

EMC TEST REPORT

Report Number: 101761367BOX-001c Project Number: G101761367

Report Issue Date: 11/12/2014

Product Designation: Z-Wave Radio

Standards: FCC 47CFR PT 15C:2014 15.249

FCC 47CFR PT 15B:2014

RSS-210 Issue 8 December 2010 RSS-Gen Issue 3 December 2010 ICES-003 Issue 5 August 2012

Tested by:
Intertek Testing Services NA, Inc.
70 Codman Hill Road
Boxborough, MA 01719
USA

Client:
PowerHouse Dynamcis Inc
1 Bridge Street
3rd Floor, Suite 301
Newton, MA 02458
USA

Report prepared by Reviewer

Report reviewed by

Vathana F. Ven / Senior Project Engineer

Michael F. Murphy / Sr. Staff Engineer, EMC

This report is for the exclusive use of Intertek's Client and is provided pursuant to the agreement between Intertek and its Client. Intertek's responsibility and liability are limited to the terms and conditions of the agreement. Intertek assumes no liability to any party, other than to the Client in accordance with the agreement, for any loss, expense or damage occasioned by the use of this report. Only the Client is authorized to permit copying or distribution of this report and then only in its entirety. Any use of the Intertek name or one of its marks for the sale or advertisement of the tested material, product or service must first be approved in writing by Intertek. The observations and test results in this report are relevant only to the sample tested. This report by itself does not imply that the material, product, or service is or has ever been under an Intertek certification program.

1 Introduction and Conclusion

The tests indicated in section 2.0 were performed on the product constructed as described in section 4.0. The remaining test sections are the verbatim text from the actual data sheets used during the investigation. These test sections include the test name, the specified test Method, a list of the actual Test Equipment Used, documentation Photos, Results and raw Data. No additions, deviations, or exclusions have been made from the standard(s) unless specifically noted.

Based on the results of our investigation, we have concluded the product tested **complies** with the requirements of the standard(s) indicated. The results obtained in this test report pertain only to the item(s) tested.

2 Test Summary

Section	Test full name	Result
3	Client Information	
4	Description of Equipment Under Test	
5	System Setup and Method	
6	Transmitter Fundamental Power ((FCC 47CFR PT 15.249(a), RSS-210 Issue 8 December 2010)	Pass
7	Transmitter Spurious Emissions (FCC 47CFR PT 15.249(d), RSS-210 Issue 8 December 2010)	Pass
8	Receiver Spurious Emissions (FCC 47CFR PT 15.209, RSS-Gen Issue 3 December 2010, ICES-003 Issue 5 August 2012)	Pass
9	Transmitter Bandwidth (FCC 47CFR PT 2.1049, RSS-Gen Issue 3 December 2010)	No limit
10	Transmitter Duty Cycle (FCC 47CFR PT 15.35(c), RSS-Gen Issue 3 December 2010)	No limit
11	AC Mains Conducted Emissions (FCC 47CFR PT 15.107, RSS-Gen Issue 3 December 2010, ICES-003 Issue 5 August 2012)	Pass
12	Revision History	

3 Client Information

This EUT was tested at the request of:

Client:

PowerHouse Dynamcis Inc

1 Bridge Street 3rd Floor, Suite 301 Newton, MA 02458

USA

Contact: Benjamin Sprachman

Telephone: 617-340-6582

Fax: N/A

Email: ben@powerhousedynamics.com

4 Description of Equipment Under Test

Manufacturer:

PowerHouse Dynamcis Inc

1 Bridge Street 3rd Floor, Suite 301 Newton, MA 02458

USA

Equipment Under Test										
Description Manufacturer Model Number Serial Number										
Z-Wave Radio	PowerHouse Dynamics	950-000018	AG0778814411221							

Receive Date:	08/14/2014, 11/07/2014		
Received Condition:	Good		
Type:	Production		

Description of Equipment Under Test (provided by client)

The device is a Z-Wave Radio

Equipment Under Test Power Configuration								
Rated Voltage	Rated Voltage Rated Current Rated Frequency Number of Phases							
120VAC N/L 50/60Hz 1								

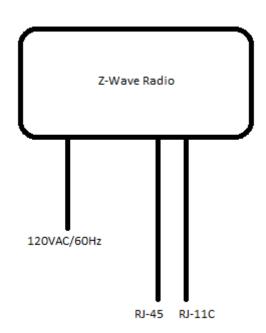
Operating modes of the EUT:

No.	Descriptions of EUT Exercising
1	Continuously transmit
2	Rx mode

Software used by the EUT:

No	Descriptions	of EUT Exercising
1	None	

5 System Setup and Method


	Cables								
ID	Description	Length (m)	Shielding	Ferrites	Termination				
1	AC cable	1	None	None	AC mains				
2	RJ-45	5	None	None	Hub				
3	RJ-11C	5	None	None	Unterminated				

Support Equipment								
Description Manufacturer Model Number Serial								
Thermostat	PowerHouse Dynamics	N/A	N/A					

5.1 Method:

Configuration as required by FCC Part 15C:2014, ANSI C63,4:2012.

5.2 EUT Block Diagram:

Non-Specific EMC Report Shell Rev. May 2014 PowerHouse Dynamcis Inc, Z-Wave Radio

6 Transmitter Fundamental Power

6.1 Method

Tests are performed in accordance with FCC 47CFR Part 15 Subpart B Class B, FCC 47CFR Part 15 Subpart C Section 15.249, ANSI C63.10:2012, RSS-210, and ICES-003.

TEST SITE: 10m ALSE

The 10m ALSE is 13m (Length) x 21m (Depth) x 10m (Height) with the effective size in terms of space from the tips of the absorber is 12m (Length) x 20m (Depth) x 8.5m (Height). This chamber achieves broadband performance using a unique arrangement of hybrid and ferrite tile absorber. This chamber has a built in 3m diameter turntable (Embedded type). The metal structure of the table makes electrical connection around the entire circumference of the turntable to the ground plane with a metal brush type connection. The turntable is located on one end of the chamber and the antennas are mounted 3 and 10 meters away at the other end of the chamber on the adjustable an Antenna Mast. The antenna mast is a non-conductive bore sighted type with remote control of antenna height and polarization. The Antenna Mast and the turntable can be remotely controlled through the controller located in the adjacent Control room. A Styrofoam table 80 cm high is used for table-top equipment.

Measurement Uncertainty

Measurement	Frequency Range	Expanded Uncertainty (k=2)	Ucispr
Radiated Emissions, 10m	30-1000 MHz	4.6	6.3
Radiated Emissions, 3m	30-1000 MHz	5.3	6.3
Radiated Emissions, 3m	1-6 GHz	4.5	5.2
Radiated Emissions, 3m	6-15 GHz	5.2	5.5
Radiated Emissions, 3m	15-18 GHz	5.0	5.5
Radiated Emissions, 3m	18-40 GHz	5.0	5.5

Non-Specific EMC Report Shell Rev. May 2014 PowerHouse Dynamcis Inc, Z-Wave Radio

Sample Calculation

The field strength is calculated by adding the Antenna Factor and Cable Factor, and subtracting the Amplifier Gain (if any) from the measured reading. The basic equation with a sample calculation is as follows:

FS = RA + AF + CF - AG

Where FS = Field Strength in $dB_{\mu}V/m$

RA = Receiver Amplitude (including preamplifier) in dB_µV

CF = Cable Attenuation Factor in dB

AF = Antenna Factor in dB AG = Amplifier Gain in dB

In the following table(s), the reading shown on the data table reflects the preamplifier gain. An example for the calculations in the following table is as follows.

Assume a receiver reading of 52.0 dB $_{\mu}$ V is obtained. The antenna factor of 7.4 dB and cable factor of 1.6 dB is added. The amplifier gain of 29 dB is subtracted, giving a field strength of 32 dB $_{\mu}$ V/m. This value in dB $_{\mu}$ V/m was converted to its corresponding level in $_{\mu}$ V/m.

RA = $52.0 \text{ dB}_{\mu}\text{V}$ AF = 7.4 dB/mCF = 1.6 dBAG = 29.0 dBFS = $32 \text{ dB}_{\mu}\text{V/m}$

To convert from $dB\mu V$ to μV or mV the following was used:

UF =
$$10^{(NF/20)}$$
 where UF = Net Reading in μ V NF = Net Reading in $dB\mu$ V

Example:

FS = RA + AF + CF - AG = 52.0 + 7.4 + 1.6 - 29.0 = 32.0 UF =
$$10^{(32\,\text{dB}_{\mu}\text{V}\,/\,20)}$$
 = 39.8 $\mu\text{V/m}$

Alternately, when C5 Software is used, the "Level" includes all losses and gains and is compared directly in the "Margin" column to the "Limit". "AF" is the Antenna Factor; "PA+CL" are Preamp and Cable Loss. These are already accounted for in the "Level" column.

Intertek

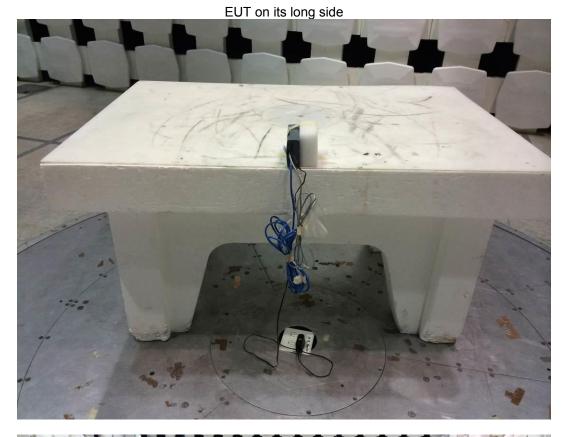
Report Number: 101761367BOX-001c Issued: 11/12/2014

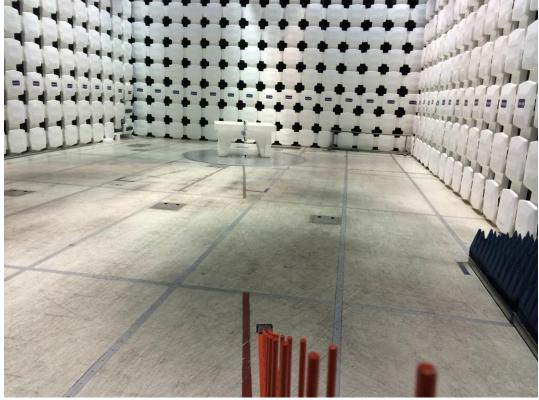
6.2 Test Equipment Used:

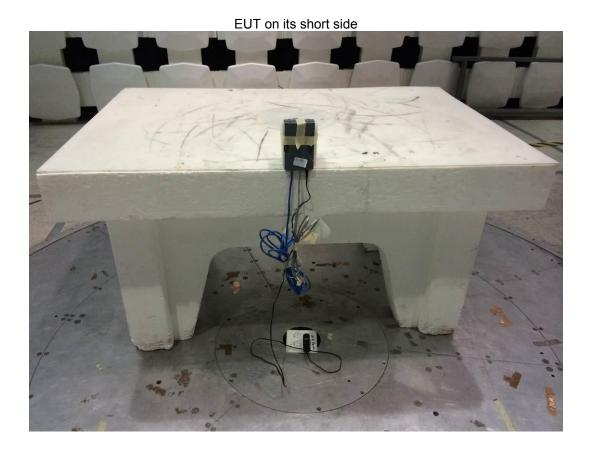
Asset	Description	Manufacturer	Model	Serial	Cal Date	Cal Due
DAV004'	Weather Station	Davis Instruments	7400	PE80529A61A	10/06/2014	10/06/2015
145-410'	Cables 145-400 145-403 145-405 145-406 145-407	Huber + Suhner	10m Track A Cables	multiple	10/04/2014	10/04/2015
145128'	EMI Receiver (20 Hz - 40 Ghz)	Rohde & Schwarz	ESIB 40	839283/001	03/17/2014	03/17/2015
145145'	Bilog Antenna (30MHz - 5GHz)	Sunol Sciences	JB5	A122313	01/07/2014	01/07/2015
145003'	Preamplifier (150 KHz to 1.3 GHz)	Hewlett Packard	8447D	2443A04077	10/11/2014	10/11/2015

Software Utilized:

Name	Manufacturer	Version		
C5	Teseq	5.26.46.46		


6.3 Results:


The sample tested was found to Comply.


