.31	Pass	Н	PK
4	4252.2168	-17.60	62.44	44.84	74.00	29.16	Pass	Н	PK
5	5418.0945	-14.36	68.11	53.75	74.00	20.25	Pass	Н	PK
6	7401.2267	-11.63	60.74	49.11	74.00	24.89	Pass	Н	PK
7	1328.8219	-26.72	72.34	45.62	74.00	28.38	Pass	V	PK
8	1996.6664	-23.63	75.61	51.98	74.00	22.02	Pass	V	PK
9	2709.5140	-22.23	73.17	50.94	74.00	23.06	Pass	V	PK
10	4060.8041	-18.65	61.05	42.40	74.00	31.60	Pass	V	PK
11	5417.4945	-14.36	67.84	53.48	74.00	20.52	Pass	V	PK
12	7637.6425	-11.15	61.05	49.90	74.00	24.10	Pass	V	PK

Mode:		LORA Tran	smitting			Channel:		907.8 MHz	
NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	1327.6218	-26.72	70.28	43.56	74.00	30.44	Pass	Н	PK
2	1815.4544	-24.61	72.07	47.46	74.00	26.54	Pass	Н	PK
3	2723.3149	-22.17	65.41	43.24	74.00	30.76	Pass	Н	PK
4	3952.7969	-19.07	62.57	43.50	74.00	30.50	Pass	Н	PK
5	5445.6964	-14.36	67.43	53.07	74.00	20.93	Pass	Н	PK
6	7286.0191	-11.64	60.98	49.34	74.00	24.66	Pass	Н	PK
7	1331.8221	-26.72	75.97	49.25	74.00	24.75	Pass	V	PK
8	1991.2661	-23.66	73.67	50.01	74.00	23.99	Pass	V	PK
9	3229.7487	-20.56	65.04	44.48	74.00	29.52	Pass	V	PK
10	4050.6034	-18.68	61.80	43.12	74.00	30.88	Pass	V	PK
11	5446.2964	-14.36	66.37	52.01	74.00	21.99	Pass	V	PK
12	7305.2203	-11.56	60.96	49.40	74.00	24.60	Pass	V	PK

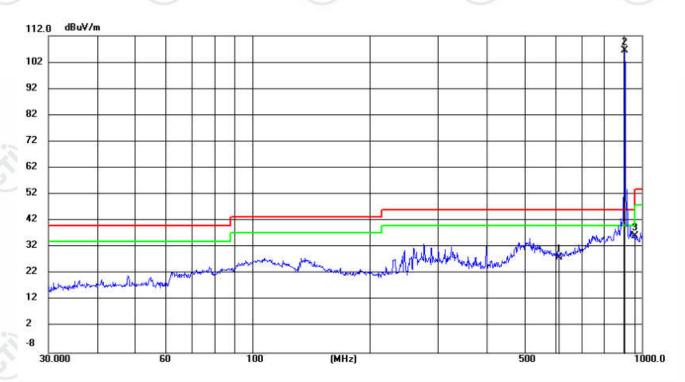


Report No.: EED32O81002004 Page 22 of 30

		100		10%		20%		100	J. Prop.	
N	lode:	:	LORA Tran	smitting			Channel:		914.2 MH	z
١	10	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
	1	1331.2221	-26.72	69.22	42.50	74.00	31.50	Pass	Н	PK
	2	1828.6552	-24.55	74.83	50.28	74.00	23.72	Pass	Н	PK
	3	2742.5162	-22.10	66.40	44.30	74.00	29.70	Pass	Н	PK
	4	3982.7989	-18.93	62.83	43.90	74.00	30.10	Pass	Н	PK
	5	5486.4991	-14.37	66.11	51.74	74.00	22.26	Pass	Н	PK
	6	7705.4470	-10.94	62.54	51.60	74.00	22.40	Pass	Н	PK
	7	1331.2221	-26.72	75.95	49.23	74.00	24.77	Pass	V	PK
	8	1993.0662	-23.65	72.87	49.22	74.00	24.78	Pass	V	PK
	9	2999.3333	-21.41	65.57	44.16	74.00	29.84	Pass	V	PK
	10	4483.8323	-17.16	62.88	45.72	74.00	28.28	Pass	V	PK
	11	5484.0989	-14.37	67.21	52.84	74.00	21.16	Pass	V	PK
Ŀ	12	7796.0531	-11.52	61.88	50.36	74.00	23.64	Pass	V	PK

Remark:

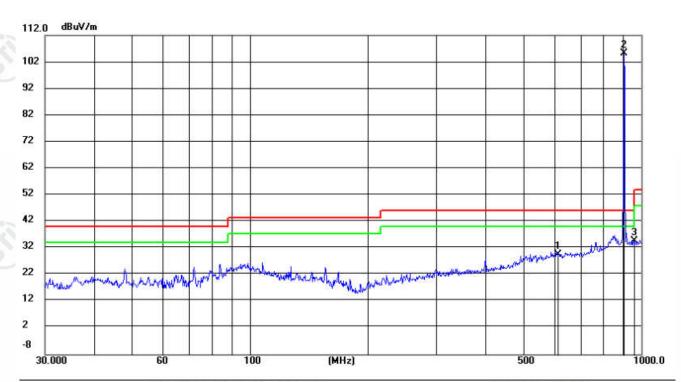
- 1) The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:
 - Final Test Level =Receiver Reading + Antenna Factor + Cable Factor Preamplifier Factor
- 2) Scan from 9kHz to 25GHz, the disturbance above 10GHz and below 30MHz was very low. As shown in this section, for frequencies above 1GHz, the field strength limits are based on average limits. However, the peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation. So, only the peak measurements were shown in the report.



