Report Ref: 13E4506-5a Page 1 of 20

Compliance Engineering Ireland Ltd Clonross Lane, Derrockstown, Dunshaughlin, Co. Meath

Tel: +353 1 8256722 Fax: +353 1 8256733

Project Number: 13E4506-5a Prepared for:

Glen Dimplex Nordic

By

Compliance Engineering Ireland Ltd

Clonross Lane

Derrockstown

Dunshaughlin

Co. Meath

FCC Site Registration: 92592

Industry Canada Assigned Site Code: 8517A-2

Date

11 Sept 2013

FCC EQUIPMENT AUTHORISATION

Test Report

EUT Description

Storage Heater with Radio Transceiver for heater control.

Authorised :

John McAuley

Me

TEST SUMMARY

Emissions were assessed to the following standards:

FCC CFR 47 Part 15

Federal Communications Commission: Part 15 Radio Frequency Devices

The equipment complies with the requirements according to the following standards.

FCC Part	TEST PARAMETERS	Test Result
15.109	RADIATED EMISSIONS	PASS
15.107	CONDUCTED EMISSIONS ON THE MAINS	PASS

THIS REPORT SHALL NOT BE REPRODUCED EXCEPT IN FULL, WITHOUT THE WRITTEN APPROVAL OF COMPLIANCE ENGINEERING IRELAND LTD

Report Ref: 13E4506-5a

Page 3 of 20

Exhibit A – Technical Report

Table of Contents

1.0	EUT DESCRIPTION	4
1.1	EUT OPERATION	5
1.2	MODIFICATIONS	5
1.3	DATE OF TEST	5
1.4	EMISSIONS TESTING	5
1.4.1	MEASUREMENT UNCERTAINTY	6
2.0	EMISSIONS MEASUREMENTS	7
2.1	CONDUCTED EMISSIONS MEASUREMENTS	7
2.2	RADIATED EMISSIONS MEASUREMENTS	7
2.3	DUTY CYCLE	8
3.0	SPURIOUS RADIATED EMISSIONS	11
4.0	RESULTS FOR SPURIOUS RADIATED EMISSIONS	11
4.3	RESULTS FOR CONDUCTED EMISSIONS	11

Appendix 1 L	ist of Test Equipment	15
Appendix 2 T	Test Configurations	17
Appendix 3 T	Test plots	20

1.0 EUT Description

The EUT was a Storage Heater which contained a transceiver module as below. The module used a short range 915 MHz band transceiver for heater control.

Storage Heater

Manufacturer:	Glen Dimplex
Make:	Quantum Heater
Model:	QM 070

<u>Module</u>

Model:	11123622
Туре:	915 MHz Radio Transceiver for heater control
FCC ID:	Z4900006
IC ID:	6592A-00006

1.1 EUT Operation

Operating Conditions during Test:

The equipment under test was operated during the measurement under the following conditions:

The EUT was powered from the mains.

The module was operated in CW mode for the Spurious Emissions tests.

Environmental conditions

During the measurement the environmental conditions were within the listed ranges:

Temperature:	+15 to +35 ° C
Humidity:	20-75 %

1.2 Modifications

No modifications were required in order to pass the test specifications.

1.3 Date of Test

The tests were carried out on one sample of the EUT on the 11th September 2013.

1.4 Electromagnetic Emissions Testing

The guidelines of CISPR 16-4 were used for all uncertainty calculations, estimates and expressions thereof for EMC testing. A copy of Compliance Engineering Ireland Ltd.'s policy for EMC Measurement Uncertainty is available on request.

RF Requirements: Spurious emissions in accordance with FCC CFR 15.107, 15.109 and 15.209. Tests were carried out to the requirements of CISPR 16-4 and ANSI C63.4-2003.

1.4.1 Measurement Uncertainty

The measurement uncertainty (with a 95% confidence level) for the conducted emissions test was ± 3.5 dB.

The measurement uncertainty (with a 95% confidence level) for the radiated emissions test was ± 5.3 dB (from 30 to 100 MHz), ± 4.7 dB (from 100 to 300 MHz), ± 3.9 dB (from 300 to 1000 MHz) and ± 3.8 dB (from 1 GHz to 40 GHz).