6.4 Setup Photographs:

6.5 Test Data:

Company: PowerHouse Dynamics, Inc.

Antenna & Cables: N Bands: N, LF, HF, SHF

Model #: Z-Wave Radio

Antenna: 145106 V10m 10-01-2014.txt 145106 H10m 10-01-2014.txt 145106 H10m 10-01-2014.txt

Serial #: 0 Cable(s): 145-410 10mTrkA 10-03-2014.txt NONE.

Engineers: Kouma Sinn Location: 10m chamber Barometer: DAV004 Filter: NONE

Project #: G101761367 Date(s): 08/14/14

Standard: FCC Part 15 Subpart C 15.249 Temp/Humidity/Pressure: 21C 51% 998mbar

Receiver: 145-128 Limit Distance (m): 3
PreAmp: NONE. Test Distance (m): 10

PreAmp Used? (Y or N): N Voltage/Frequency: 120VAC/60Hz Frequency Range: Fundamental Frequency

Net = Reading (dBuV/m) + Antenna Factor (dB1/m) + Cable Loss (dB) - Preamp Factor (dB) - Distance Factor (dB)

Peak: PK Quasi-Peak: QP Average: AVG RMS: RMS; NF = Noise Floor, RB = Restricted Band; Bandwidth denoted as RBW/VBW

Peak: PK Quasi-Peak: QP Average: AVG RMS: RMS; NF = Noise Floor, RB = Restricted Band; Bandwidth denoted as RBW/VBW											
	Ant.			Antenna	Cable	Pre-amp	Distance				
Detector	Pol.	Frequency	Reading	Factor	Loss	Factor	Factor	Net	Limit	Margin	Bandwidth
Туре	(V/H)	MHz	dB(uV)	dB(1/m)	dB	dB	dB	dB(uV/m)	dB(uV/m)	dB	
	Funamental Limit = 50 milivolts/meter, or 50000 uV/m, or 20*log(50000), 93.98 dBuV/m at 3 meters										
		l	Harmonic Li	mit = 500 u	V/m, or 20*I	og(500), 53	98 dBuV/m	at 3 meters	i		
Emis	ssions radia	ted outside o	of the specif	ied frequenc	cy bands, ex	cept for har	monics, sha	all be attenu	ated by at le	ast 50 dB l	pelow
	level of the	ne fundamen	tal or to the	general rad	iated emiss	ion limits in	§15.209, wł	nichever is t	he lesser at	enuation.	
		Th	ne Z-Wave r	adio was pr	ogrammed	to transmit o	ontinuous a	t 908.42 MI	Ηz		
				EUT sit	s on its bacl	k, no pre-an	np used				
MaxH PK	V	908.364	52.13	22.57	4.88	0.00	-10.46	90.03	113.98	-23.95	120/300 kH
AVG	٧	908.364	35.23	22.57	4.88	0.00	-10.46	73.13	93.98	-20.85	120/300 kHz
MaxH PK	Н	908.360	48.98	22.17	4.88	0.00	-10.46	86.48	113.98	-27.50	120/300 kH
AVG	Н	908.360	32.08	22.17	4.88	0.00	-10.46	69.58	93.98	-24.40	120/300 kHz
				EUT sits of	on its long s	ide, no pre-a	amp used	•			
MaxH PK	V	908.364	47.40	22.57	4.88	0.00	-10.46	85.30	113.98	-28.68	120/300 kH
AVG	V	908.364	30.50	22.57	4.88	0.00	-10.46	68.40	93.98	-25.58	120/300 kHz
MaxH PK	Н	908.364	50.31	22.17	4.88	0.00	-10.46	87.81	113.98	-26.17	120/300 kH
AVG	Н	908.360	33.41	22.17	4.88	0.00	-10.46	70.91	93.98	-23.07	120/300 kHz
				EUT sits o	n its short s	side, no pre-	amp used				
MaxH PK	V	908.404	47.38	22.57	4.88	0.00	-10.46	85.28	113.98	-28.70	120/300 kH
AVG	V	908.404	30.48	22.57	4.88	0.00	-10.46	68.38	93.98	-25.60	120/300 kHz
MaxH PK	Н	908.360	52.32	22.17	4.88	0.00	-10.46	89.82	113.98	-24.16	120/300 kH
AVG	Н	908.360	35.42	22.17	4.88	0.00	-10.46	72.92	93.98	-21.06	120/300 kHz

Note that average factor of 16.9 dB was applied to the peak readings to obtain average readings

Kouma Sinn Test Personnel: Test Date: 08/14/2014 Supervising/Reviewing Engineer: (Where Applicable) N/A FCC Part 15 Subpart 15.249, RSS-210 Product Standard: Limit Applied: Per Standard 120VAC/60Hz Input Voltage: Ambient Temperature: 21 °C Pretest Verification w/ Ambient Signals or BB Source: BB Source Relative Humidity: 51 %

Atmospheric Pressure: 998 mbars

Deviations, Additions, or Exclusions: None

7 Transmitter Spurious Emissions

7.1 Method

Tests are performed in accordance with FCC 47CFR Part 15 Subpart B Class B, FCC 47CFR Part 15 Subpart C Section 15.249, ANSI C63.10:2012, RSS-210, and ICES-003.

TEST SITE: 10m ALSE

The 10m ALSE is 13m (Length) x 21m (Depth) x 10m (Height) with the effective size in terms of space from the tips of the absorber is 12m (Length) x 20m (Depth) x 8.5m (Height). This chamber achieves broadband performance using a unique arrangement of hybrid and ferrite tile absorber. This chamber has a built in 3m diameter turntable (Embedded type). The metal structure of the table makes electrical connection around the entire circumference of the turntable to the ground plane with a metal brush type connection. The turntable is located on one end of the chamber and the antennas are mounted 3 and 10 meters away at the other end of the chamber on the adjustable an Antenna Mast. The antenna mast is a non-conductive bore sighted type with remote control of antenna height and polarization. The Antenna Mast and the turntable can be remotely controlled through the controller located in the adjacent Control room. A Styrofoam table 80 cm high is used for table-top equipment.

Measurement Uncertainty

Measurement	Frequency Range	Expanded Uncertainty (k=2)	Ucispr
Radiated Emissions, 10m	30-1000 MHz	4.6	6.3
Radiated Emissions, 3m	30-1000 MHz	5.3	6.3
Radiated Emissions, 3m	1-6 GHz	4.5	5.2
Radiated Emissions, 3m	6-15 GHz	5.2	5.5
Radiated Emissions, 3m	15-18 GHz	5.0	5.5
Radiated Emissions, 3m	18-40 GHz	5.0	5.5

Non-Specific EMC Report Shell Rev. May 2014 PowerHouse Dynamcis Inc, Z-Wave Radio

Sample Calculation

The field strength is calculated by adding the Antenna Factor and Cable Factor, and subtracting the Amplifier Gain (if any) from the measured reading. The basic equation with a sample calculation is as follows:

FS = RA + AF + CF - AG

Where FS = Field Strength in $dB_{\mu}V/m$

RA = Receiver Amplitude (including preamplifier) in dB_µV

CF = Cable Attenuation Factor in dB

AF = Antenna Factor in dB AG = Amplifier Gain in dB

In the following table(s), the reading shown on the data table reflects the preamplifier gain. An example for the calculations in the following table is as follows.

Assume a receiver reading of 52.0 dB μ V is obtained. The antenna factor of 7.4 dB and cable factor of 1.6 dB is added. The amplifier gain of 29 dB is subtracted, giving a field strength of 32 dB μ V/m. This value in dB μ V/m was converted to its corresponding level in μ V/m.

RA = $52.0 \text{ dB}_{\mu}\text{V}$ AF = 7.4 dB/mCF = 1.6 dBAG = 29.0 dBFS = $32 \text{ dB}_{\mu}\text{V/m}$

To convert from $dB\mu V$ to μV or mV the following was used:

UF =
$$10^{(NF/20)}$$
 where UF = Net Reading in μ V NF = Net Reading in $dB\mu$ V

Example:

FS = RA + AF + CF – AG = 52.0 + 7.4 + 1.6 – 29.0 = 32.0 UF =
$$10^{(32\,\text{dB}_{\mu}\text{V}\,/\,20)}$$
 = 39.8 $\mu\text{V/m}$

Alternately, when C5 Software is used, the "Level" includes all losses and gains and is compared directly in the "Margin" column to the "Limit". "AF" is the Antenna Factor; "PA+CL" are Preamp and Cable Loss. These are already accounted for in the "Level" column.

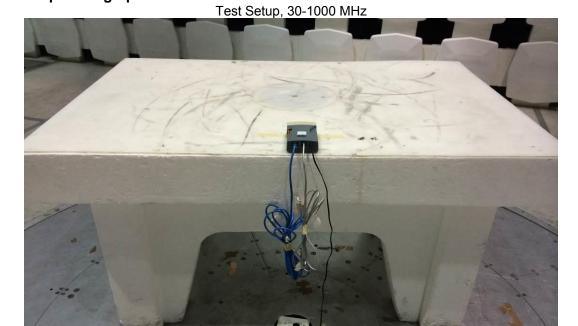
Intertek

Report Number: 101761367BOX-001c Issued: 11/12/2014

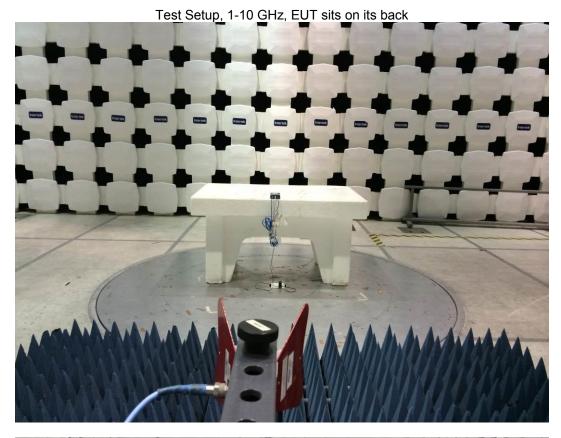
7.2 Test Equipment Used:

