Report Ref: 13E4506-1a-2 Page 1 of 25

Compliance Engineering Ireland Ltd

Clonross Lane, Derrockstown, Dunshaughlin, Co. Meath Tel: +353 1 8256722 Fax: +353 1 8256733

Project Number: 13E4506-1a-2 Prepared for:

Dimplex North America Ltd

By

Compliance Engineering Ireland Ltd

Clonross Lane

Derrockstown

Dunshaughlin

Co. Meath

FCC Site Registration: 92592

Industry Canada Assigned Site Code: 8517A-2

FCC ID: Z4900005

IC: 6592A-00005

Date

20 June 2013

FCC EQUIPMENT AUTHORISATION

Test Report

EUT Description

Radio Hub for heater control.

Authorised :

Me

John McAuley

TEST SUMMARY

The equipment complies with the requirements according to the following standards.

FCC Part Section(s)	RSS-210 Section	TEST PARAMETERS	Test Result
15.249(a)	A.2.9(a)	RADIATED EMISSIONS	PASS
15.249(d)	A.2.9(b)	RADIATED EMISSIONS	PASS
15.249(e)	A.2.9(b)	RADIATED EMISSIONS	PASS
15.207(a)		CONDUCTED EMISSIONS ON THE MAINS	PASS

THIS REPORT SHALL NOT BE REPRODUCED EXCEPT IN FULL, WITHOUT THE WRITTEN APPROVAL OF COMPLIANCE ENGINEERING IRELAND LTD

Page 3 of 25

Exhibit A – Technical Report

Table of Contents

1.0	EUT DESCRIPTION	.4
1.1	EUT OPERATION	.5
1.2	MODIFICATIONS	.5
1.3	DATE OF TEST	.5
1.4.1	MEASUREMENT UNCERTAINTY	.6
2.0	EMISSIONS MEASUREMENTS	.7
2.1	CONDUCTED EMISSIONS MEASUREMENTS	.7
2.2	RADIATED EMISSIONS MEASUREMENTS	.7
2.3	TEST CRITERIA	.9
3.0	MAXIMUM MODULATION PERCENTAGE (M%)	10
4.0	FIELD STRENGTH OF SPURIOUS RADIATED EMISSIONS	14
5.0	LIST OF TEST EQUIPMENT	17

1.0 EUT Description

The EUT was a module using a short range 915 MHz band transceiver for heater control in buildings.

Model:	11123618
Туре:	915 MHz Radio hub for heater control
FCC ID:	Z4900005
Company:	Dimplex North America
Contact	Kelly Stinton
Address:	1367 Industrial Road, Cambridge, ON N1R 7G8 Canada
Phone:	519-650-3630
e-mail:	kstinson@dimplex.com
Test Standards:	47 CFR, Part 15.249(a,d,e) ; 47 CFR, Part 15.207(a)
Type of radio:	Stand-alone
Transmitter Type:	GFSK
Operating Frequency Range(s):	915 MHz
Number of Channels:	1
Antenna:	Integral
Transmitter power configuration:	12v dc
Oper. Temp Range:	0° C to +40° C
Classification:	DXT
Test Methodology:	Measurements performed according to the procedures in ANSI C63.4-2003

1.1

1.2 EUT Operation

Operating Conditions during Test:

The equipment under test was operated during the measurement under the following conditions:

The EUT was operated in CW mode for the Radiated power and Spurious Emissions tests.

The EUT was operated in normal operation mode for the duty cycle test.

Environmental conditions

During the measurement the environmental conditions were within the listed ranges:

Normal

Temperature:	+15 to +35 ° C
Humidity:	20-75 %

1.3 Modifications

No modifications were required in order to pass the test specifications.

1.4 Date of Test

The tests were carried out on one sample of the EUT during the months of May and June 2013.

1.4 Electromagnetic Emissions Testing

The guidelines of CISPR 16-4 were used for all uncertainty calculations, estimates and expressions thereof for EMC testing. A copy of Compliance Engineering Ireland Ltd.'s policy for EMC Measurement Uncertainty is available on request.