2.0 Emissions Measurements

2.1 Conducted Emissions Measurements

The EUT was powered from the mains through a LISN and measurements were carried out using a Receiver over the frequency range 150 KHz to 30 MHz.

2.2 Radiated Emissions Measurements

Radiated Power measurements were made at the Compliance Engineering Ireland Ltd anechoic chamber located in Dunshaughlin, Co. Meath, Ireland to determine the radio noise radiated from the EUT. A "Description of Measurement Facilities" has been submitted to the FCC and approved pursuant to Section 2.948 of CFR 47 of the FCC rules.

The EUT was centred on a motorized turntable, which allows 360 degree rotation. A measurement antenna was positioned at a distance of 3 metres as measured from the closest point of the EUT. The radiated emissions were maximised by configuring the EUT, by rotating the EUT, and by raising and lowering the antenna from 1 to 4 meters.

Emissions below 1GHz were measured using a bi-log antenna. In this case the resolution bandwidth was 100kHz.

Emissions above 1GHz were measured using a horn antenna located at 3 metres distance from the EUT. In this case the resolution bandwidth was 1MHz and video bandwidth was 1MHz.

2 Duty Cycle

15.35 (c) & IC RSS-Gen Issue 1 4.3

The measurement field strength shall be determined by averaging over one complete pulse train, including blanking intervals, as long as the pulse train does not exceed 0.1 seconds. As an alternative(provided the transmitter operates for longer than 0.1 seconds) or in cases where the pulse train exceeds 0.1 seconds, the measured field strength shall be determined from the average absolute voltage during a 0.1 seconds interval during which the field strength is at its maximum value. The exact method of calculating the average field strength shall be submitted with any application for certification or shall be retained in the measurement data file for equipment subject to notification or verification.

TEST PROCEDURE

EUT was tested in modulated mode.

The transmitter output is connected to a spectrum analyzer or radiated field strength. The RBW is set to 100 kHz and the VBW is set to 1MHz. The sweep time is coupled and the span is set to 0 Hz. The number of pulses is measured and calculated in a 100 ms scan.

RESULTS

Page	9	of	20
------	---	----	----

Receiver	Spectrum 🗵				
Ref Level 107.0 Att SGL TRG: VID TDF	0 dBµV ● F 10 dB ● SWT 1 s ● V	RBW 100 kHz VBW 1 MHz	Input 1 AC		
1Pk Max			M1[1]		23.56 dBµV
100 dBµV					-100.00 ms
90 dBuV			D2[1]		13.06 dB 100.00 ms
			1		
80 dBµV					
70 dBµV					
60 dBuV					
50 dBµV-					
40 dBµV- <u>D</u> a			-		5
30 dBµV	.000 dBµV				
yeman here	his month and an experience	the margane and and	- eferder anonotal a	anthought the marine	an-lottle bertele margine
20 dBµV					
10 dBµV					
CF 915.0 MHz		691 pts			100.0 ms/
Aarker	V ushus	Y uslus	Function	Function De	
M1 1	-100.0 ms	23,56 dBuV	Function	Function Re	suit
D2 M1 1	100.0 ms	13.06 dB			
	100.0 mc	12.06 dB			

Report Ref: 13E4506-5a

Page 10 of 20

One	Pulse	No of	Duty Cycle	Duty	Test
Period(mS)	Width (mS)	Pulses		Cycle %	Result
100	6.75	1	0.0675	6.8	Pass

CALCULATION

Average Reading = Peak Reading $dB(\mu V/m)$ +20log (Duty Cycle),

where Duty Cycle is (No of pulses*pulse width)/100 or T

Note correction for pulse mode operation is

20 log duty cycle (dB)
-23.4

3 Field Strength of Spurious Radiated Emissions

Note this is the Average limit for 3 metre measurement.

For the spurious and harmonics measurements, the EUT was set up in an anechoic chamber. The EUT was rotated 360 degrees azimuth and the search antenna height was varied 1 to 4m in order to maximize the emissions. Significant peaks from the EUT were then recorded to determine margin to the limits. Distance of EUT to the measurement antenna was 3m.

