
Introduction

BeagleV Ahead is an open-source RISC-V Single Board Computer (SBC) in the form factor of BeagleBone Black. It has the same P8 & P9 cape header pins as BeagleBone Black allowing you to stack your favourite BeagleBone cape on top to expand it's capability. Featuring a powerful quad-core RISC-V processor BeagleV Ahead is designed as an affordable RISC-V enabled pocket-size computer for anybody who want's to dive deep into the new RISC-V ISA.

Detailed overview

BeagleV Ahead is build around T-Head TH1520 RISC-V SoC with quad-core Xuantie C910 processor clocked at 1.85GHz with a 4 TOPS NPU, support for 64-bit DDR, and audio processing using a single core C906.

Table 64 BeagleV Ahead features

Feature	Description		
Processor	T-Head TH1520 (quad-core Xuantie C910 processor)		
PMIC	DA9063		
Memory	4GB LPDDR4		
Storage	16GB eMMC		
WiFi/BlueTooth	PHY: AP6203BMAntennas: 2.4GHz & 5GHz		

Table 64 BeagleV Ahead features

Feature	Description
Ethernet	 PHY: Realtek RTL8211F-VD-CG Gigabit Ethernet phy Connector: integrated magnetics RJ-45
microUSB 3.0	 Connectivity: USB OTG, Flash support Power: Input: 5V @ <to-do>, Output: 5V @ <to-do></to-do></to-do>
HDMI	Transmitter: TH1520 Video out systemConnector: Mini HDMI
Other connectors	 microSD mikroBUS connector (I2C/UART/SPI/MCAN/MCASP/PWM/GPIO) CSI connector compatible with BeagleBone AI-64, Raspberry Pi Zero / CM4 (22-pin) DSI connector

Board components location

This section describes the key components on the board, their location and function.

Front components location

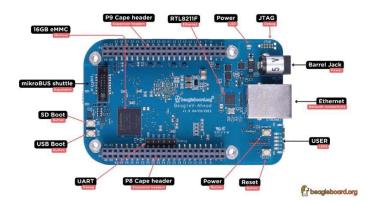


Fig. 178 BeagleV Ahead board front components location

Table 65 BeagleV Ahead board front components location

Feature	Description
Power LED	Power (Board ON) indicator
ЈТАG (ТН1520)	TH1520 SoC JTAG debug port
Barrel jack	Power input
GigaBit Ethernet	1Gb/s Wired internet connectivity
User LEDs	Five user LEDs, Power and boot section provides more details. These LEDs are connect to the AM6254 SoC
Reset button	Press to reset BeagleV Ahead board (TH1520 SoC)
Power button	Press to shut-down (OFF), hold down to boot (ON)
P8 & P9 cape header	Expansion headers for BeagleBone capes.
UART debug header	6 pin UART debug header
USB boot button	Hold and reset board (power cycle) to flash eMMC via USB port
SD boot button	Hold and reset board (power cycle) to boot from SD Card
mikroBUS shuttle	16pin mikroBUS shuttle connector for interfacing mikroE click boards
16GB eMMC	Flash storage
RTL8211F	Gigabit IEEE 802.11 Ethernet PHY

Back components location

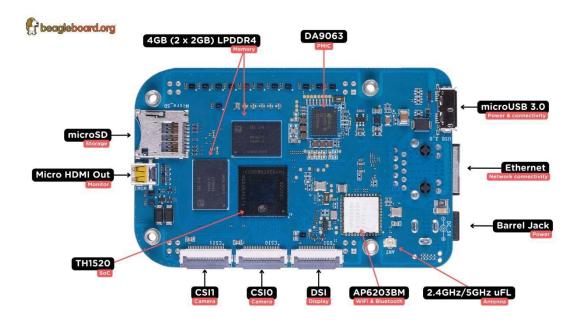
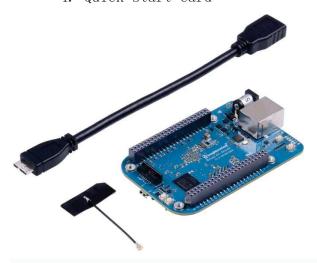


Fig. 179 BeagleV Ahead board back components location

Table 66 BeagleV Ahead board back components location


Feature	Description
DA9063	Dialog semi Power Management Integrated Circuit (PMIC)
microUSB 3.0	Power & USB connectivity as client or Host (OTG)
Antenna connector	2.4GHz/5GHz uFL connector
AP6203BM	Ampak WiFi & BlueTooth combo
DSI	MIPI Display connector
CSIO & CSI1	MIPI Camera connectors
TH1520	T-Head quad-core C910 RISC-V SoC
Mini HDMI	HDMI connector
microSD	SDCard holder
4GB RAM	2 x 2GB LPDDR4 RAM

Quick Start

What's included in the box?

When you purchase a brand new BeagleV Ahead, In the box you'll get:

- 1. BeagleV Ahead board
- 2. One (1) 2.4GHz/5GHz antennas
- 3. microUSB OTG cable
- 4. Quick-start card

Design & specifications

If you want to know how the BeagleV Ahead board is designed and what are it's high-level specifications then this chapter is for you. We are going to discuss each hardware design element in detail and provide high-level device specifications in a short and crisp form as well.

Block diagram

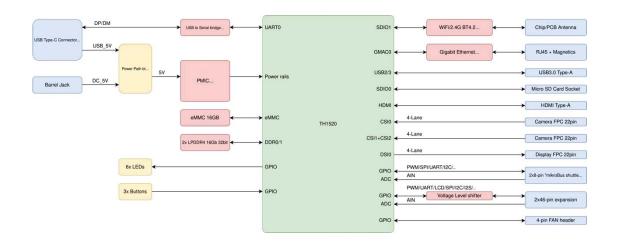
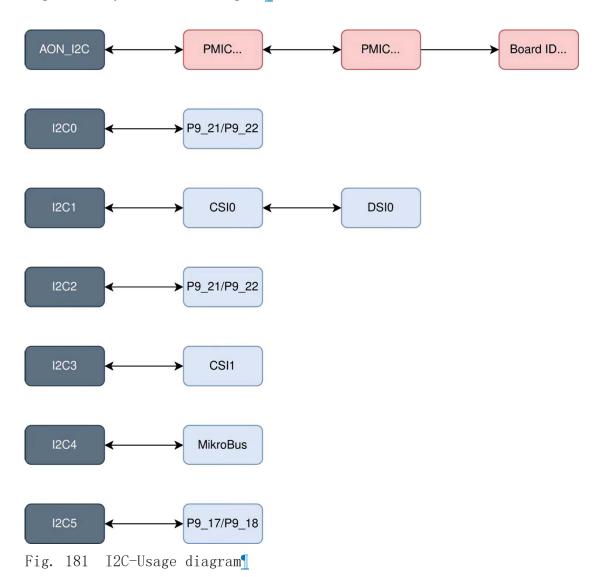



Fig. 180 System block diagram

System on Chip (SoC)