RF Requirements: Spurious emissions in accordance with FCC CFR 15.207 and 15.209. Tests were carried out to the requirements of CISPR 16-4 and ANSI C63.4-2009.

1.4.1 Measurement Uncertainty

The measurement uncertainty (with a 95% confidence level) for the conducted emissions test was ± 3.5 dB.

The measurement uncertainty (with a 95% confidence level) for the radiated emissions test was ± 5.3 dB (from 30 to 100 MHz), ± 4.7 dB (from 100 to 300 MHz), ± 3.9 dB (from 300 to 1000 MHz) and ± 3.8 dB (from 1 GHz to 40 GHz).

2.0 Emissions Measurements

2.1 Conducted Emissions Measurements

The EUT was powered from a mains to 12v dc adapter which was connected to the mains through a LISN and measurements were carried out using a Receiver over the frequency range 150KHz to 30MHz.

2.2 Radiated Emissions Measurements

Radiated Power measurements were made at the Compliance Engineering Ireland Ltd anechoic chamber located in Dunshaughlin, Co. Meath, Ireland to determine the radio noise radiated from the EUT. A "Description of Measurement Facilities" has been submitted to the FCC and approved pursuant to Section 2.948 of CFR 47 of the FCC rules.

The EUT was centred on a motorized turntable, which allows 360 degree rotation. A measurement antenna was positioned at a distance of 3 metres as measured from the closest point of the EUT. The radiated emissions were maximised by configuring the EUT, by rotating the EUT, and by raising and lowering the antenna from 1 to 4 meters.

Emissions below 1GHz were measured using a bi-log antenna. In this case the resolution bandwidth was 100kHz.

Emissions above 1GHz were measured using a horn antenna located at 3 metres distance from the EUT. In this case the resolution bandwidth was 1MHz and video bandwidth was 1MHz.

2.3 Antenna Requirements

According to FCC 47 CFR 15.203:

"An intentional radiator antenna shall be designed to ensure that no antenna other than that furnished by the responsible party can be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section."

* The antennas of this E.U.T are permanently attached.

*The E.U.T Complies with the requirement of 15.203

2.4 Test Criteria

Requirement :- 15.249 (a) & IC RSS-210 Issue 6 A2.9

Operation within the bands 902-928 MHz

The field strength of emissions from intentional radiators operated within these frequency bands shall comply with the following:

Fundamental	Field strength of fundamental	Field strength of harmonics	
frequency	(millivolts/meter)	(microvolts/meter)	
902-928 MHz	50	500	

TEST PROCEDURE

EUT was tested in CW mode.

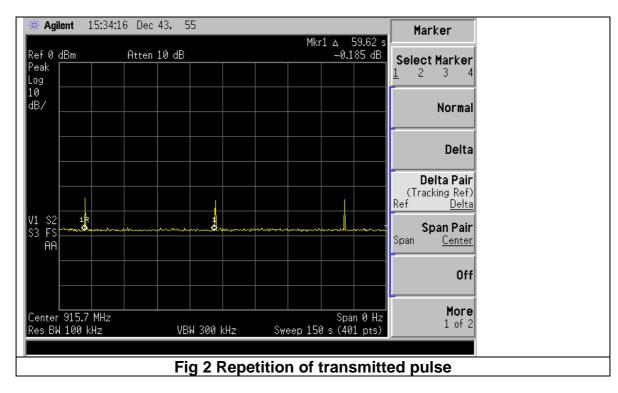
RESULTS

Frequency MHz	Peak Level dBuV/m	Antenna Polarity	Antenna Loss dB	Cable loss dB	Final Field Strength Peak dBuV/m
914.962	76.24	Vertical	22.6	1.4	100.24
914.962	80.24	Horizontal	22.6	1.4	104.24

Frequency MHz	Peak Level dBuV/m	Antenna Polarity	Average Level dBuV/m	Average Limit dBuV/m	Margin dB
914.962	100.24	Vertical	76.83	94.0	17.15
914.962	104.24	Horizontal	80.83	94.0	13.15