The EUT was tested in CW mode.

4.0 Results for Radiated emissions

Appendix 3 shows the results of the scans in the anechoic chamber.

4.1 Measurements with Bilog Antenna (30MHz to 1GHz)

Frequency MHz	Peak Level dBuV/m	Antenna Polarity	Antenna Loss dB	Cable loss dB	Final Field Strength Peak dBuV/m
61.53	20.7	Vertical	5.9	0.2	26.8
72.96	20.45	Vertical	6.8	0.2	27.45
112.38	13.4	Vertical	11.4	0.2	25
150	14	Vertical	11.4	0.2	25.6
457.48	27.1	Vertical	16.5	1.2	44.8
457.48	20.63	Horizontal	16.5	1.2	38.33

Frequency MHz	<u>Peak</u> Level dBuV/m	Antenna Polarity	Quasi Peak Limit dBuV/m	Margin limit dB
61.53	26.8	Vertical	40.0	13.20
72.96	27.45	Vertical	40.0	12.55
112.38	25	Vertical	43.5	18.50
150	25.6	Vertical	43.5	17.90
457.48	44.8	Vertical	46.0	1.20
457.48	38.33	Horizontal	46.0	7.67

Note the tests were carried out with the Transceiver in CW mode.

Note the duty cycle measurements for 457.48MHz are identical to the carrier frequency measurements in Section 3

Peak levels are under than the Quasi Peak limit.

Result: Pass

Page 13 of 20

Frequency GHz	Measured Peak Level dBuV/m	Antenna Loss dB	Preamp Gain dB	Cable Loss	Antenna Polarity	Final Peak Level dBuV/m
1.830	74.0	25.4	38.6	1.6	Vertical	62.4
2.745	78.0	28.7	38.4	3.8	Vertical	72.1
3.660	65.0	31.3	37.4	4.5	Vertical	63.4
4.570	57.0	32.4	37.1	5.1	Vertical	57.4
5.489	47.0	34.3	37.5	5.7	Vertical	49.5
1.830	66.0	25.4	38.6	1.6	Horizontal	54.4
2.745	78.9	28.7	38.4	3.8	Horizontal	73.0
3.660	61.0	31.3	37.4	4.5	Horizontal	59.4
4.574	56.0	32.4	37.1	5.1	Horizontal	56.4
5.489	54.0	34.3	37.5	5.7	Horizontal	56.5

4.2 Horn antenna measurements (1GHz – 12.75 GHz)

Frequency GHz	Final Peak Level dBuV/m	Antenna Polarity	Average Level dBV/m	Average Limit dBuV/m	Margin dB
1.830	62.4	Vertical	39.0	54	15.0
2.745	72.1	Vertical	48.7	54	5.3
3.660	63.4	Vertical	40.0	54	14.0
4.570	57.4	Vertical	34.0	54	20.0
5.489	49.5	Vertical	26.1	54	27.9
1.830	54.4	Horizontal	31.0	54	23.0
2.745	73.0	Horizontal	49.6	54	4.4
3.660	59.4	Horizontal	36.0	54	18.0
4.574	56.4	Horizontal	33.0	54	21.0
5.489	56.5	Horizontal	33.1	54	20.9

Note the tests were carried out with the Transceiver in CW mode. **Test Result Pass**

Report Ref: 13E4506-5a Page 14 of 20

4.3 Conducted Emissions on the Mains

Appendix 3 shows the results of the scans for Conducted Emissions

Detector	Freq	Reading	Margin	Phase
	MHz	dBuV	dB	
Quasi-Peak	9.569	26.72	-33.28	Live
Average	9.569	21.97	-28.03	Live

Results for Conducted Emissions on the Mains Live

Detector	Freq	Reading	Margin	Phase
	MHz	dBuV	dB	
Quasi-Peak	9.560	27.09	-32.91	Neutral
Average	9.665	23.57	-26.43	Neutral