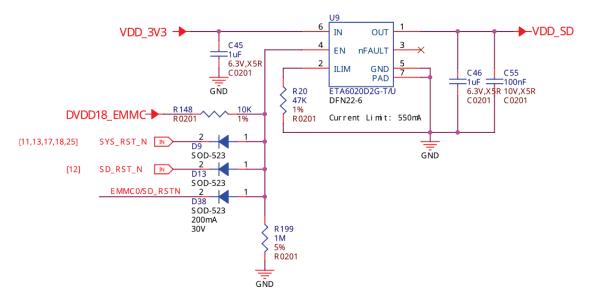


Fig. 182 SoC eMMC power switch

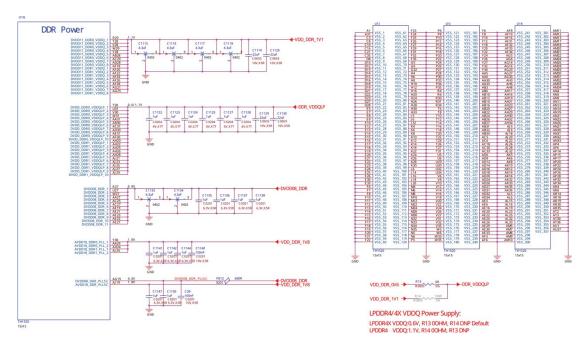


Fig. 183 SoC DDR Power

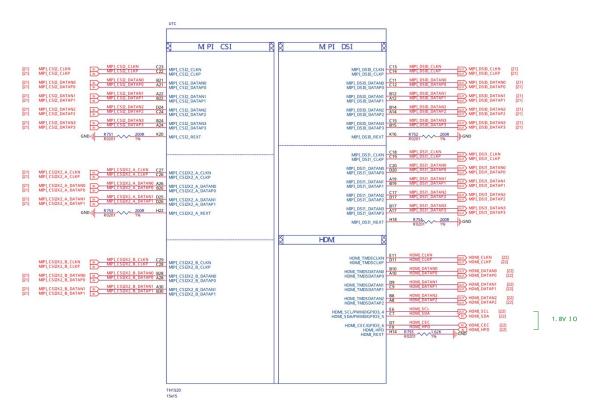


Fig. 184 SoC MIPI CSI DSI HDMI

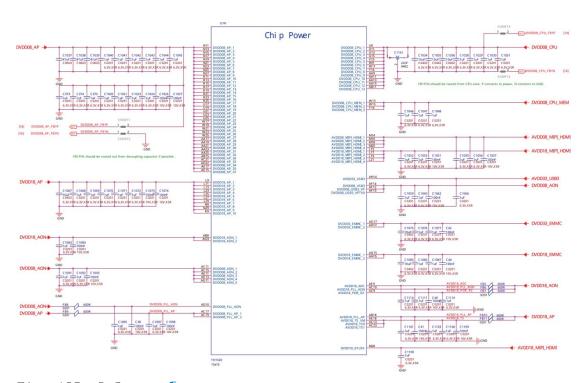


Fig. 185 SoC power

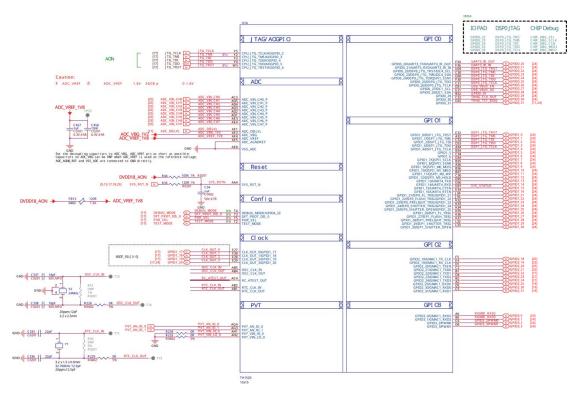


Fig. 186 SoC sys, ADC, and Clock¶

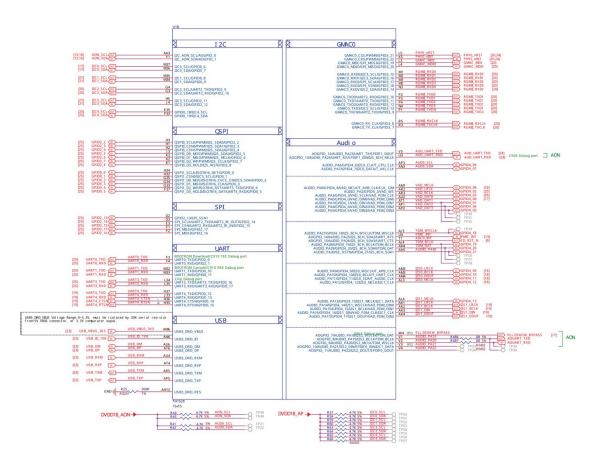


Fig. 187 SoC USB GMAC Audio

Power management

Barrel jack

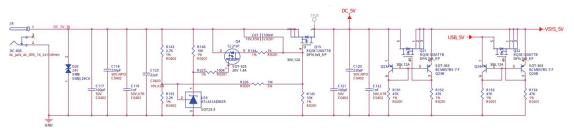


Fig. 188 Barrel jack power input

0.8V DCDC buck

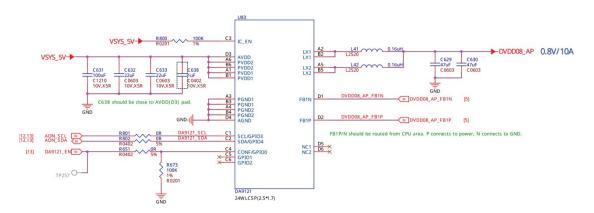


Fig. 189 0.8V DCDC buck converter

3.3V DCDC buck

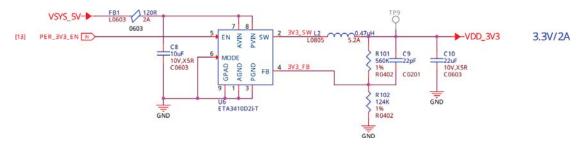


Fig. 190 3.3V DCDC buck converter

1.8V LDO

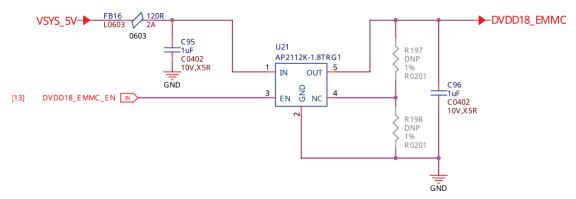


Fig. 191 1.8V LDO regulator

PMIC

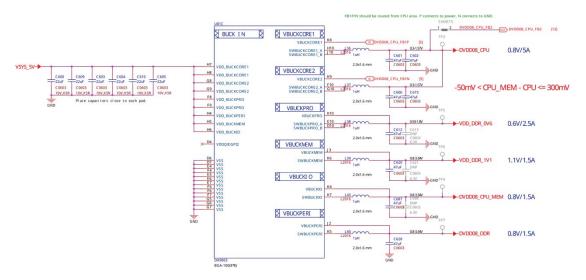