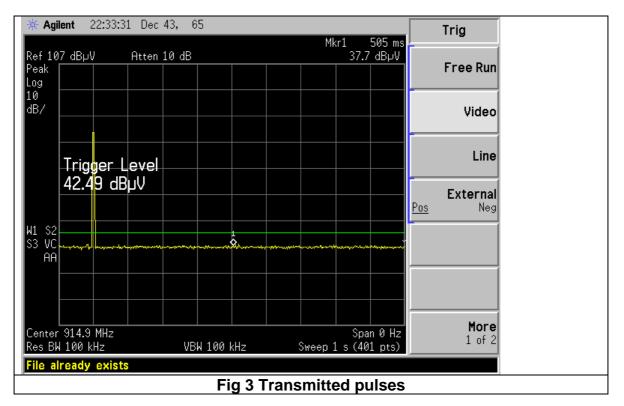
Test Result Pass

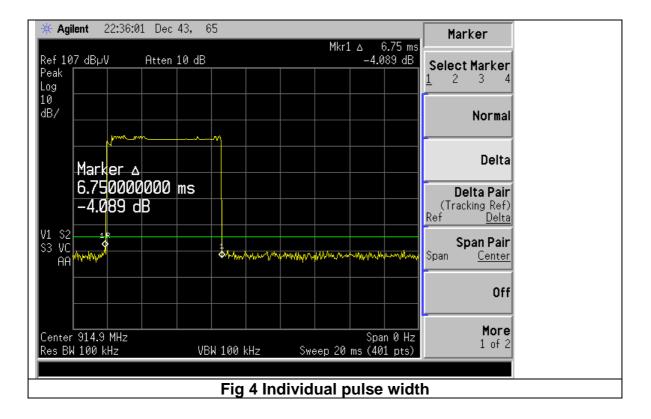
3.0 Duty Cycle


15.35 (c) & IC RSS-Gen Issue 3 4.3

The measurement field strength shall be determined by averaging over one complete pulse train, including blanking intervals, as long as the pulse train does not exceed 0.1 seconds. As an alternative(provided the transmitter operates for longer than 0.1 seconds) or in cases where the pulse train exceeds 0.1 seconds, the measured field strength shall be determined from the average absolute voltage during a 0.1 seconds interval during which the field strength is at its maximum value. The exact method of calculating the average field strength shall be submitted with any application for certification or shall be retained in the measurement data file for equipment subject to notification or verification.

TEST PROCEDURE


EUT was tested in modulated mode.


The transmitter output is connected to a spectrum analyzer or radiated field strength. The RBW is set to 100 kHz and the VBW is set to 300 kHz. The sweep time is coupled and the span is set to 0 Hz. The number of pulses is measured and calculated in a 100 ms scan.

RESULTS

Page 11 of 25

Page 12 of 25

One	Pulse	No of	Duty Cycle	Duty	Test
Period(mS)	Width (mS)	Pulses		Cycle %	Result
100	6.75	1	0.0675	6.8	Pass

CALCULATION

Average Reading = Peak Reading $dB(\mu V/m)$ +20log (Duty Cycle),

where Duty Cycle is (No of pulses*pulse width)/100 or T

Note correction for pulse mode operation is

20 log duty cycle (dB)
-23.4

3.1 Occupied Bandwidth

Test Criteria

Requirement :-IC RSS-Gen

Bandwidth is determined at the points 20dB down from the modulated carrier.

TEST PROCEDURE

The resolution bandwidth was set to 10 kHz. The video bandwidth was set to 30 kHz. Bandwidth is determined at the points 20 dB down from the modulated carrier.

RESULTS

Operating	20dB
Frequency	Bandwidth
(MHz)	(kHz)
914.962	214.9

4.0 Field Strength of Spurious Radiated Emissions

Test Specification: FCC PART 15, SECTION 47 CFR 15.249(d) & IC RSS-210 Issue 8 A2.9

Emissions radiated outside of the specified frequency bands, except for harmonics, shall be attenuated by at least 50 dB below the level of the fundamental or to the general radiated emission limits in § 15.209, whichever is the lesser attenuation

Note this is the Average limit for 3 metre measurement.