Results for Conducted Emissions on the Mains Neutral

Test Result Pass

Appendix 1

List of Test Equipment

Instrument	Mftr.	Model	CEI Ref No.	Cal Due Date
Measuring Receiver	Rohde & Schwarz	ESVS30	607	19/04/2014
Bilog Antenna	Chase	CBL 6140	690	03/10/2015
Preamplifier	Hewlett Packard	83017A	805	10/04/2014
Horn Antenna	AH Systems	SAS 200 571	839	12/10/2013
Spectrum Analyser/Receiver	Rohde & Schwarz	ESR	869	28/05/2014
Spectrum Analyser	Agilent	E4408B	722	11/01/2014
LISN	Rohde & Schwarz	ESH3-Z5	604	11/12/2013

Report Ref: 13E4506-5a Page 16 of 20

Appendix 2

Test Configurations

Report Ref: 13E4506-5a Page 17 of 20

Appendix 3:

Test Results

Page 18 of 20

RBW (Input 1 AC Att	QPK) 120 kHz O dB	MT Preamp	1s OdB Step T	CEI-69 D Scan	0 CEI-830		
Level	dBµV/m	Ì		Free	quency f	1.00000	000 GHz
Max Peak	33.20	-10	10	30	50	70) 90
Quasipeak	22.11	-10	10	30	50	70) 90
Scan 😑 1Pk Max							
Limit Check	3m OP	100 MH2	AIL AIL				
90 dBµV/m							
80 dBµV/m							
70 dBµV/m							
60 dBµV/m							
50 dBuV/m							Г
FCC RAD 3m QP							
							min
30 dBµV/m	n					- and and a second	
20 dBµV/m	mer has		Marrie Marrie	and a start and	Munt		
10 dBµV/m							
							TF
L Start 30.0 MHz F	ig 1 Radiated	Emission	ns 30MHz-1GH	z Vertical 3me	tres Anechoid	Chamber	Stop 1.0 GHz J
	0						
Receiver							[♥]
RBW (001.000	0.051.000		
Input 1 AC Att	0 dB	Preamp	ls OdB Step T	CEI-690 D Scan) CEI-830		
Input 1 AC Att	dBµV/m	Preamp	ls OdB Step T	CEI-690 D Scan Frec	uency 1	00000	00 GHz
Input 1 AC Att Level Max Peak	dBµV/m 33.25	Preamp	1s 0 dB Step T 10	CEI-690 D Scan Frec 30	0 CEI-830	00000 70	00 GHz
Input 1 AC Att Level Max Peak Quasipeak	dBµV/m 33.25 22.09	Preamp -10 -10	1 s O dB Step T 10	CEI-690 D Scan Frec 30 30	UCEI-830	00000 70 70	900 GHz
Input 1 AC Att Level Max Peak Quasipeak	dBµV/m 33.25 22.09	Preamp -10 -10	1s OdB Step T 10 10 '	CEI-690 D Scan Frec 30 30	50 CEI-830	00000 70 70	90 GHz
Input 1 AC Att Level Max Peak Quasipeak	dBµV/m 33.25 22.09	-10 -10 100 MH2F	1 s 0 dB Step T 10 10 AIL	CEI-690 D Scan Frec 30 30 M1[1]	0 CEI-830	00000 70 70	90 90 90 14.07 dBµV/m 51.440000 MHz
Input 1 AC Att Level Max Peak Quasipeak Scan O1Pk Max Limit Check Jing FCC RAD 3	dBµV/m 33.25 22.09	-10 -10 -10 100 MH2F	1 s 0 dB Step T 10 10 AIL AIL	CEI-690 D Scan 30 30 M1[1]	D CEI-830	000000 70 70	90 GHz 90 90