Fig. 192 PMIC Buck¶

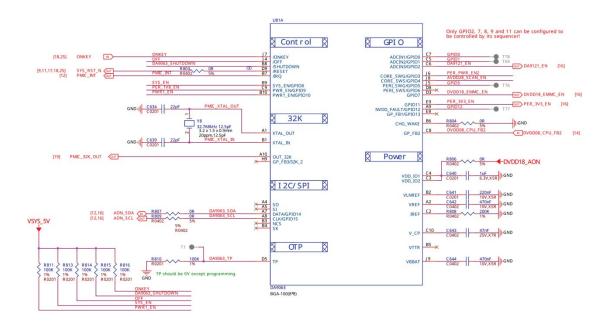


Fig. 194 PMIC LDO

General Connectivity and Expansion

microUSB 3.0 port

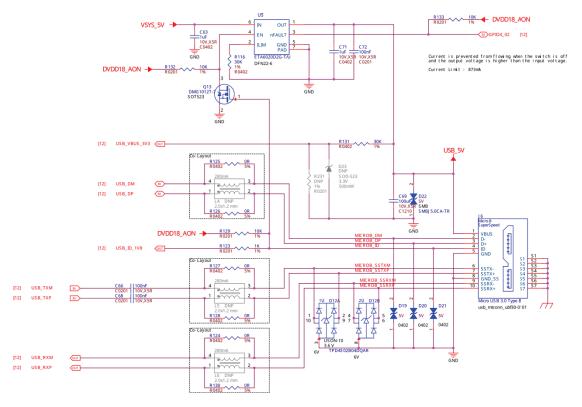
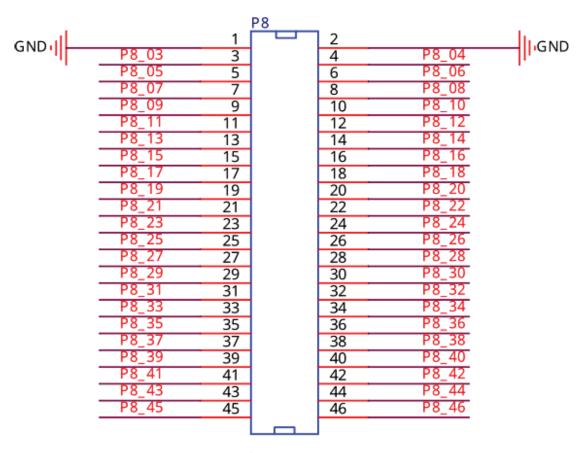



Fig. 195 microUSB 3.0 port¶

P8 & P9 cape header pins

Header 2x23 2.54mm HEADER 2X23P_2D54_SMD_PTH

Fig. 196 P8 cape header¶

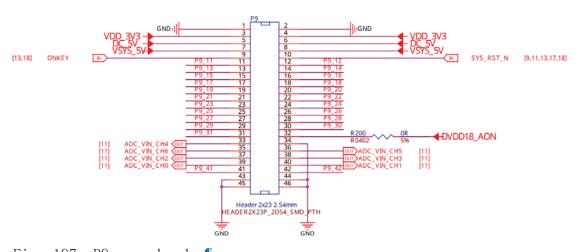
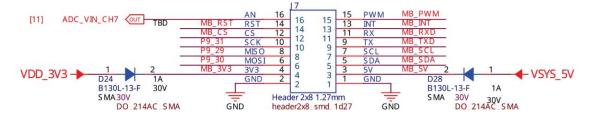



Fig. 197 P9 cape header

mikroBUS shuttle connector

P8, P9, and mikroBUS helper circuitry

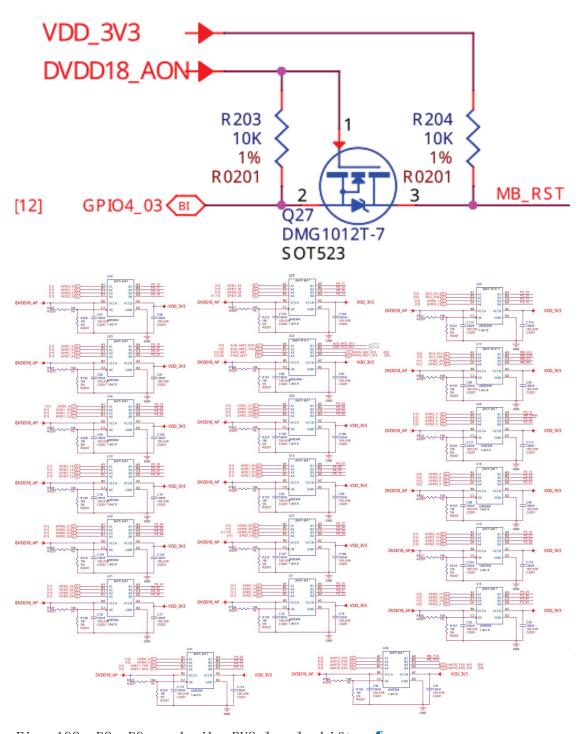


Fig. 198 P8, P9, and mikroBUS level shifters

Buttons and LEDs

Boot select buttons

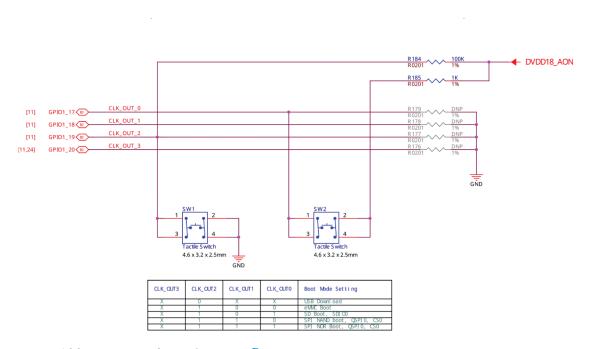


Fig. 199 Boot select buttons

User LEDs and Power LED

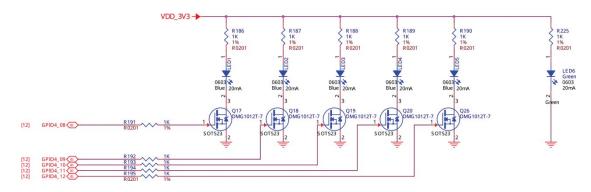
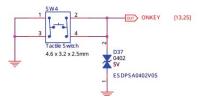