For the spurious and harmonics measurements, the EUT was set up in an anechoic chamber. The EUT was rotated 360 degrees azimuth and the search antenna height was varied 1 to 4m in order to maximize the emissions. Significant peaks from the EUT were then recorded to determine margin to the limits. Distance of EUT to the measurement antenna was 3m.

The EUT was tested in CW mode.

4.1 Results for Radiated emissions

Appendix A shows the results of the scans in the anechoic chamber.

Result: Pass

Frequency MHz	Quasi Peak Level dBuV/m	Antenna Polarity	Antenna Loss dB	Cable loss dB	Final Field Strength Quasi Peak dBuV/m
50.3	24.7	Vertical	8.9	0.2	33.8
67.18	16.83	Vertical	5.9	0.2	22.93
97.27	30.07	Vertical	10.3	0.2	40.57
117.27	20	Vertical	11.8	0.2	32
194.37	10.54	Vertical	8.6	0.2	19.34
961.29	11.34	Vertical	24.2	1.4	36.94
868.489	11.4	Vertical	22.2	1.4	35
31.77	10.84	Horizontal	18.3	0.2	29.34
97.17	22.1	Horizontal	10.3	0.2	32.6
259.05	13.56	Horizontal	13	0.2	26.76
868.44	11.4	Horizontal	22.2	1.4	35

4.1.1	Spurious Emissions Measurements with Bilog Antenna (30MHz to 1GHz)
-------	--

Frequency MHz	Quasi Peak Level dBuV/m	Antenna Polarity	Quasi Peak Limit dBuV/m	Margin dB
50.3	33.8	Vertical	40.00	6.2
67.18	22.93	Vertical	40.00	17.1
97.27	40.57	Vertical	43.52	3.0
117.27	32	Vertical	43.52	11.5
194.37	19.34	Vertical	43.52	24.2
961.29	36.94	Vertical	53.98	17.0
868.489	35	Vertical	46.02	11.0
31.77	29.34	Horizontal	40.00	10.7
97.17	32.6	Horizontal	43.52	10.9
259.05	26.76	Horizontal	46.02	19.3
868.44	35	Horizontal	46.02	11.0

Result: Pass

Page 16 of 25

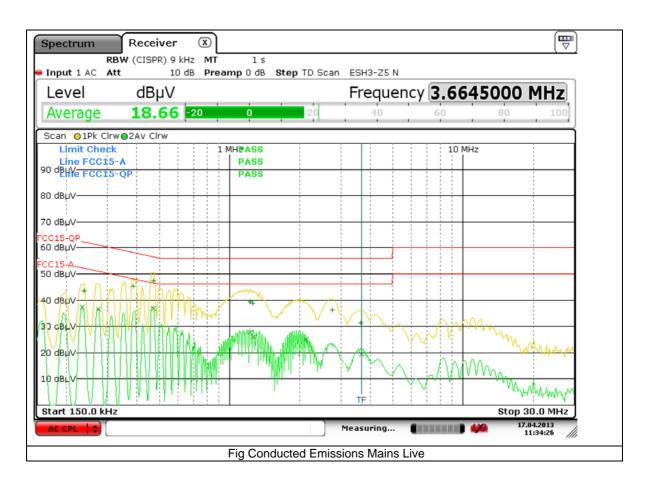
Frequency GHz	Measured Peak Level dBuV/m	Antenna Loss dB	Preamp Gain dB	Cable Loss	Antenna Polarity	Final Peak Level dBuV/m
1.830	45.2	24.8	0	1.6	Vertical	71.6
2.745	35.5	29.4	0	3.8	Vertical	68.7
3.659	61.3	30.6	37.4	4.5	Vertical	59.0
4.570	50.7	32.3	37.1	5.1	Vertical	51.0
5.489	47.8	34.2	37.5	5.7	Vertical	50.2
6.408	51.8	34.2	36.8	6.8	Vertical	56.0
7.319	54.8	37.7	38	6.7	Vertical	61.2
1.830	43.6	24.8	0	1.6	Horizontal	70.0
2.745	35.1	29.4	0	3.8	Horizontal	68.3
3.659	59.1	30.6	37.4	4.5	Horizontal	56.8
4.574	51.2	32.3	37.1	5.1	Horizontal	51.5
5.489	47.0	34.2	37.5	5.7	Horizontal	49.4
6.408	55.6	34.2	36.8	6.8	Horizontal	59.8
7.319	54.1	37.7	38	6.7	Horizontal	60.5