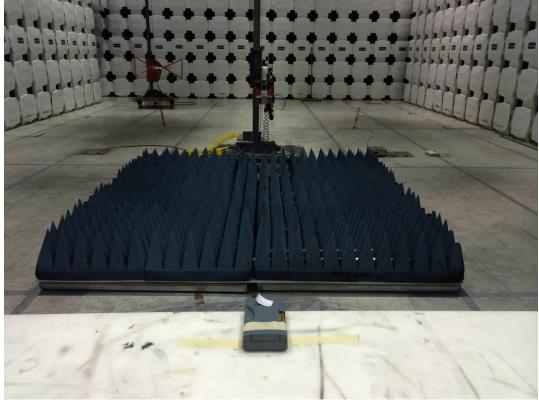
Tested on 8/14/14 and on 10/30/2014

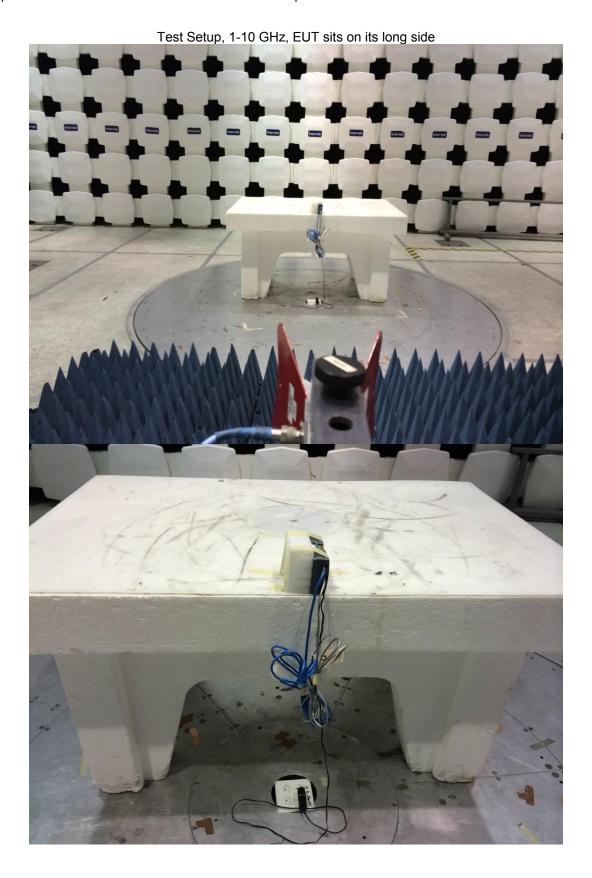
Asset	Description	Manufacturer	Model	Serial	Cal Date	Cal Due
DAV004'	Weather Station	Davis Instruments	7400	PE80529A61A	10/06/2014	10/06/2015
145-410"	Cables 145-400 145-403 145-405 145-406 145-407	Huber + Suhner	10m Track A Cables	multiple	10/04/2014	10/04/2015
145128"	EMI Receiver (20 Hz - 40 Ghz)	Rohde & Schwarz	ESIB 40	839283/001	03/17/2014	03/17/2015
145106"	Bilog Antenna (30MHz - 5GHz)	Sunol Sciences	JB5	A111003	01/07/2014	01/07/2015
145003"	Preamplifier (150 KHz to 1.3 GHz)	Hewlett Packard	8447D	2443A04077	10/11/2014	10/11/2015
ETS001'	1-18GHz DRG Horn Antenna	ETS-Lindgren	3117	00143259	01/06/2014	01/06/2015
REA003'	1GHz High Pass Filter	Reactel, Inc	7HS-1G/10G-S11	06-1	12/30/2013	12/30/2015
145014'	Preamplifier (1 GHz to 26.5 GHz)	Hewlett Packard	8449B	3008A00232	12/19/2014	12/19/2015
145-416'	Cables 145-400 145-402 145-404 145-408	Huber + Suhner	3m Track B cables	multiple	10/04/2014	10/04/2015

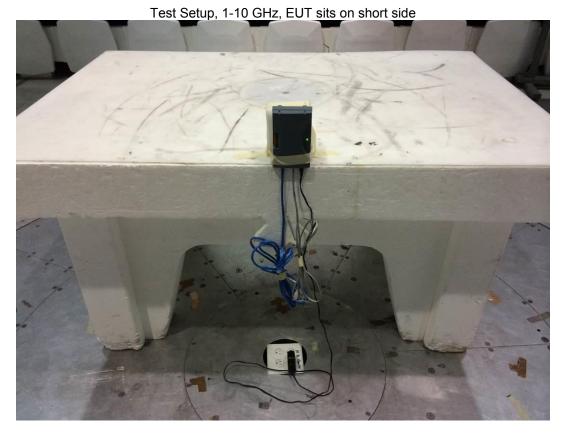

Software Utilized:

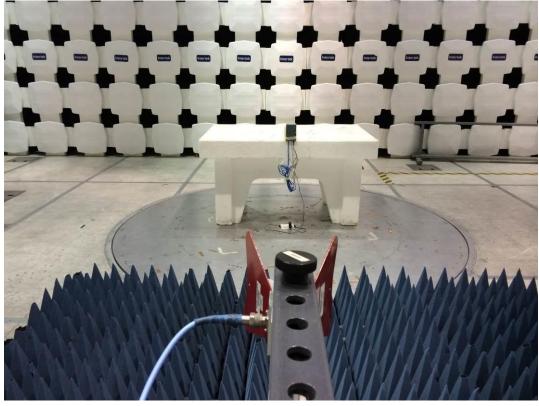

Name	Manufacturer	Version
C5	Teseq	5.26.46.46


7.3 Results:


The sample tested was found to Comply.


7.4 Setup Photographs:



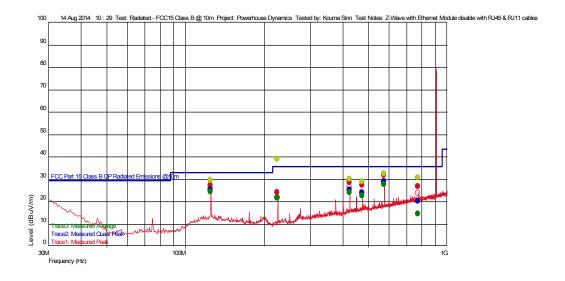


7.5 Plots/Data:

Transmit Mode, 30-1000 MHz

Test Information

User Entry Radiated - FCC15 Class B @ 10m Test Details


Test:

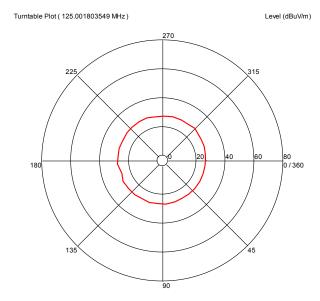
Powerhouse Dynamics Z-Wave with Ethernet Module disable with RJ45 & RJ11 cables Test Notes: Temperature: 20%

68%, 997mbar Humidity: Tested by: Test Started: Kouma Sinn 14 Aug 2014 10 : 29

Prescan Emission Graph

Additional Information

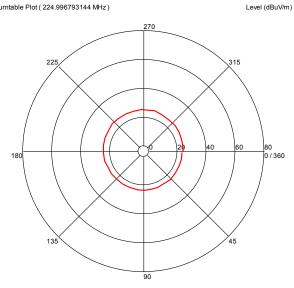
Measured Peak Value	Swept Peak Data
Measured Quasi Peak Value	Swept Quasi Peak Data
 Measured Average Value 	Swept Average Data
Maximum Value of Mast and Turntable	


Emissions Test Data Trace1: Measured Peak

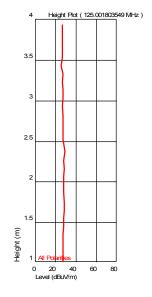
Freque	ncy(Hz)	(dBuV/m)	AF	PA+CL	Limit(dBuV/m)	Margin(dBuV/m)	Hor (), Ver ()	Azimuth (deg)(Deg)	Mast Height(m)	RBW(Hz)	Comment
224.996	6793144 M	24.11	11.100	-23.810			1	276	1.05	120 k	
775.08	5571162 M	26.64	20.700	-23.355				164	3.73	120 k	
474.974	4749898 M	27.35	17.599	-24.510				40	1.25	120 k	
425.03	7474569 M	28.61	16.401	-24.155			İ	8	1.16	120 k	
125.00	1803549 M	27.44	14.300	-25.365				239	2.52	120 k	
575.009	9418739 M	31.67	18.700	-24.290				281	1.87	120 k	
Trace	2: Measur	red Quasi I	Peak								
Freque	ncy(Hz)	Level	AF	PA+CL	Limit(dBuV/m)	Margin(dBuV/m)	Hor (), Ver ()	Azimuth (deg)(Deg)	Mast Height(m)	RBW(Hz)	Comment

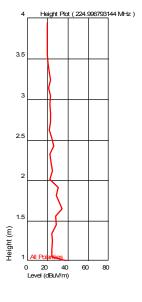
Frequency(Hz)	Level (dBuV/m)	AF	PA+CL	Limit(dBuV/m)	Margin(dBuV/m)	Hor (), Ver ()	Azimuth (deg)(Deg)	Mast Height(m)	RBW(Hz)	Commer
775.085571162 M	20.06	20.700	-23.355	35.540	-15.48		164	3.73	120 k	
224.996793144 M	21.66	11.100	-23.810	35.540	-13.88	1	276	1.05	120 k	
474.974749898 M	23.72	17.599	-24.510	35.540	-11.82		40	1.25	120 k	
425.037474569 M	25.28	16.401	-24.155	35.540	-10.26		8	1.16	120 k	
125.001803549 M	25.21	14.300	-25.365	33.040	-7.83		239	2.52	120 k	
575.009418739 M	28.95	18.700	-24.290	35.540	-6.59		281	1.87	120 k	

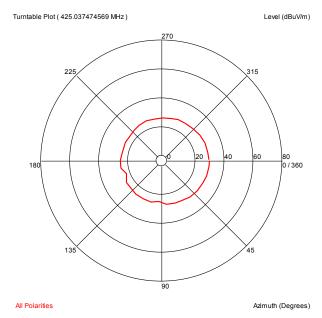
Notes: The big spike emission on the pre-scan plot is the fundamental frequency signal. It's not being measured.

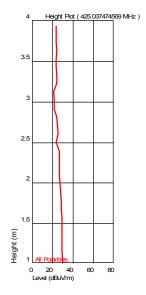

Azimuth Plots

All Polarities Azimuth (Degrees)

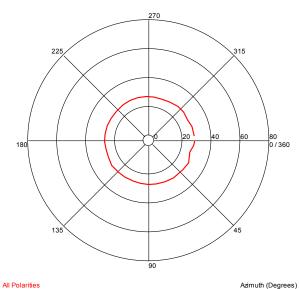

Turntable Plot (224.996793144 MHz)

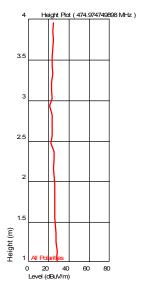

All Polarities

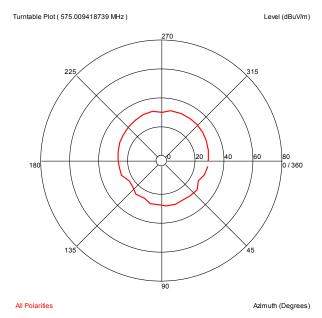


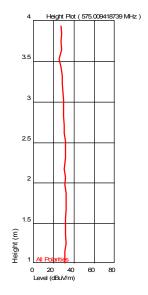

Azimuth (Degrees)

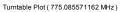
Turntable Plots

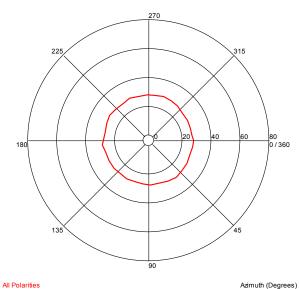


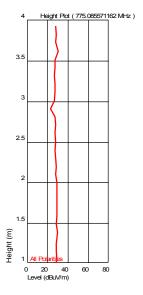










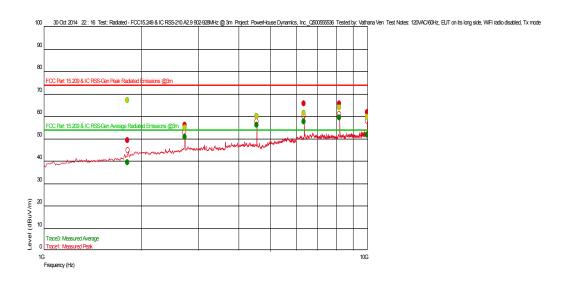


Level (dBuV/m)

Transmit Mode, EUT on its back side, 1-10 GHz

Test Information

Test Details Test:


User Entry Radiated - FCC15.249 & IC RSS-210 A2.9 902-928MHz @ 3m

Project: Test Notes:

PowerHouse Dynamics, Inc._Q500555536 120VAC/60Hz, EUT on its long side, WiFi radio disabled, Tx mode

Temperature: 39%, 1003 mB Vathana Ven 30 Oct 2014 22 : 16 Humidity: Tested by: Test Started:

Prescan Emission Graph

Measured Peak Value

Measured Quasi Peak Value Measured Average Value

Maximum Value of Mast and Turntable

Swept Peak Data

Swept Quasi Peak Data

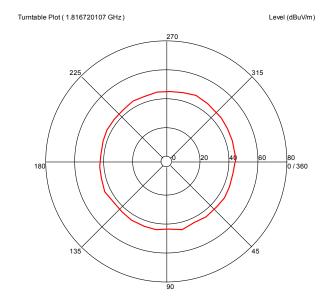
Swept Average Data

Emissions Test Data

Trace1: Meası	ured Peak									
Frequency (Hz)	Level (dBuV/m)	AF	PA+CL	Limit (dBuV/m)	Margin (dBuV/m)	Hor (), Ver ()	Azimuth (deg)(Deg)	Mast Height(m)	RBW(Hz)	Comment
1.816720107 G	48.97	30.290	-26.534	74.000	-25.03		284	1.64	1 M	
2.725103541 G	55.91	32.457	-25.430	74.000	-18.09	j	228	2.41	1 M	
4.541897127 G	59.90	34.260	-24.328	74.000	-14.10	İ	228	2.65	1 M	
9.992625251 G	61.56	37.169	-20.824	74.000	-12.44		331	2.34	1 M	
8.175350701 G	65.44	35.973	-20.930	74.000	-8.56		251	2.09	1 M	
6.358643955 G	65.59	35.621	-20.874	74.000	-8.41	1	243	1.28	1 M	