Fig. 200 User LEDs and power LED

Power and reset button

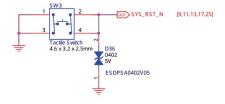


Fig. 201 Power and reset button

Wired and wireless connectivity

Ethernet

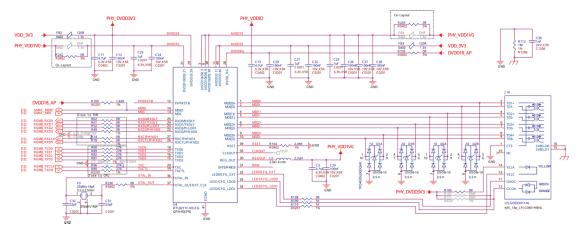


Fig. 202 Ethernet¶

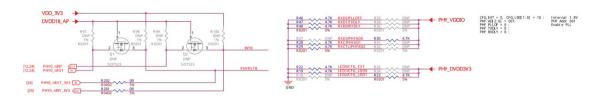


Fig. 203 Ethernet LevelShifter and Strapping

WiFi & Bluetooth

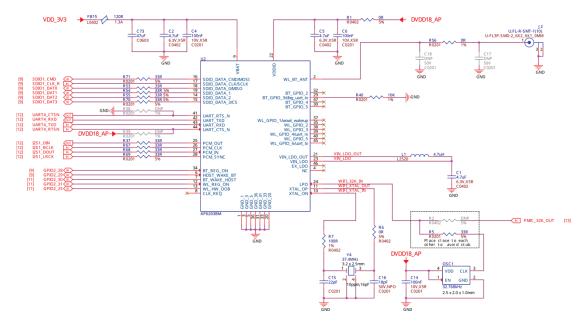


Fig. 204 WiFi and Bluetooth

Memory, Media and Data storage

DDR memory

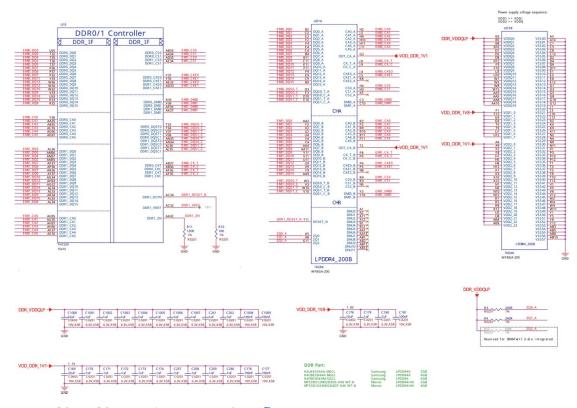


Fig. 205 2GB DDR4 Memory chip1

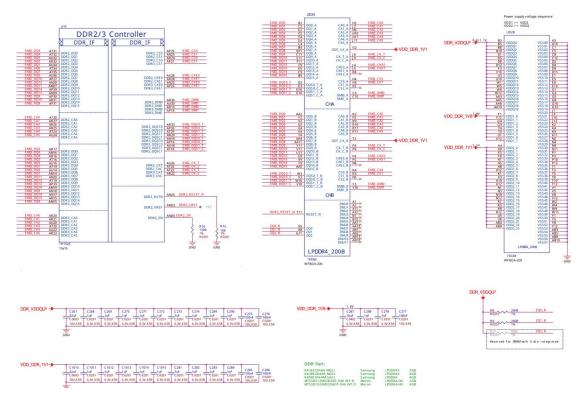


Fig. 206 2GB DDR4 Memory chip2

eMMC

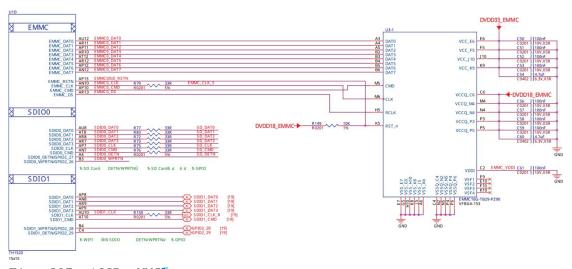


Fig. 207 16GB eMMC¶

microSD

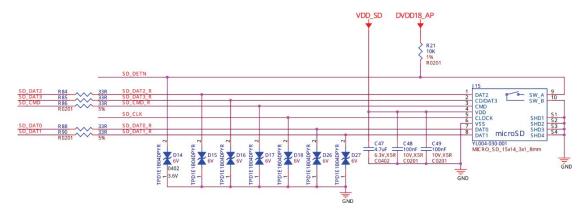
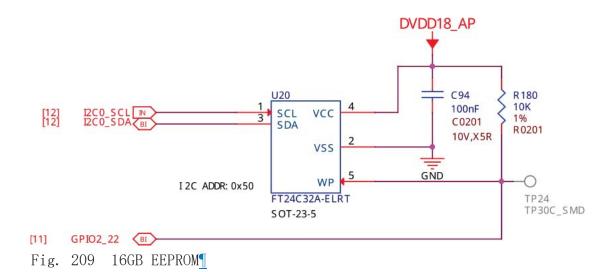



Fig. 208 microSD card connector

EEPROM

Multimedia I/O

CSI0

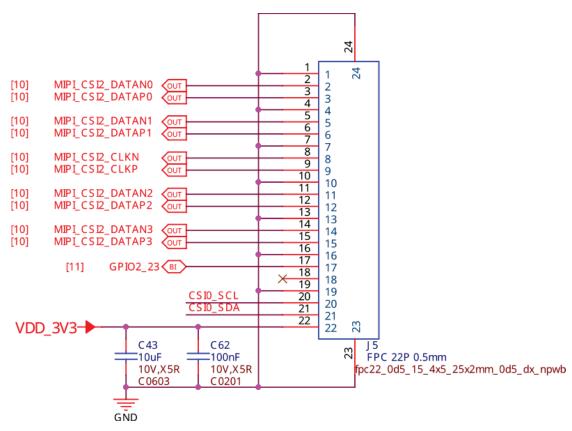
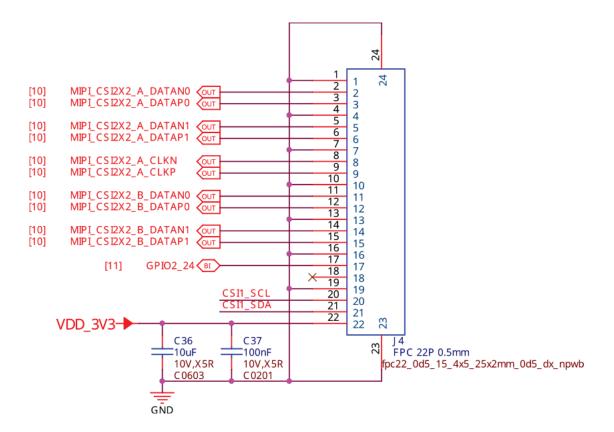