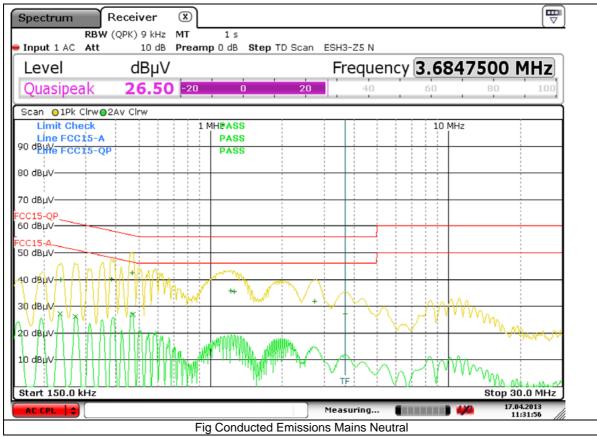
4.1.2 Horn antenna measurements (1GHz – 12.75 GHz)

Frequency GHz	Final Peak Level dBuV/m	Antenna Polarity	Average Level dBV/m	Average Limit dBuV/m	Margin dB
1.830	71.6	Vertical	48.2	54	5.8
2.745	68.7	Vertical	45.3	54	8.7
3.659	59.0	Vertical	35.6	54	18.4
4.570	51.0	Vertical	27.6	54	26.4
5.489	50.2	Vertical	26.8	54	27.2
6.408	56.0	Vertical	32.6	54	21.4
7.319	61.2	Vertical	37.8	54	16.2
1.830	70.0	Horizontal	46.6	54	7.4
2.745	68.3	Horizontal	44.9	54	9.1
3.659	56.8	Horizontal	33.4	54	20.6
4.574	51.5	Horizontal	28.1	54	25.9
5.489	49.4	Horizontal	26.0	54	28.0
6.408	59.8	Horizontal	36.4	54	17.6
7.319	60.5	Horizontal	37.1	54	16.9

Result: Pass

5.0 List of Test Equipment


Instrument	Mftr.	Model	CEI Ref No.	Cal Due Date
Measuring Receiver	Rohde & Schwarz	ESVS30	607	19/04/2014
Bilog Antenna	Chase	CBL 6140	690	03/10/2015
Preamplifier	Hewlett Packard	83017A	805	10/04/2014
Horn Antenna	AH Systems	SAS 200 571	839	12/10/2013
Spectrum Analyser/Receiver	Rohde & Schwarz	ESR	869	25/05/2014
Spectrum Analyser	Agilent	E4408B	722	11/01/2014
LISN	Rohde & Schwarz	ESH3-Z5	604	11/12/2013