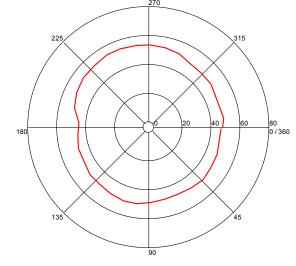
Trace3: Measured Average

Frequency (Hz)	Level (dBuV/m)	AF	PA+CL	Limit (dBuV/m)	Margin (dBuV/m)	Hor (), Ver ()	Azimuth (deg)(Deg)	Mast Height(m)	RBW(Hz)	Comment
1.816720107 G	32.07	30.290	-26.534	54.000	-21.93	1	284	1.64	1 M	
2.725103541 G	39.01	32.457	-25.430	54.000	-14.99		228	2.41	1 M	
9.992625251 G	43.00	37.169	-20.824	54.000	-11.00		331	2.34	1 M	
4.541897127 G	44.66	34.260	-24.328	54.000	-9.34		228	2.65	1 M	
6.358643955 G	48.54	35.621	-20.874	54.000	-5.46		243	1.28	1 M	
8.175350701 G	48.69	35.973	-20.930	54.000	-5.31		251	2.09	1 M	

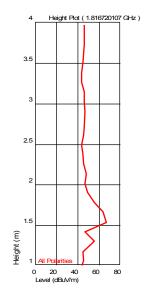

Notes: Disregard the average readings on the pre-scan plot. The average readings on the table are the corrected average readings based on the duty cycle of the transmitter.

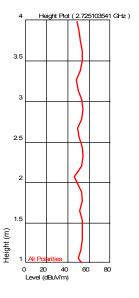
Average readings = Peak Readings - Average Factor

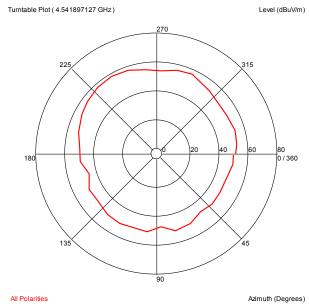
Average Factor was calculated to be 16.9 dB

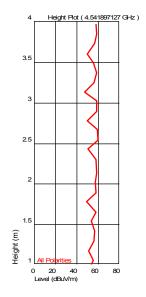

Additional Information

Azimuth Plots

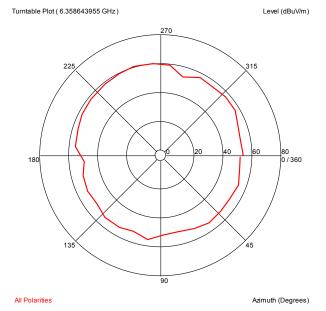

All Polarities Azimuth (Degrees)

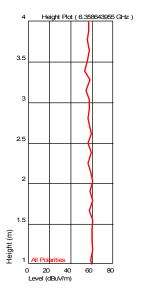


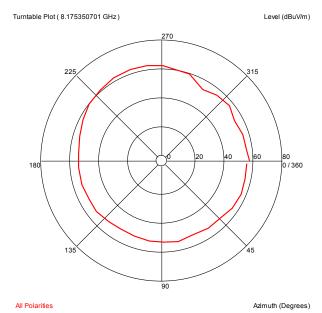


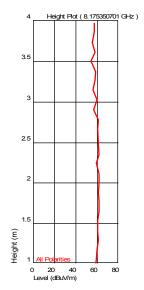

All Polarities Azimuth (Degrees)

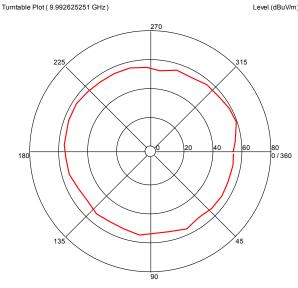
Turntable Plots

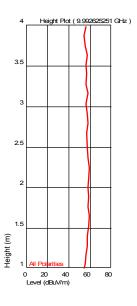












Level (dBuV/m)

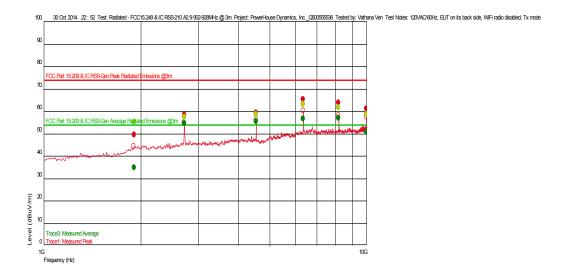
Azimuth (Degrees)

Test Information

All Polarities

User Entry Radiated - FCC15.249 & IC RSS-210 A2.9 902-928MHz @ 3m

Test Details Test:


Project: Test Notes: PowerHouse Dynamics, Inc. Q50055536 120VAC/60Hz, EUT on its back side, WiFi radio disabled, Tx mode

21 deg C 39%, 1003 mB Vathana Ven 30 Oct 2014 22 : 52 Temperature: Humidity: Tested by:

Test Started:

Additional Information

Prescan Emission Graph

Measured Peak Value

Measured Quasi Peak Value
Measured Average Value

Maximum Value of Mast and Turntable

__ Swept Peak Data

__ Swept Quasi Peak Data

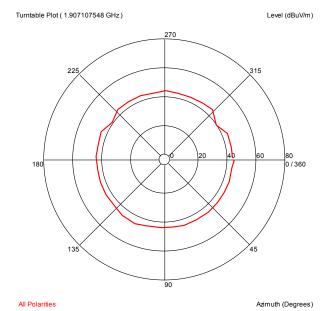
__ Swept Average Data

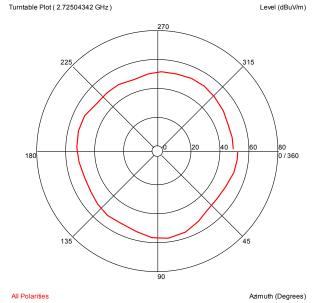
Emissions Test Data

Trace1: Measured Peak

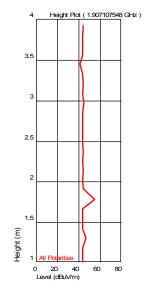
Trucc I. Mcusu	ica i can									
Frequency (Hz)	Level (dBuV/m)	AF	PA+CL	Limit (dBuV/m)	Margin (dBuV/m)	Hor (), Ver ()	Azimuth (deg)(Deg)	Mast Height(m)	RBW(Hz)	Comment
1.907107548 G	49.26	31.402	-26.262	74.000	-24.74		127	1.89	1 M	
2.72504342 G	58.41	32.457	-25.430	74.000	-15.59		94	2.10	1 M	
4.542010688 G	59.36	34.260	-24.329	74.000	-14.64		276	2.48	1 M	
9.99258517 G	61.15	37.169	-20.824	74.000	-12.85		100	1.53	1 M	
8.175290581 G	63.80	35.973	-20.930	74.000	-10.20		188	2.89	1 M	
6.358603875 G	65.29	35.621	-20.874	74.000	-8.71		277	1.86	1 M	

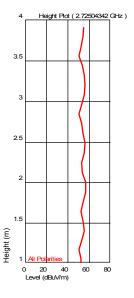
Trace3: Measured Average

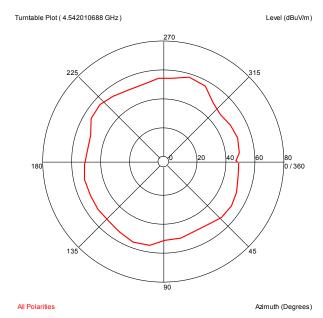

		,~								
Frequency (Hz)	Level (dBuV/m)	AF	PA+CL	Limit (dBuV/m)	Margin (dBuV/m)	Hor (), Ver ()	Azimuth (deg)(Deg)	Mast Height(m)	RBW(Hz)	Comment
1.907107548 G	32.36	31.402	-26.262	54.000	-21.64		127	1.89	1 M	
9.99258517 G	41.51	37.169	-20.824	54.000	-12.49		100	1.53	1 M	
2.72504342 G	42.46	32.457	-25.430	54.000	-11.54		94	2.10	1 M	
4.542010688 G	44.25	34.260	-24.329	54.000	-9.75		276	2.48	1 M	
6.358603875 G	46.90	35.621	-20.874	54.000	-7.10		277	1.86	1 M	
8.175290581 G	48.39	35.973	-20.930	54.000	-5.61		188	2.89	1 M	

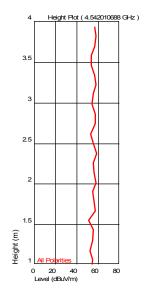

Notes: Disregard the average readings on the pre-scan plot. The average readings on the table are the corrected average readings based on the duty cycle of the transmitter.

Average readings = Peak Readings - Average Factor

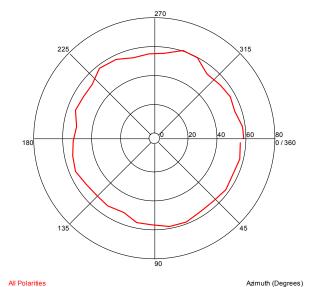

Average Factor was calculated to be 16.9 dB

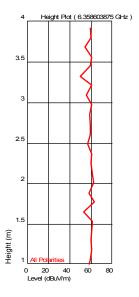

Azimuth Plots

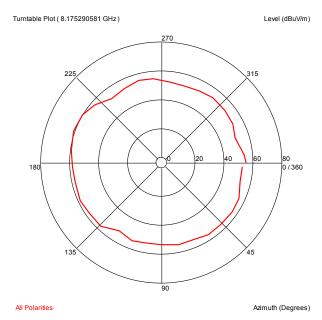


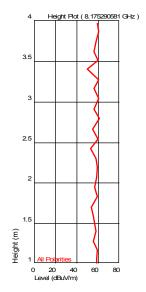


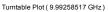
Turntable Plots

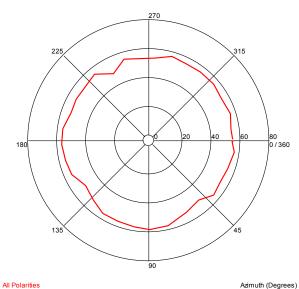


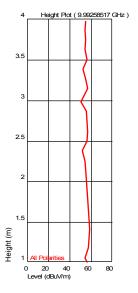






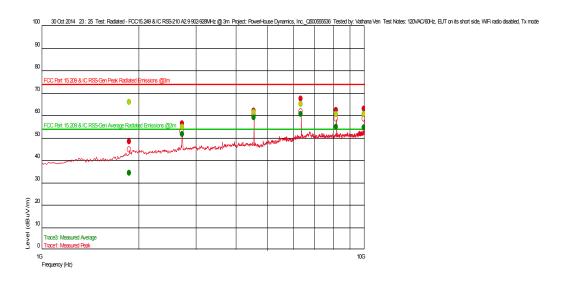






Test Information

Test Details


User Entry Radiated - FCC15.249 & IC RSS-210 A2.9 902-928MHz @ 3m Test: Project: PowerHouse Dynamics, Inc._Q500555536

120VAC/60Hz, EUT on its short side, WiFi radio disabled, Tx mod Test Notes: Temperature:

21 deg C 39%, 1003 mB Humidity: Vathana Ven 30 Oct 2014 23 : 25 Tested by: Test Started:

