

|                                                                                   |                                                             |       |
|-----------------------------------------------------------------------------------|-------------------------------------------------------------|-------|
|  | <b>RF Exposure<br/>Ha-VIS RF-R400-US</b>                    | 1 / 1 |
|                                                                                   | FCC ID: Z4NRF-R400<br>IC: 9941A-RFR400<br>Date : 2017-02-07 |       |

## RF Exposure Compliance Requirement Ha-VIS RF-R400-US

The maximum permissible exposure (MPE) for **general population** is defined as  $0.6\text{mW/cm}^2$  ( $f/1500$ , FCC OET Bulletin 65, Supplement B). The distance from the transmitting antenna where the exposure level reaches the maximum permitted level is calculated using equation (1):

$$S = \frac{EIRP}{4 \cdot \pi \cdot R^2} \quad (1)$$

where:  $S$  = Power density  $0.6\text{mW/cm}^2$

$EIRP$  = Power output of an isotropic antenna  $4\text{W}$

$R$  = Distance to the centre of the radiation of the antenna

Solving equation (1) the minimum distance at which a person must keep away in a uncontrolled exposure is

$$R = 23\text{cm}$$

The maximum permissible exposure (MPE) for **controlled exposure** is defined as  $3\text{mW/cm}^2$  ( $f/300$ , FCC OET Bulletin 65, Supplement B). Solving equation (1) where  $S = 3\text{mW/cm}^2$  the minimum distance at which a person must keep away in a uncontrolled exposure is

$$R = 10,3\text{cm}$$