Fig. 210 CSIO camera interface

CSI1

DSI

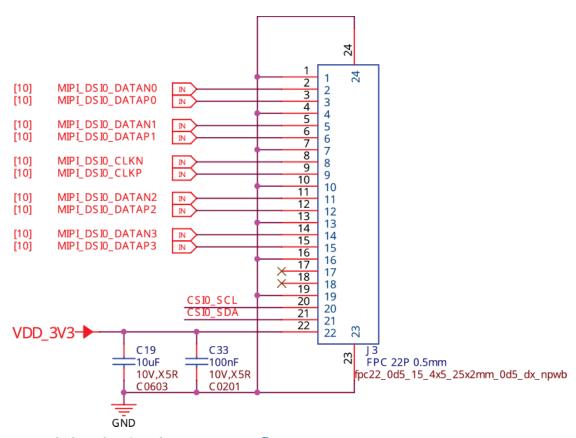


Fig. 212 DSI display interface

CSI & DSI level shifter

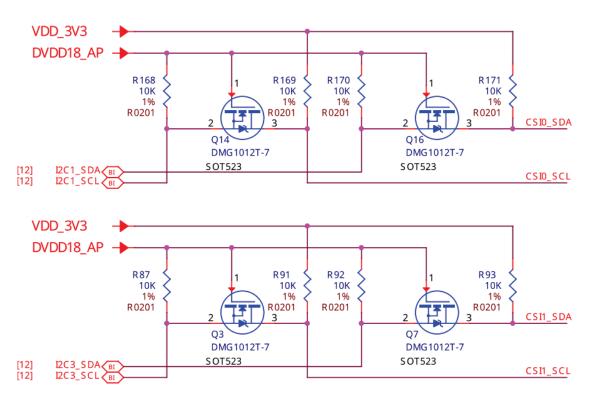
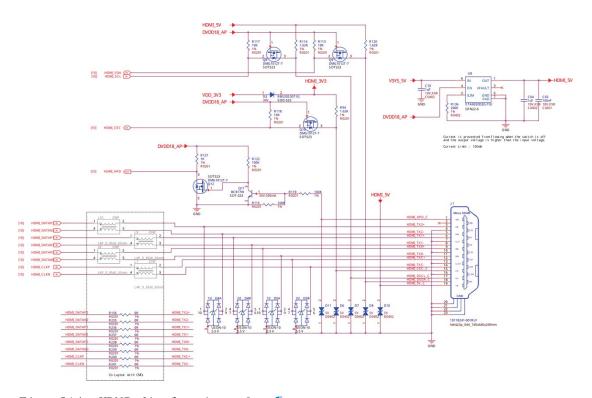
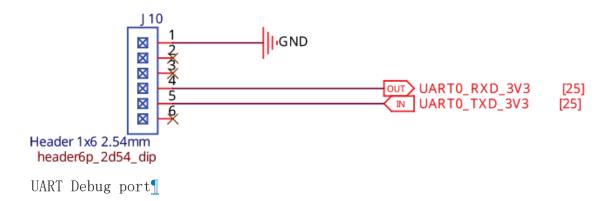
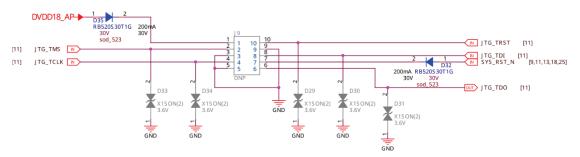


Fig. 213 CSI & DSI level shifter

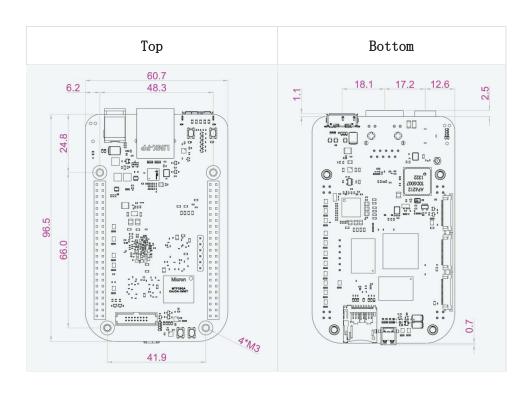
HDMI

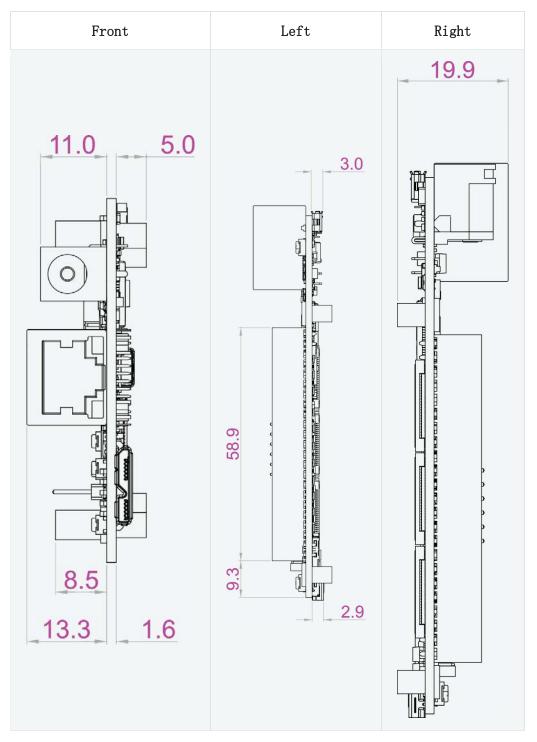




Fig. 214 HDMI display interface

Debug

UART debug port




JTAG debug port

JTAG debug port¶

Mechanical Specifications

Dimensions & weight

Parameter	Values
Size	96. $5 \times 60.7 \times 19.9$ mm
Max heigh	21.1mm
PCB Size	96.5x60.5*1.6mm

Dimensions & weight

Parameter	Values
PCB Layers	10 layers
PCB Thickness	1.6mm
RoHS compliant	yes
Gross Weight	128. 8g
Net weight	49.7g

Expansion

Cape Headers

The expansion interface on the board is comprised of two headers P8 (46 pin) & P9 (46 pin). All signals on the expansion headers are 3.3V unless otherwise indicated.

Note

Do not connect 5V logic level signals to these pins or the board will be damaged.

Note

DO NOT APPLY VOLTAGE TO ANY I/O PIN WHEN POWER IS NOT SUPPLIED TO THE BOARD. IT WILL DAMAGE THE PROCESSOR AND VOID THE WARRANTY.

NO PINS ARE TO BE DRIVEN UNTIL AFTER THE SYS_RESET LINE GOES HIGH.

Connector P8

The following tables show the pinout of the P8 expansion header. The SW is responsible for setting the default function of each pin. Refer to the processor documentation for more information on these pins and detailed descriptions of all of the pins listed. In some cases there may not be enough signals to complete a group of signals that may be required to implement a total interface.

The column heading is the pin number on the expansion header.

The **GPIO** row is the expected gpio identifier number in the Linux kernel.

Each row includes the gpiochipX and pinY in the format of XY. You can use these values to directly control the GPIO pins with the commands shown below.

The BALL row is the pin number on the processor.

The **REG** row is the offset of the control register for the processor pin.

The MODE # rows are the mode setting for each pin. Setting each mode to align with the mode column will give that function on that pin.

NOTES:

DO NOT APPLY VOLTAGE TO ANY I/O PIN WHEN POWER IS NOT SUPPLIED TO THE BOARD. IT WILL DAMAGE THE PROCESSOR AND VOID THE WARRANTY.

NO PINS ARE TO BE DRIVEN UNTIL AFTER THE SYS_RESET LINE GOES HIGH.

P8.01-P8.02

P8. 01	P8. 02
GND	GND

P8.03-P8.05

Pin	P8. 03	P8. 04	P8. 05
Name	GPI01_21	GPI01_22	GPI01_23
BALL	Ј34	Ј35	K32
GPIO	1 21	1 22	1 23
REG	GPIO1_21_MUX	GPIO1_22_MUX	GPI01_23_MUX
Mode 0	GPI01_21	GPI01_22	GPI01_23
MODE 1	~	~	~
MODE 2	ISPO_FL_TRIG	ISPO_FLASH_TRIG	ISPO_PRELIGHT_TRIG
MODE 3	GPI01_21	GPI01_22	GPI01_23
MODE 4	~	~	~
MODE 5	~	~	~

P8.06-P8.09

Pin	P8. 06	P8. 07	P8. 08	P8. 09
Nam e	GPI01_24	GPI01_25	GPI01_26	GPI01_27

Pin	P8. 06	P8. 07	P8. 08	P8. 09
BAL L	K33	K34	K35	K36
GPI O	1 24	1 25	1 26	1 27
REG	GPI01_24_MUX	GPI01_25_MUX	GPI01_26_ MUX	GPIO1_27_MUX
Mod e O	GPI01_24	GPI01_25	GPI01_26	GPI01_27
MOD E 1	~	~	~	~
MOD E 2	ISPO_SHUTTER_T RIG	ISPO_SHUTTER_O PEN	ISP1_FL_T RIG	ISP1_FLASH_T RIG
MOD E 3	GPI01_24	GPI01_25	~	~
MOD E 4	~	~	~	~
MOD E 5	~	~	~	~