Additional Information

Prescan Emission Graph

Measured Peak Value

Measured Quasi Peak Value Measured Average Value

Maximum Value of Mast and Turntable

Swept Peak Data

Swept Quasi Peak Data

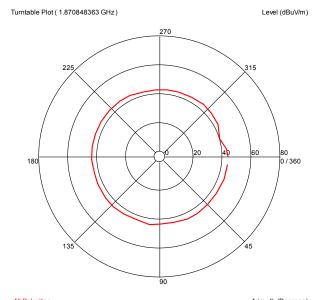
Swept Average Data

Emissions Test Data

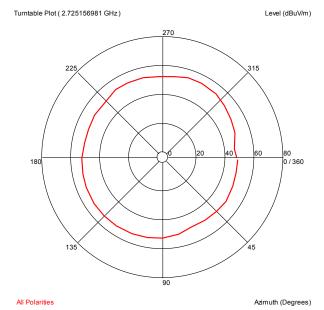
Trace1: Measured Peak

Frequency (Hz)	Level (dBuV/m)	AF	PA+CL	Limit (dBuV/m)	Margin (dBuV/m)	Hor (), Ver ()	Azimuth (deg)(Deg)	Mast Height(m)	RBW(Hz)	Comment
1.870848363 G	48.12	30.994	-26.462	74.000	-25.88		89	1.64	1 M	
2.725156981 G	56.19	32.457	-25.430	74.000	-17.81		288	2.00	1 M	
4.542044088 G	61.83	34.260	-24.329	74.000	-12.17		161	1.53	1 M	
8.175671342 G	62.17	35.973	-20.932	74.000	-11.83		233	2.23	1 M	
9.992177689 G	62.82	37.169	-20.824	74.000	-11.18		232	1.40	1 M	
6.358537074 G	67.32	35.621	-20.875	74.000	-6.68	1	242	3.30	1 M	

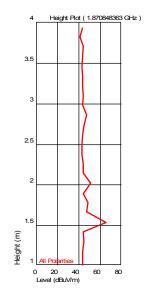
Trace3: Measured Average

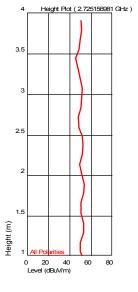

Frequency (Hz)	Level (dBuV/m)	AF	PA+CL	Limit (dBuV/m)	Margin (dBuV/m)	Hor (), Ver ()	Azimuth (deg)(Deg)	Mast Height(m)	RBW(Hz)	Comment
1.870848363 G	31.22	30.994	-26.462	54.000	-22.78	1	89	1.64	1 M	
2.725156981 G	39.29	32.457	-25.430	54.000	-14.71		288	2.00	1 M	
9.992177689 G	44.93	37.169	-20.824	54.000	-9.07		232	1.40	1 M	
8.175671342 G	45.27	35.973	-20.932	54.000	-8.73	1	233	2.23	1 M	
4.542044088 G	45.92	34.260	-24.329	54.000	-8.08		161	1.53	1 M	
6.358537074 G	50.42	35.621	-20.875	54.000	-3.58	1	242	3.30	1 M	

Notes: Disregard the average readings on the pre-scan plot. The average readings on the table are the corrected average readings based on the duty cycle of the transmitter.

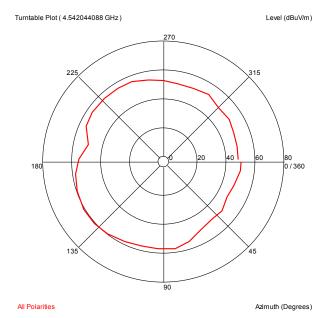

Average readings = Peak Readings - Average Factor

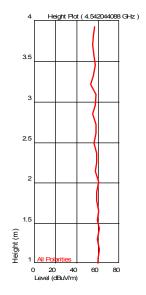
Average Factor was calculated to be 16.9 dB

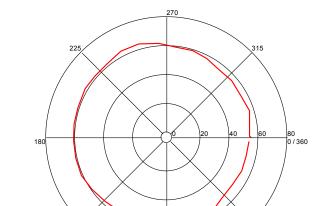

Azimuth Plots

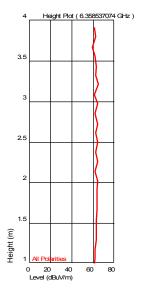


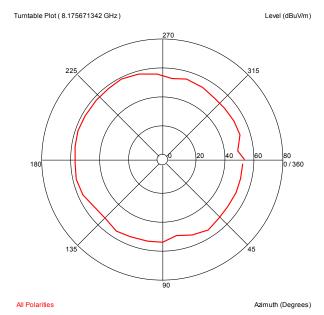
All Polarities Azimuth (Degrees)

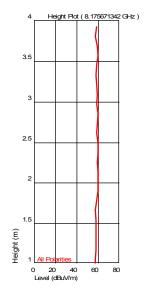



Turntable Plots

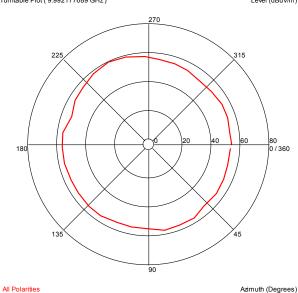



Level (dBuV/m)





Turntable Plot (6.358537074 GHz)


All Polarities Azimuth (Degrees)

Turntable Plot (9.992177689 GHz)

Level (dBuV/m)

Test Personnel:

Kouma Sinn 43

Test Date: 08/14/2014, 10/30/2014

Supervising/Reviewing Engineer: (Where Applicable)

FCC Part 15 Subpart 15.249,

Product Standard: Input Voltage:

RSS-210

Pretest Verification w/ Ambient Signals or BB Source:

120VAC/60Hz

BB Source

Limit Applied: Per Standard

Ambient Temperature: 20, 21 °C

Relative Humidity: 68, 39 %

Atmospheric Pressure: 997, 1003 mbars

Deviations, Additions, or Exclusions: None

8 Receiver Spurious Emissions

8.1 Method

Tests are performed in accordance with FCC 47CFR Part 15 Subpart B Class B, ANSI C63.4:2009, and ICES-003.

TEST SITE: 10m ALSE

The 10m ALSE is 13m (Length) x 21m (Depth) x 10m (Height) with the effective size in terms of space from the tips of the absorber is 12m (Length) x 20m (Depth) x 8.5m (Height). This chamber achieves broadband performance using a unique arrangement of hybrid and ferrite tile absorber. This chamber has a built in 3m diameter turntable (Embedded type). The metal structure of the table makes electrical connection around the entire circumference of the turntable to the ground plane with a metal brush type connection. The turntable is located on one end of the chamber and the antennas are mounted 3 and 10 meters away at the other end of the chamber on the adjustable an Antenna Mast. The antenna mast is a non-conductive bore sighted type with remote control of antenna height and polarization. The Antenna Mast and the turntable can be remotely controlled through the controller located in the adjacent Control room. A Styrofoam table 80 cm high is used for table-top equipment.

Measurement Uncertainty

Measurement	Frequency Range	Expanded Uncertainty (k=2)	Ucispr
Radiated Emissions, 10m	30-1000 MHz	4.6	6.3
Radiated Emissions, 3m	30-1000 MHz	5.3	6.3
Radiated Emissions, 3m	1-6 GHz	4.5	5.2
Radiated Emissions, 3m	6-15 GHz	5.2	5.5
Radiated Emissions, 3m	15-18 GHz	5.0	5.5
Radiated Emissions, 3m	18-40 GHz	5.0	5.5

Non-Specific EMC Report Shell Rev. May 2014 PowerHouse Dynamcis Inc, Z-Wave Radio

Sample Calculation

The field strength is calculated by adding the Antenna Factor and Cable Factor, and subtracting the Amplifier Gain (if any) from the measured reading. The basic equation with a sample calculation is as follows:

FS = RA + AF + CF - AG

Where FS = Field Strength in $dB_{\mu}V/m$

RA = Receiver Amplitude (including preamplifier) in dB_µV

CF = Cable Attenuation Factor in dB

AF = Antenna Factor in dB AG = Amplifier Gain in dB

In the following table(s), the reading shown on the data table reflects the preamplifier gain. An example for the calculations in the following table is as follows.

Assume a receiver reading of 52.0 dB μ V is obtained. The antenna factor of 7.4 dB and cable factor of 1.6 dB is added. The amplifier gain of 29 dB is subtracted, giving a field strength of 32 dB μ V/m. This value in dB μ V/m was converted to its corresponding level in μ V/m.

RA = $52.0 \text{ dB}_{\mu}\text{V}$ AF = 7.4 dB/mCF = 1.6 dBAG = 29.0 dBFS = $32 \text{ dB}_{\mu}\text{V/m}$

To convert from $dB\mu V$ to μV or mV the following was used:

UF =
$$10^{(NF/20)}$$
 where UF = Net Reading in μ V NF = Net Reading in $dB\mu$ V

Example:

FS = RA + AF + CF - AG = 52.0 + 7.4 + 1.6 - 29.0 = 32.0 UF =
$$10^{(32\,\text{dB}_{\mu}\text{V}\,/\,20)}$$
 = 39.8 $\mu\text{V/m}$

Alternately, when C5 Software is used, the "Level" includes all losses and gains and is compared directly in the "Margin" column to the "Limit". "AF" is the Antenna Factor; "PA+CL" are Preamp and Cable Loss. These are already accounted for in the "Level" column.

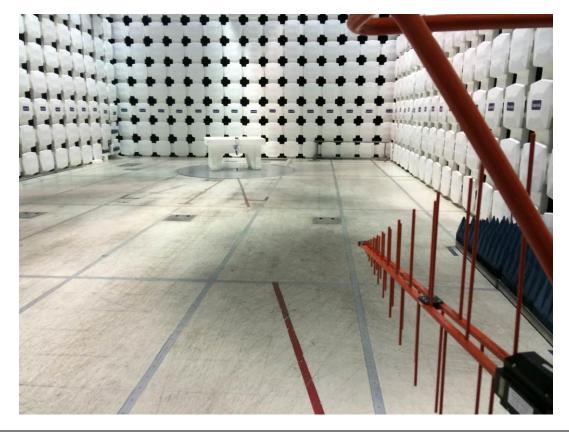
Intertek

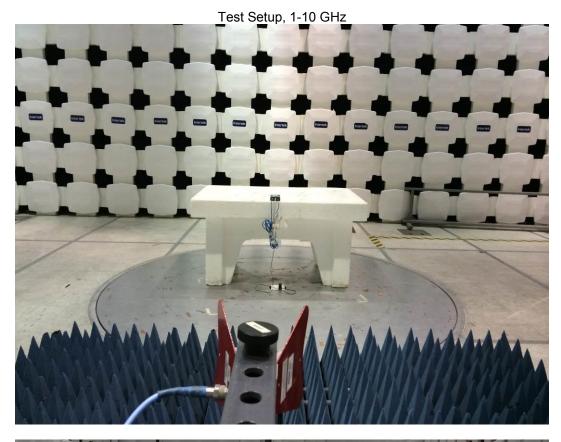
Report Number: 101761367BOX-001c Issued: 11/12/2014

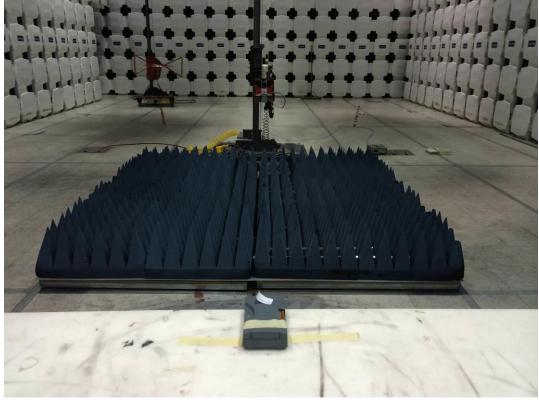
8.2 Test Equipment Used:

Asset	Description	Manufacturer	Model	Serial	Cal Date	Cal Due
DAV004'	Weather Station	Davis Instruments	7400	PE80529A61A	10/06/2014	10/06/2015
145-410"	Cables 145-400 145-403 145-405 145-406 145-407	Huber + Suhner	10m Track A Cables	multiple	10/04/2014	10/04/2015
145128"	EMI Receiver (20 Hz - 40 Ghz)	Rohde & Schwarz	ESIB 40	839283/001	03/17/2014	03/17/2015
145106"	Bilog Antenna (30MHz - 5GHz)	Sunol Sciences	JB5	A111003	01/07/2014	01/07/2015
145003"	Preamplifier (150 KHz to 1.3 GHz)	Hewlett Packard	8447D	2443A04077	10/11/2014	10/11/2015
ETS001'	1-18GHz DRG Horn Antenna	ETS-Lindgren	3117	00143259	01/06/2014	01/06/2015
145014'	Preamplifier (1 GHz to 26.5 GHz)	Hewlett Packard	8449B	3008A00232	12/19/2014	12/19/2015
145-416'	Cables 145-400 145-402 145-404 145-408	Huber + Suhner	3m Track B cables	multiple	10/04/2014	10/04/2015

Software Utilized:


Name	Manufacturer	Version
C5	Teseq	5.26.46.46

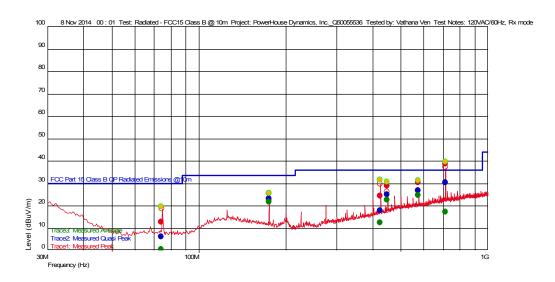

8.3 Results:


The sample tested was found to Comply.