Page 18 of 25

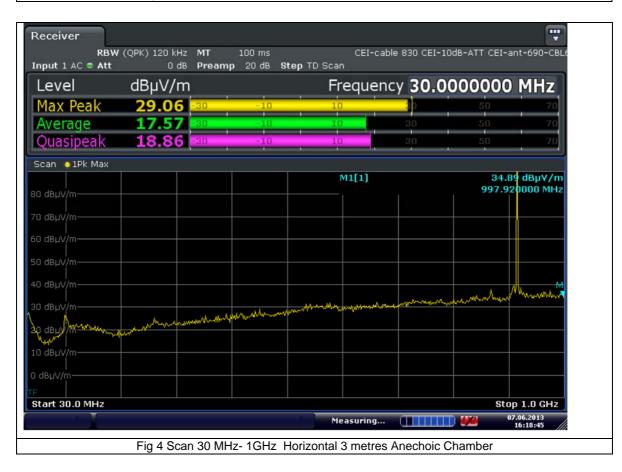
Appendix A

Additional Test Results

Page 19 of 25

Page 20 of 25

	Frequency	Reading	Margin	
Detector	MHz	dBuV	dB	Phase
Average	0.233	37.40	-14.93	Live
Quasi-Peak	0.238	43.61	-18.56	Live
Average	0.274	36.59	-14.41	Live
Quasi-Peak	0.386	45.23	-12.91	Live
Quasi-Peak	0.472	47.45	-9.03	Live
Average	0.472	36.69	-9.79	Live
Quasi-Peak	1.221	39.26	-16.74	Live
Average	1.221	27.81	-18.19	Live
Quasi-Peak	1.259	38.88	-17.12	Live
Average	1.262	25.83	-20.17	Live
Average	2.126	25.01	-20.99	Live
Quasi-Peak	2.758	36.30	-19.70	Live
Quasi-Peak	3.662	31.44	-24.56	Live
Average	3.665	19.51	-26.49	Live


Detector	Frequency MHz	Reading dBuV	Margin dB	Phase
Average	0.233	27.20	-25.13	Neutral
Quasi-Peak	0.236	39.78	-22.47	Neutral
Average	0.272	26.29	-24.78	Neutral
Quasi-Peak	0.384	40.22	-17.97	Neutral
Quasi-Peak	0.470	42.39	-14.13	Neutral
Average	0.472	26.86	-19.62	Neutral
Quasi-Peak	1.217	35.64	-20.36	Neutral
Quasi-Peak	1.255	35.47	-20.53	Neutral
Quasi-Peak	2.744	31.75	-24.25	Neutral
Quasi-Peak	3.685	27.09	-28.91	Neutral

Results for Conducted Emissions on the mains

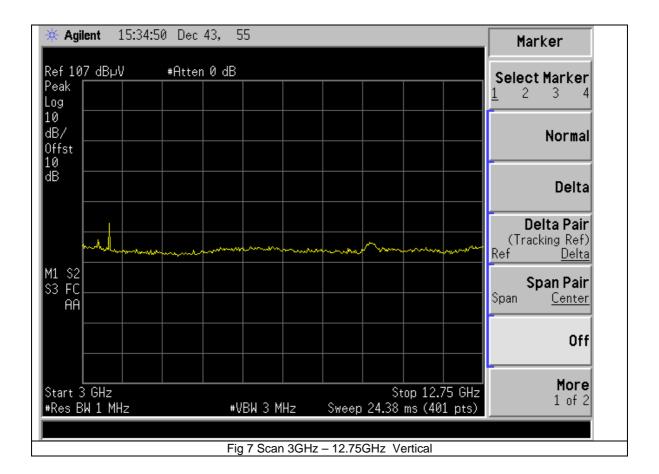
Test Result Pass

Page 21 of 25

_evel	dBµV/m				Frequer	cv 1.0	000000	GHZ
Max Peak	35.68	-30	-10	10		30	50	70
Average	24.11	-30	-10	10		30	50	7.0
Quasipeak	25.49	-30	-10	10		30	50	70
can o1Pk Max				20 - M-	19979	- 10 - 12-	10	
dBµV/m				N	11[1]			odBµV/m 0000 MHz
 dBµV/m								
 dBµV/m								
 dBµV/m								
							A . (he che a
dBµV/m							and send and the Wester	where any and
	with the second start	amondaha	the contraction of the contracti	way was proved	green and a second second second	estery weeks and the	an and and and and and and and and and a	when derive
	Contraction of the second second	mmmhh	en nettelen som	www.mar.a.yhlong	ynadianaturapolinika	ectury a certificant of the contraction of the cont	an and product the date	