P8.10-P8.13

Pin	P8. 10	P8. 11	P8. 12	P8. 13
Nam e	GPI01_28	GPI01_29	GPI01_30	GPI03_2
BAL L	K37	L32	L33	C6
GPI O	1 28	1 29	1 30	3 2
REG	GPIO1_28_MUX	GPI01_29_MUX	GPI01_30_MUX	GPI03_2_ MUX

Pin	P8. 10	P8. 11	P8. 12	P8. 13
MOD E O	GPI01_28	GPI01_29	GPI01_30	GPI03_2
MOD E 1	~	~	~	PWMO
MOD E 2	ISP1_PRELIGHT_ TRIG	ISP1_SHUTTER_ TRIG	ISP1_SHUTTER_ OPEN	~
MOD E 3	~	~	~	~
MOD E 4	~	~	~	~
MOD E 5	~	~	~	~

P8.14-P8.16

Pin	P8. 14	P8. 15	P8. 16
Name	CLK_OUT_3	GPI03_0	GPI00_20
BALL	E29	A6	F34
GPIO	1 20	3 0	0 20
REG	CLK_OUT_3_MUX	GPIO3_O_MUX	GPI00_20_MUX
MODE O	BOOT_SEL3	GPI03_0	GPI00_20
MODE 1	CLK_OUT_3	GMAC1_RXD2	UART3_TXD
MODE 2	~	~	UART3_IR_OUT
MODE 3	GPI01_20	~	~
MODE 4	~	~	~
MODE 5	~	~	~

P8.17-P8.19

Pin	P8. 17	P8. 18	P8. 19
Name	GPI03_1	GPI01_5	GPI03_3
BALL	В6	B34	D6
GPIO	3 1	1 5	3 3
REG	GPIO3_1_MUX	GPIO1_5_MUX	GPI03_3_MUX
MODE 0	GPI03_1	GPI01_5	GPI03_3
MODE 1	GMAC1_RXD3	~	PWM1
MODE 2	~	~	~
MODE 3	~	~	~
MODE 4	~	DPU_COLOR_16	~
MODE 5	~	DPU1_COLOR_16	~

P8.20-P8.22

Pin	P8. 20	P8. 21	P8. 22
Name	GPI01_6	GPI01_7	GPI01_8
BALL	C34	D34	B35
GPIO	1 6	1 7	1 8
REG	GPIO1_6_MUX	GPIO1_7_MUX	GPIO1_8_MUX
MODE O	GPI01_6	GPI01_7	GPI01_8
MODE 1	~	QSPI1_SCLK	QSPI1_SSN0
MODE 2	~	~	~
MODE 3	~	~	~
MODE 4	DPU_COLOR_17	DPU_COLOR_18	DPU_COLOR_19
MODE 5	DPU1_COLOR_17	DPU1_COLOR_18	DPU1_COLOR_19

P8.23-P8.26

Pin	P8. 23	P8. 24	P8. 25	P8. 26
Nam e	GPI01_9	GPI01_10	GPI01_11	GPI01_12
BAL L	A36	B36	B37	C36
GPI O	1 9	1 10	1 11	1 12
REG	GPIO1_9_MUX	GPIO1_10_MUX	GPIO1_11_MUX	GPIO1_12_MUX
MOD E O	GPI01_9	GPI01_10	GPI01_11	GPI01_12
MOD E 1	QSPI1_MO_MOS I	QSPI1_M1_MIS O	QSPI1_M2_WP	QSPI1_M3_HOL D
MOD E 2	~	~	~	~
MOD E 3	~	~	~	~
MOD E 4	DPU_COLOR_20	DPU_COLOR_21	DPU_COLOR_22	DPU_COLOR_23
MOD E 5	DPU1_COLOR_2	DPU1_COLOR_2	DPU1_COLOR_2	DPU1_COLOR_2

P8.27-P8.29

Pin	P8. 27	P8. 28	P8. 29
Name	GPI01_15	GPI01_16	GPI01_14
BALL	D37	E34	D36
GPIO	1 15	1 16	1 14
REG	GPIO1_15_MUX	GPI01_16_MUX	GPIO1_14_MUX
MODE O	GPI01_15	GPI01_16	GPI01_14
MODE 1	UART4_CTSN	UART4_RTSN	UART4_RXD

Pin	P8. 27	P8. 28	P8. 29
MODE 2	~	~	~
MODE 3	~	~	~
MODE 4	DPU_VSYNC	DPU_PIXELCLK	DPU_HSYNC
MODE 5	DPU1_VSYNC	DPU1_PIXELCLK	DPU1_HSYNC

P8.30-P8.32

Pin	P8. 30	P8. 31	P8. 32
Name	GPI01_13	GPI01_3	GPI01_4
BALL	D35	D33	A34
GPIO	1 13	1 3	1 4
REG	GPIO1_13_MUX	GPIO1_3_MUX	GPIO1_4_MUX
MODE O	GPI01_13	GPI01_3	GPI01_4
MODE 1	UART4_TXD	DSP1_JTG_TD0	DSP1_JTG_TCLK
MODE 2	~	~	~
MODE 3	~	~	~
MODE 4	DPU_COLOR_EN	DPU_COLOR_14	DPU_COLOR_15
MODE 5	DPU1_COLOR_EN	DPU1_COLOR_14	DPU1_COLOR_15

P8.33-P8.35

Pin	P8. 33	P8. 34	P8. 35
Name	GPI01_2	GPI01_0	GPI01_1
BALL	C33	E32	A32
GPIO	1 2	1 0	1 1
REG	GPI01_2_MUX	GPIO1_O_MUX	GPIO1_1_MUX

Pin	P8. 33	P8. 34	P8. 35
MODE 0	GPI01_2	GPI01_0	GPI01_1
MODE 1	DSP1_JTG_TDI	DSP1_JTG_TRST	DSP1_JTG_TMS
MODE 2	~	~	~
MODE 3	~	~	~
MODE 4	DPU_COLOR_13	DPU_COLOR_11	DPU_COLOR_12
MODE 5	DPU1_COLOR_13	DPU1_COLOR_11	DPU1_COLOR_12

P8.36-P8.38

Pin	P8. 36	P8. 37	P8. 38
Name	GPI00_31	GPI00_29	GPI00_30
BALL	D32	B32	C32
GPIO	0 31	0 29	0 30
REG	GPI00_31_MUX	GPI00_29_MUX	GPI00_30_MUX
MODE O	GPI00_31	GPI00_29	GPI00_30
MODE 1	~	~	~
MODE 2	~	~	~
MODE 3	~	~	~
MODE 4	DPU_COLOR_10	DPU_COLOR_8	DPU_COLOR_9
MODE 5	DPU1_COLOR_10	DPU1_COLOR_8	DPU1_COLOR_9

P8.39-P8.41

Pin	P8. 39	P8. 40	P8. 41
Name	GPI00_27	GPI00_28	GPI00_25
BALL	D31	E31	F30

Pin	P8. 39	P8. 40	P8. 41
GPIO	0 27	0 28	0 25
REG	GPI00_27_MUX	GPI00_28_MUX	GPI00_25_MUX
MODE O	GPI00_27	GPI00_28	GPI00_25
MODE 1	~	~	DSPO_JTG_TDO
MODE 2	I2C1_SCL	I2C1_SDA	~
MODE 3	~	~	~
MODE 4	DPU_COLOR_6	DPU_COLOR_7	DPU_COLOR_4
MODE 5	DPU1_COLOR_6	DPU1_COLOR_7	DPU1_COLOR_4