8.4 Setup Photographs:

8.5 Plots/Data:

Receive Mode, 30-1000 MHz


Test Information

Test Details Test:

User Entry Radiated - FCC15 Class B @ 10m PowerHouse Dynamics, Inc._Q50055536 120VAC/60Hz, Rx mode Project: Test Notes:

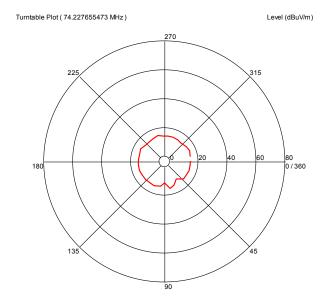
Temperature: Humidity: 20 deg C 31%, 998mB Tested by: Test Started: Vathana Ven 8 Nov 2014 00 : 01 Additional Information

Prescan Emission Graph

Measured Peak Value Measured Quasi Peak Value Measured Average Value

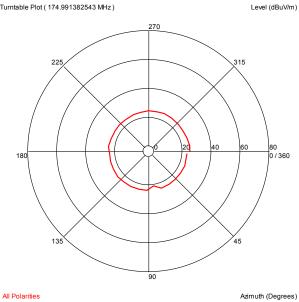
Maximum Value of Mast and Turntable

Swept Peak Data Swept Quasi Peak Data

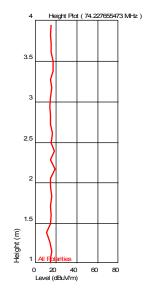

__ Swept Average Data

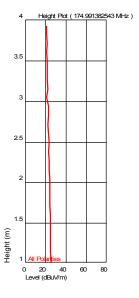
Emissions Test Data

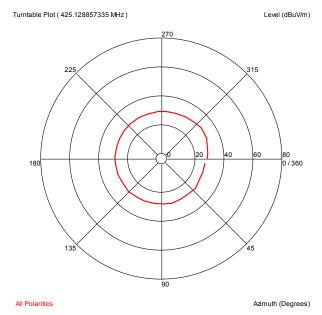
Trace2: Measured Quasi Peak

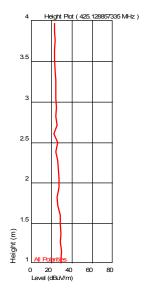

Frequency (Hz)	Level (dBuV/m)	AF	PA+CL	Limit (dBuV/m)	Margin (dBuV/m)	Hor (), Ver ()	Azimuth (deg)(Deg)	Mast Height(m)	RBW(Hz)	Comment
74.227655473 M	5.99	7.900	-24.515	30.000	-24.01	1	219	2.28	120 k	
425.128857335 M	17.87	16.403	-22.884	36.020	-18.15	į	311	1.27	120 k	
450.025651784 M	24.81	16.801	-22.705	36.020	-11.21	İ	32	1.27	120 k	
174.991382543 M	23.01	11.600	-23.808	33.520	-10.51	İ	340	1.04	120 k	
575.00701393 M	26.61	18.700	-22.103	36.020	-9.41		44	2.16	120 k	
712.980761417 M	30.34	20.419	-21.515	36.020	-5.68		151	1.87	120 k	

Azimuth Plots

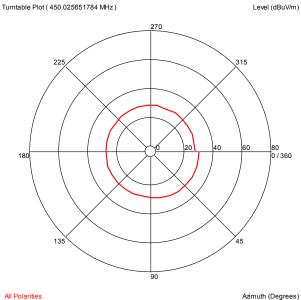


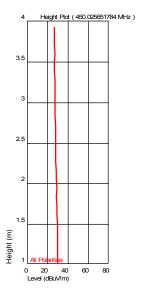

All Polarities Azimuth (Degrees)

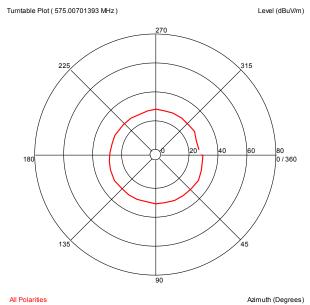

Turntable Plot (174.991382543 MHz)

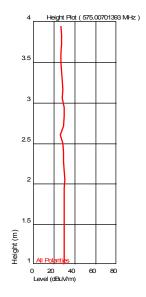


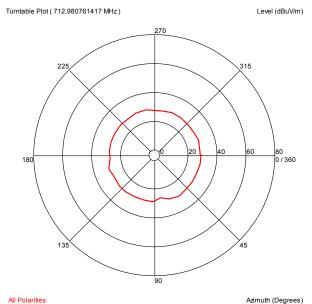
Turntable Plots

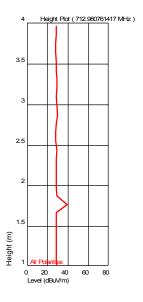








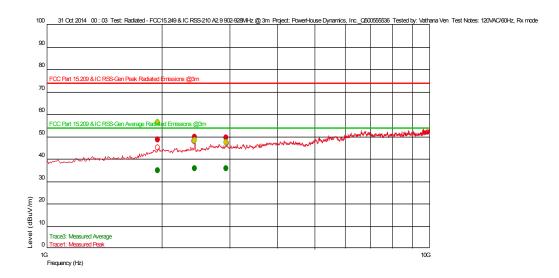

Level (dBuV/m)



Receive Mode, Above 1 GHz

Test Information

Test Details


User Entry Radiated - FCC15.249 & IC RSS-210 A2.9 902-928MHz @ 3m Test:

Project: Test Notes: PowerHouse Dynamics, Inc._Q500555536 120VAC/60Hz, Rx mode

120VAC/60Hz, Rx mo 21 deg C 39%, 1003 mB Vathana Ven 31 Oct 2014 00 : 03 Temperature: Humidity: Tested by: Test Started:

Additional Information

Prescan Emission Graph

Measured Peak Value

Measured Quasi Peak Value

Measured Average Value

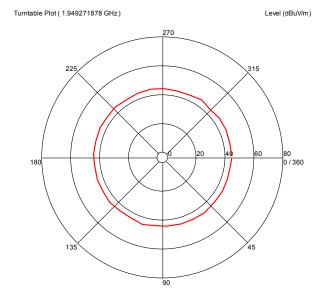
Maximum Value of Mast and Turntable

Swept Peak Data

Swept Quasi Peak Data

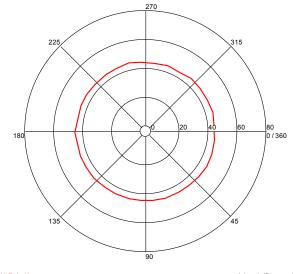
Swept Average Data

Emissions Test Data

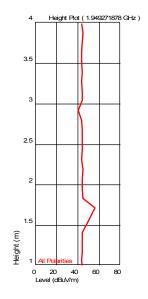

Trace1: Measured Peak	
-----------------------	--

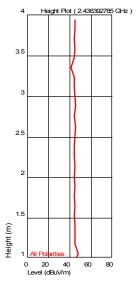
Frequency (Hz)	Level (dBuV/m)	AF	PA+CL	Limit (dBuV/m)	Margin (dBuV/m)	Hor (), Ver ()	Azimuth (deg)(Deg)	Mast Height(m)	RBW(Hz)	Comment
1.949271878 G	48.62	31.572	-26.048	74.000	-25.38		118	1.81	1 M	
2.947688711 G	49.30	32.722	-25.167	74.000	-24.70		360	1.50	1 M	
2.436392785 G	49.78	32.192	-25.883	74.000	-24.22	1	40	1.16	1 M	

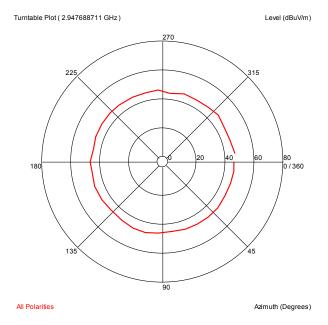
Trace3: Measured Average

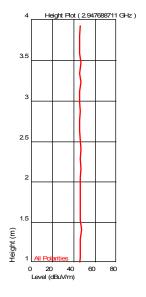

Frequency (Hz)	Level (dBuV/m)	AF	PA+CL	Limit (dBuV/m)	Margin (dBuV/m)	Hor (), Ver ()	Azimuth (deg)(Deg)	Mast Height(m)	RBW(Hz)	Comment
1.949271878 G	34.92	31.572	-26.048	54.000	-19.08 ´		118	1.81	1 M	
2.436392785 G	35.55	32.192	-25.883	54.000	-18.45	İ	40	1.16	1 M	
2.947688711 G	35.79	32.722	-25.167	54.000	-18.21		360	1.50	1 M	

Azimuth Plots


All Polarities Azimuth (Degrees)


Turntable Plot (2.436392785 GHz) Level (dBuV/m)




All Polarities Azimuth (Degrees)

Turntable Plots

Test Personnel: Vathana Ven

Supervising/Reviewing
Engineer:
(Where Applicable)
Product Standard:
Input Voltage:

Pretest Verification w/
Ambient Signals or
BB Source:

Vathana Ven

N/A

FCC Part 15 Subpart 15.249,
RSS-210

120VAC/60Hz

Limit Applied: Per Standard

Ambient Temperature: 20, 21 °C

Relative Humidity: 31, 31 %

Atmospheric Pressure: 998, 1003 mbars

Test Date: _ 10/31/2014, 11/08/2014

Deviations, Additions, or Exclusions: None

9 Transmitter Bandwidth

9.1 Method

Tests are performed in accordance with FCC 47CFR Part 15 Subpart B Class B, FCC 47CFR Part 15 Subpart C Section 15.249, ANSI C63.10:2012, RSS-210, and ICES-003.

TEST SITE: 10m ALSE

The 10m ALSE is 13m (Length) x 21m (Depth) x 10m (Height) with the effective size in terms of space from the tips of the absorber is 12m (Length) x 20m (Depth) x 8.5m (Height). This chamber achieves broadband performance using a unique arrangement of hybrid and ferrite tile absorber. This chamber has a built in 3m diameter turntable (Embedded type). The metal structure of the table makes electrical connection around the entire circumference of the turntable to the ground plane with a metal brush type connection. The turntable is located on one end of the chamber and the antennas are mounted 3 and 10 meters away at the other end of the chamber on the adjustable an Antenna Mast. The antenna mast is a non-conductive bore sighted type with remote control of antenna height and polarization. The Antenna Mast and the turntable can be remotely controlled through the controller located in the adjacent Control room. A Styrofoam table 80 cm high is used for table-top equipment.