Input 1 AC Att Level Max Peak Quasipeak Scan @1Pk Max Limit Check 90 dBµV/m 80 dBµV/m	dBµV/m 33.25 22.09	-10 -10 -10 -10 -10 -10 -10 -10 -10 -10	1 s 0 dB Step T 10 10 AIL AIL	CEI-690 D Scan Frec 30 30 M1[1]	D CEI-830	000000 70 70	90 GHz 90 90
Input 1 AC Att Level Max Peak Quasipeak Scan @1Pk Max Limit Check 90 dBµV/m 80 dBµV/m 70 dBµV/m	o dB dBµV/m 33.25 22.09	-10 -10 -10 100 MH2F	1 s 0 dB Step T 10 10 SAIL	CEI-690 D Scan 30 30 M1[1]	0 CEI-830	000000 70 70	000 GHz 90 90
Input 1 AC Att Level Max Peak Quasipeak Scan @1Pk Max Limit Check 90 dBµV/m 80 dBµV/m 60 dBµV/m	o dB dBµV/m 33.25 22.09	-10 -10 -10 100 MH2F	1 s 0 dB Step T 10 10 AIL AIL	CEI-690 D Scan 30 30 M1[1]	D CEI-830	000000 70 70	000 GHz 90 90
Input 1 AC Att Level Max Peak Quasipeak Scan O1Pk Max Limit Check 90 dBµV/m 80 dBµV/m 60 dBµV/m 50 dBµV/m	o dB dBµV/m 33.25 22.09	-10 -10 -10 100 MH2F F	1 s 0 dB Step T 10 10 AIL AIL	CEI-690	10 CEI-830	00000 70 70 70 70	90 GHz 90 90
Input 1 AC Att Level Max Peak Quasipeak Scan • 1Pk Max Limit Check 90 dBµV/m 80 dBµV/m 70 dBµV/m 60 dBµV/m 50 dBµV/m	о dB dBµV/m 33.25 22.09	-10 -10 -10 100 MH2F	1 s 0 dB Step T 10 10 AIL AIL	CEI-690 D Scan 30 30 M1[1]	Uency 1	000000 70 70	000 GHz 90 90
Input 1 AC Att Level Max Peak Quasipeak Scan • 1Pk Max Limit Check 90 dBµV/m 80 dBµV/m 60 dBµV/m 50 dBµV/m 50 dBµV/m	o dB dBµV/m 33.25 22.09	-10 -10 -10 100 MH2 F	1 s 0 dB Step T 10 10 AIL AIL	CEI-690	D CEI-830	00000 70 70 70 70 70	90 GHz 90 90
Input 1 AC Att Level Max Peak Quasipeak Scan @1Pk Max Limit Check 90 dBµV/m 80 dBµV/m 60 dBµV/m 50 dBµV/m 50 dBµV/m 50 dBµV/m	o dB dBµV/m 33.25 22.09	-10 -10 -10 100 MH2F F	1 s 0 dB Step T 10 10 AIL AIL AIL	CEI-690 D Scan 30 30 M1[1]	D CEI-830		00 GHz 90 90
Input 1 AC Att Level Max Peak Quasipeak Scan • 1Pk Max Limit Check 90 dBµV/m 80 dBµV/m 60 dBµV/m 50 dBµV/m 50 dBµV/m 30 dBµV/m 20 dBµV/m	о dB dBµV/m 33.25 22.09	Preamp -10 -10 -10 -10 -10 -10 -10 -10 -10 -10	1 s 0 dB Step T 10 10 AIL AIL AIL	CEI-690 D Scan 30 30 M1[1]	D CEI-830		00 GHz 90 90
Input 1 AC Att Level Max Peak Quasipeak Scan O1Pk Max Limit Check 90 dBµV/m 80 dBµV/m 60 dBµV/m 50 dBµV/m 50 dBµV/m 30 dBµV/m 30 dBµV/m 10 dBµV/m	о dB dBµV/m 33.25 22.09	Preamp -10 -10 -10 -10 -10 -10 -10 -10 -10 -10	1 s 0 dB Step T 10 10 AIL AIL AIL	CEI-690	D CEI-830		00 GHz 90 90
Input 1 AC Att Level Max Peak Quasipeak Scan • 1Pk Max Limit Check 90 dBµV/m 80 dBµV/m 60 dBµV/m 50 dBµV/m 50 dBµV/m 20 dBµV/m 10 dBµV/m 20 dBµV/m	о dB dBµV/m 33.25 22.09	-10 -10 -10 100 MH2F F	1 s 0 dB Step T 10 10 AIL AIL AIL	CEI-690	D CEI-830		000 GHz 90 90