P8.42-P8.44

Pin	P8. 42	P8. 43	P8. 44
Name	GPI00_26	GPI00_23	GPI00_24
BALL	C31	C30	D30
GPIO	0 26	0 23	0 24
REG	GP100_26_MUX	GPI00_23_MUX	GPI00_24_MUX
MODE O	GPI00_26	GPI00_23	GPI00_24
MODE 1	DSPO_JTG_TCLK	DSPO_JTG_TMS	DSPO_JTG_TDI
MODE 2	~	I2C4_SDA	QSPI1_SSN1
MODE 3	~	~	~
MODE 4	DPU_COLOR_5	DPU_COLOR_2	DPU_COLOR_3
MODE 5	DPU1_COLOR_5	DPU1_COLOR_2	DPU1_COLOR_3

P8.45-P8.46

Pin	P8. 45	P8. 46
Name	GPI00_21	GPI00_22
BALL	F36	D29
GPIO	0 21	0 22
REG	GPI00_21_MUX	GPI00_22_MUX
MODE 0	GPI00_21	GPI00_22
MODE 1	UART3_RXD	DSP0_JTG_TRST
MODE 2	UART3_IR_IN	I2C4_SCL
MODE 3	~	~
MODE 4	DPU_COLOR_0	DPU_COLOR_1
MODE 5	DPU1_COLOR_0	DPU1_COLOR_1

Connector P9

The following tables show the pinout of the P9 expansion header. The SW is responsible for setting the default function of each pin. Refer to the processor documentation for more information on these pins and detailed descriptions of all of the pins listed. In some cases there may not be enough signals to complete a group of signals that may be required to implement a total interface.

The column heading is the pin number on the expansion header.

The **GPIO** row is the expected gpio identifier number in the Linux kernel.

Each row includes the gpiochipX and pinY in the format of XY. You can use these values to directly control the GPIO pins with the commands shown below.

to set the GPIO pin state to HIGH debian@BeagleBone:~\$ gpioset X Y=1

```
# to set the GPIO pin state to LOW
debian@BeagleBone:~$ gpioset X Y=0
For Example:
+----+
        | P9.11
| Pin
                +======+=====+
| GPIO
       |11
                 +----+
Use the commands below for controlling this pin (P9.11) where X = 1 and Y = 1
# to set the GPIO pin state to HIGH
debian@BeagleBone:~$ gpioset 1 20=1
# to set the GPIO pin state to LOW
debian@BeagleBone:~$ gpioset 1 20=0
```

The BALL row is the pin number on the processor.

The **REG** row is the offset of the control register for the processor pin.

The MODE # rows are the mode setting for each pin. Setting each mode to align with the mode column will give that function on that pin.

If included, the **2nd BALL** row is the pin number on the processor for a second processor pin connected to the same pin on the expansion header. Similarly, all row headings starting with **2nd** refer to data for this second processor pin.

NOTES:

DO NOT APPLY VOLTAGE TO ANY I/O PIN WHEN POWER IS NOT SUPPLIED TO THE BOARD. IT WILL DAMAGE THE PROCESSOR AND VOID THE WARRANTY.

NO PINS ARE TO BE DRIVEN UNTIL AFTER THE SYS_RESET LINE GOES HIGH.

P9.01-P9.05

P9. 01	P9. 02	P9. 03	P9. 04	P9. 05
GND	GND	VOUT_3V3	VOUT_3V3	VIN

P9.06-P9.10

P9. 06	P9. 07	P9. 08	P9. 09	P9. 10
VIN	VOUT_SYS	VOUT_SYS	ONKEY#	RESET#

P9.11-P9.13

Pin	P9. 11	P9. 12	P9. 13
Name	UART1_TXD	QSPIO_CSNO	UART1_RXD
BALL	M32	H1	M33
GPIO	0 10	2 3	0 11
REG	UART1_TXD_MUX	QSPIO_CSNO_MUX	UART1_RXD_MUX
MODE O	UART1_TXD	QSPIO_SSNO	UART1_RXD
MODE 1	~	PWM1	~
MODE 2	~	I2S_SDA1	~
MODE 3	GPI00_10	GPI02_3	GPI00_11
MODE 4	~	~	~
MODE 5	~	~	~

P9.14-P9.16

Pin	P9. 14	P9. 15	P9. 16
Name	QSPIO_D1_MISO	QSPIO_D2_WP	QSPIO_DO_MOSI
BALL	К3	K2	Ј3
GPIO	2 6	2 7	2 5
REG	QSPIO_D1_MISO_MUX	QSPIO_D2_WP_MUX	QSPIO_DO_MOSI_MUX

Pin	P9. 14	P9. 15	P9. 16
MODE O	QSPIO_M1_MISO	QSPIO_M2_WP	QSPIO_MO_MOSI
MODE 1	PWM4	PWM5	PWM3
MODE 2	I2S_MCLK	I2S_SCLK	I2S_SDA3
MODE 3	GPI02_6	GPI02_7	GPI02_5
MODE 4	~	~	~
MODE 5	~	~	~

P9.17-P9.19

Pin	P9. 17	P9. 18	P9. 19
Name	QSPI1_CSNO	QSPI1_DO_MOSI	I2C2_SCL
BALL	Н32	G35	G4
GPIO	0 1	0 2	2 9
REG	QSPI1_CSNO_MUX	QSPI1_DO_MOSI_MUX	I2C2_SCL_MUX
MODE 0	QSPI1_SSN0	QSPI1_MO_MOSI	I2C2_SCL
MODE 1	~	ISO7816_CVCC_EN	UART2_TXD
MODE 2	I2S_MCLK	I2C5_SDA	~
MODE 3	GPI00_1	GPI00_2	GPI02_9
MODE 4	EFUSE_SPI_NSS	EFUSE_SPI_SI	~
MODE 5	~	~	~

P9.20-P9.22

Pin	P9. 20	P9. 21	P9. 22
Name	I2C2_SDA	QSPI1_D1_MISO	QSPI1_SCLK
BALL	G3	G34	Н34

Pin	P9. 20	P9. 21	P9. 22
GPIO	2 10	0 3	0 0
REG	I2C2_SDA_MUX	QSPI1_D1_MISO_MUX	QSPI1_SCLK_MUX
MODE O	I2C2_SDA	QSPI1_M1_MISO	QSPI1_SCLK
MODE 1	UART2_RXD	IS07816_CLK	ISO7816_DET
MODE 2	~	~	~
MODE 3	GPI02_10	GPI00_3	GPI00_0
MODE 4	~	EFUSE_SPI_SO	EFUSE_SPI_CLK
MODE 5	~	~	~

P9.23-P9.25

Pin	P9. 23	P9. 24	P9. 25
Name	QSPIO_D3_HOLD	QSPI1_D2_WP	GPI02_18
BALL	K1	G33	F5
GPIO	2 8	0 4	2 18
REG	QSPIO_D3_HOLD_MUX	QSPI1_D2_WP_MUX	GPI02_18_MUX
MODE 0	QSPIO_M3_HOLD	QSPI1_M2_WP	GPI02_18
MODE 1	~	IS07816_RST	GMAC1_TX_CLK
MODE 2	12S_WS	UART5_TXD	~
MODE 3	GPI02_8	GPI00_4	~
MODE 4	~	EFUSE_BUSY	~
MODE 5	~	~	~