Measurement Uncertainty

Measurement	Frequency Range	Expanded Uncertainty (k=2)	Ucispr
Radiated Emissions, 10m	30-1000 MHz	4.6	6.3
Radiated Emissions, 3m	30-1000 MHz	5.3	6.3
Radiated Emissions, 3m	1-6 GHz	4.5	5.2
Radiated Emissions, 3m	6-15 GHz	5.2	5.5
Radiated Emissions, 3m	15-18 GHz	5.0	5.5
Radiated Emissions, 3m	18-40 GHz	5.0	5.5

Non-Specific EMC Report Shell Rev. May 2014 PowerHouse Dynamcis Inc, Z-Wave Radio

Sample Calculation

The field strength is calculated by adding the Antenna Factor and Cable Factor, and subtracting the Amplifier Gain (if any) from the measured reading. The basic equation with a sample calculation is as follows:

FS = RA + AF + CF - AG

Where FS = Field Strength in $dB_{\mu}V/m$

RA = Receiver Amplitude (including preamplifier) in dB_µV

CF = Cable Attenuation Factor in dB

AF = Antenna Factor in dB AG = Amplifier Gain in dB

In the following table(s), the reading shown on the data table reflects the preamplifier gain. An example for the calculations in the following table is as follows.

Assume a receiver reading of 52.0 dB $_{\mu}$ V is obtained. The antenna factor of 7.4 dB and cable factor of 1.6 dB is added. The amplifier gain of 29 dB is subtracted, giving a field strength of 32 dB $_{\mu}$ V/m. This value in dB $_{\mu}$ V/m was converted to its corresponding level in $_{\mu}$ V/m.

RA = $52.0 \text{ dB}_{\mu}\text{V}$ AF = 7.4 dB/mCF = 1.6 dBAG = 29.0 dBFS = $32 \text{ dB}_{\mu}\text{V/m}$

To convert from $dB\mu V$ to μV or mV the following was used:

UF =
$$10^{(NF/20)}$$
 where UF = Net Reading in μ V NF = Net Reading in $dB\mu$ V

Example:

FS = RA + AF + CF - AG = 52.0 + 7.4 + 1.6 - 29.0 = 32.0 UF =
$$10^{(32\,dB_{\mu}V\,/\,20)}$$
 = 39.8 μ V/m

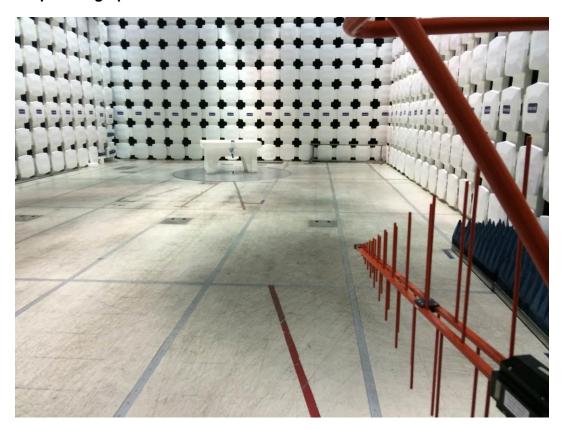
Alternately, when C5 Software is used, the "Level" includes all losses and gains and is compared directly in the "Margin" column to the "Limit". "AF" is the Antenna Factor; "PA+CL" are Preamp and Cable Loss. These are already accounted for in the "Level" column.

Intertek

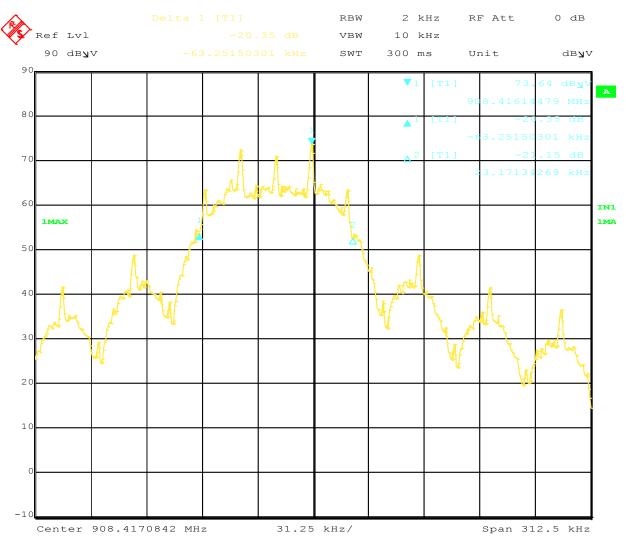
Report Number: 101761367BOX-001c Issued: 11/12/2014

9.2 Test Equipment Used:

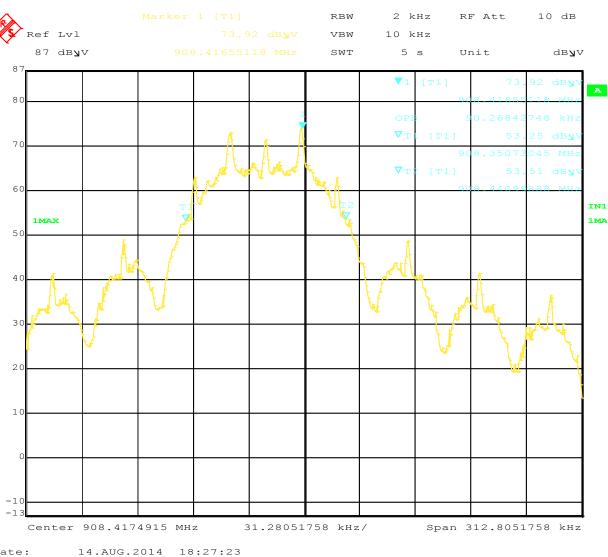
Asset	Description	Manufacturer	Model	Serial	Cal Date	Cal Due
DAV004'	Weather Station	Davis Instruments	7400	PE80529A61A	10/06/2014	10/06/2015
145-410"	Cables 145-400 145-403 145-405 145-406 145-407	Huber + Suhner	10m Track A Cables	multiple	10/04/2014	10/04/2015
145128"	EMI Receiver (20 Hz - 40 Ghz)	Rohde & Schwarz	ESIB 40	839283/001	03/17/2014	03/17/2015
145106"	Bilog Antenna (30MHz - 5GHz)	Sunol Sciences	JB5	A111003	01/07/2014	01/07/2015


Software Utilized:

Name	Manufacturer	Version
None		


9.3 Results:

The sample tested was found to Comply.


9.4 Setup Photographs:

9.5 Test Data:

Date: 14.AUG.2014 18:21:33

Test Personnel:	Vathana Ven	Test Date:	11/11/2014
Supervising/Reviewing Engineer:			
(Where Applicable)	N/A		
	FCC Part 15 Subpart 15.249,		
Product Standard:	RSS-210	Limit Applied:	Per Standard
Input Voltage:	120VAC/60Hz		
Pretest Verification w/		Ambient Temperature:	20 °C
Ambient Signals or			
BB Source:	Yes	Relative Humidity:	31 %
		, , , , , , , , , , , , , , , , , , , ,	
		Atmospheric Pressure:	998 mbars

Deviations, Additions, or Exclusions: None

10 Transmitter Duty Cycle

10.1 Method

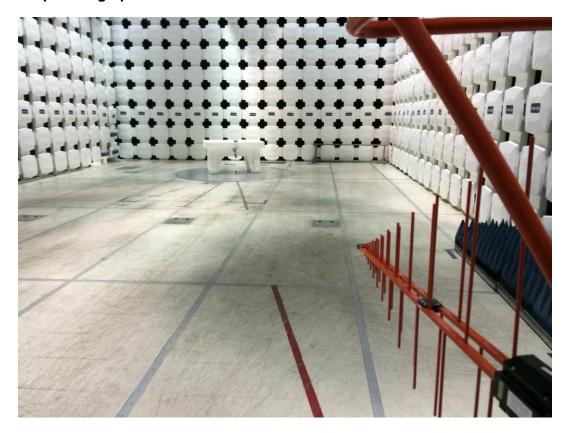
Tests are performed in accordance with FCC 47CFR Part 15 Subpart B Class B, FCC 47CFR Part 15 Subpart C Section 15.249, ANSI C63.4:2009, RSS-210, and ICES-003.

TEST SITE: 10m ALSE

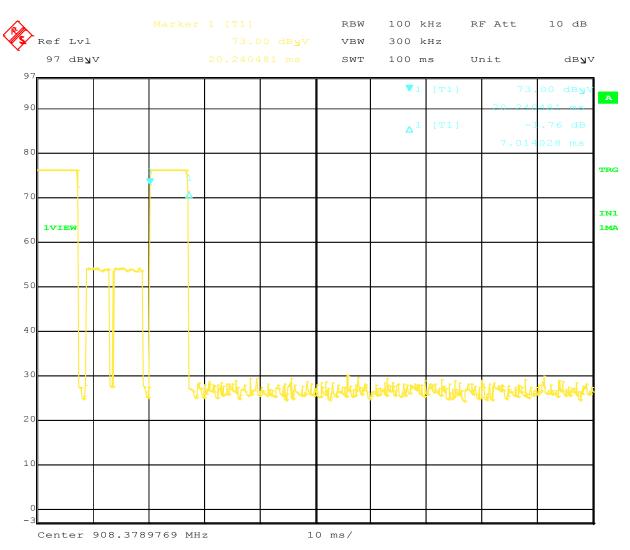
The 10m ALSE is 13m (Length) x 21m (Depth) x 10m (Height) with the effective size in terms of space from the tips of the absorber is 12m (Length) x 20m (Depth) x 8.5m (Height). This chamber achieves broadband performance using a unique arrangement of hybrid and ferrite tile absorber. This chamber has a built in 3m diameter turntable (Embedded type). The metal structure of the table makes electrical connection around the entire circumference of the turntable to the ground plane with a metal brush type connection. The turntable is located on one end of the chamber and the antennas are mounted 3 and 10 meters away at the other end of the chamber on the adjustable an Antenna Mast. The antenna mast is a non-conductive bore sighted type with remote control of antenna height and polarization. The Antenna Mast and the turntable can be remotely controlled through the controller located in the adjacent Control room. A Styrofoam table 80 cm high is used for table-top equipment.

10.2 Test Equipment Used:

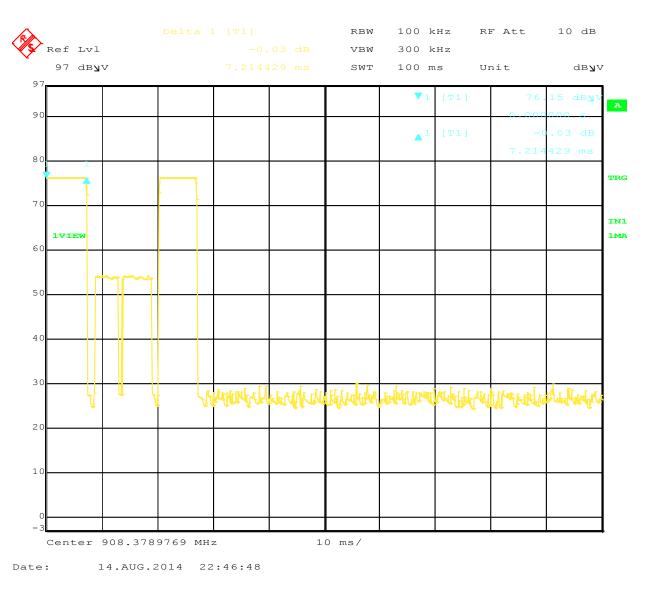
Asset	Description	Manufacturer	Model	Serial	Cal Date	Cal Due
DAV004'	Weather Station	Davis Instruments	7400	PE80529A61A	10/06/2014	10/06/2015
145-410"	Cables 145-400 145-403 145-405 145-406 145-407	Huber + Suhner	10m Track A Cables	multiple	10/04/2014	10/04/2015
145128"	EMI Receiver (20 Hz - 40 Ghz)	Rohde & Schwarz	ESIB 40	839283/001	03/17/2014	03/17/2015
145106"	Bilog Antenna (30MHz - 5GHz)	Sunol Sciences	JB5	A111003	01/07/2014	01/07/2015


Software Utilized:

Name	Manufacturer	Version
None		


10.3 Results:

The sample tested was found to Comply.