Report Ref: 13E4506-5a

Page 19 of 20

Page 20 of 20

Receiver							
RBN Input 1 AC Att	V(QPK)9kHz N 10dB P	AT 1s Preamp0dBSte	en TD Scan				
Level	dBuV		Fre	eauencv	13.87	750000	MHz
Average	7.16	-20 0	20	40	60	80	100
Quasipeak	18.88	-20 0	20	40	60	80	100
Scan O1Pk Clrw	●2Av Clrw	1 11110 1 00					
Limit Check Line FCC15- 90 dBuV Line FCC15-	207-QP 207-AVE	PASS	IV.			13.93	2.84 dBµV 1250 MHz
80 dBµV							
70 dBµV							
FCC15-207-QP							
FCC15-207-AVE							
40 dBµV							
30 dBµV					Å	M1	
20 dBµV	1				*	Mar Autom	A
		dination and	Waard alland, sook As	Watter Philas	som M	A	- A
	V I V KUKARUNANA		A THE LEWIS CONTRACTOR OF THE STATE				
Start 150.0 kHz		TRADUC				TF	30.0 MHz
Start 150.0 kHz		Fig 5 Conducte	d Emissions on the	e Mains Live		Stop	30.0 MHz
Start 150.0 kHz		Fig 5 Conducte	d Emissions on the	e Mains Live	\∧ /!*i	Stop	30.0 MHz
Receiver	W (CISPR) 9 kHz	Fig 5 Conducte	d Emissions on the	e Mains Live		Stop	30.0 MHz
Receiver Input 1 AC At	W (CISPR) 9 kHz t 10 dB	Fig 5 Conducte	d Emissions on the Step TD Scan	e Mains Live		Stop	
Receiver Input 1 AC At Average	w (CISPR) 9 kHz t 10 dB dBµV 23.03	Fig 5 Conducte	d Emissions on the Step TD Scan	e Mains Live	cy 9.6	Stop	<u>зо.о мн</u> г (Ф О МН2 100
Receiver Input 1 AC At Level Average Scan @1Pk Cirw	w (CISPR) 9 kHz t 10 dB dBµV 23.03	Fig 5 Conducte MT 1 s Preamp 0 dB	d Emissions on the Step TD Scan	e Mains Live Frequen	cy 9.6	652500	30.0 MHz 30.0 MHz ♥
Receiver Input 1 AC At Level Scan O1Pk Clrw Limit Check	w (CISPR) 9 kHz t 10 dB dBµV 23.03	Fig 5 Conducte	d Emissions on the Step TD Scan	E Mains Live	cy 9.6	652500 80	30.0 MHz (
Receiver Input 1 AC At Level Scan O1Pk Clrw Line FCC15- 90 dB/me FCC15-	W (CISPR) 9 kHz t 10 dB dBµV 23.03 24v Clrw 207-QP 207-QP	Fig 5 Conducte MT 1 s Preamp 0 dB 20 0 1 MH≹ASS PASS PASS	d Emissions on the Step TD Scan	E Mains Live	cy 9.6	65250(80	30.0 MHz 30.0 MHz 30.0 MHz
Receiver Receiver Input 1 AC At Level Average Scan @1Pk Clrw Line FCC15- 90 dB We FCC15- 80 dB W	W (CISPR) 9 kHz t 10 dB dBµV 23.03 ©2Av Clrw 207-QP 207-AVE	Fig 5 Conducte	d Emissions on the Step TD Scan	E Mains Live	cy 9.6	65250(80	30.0 MHz 30.0 MHz
Receiver Re Input 1 AC At Level Average Scan O1Pk Clrw Limit Check Line FCC15- 90 dBuv 70 dBuv	W (CISPR) 9 kHz t 10 dB dBµV 23.03 22Av Clrw 207-QP 207-AVE	Fig 5 Conducte	d Emissions on the Step TD Scan	E Mains Live	cy 9.6	652500 80 13.6	30.0 MHz 30.0 MHz