P9.26-P9.28

Pin	P9. 26	P9. 27	P9. 28
Name	QSPI1_D3_HOLD	GPI02_19	SPI_CSN
BALL	F37	E4	E3
GPIO	0 5	2 19	2 15
REG	QSPI1_D3_HOLD_MUX	GPIO2_19_MUX	SPI_CSN_MUX
MODE O	QSPI1_M3_HOLD	GPI02_19	SPI_SSN0
MODE 1	ISO7816_DAT	GMAC1_RX_CLK	UART2_RXD
MODE 2	UART5_RXD	~	UART2_IR_IN
MODE 3	GP100_5	~	GPI02_15
MODE 4	~	~	~
MODE 5	~	~	~

P9.29-P9.31

Pin	P9. 29	P9. 30	P9. 31
Name	SPI_MISO	SPI_MOSI	SPI_SCLK
BALL	F1	F2	D3
GPIO	2 17	2 16	2 14
REG	SPI_MISO_MUX	SPI_MOSI_MUX	SPI_SCLK_MUX
MODE O	SPI_MISO	SPI_MOSI	SPI_SCLK
MODE 1	~	~	UART2_TXD
MODE 2	~	~	UART2_IR_OUT
MODE 3	GPI02_17	GPI02_16	GPI02_14
MODE 4	~	~	~
MODE 5	~	~	~

P9.32-P9.40

P9. 32	P9. 34					
VDD_ADC	GND					
P9. 33	P9. 35	P9. 36	P9. 37	P9. 38	P9. 39	P9. 40
ADC_VI N_CH4	ADC_VI N_CH6	ADC_VI N_CH5	ADC_VI N_CH2	ADC_VI N_CH3	ADC_VI N_CHO	ADC_VI

P9.41-P8.42

Pin	P9. 41	P9. 42
Name	GPI02_13	QSPIO_SCLK
BALL	D2	Н3
GPIO	2 13	2 2
REG	GPI02_13_MUX	QSPIO_SCLK_MUX
MODE 0	GPI02_13	QSPIO_SCLK
MODE 1	SPI_SSN1	PWMO
MODE 2	~	I2S_SDA0
MODE 3	~	GPI02_2
MODE 4	~	~
MODE 5	~	~

P9.43-P9.46

P9. 43	P9. 44	P9. 45	P9. 46
GND	GND	GND	GND

mikroBUS

Pin	mikroBUS port		Pin	
ADC_VIN_CH7	AN	PWM	QSPIO_CSN1 (MODE1:PWM2)	

Pin	mikroBUS port		Pin		
AUDIO_PA3 (MODE3:GPIO4_3)	RST	INT	GPI02_21 (MODE0:GPI02_21)		
GPI02_20 (MODE0:GPI02_20)	CS	RX	UART3_RXD (MODE1:UART3_RXD)		
SPI_SCLK (MODEO:SPI_SCLK)	SCK	TX	UART3_TXD (MODE1:UART3_TXD)		
SPI_MISO (MODEO:SPI_MISO)	MISO	SCL	GPI00_18 (MODE1:I2C4_SCL)		
SPI_MOSI (MODEO:SPI_MOSI)	MOSI	SDA	GPI00_19 (MODE1:I2C4_SDA)		
3.3V supply	3V3	5V	5V supply		
Ground	GND	GND	Ground		

FCC statement:

When using the product, maintain a distance of 20cm from the body to ensure compliance with RF exposure requirements.

This device complies with part 15 of the FCC rules. Operation is subject to the following two conditions: (1) this device may not cause harmful interference, and (2) this device must accept any interference received, including interference that may cause undesired operation.

NOTE: The manufacturer is not responsible for any radio or TV interference caused by unauthorized modifications or changes to this equipment. Such modifications or changes could void the user's authority to operate the equipment.

NOTE: This equipment has been tested and found to comply with the limits for a Class B digital device, pursuant to part 15 of the FCC Rules. These limits are designed to provide reasonable protection against harmful interference in a residential installation. This equipment generates uses and can radiate radio frequency energy and, if not installed and used in accordance with the instructions, may cause harmful interference to radio communications. However, there is no guarantee that interference will not occur in a particular installation. If this equipment does cause harmful interference to radio or television reception, which can be determined by turning the equipment off and on, the user is encouraged to try to correct the interference by one or more of the following measures:

- Reorient or relocate the receiving antenna.
- Increase the separation between the equipment and receiver.
- -Connect the equipment into an outlet on a circuit different from that to which the receiver is connected.
- -Consult the dealer or an experienced radio/TV technician for help. Caution: Any changes or modifications not expressly approved by the party responsible for compliance could void the user's authority to operate this equipment.

ORIGINAL EQUIPMENT MANUFACTURER (OEM) NOTES

The OEM must certify the final end product to comply with unintentional radiators (FCC Sections 15.107 and 15.109) before declaring compliance of the final product to Part 15 of the FCC rules and regulations. Integration into devices that are directly or indirectly connected to AC lines must add with Class II Permissive Change.

The OEM must comply with the FCC labeling requirements. If the module's label is not visible when installed, then an additional permanent label must be applied on the outside of the finished product which states: "Contains transmitter module FCC ID: Z4T-BVA23060V1.

Additionally, the following statement should be included on the label and in the final product's user manual: "This device complies with Part 15 of the FCC Rules. Operation is subject to the following two conditions: (1) This device may not cause harmful interferences, and (2) this device must accept any interference received, including interference that may cause undesired operation."

The module is allowed to be installed in mobile and portable applications.

A module or modules can only be used without additional authorizations if they have been tested and granted under the same intended end-use operational conditions, including simultaneous transmission operations. When they have not been tested and granted in this manner, additional testing and/or FCC application filing may be required. The most straightforward approach to address additional testing conditions is to have the grantee responsible for the certification of at least one of the modules submit a permissive change application. When having a module grantee file a permissive change is not practical or feasible, the following guidance provides some additional options for host manufacturers. Integrations using modules where additional testing and/or FCC application filing(s) may be required are:

(A) a module used in devices requiring additional RF exposure compliance information (e.g., MPE evaluation or SAR testing); (B) limited and/or split modules not meeting all of the module requirements; and (C) simultaneous transmissions for independent collocated transmitters not previously granted together.

This Module is full modular approval, it is limited to OEM installation ONLY. Integration into devices that are directly or indirectly connected to AC lines must add with Class II Permissive Change. (OEM) Integrator has to assure compliance of the entire end product include the integrated Module. Additional measurements (15B) and/or equipment authorizations (e.g. Verification) may need to be addressed depending on co-location or simultaneous transmission issues if applicable. (OEM) Integrator is reminded to assure that these installation instructions will not be made available to the end user.

CE statement:

5150-5250 MHz can be used indoor only.

	AT	BE	BG	CH	CY	CY	DE	DK
	EE	EL	ES	FI	FR	HR	HU	IE
	IS	IT	LI	LT	LU	LV	MT	NL
	PL	PT	RO	SE	SI	SK	TR	

Frequency bands and power

	Bands	Operation Frequency	Max. Power
Bluetooth	2.4GHz	2402-2480 MHz	EIRP 9.67 dBm
	2.4GHz	2412-2472MHz	EIRP 14.06 dBm
Wi-Fi	5GHz	5180-5240MHz	EIRP 12.02 dBm
	JUNZ	5745-5825MHz	EIRP 13.66 dBm