10.4 Setup Photographs:

10.5 Test Data:

Date: 14.AUG.2014 22:49:02

Note that the two smaller pulses were from the thermostat (support equipment)

Average factor = 20*LOG((7.214+7.014)/100) = 16.9

Test Personnel:	Vathana Ven	Test Date:	08/14/2014
Supervising/Reviewing Engineer:			
(Where Applicable)	N/A		
	FCC Part 15 Subpart 15.249,		
Product Standard:	RSS-210	Limit Applied:	Per Standard
Input Voltage:	120VAC/60Hz		
Pretest Verification w/		Ambient Temperature:	20 °C
Ambient Signals or			
BB Source:	Yes	Relative Humidity:	31 %
		Atmospheric Pressure:	998 mbars

Deviations, Additions, or Exclusions: None

11 AC Mains Conducted Emissions

11.1 Method

Tests are performed in accordance with FCC 47CFR Part 15 Subpart B Class B, ICES-003...

TEST SITE: 10m ALSE

<u>The EMC Lab</u> has one Semi-anechoic Chamber and one Shielded Chamber. AC Mains Power is available at 120, 230, and 277 Single Phase; 208, 400, and 480 3-Phase. Large reference ground-planes are installed in the general lab area to facilitate EMC work not requiring a shielded environment.

The 10m ALSE is 13m (Length) x 21m (Depth) x 10m (Height) with the effective size in terms of space from the tips of the absorber is 12m (Length) x 20m (Depth) x 8.5m (Height). This chamber achieves broadband performance using a unique arrangement of hybrid and ferrite tile absorber. This chamber has a built in 3m diameter turntable (Embedded type). The metal structure of the table makes electrical connection around the entire circumference of the turntable to the ground plane with a metal brush type connection. A Styrofoam table 80 cm high is used for table-top equipment.

Measurement Uncertainty

Measurement	Frequency Range	Expanded Uncertainty (k=2)	Ucispr
AC Line Conducted			
Emissions	150 kHz - 30 MHz	2.8	3.4
Telco Port Emissions	150 kHz - 30 MHz	3.2	5

Sample Calculations

The following is how net line-conducted readings were determined:

NF = RF + LF + CF + AF Where NF = Net Reading in $dB\mu V$

RF = Reading from receiver in $dB\mu V$

LF = LISN or ISN Correction Factor in dB

CF = Cable Correction Factor in dB

AF = Attenuator Loss Factor in dB

To convert from dB μ V to μ V or mV the following was used:

UF =
$$10^{(NF/20)}$$
 where UF = Net Reading in μ V NF = Net Reading in $dB\mu$ V

Example:

NF = RF + LF + CF + AF =
$$28.5 + 0.2 + 0.4 + 20.0 = 49.1 \ dB\mu V$$
 UF = $10^{(49.1 \ dB_{\mu}V \ / \ 20)} = 285.1 \ \mu V/m$

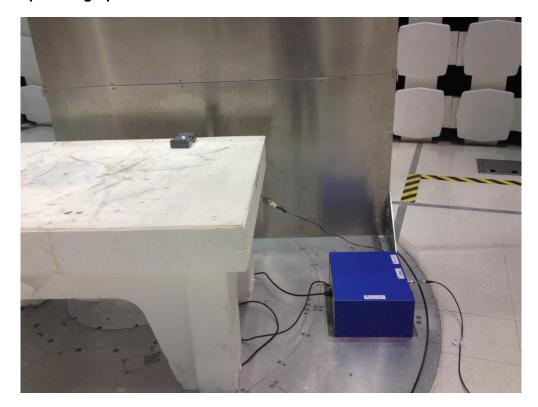
Alternately, when C5 Software is used, the "Level" includes all losses and gains and is compared directly in the "Margin" column to the "Limit". "TF" is the Transducer Factor; in this case LISN or ISN loss.

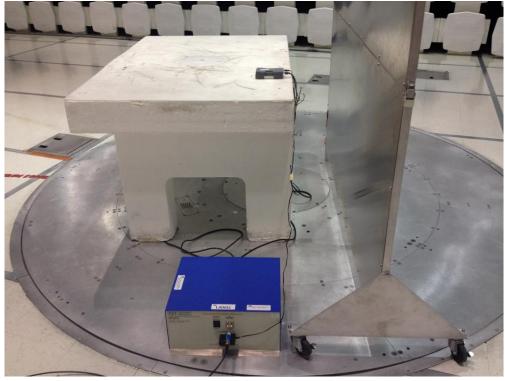
Intertek

Report Number: 101761367BOX-001c Issued: 11/12/2014

11.2 Test Equipment Used:

Asset	Description	Manufacturer	Model	Serial	Cal Date	Cal Due
				PE80529A61		
DAV004'	Weather Station	Davis Instruments	7400	Α	10/06/2014	10/06/2015
145128'	EMI Receiver (20 Hz - 40 Ghz)	Rohde & Schwarz	ESIB 40	839283/001	03/17/2014	03/17/2015
DS27'	Attenuator, 20dB	Mini Circuits	20dB, 50 ohm	DS27	10/01/2014	10/01/2015
CBLBNC7'	30 ft 50 ohm coax, BNC - BNC	ITT Pomona	RG 58 C/U	CBLBNC7	02/04/2014	02/04/2015
LISN32'	CISPR 16 LISN	Com-Power	LI-215A	191955	02/26/2014	02/26/2015


Software Utilized:


Name	Manufacturer	Version
C5	Teseq	5.26.46.46

11.3 Results:

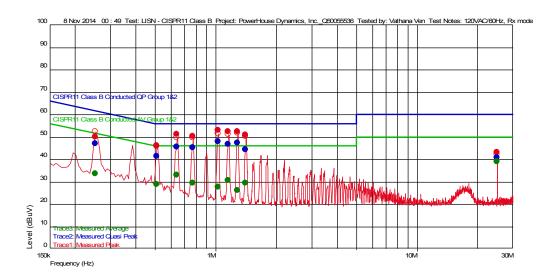
The sample tested was found to Comply.

11.4 Setup Photographs:

11.5 Plots/Data:

Test Information

User Entry LISN - CISPR11 Class B Test Details Test:


PowerHouse Dynamics, Inc._Q50055536 120VAC/60Hz, Rx mode

Project: Test Notes:

20 deg C 31%, 998mB Vathana Ven 8 Nov 2014 00 : 49 Temperature: Humidity: Tested by: Test Started:

Additional Information

Prescan Emission Graph

Measured Peak Value

Measured Quasi Peak Value Measured Average Value

Maximum Value of Mast and Turntable

Swept Peak Data

Swept Quasi Peak Data

Swept Average Data

Emissions Test Data

Trace2: Measured Quasi Peak

	•							
Frequency(Hz)	Level(dBuV)	TF	PA+CL	Limit(dBuV)	Margin(dBuV)	RBW(Hz)	Comment	LINE
25.000240481 M	40.83	0.084	21.240	60.000	-19.17	9 k		N
509.819639279 k	41.32	0.073	20.591	56.000	-14.68	9 k		N
252.805611222 k	47.09	0.080	20.552	61.664	-14.57	9 k		N
1.412224449 M	44.43	0.090	20.625	56.000	-11.57	9 k		N
772.54509018 k	45.21	0.090	20.606	56.000	-10.79	9 k		N
641.182364729 k	45.52	0.070	20.604	56.000	-10.48	9 k		N
1.155210421 M	46.80	0.090	20.616	56.000	-9.20	9 k		N
1.286573146 M	47.30	0.090	20.628	56.000	-8.70	9 k		N
1.029559118 M	47.79	0.097	20.610	56.000	-8.21	9 k		N

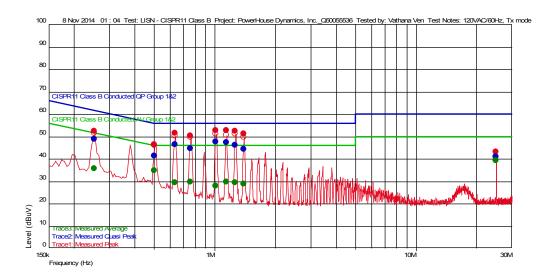
Trace3: Measured Average

Frequency(Hz)	Level(dBuV)	TF	PA+CL	Limit(dBuV)	Margin(dBuV)	RBW(Hz)	Comment	LINE
1.286573146 M	26.21	0.090	20.628	46.000	-19.79	9 k		N
1.029559118 M	27.49	0.097	20.610	46.000	-18.51	9 k		N
252.805611222 k	33.53	0.080	20.552	51.664	-18.13	9 k		N
509.819639279 k	28.79	0.073	20.591	46.000	-17.21	9 k		N
772.54509018 k	29.48	0.090	20.606	46.000	-16.52	9 k		N
1.412224449 M	29.55	0.090	20.625	46.000	-16.45	9 k		N
1.155210421 M	30.53	0.090	20.616	46.000	-15.47	9 k		N
641.182364729 k	32.89	0.070	20.604	46.000	-13.11	9 k		N
25.000240481 M	39.07	0.084	21.240	50.000	-10.93	9 k		N

Test Information

Test Details

User Entry LISN - CISPR11 Class B Test:


PowerHouse Dynamics, Inc._Q50055536 120VAC/60Hz, Tx mode

Project: Test Notes: Temperature:

20 deg C 31%, 998mB Vathana Ven 8 Nov 2014 01 : 04 Humidity: Tested by: Test Started:

Additional Information

Prescan Emission Graph

Measured Peak Value

Measured Quasi Peak Value

Measured Average Value

Maximum Value of Mast and Turntable

Swept Peak Data

Swept Quasi Peak Data

__ Swept Average Data

Emissions Test Data

Trace2: Measured Ouasi Peak

Traces. Measured	¿aasi i cait							
Frequency(Hz)	Level(dBuV)	TF	PA+CL	Limit(dBuV)	Margin(dBuV)	RBW(Hz)	Comment	LINE
25.000240481 M	40.97	0.084	21.240	60.000	-19.03	9 k		N
504.108216433 k	41.37	0.072	20.589	56.000	-14.63	9 k		N
252.805611222 k	48.72	0.080	20.552	61.664	-12.95	9 k		N
1.39509018 M	44.22	0.090	20.628	56.000	-11.78	9 k		N
761.122244489 k	44.61	0.090	20.609	56.000	-11.39	9 k		N
1.269438878 M	46.08	0.090	20.628	56.000	-9.92	9 k		N
635.470941884 k	46.44	0.070	20.606	56.000	-9.56	9 k		N
1.143787575 M	47.45	0.090	20.609	56.000	-8.55	9 k		N
1.018136273 M	47.74	0.099	20.619	56.000	-8.26	9 k		N

Trace3: Measured Average

Frequency(Hz)	Level(dBuV)	TF	PA+CL	Limit(dBuV)	Margin(dBuV)	RBW(Hz)	Comment	LINE
1.018136273 M	27.95	0.099	20.619	46.000	-18.05	9 k		N
1.39509018 M	28.73	0.090	20.628	46.000	-17.27	9 k		N
635.470941884 k	29.41	0.070	20.606	46.000	-16.59	9 k		N
1.269438878 M	29.45	0.090	20.628	46.000	-16.55	9 k		N
761.122244489 k	29.64	0.090	20.609	46.000	-16.36	9 k		N
1.143787575 M	29.69	0.090	20.609	46.000	-16.31	9 k		N
252.805611222 k	35.77	0.080	20.552	51.664	-15.89	9 k		N
504.108216433 k	34.70	0.072	20.589	46.000	-11.30	9 k		N
25.000240481 M	39.18	0.084	21.240	50.000	-10.82	9 k		N

Intertek

Report Number: 101761367BOX-001c Issued: 11/12/2014

Test Date: 11/08/2014 Test Personnel: Vathana Ven Supervising/Reviewing Engineer: (Where Applicable) FCC Part 15 Subpart B, Limit Applied: Class B Product Standard: ICES-003 Input Voltage: 120VAC/60Hz Pretest Verification w/ Ambient Temperature: 20 °C Ambient Signals or Relative Humidity: 31 % BB Source: Yes Atmospheric Pressure: 998 mbars

Deviations, Additions, or Exclusions: None

Intertek

Report Number: 101761367BOX-001c Issued: 11/12/2014

12 Revision History

Revision	Date	Report Number	Prepared	Reviewed	Notes
Level			Ву	Ву	
0	11/12/2014	101761367BOX-001c	VfV	MFM 🥙	Original Issue
				_	