Restricted bands:

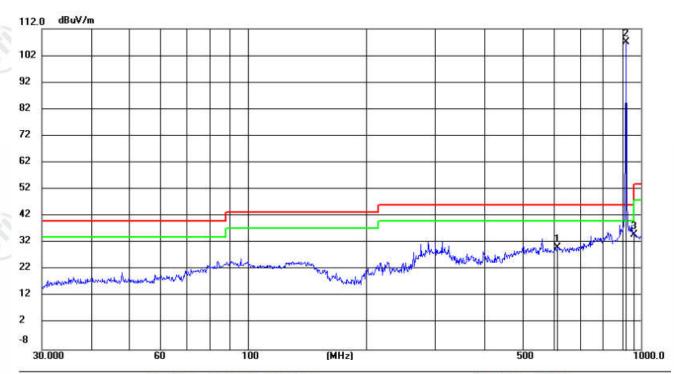
Test plot as follows:

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin		Antenna Height	Table Degree	
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	cm	degree	Comment
1		614.0000	4.14	24.13	28.27	46.00	-17.73	peak	100	343	
2	*	903.3093	78.08	28.43	106.51	46.00	60.51	peak	100	356	
3		960.0000	7.41	28.71	36.12	46.00	-9.88	peak	100	356	



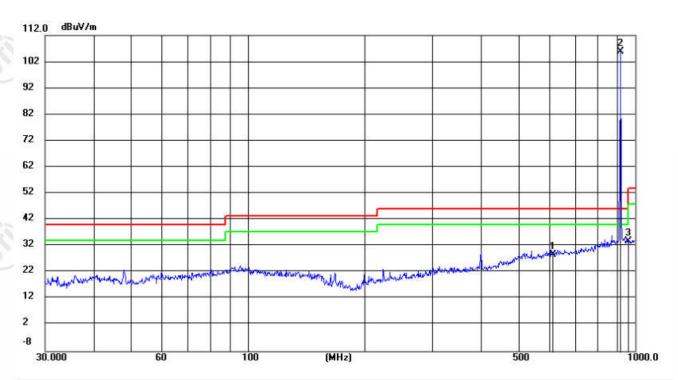
Page 24 of 30 Report No.: EED32O81002004

Mode:	903M	Channel:	903MHz
Polarity:	Vertical		


No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin		Antenna Height	Table Degree	
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	cm	degree	Comment
1		614.0000	5.60	24.13	29.73	46.00	-16.27	peak	100	29	
2	*	903.3093	76.88	28.43	105.31	46.00	59.31	peak	100	130	
3		960.0000	5.99	28.71	34.70	46.00	-11.30	peak	200	171	

Page 25 of 30 Report No.: EED32O81002004

Mode:	914.2M	Channel:	914.2MHz
Polarity:	Horizontal		


No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin		Antenna Height	Table Degree	
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	cm	degree	Comment
1		614.0000	6.22	24.13	30.35	46.00	-15.65	peak	200	291	
2	*	916.0686	78.41	28.49	106.90	46.00	60.90	peak	100	99	
3		960.0000	6.43	28.71	35.14	46.00	-10.86	peak	100	249	

Report No.: EED32O81002004 Page 26 of 30

Mode:	914.2M	Channel:	914.2MHz
Polarity:	Vertical		

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin	í.	Antenna Height	Table Degree	
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	cm	degree	Comment
1		614.0000	4.65	24.13	28.78	46.00	-17.22	peak	100	190	
2	*	916.0686	77.32	28.49	105.81	46.00	59.81	peak	100	69	
3		960.0000	5.12	28.71	33.83	46.00	-12.17	peak	100	120	

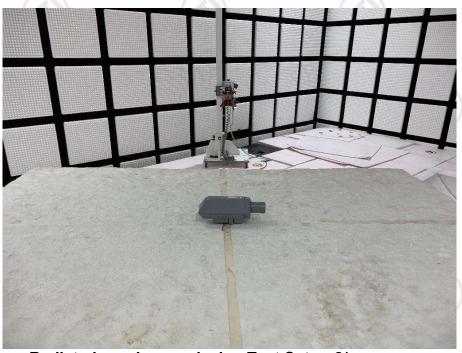
Note:

The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

Final Test Level =Receiver Reading -Correct Factor

Correct Factor = Preamplifier Factor - Antenna Factor - Cable Factor

Refer to Appendix: Bluetooth LE of EED32O81002004


Report No. : EED32O81002004 Page 28 of 30

9 PHOTOGRAPHS OF TEST SETUP

Test model No.: S2101

Radiated spurious emission Test Setup-1(Below 1GHz)

Radiated spurious emission Test Setup-2(Above 1GHz)

Page 29 of 30 Report No.: EED32O81002004

Report No.: EED32O81002004 Page 30 of 30

10 PHOTOGRAPHS OF EUT Constructional Details

Refer to Report No. EED32O81002001 for EUT external and internal photos.

The test report is effective only with both signature and specialized stamp, The result(s) shown in this report refer only to the sample(s) tested. Without written approval of CTI, this report can't be reproduced except in full.