Receiver RE Input 1 AC At Level Average Scan O1Pk Clrw Limit Check Line FCC15- 90 dBHV 70 dBHV FCC15-207-QP 60 dBHV	W (CISPR) 9 kHz t 10 dB dBµV 23.03 ©2Av Clrw 207-QP 207-AVE	Fig 5 Conducte	d Emissions on the Step TD Scan	E Mains Live	cy 9.6	652500 80 13.6	30.0 MHz 30.0 MHz
Receiver Receiver RE Input 1 AC At Level Average Scan O1Pk Clrw Limit Check Line FCC15- 90 dBµV- FCC15-207-QP 60 dBµV- FCC15-207-AVE 50 dBµV-	W (CISPR) 9 kHz t 10 dB dBµV 23.03 22Av Clrw 207-QP 207-AVE	Fig 5 Conducte	d Emissions on the Step TD Scan	E Mains Live	cy 9.6	652500 80 13.6	30.0 MHz 30.0 MHz ♥ 0 MHz 100 25.30 dBµV 854750 MHz
Start 150.0 kHz Start 150.0 kHz Receiver RE Input 1 AC Average Scan O1Pk Clrw Limit Check Line FCC15- 90 dBµV 70 dBµV FCC15-207-QP 60 dBµV FCC15-207-AVE 50 dBµV 40 dBµV	W (CISPR) 9 kHz t 10 dB dBµV 23.03 ©2Av Clrw 207-QP 207-AVE	Fig 5 Conducte	d Emissions on the Step TD Scan	E Mains Live	cy 9.6	652500 80 13.6	30.0 MHz 30.0 MHz
Start 150.0 kHz Start 150.0 kHz Receiver RE Input 1 AC At Level Average Scan O1Pk Clrw Limit Check Line FCC15- 90 dBµV 70 dBµV FCC15-207-QP 60 dBµV FCC15-207-AVE 50 dBµV 40 dBµV 30 dBµV	W (CISPR) 9 kHz t 10 dB dBµV 23.03 ©2Av Clrw 207-QP 207-AVE	Fig 5 Conducte	d Emissions on the Step TD Scan	E Mains Live	cy 9.6	652500 80 13.6	30.0 MHz 30.0 MHz
Start 150.0 kHz Start 150.0 kHz Receiver RE Input 1 AC At Level Average Scan © 1Pk Clrw Limit Check Lime FCC15- 80 dBµV 70 dBµV FCC15-207-QP 60 dBµV Y 40 dBµV 30 dBµV	W (CISPR) 9 kHz t 10 dB dBµV 23.03 •2Av Clrw 207-QP 207-AVE	Fig 5 Conducte MT 1 s Preamp 0 dB 20 0 1 MH₹ASS PASS PASS 1 ASS PASS 1 ASS 1 ASS	d Emissions on the Step TD Scan	E Mains Live	cy 9.6	652500	30.0 MHz 30.0 MHz ♥ 0 MHz 100
Start 150.0 kHz Start 150.0 kHz Receiver Re Input 1 AC At Level Average Scan 1Pk Clrw Limit Check Lime FCC15- 90 dBµV FCC15-207-QP 60 dBµV FCC15-207-AVE 50 dBµV 40 dBµV 20 dBµV	W (CISPR) 9 kHz 10 dB dBµV 23.03 207-QP 207-QP	Fig 5 Conducte Fig 5 Conducte MT 1 s Preamp 0 dB	d Emissions on the Step TD Scan	E Mains Live	cy 9.6	65250(80 13.8	30.0 MHz 30.0 MHz 0 MHz 100 25.30 dBµV 54750 MHz
Start 150.0 kHz Start 150.0 kHz Receiver Input 1 AC At Level Average Scan ●1Pk Clrw Lime FCC15- 90 dBµV FCC15-207-QP 60 dBµV FCC15-207-AVE 50 dBµV 40 dBµV 20 dBµV 10 dBµV	W (CISPR) 9 kHz 10 dB dBµV 23.03 207-QP 207-AVE	Fig 5 Conducte	d Emissions on the Step TD Scan	E Mains Live	cy 9.6	65250(30.0 MHz 30.0 MHz 0 MHz 100 25.30 dBµV 54750 MHz