Page 22 of 25

Receiver	Spe	ctrum	×							
Ref Level				RBW 1 MHz						
Att	0 di	B 👄 SWT	100 ms 👄	VBW 10 MHz	Mode A	uto Sweep	Input 1 A	C		
⊖1Pk Max										
					M	1[1]		33.75 dBµ¥ 2.74670 GHz		
90 dBµV						1	1	1		
80 dBµV										
70 dBµV									<u> </u>	
60 dBµV				+						
50 dBµV										
40 dBµV										
								M1		
30 dBµV										
hunderstunder	monu	مەرەمىرىسىيەت	mouth	Julianon	philostream	hundhala		unalle	wanderwall	
20 dBµV										
10 dBµV										
Start 1.0 GH	lz			691	pts	1		St	op 3.0 GHz	
						suring			10.06.2013 11:06:45	
		Fig 5 S	can 1GHz	- 3GHz Ve	ertical 3 me	tres Anec	hoic Cham	ber		


Receiver	Spectrum	\otimes								
Ref Level 97.0		e RB								
Att	o db 👄 SWT	100 ms 👄 🛛 🛛	W 10 MHz	Mode A	uto Sweep	Input 1 A	С			
⊖1Pk View										
				M	1[1]		26.25 dBµV			
90 dBµV		+ +					3.	00000 GHz		
80 dBµV		+								
70 dBµV										
60 dBµV										
FO JOUL										
50 dBµV										
40 dBµV		+ +								
30 dBµV		+						M		
manutation	mannon	herdentilernon	underserverse	runderbour	munder	mound	mound	manderent		
20 dBµV	0.0000									
10 dBµV										
10 0000										
0.40.44										
0 dBµV										
Start 1.0 GHz			691	pts				p 3.0 GHz		
				Mea	suring		4/4	11:29:29		
	-	1011	<u></u>					,,,,,		
	⊢ig 6 Sc	an 1GHz - 3	GHZ HO	rizontal 3 i	metres An	ecnoic Chi	amber			

Page 23 of 25

Receiver	Spectrum	×						
RefLevel 97 Att	.00 dBµV 0 dB 👄 SWT	● R 100 ms ● V			uto Sweep	Input 1 A	.c	
⊖1Pk Max						•		
90 dBµV				M	1[1]	1		33.75 dBµV .74670 GHz │
80 dBµV								
70 dBµV								
60 dBµV		+						
50 dBµV								
40 dBµV							M1	
30 dBµV	mont we share also	menenagelijkent	- Juleson Marrowson	philamhander	handlow	al-wellenmenter	unununu	and and a start of the start of
20 dBµV								
10 dBµV								
0 dBµV								
Start 1.0 GHz			691					op 3.0 GHz
八			5 Scan 1G		suring			11:06:45

Receiver Spectru	m ⊗			
Ref Level 97.00 dBµV	RBW 1 MI			
	SWT 100 ms 👄 VBW 10 Mi	Hz Mode Auto Sweep	Input 1 AC	
91Pk View		M1[1]		26.25 dBµV .00000 GHz
80 dBµV				
70 dBµV				
60 dBµV				
50 dBµV				
40 dBµV				
30 dBµV		numer therefore and a difference		- a de desant ant
20 dBµV	were the setting of t	a od svenovello na eraf da oerflagella ereflagella	Second on the second of the office of the second of the	
10 dBµV				
Start 1.0 GHz	69	01 pts		op 3.0 GHz
		Measuring	(10.06.2013 11:29:29
	Fig 6 Scan 1	GHz - 3GHz Horizont	al	

Page 24 of 25

Page 25 of 25

🔆 Agi	lent 1	5:43:5	6 Dec	43, 5	5						Marker
Ref 10)7 dBµV		#Atter	иdв				Mkr1		50 GHz dBµV	
Peak Log											Select Marker <u>1</u> 2 3 4
10 dB/ Offst											Normal
10 dB											Delta
	man la	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	hand	ann ann ann	mhan	******	mun	- Annor	mma	1	Delta Pair (Tracking Ref) Ref <u>Delta</u>
M1 S2 S3 FC AA											Span Pair Span <u>Center</u>
											Off
Start 3 #Res B	GHz GHz W 1 MH	z		#V	BW 3 M	Hz	Sweep	St 24.38		75 GHz 1 pts)	More 1 of 2
							10 75 0				
				⊢ıg≀	s Scan	3GHZ –	12.75G	Hz Hor	izontal		