# ENGINEERING TEST REPORT



LPC Series Heater LCD Module Model: 6001560100 FCC ID: Z49-00001

Applicant:

Dimplex North America Limited 1367 Industrial Road Cambridge, ON N1R7G8

In Accordance With

Federal Communications Commission (FCC)
Part 15, Subpart C, Section 15.249
Low Power Transmitters Operating in the Frequency Band 2400 – 2483.5 MHz

UltraTech's File No.: DIEX-009Q\_FCC15C

This Test report is Issued under the Authority of Tri M. Luu, BASc Vice President of Engineering UltraTech Group of Labs

Date: October 28, 2011

Report Prepared by: Dharmajit Solanki Tested by: Hung Trinh

Issued Date: October 28, 2011 Test Dates: October 16, 2011

The results in this Test Report apply only to the sample(s) tested, and the sample tested is randomly selected.

This report must not be used by the client to claim product endorsement by NVLAP or any agency of the US Government.

## UltraTech

3000 Bristol Circle, Oakville, Ontario, Canada, L6H 6G4
Tel.: (905) 829-1570 Fax.: (905) 829-8050
Website: <a href="mailto:www.ultratech-labs.com">www.ultratech-labs.com</a>, Email: <a href="mailto:vic@ultratech-labs.com">vic@ultratech-labs.com</a>, <a hr

**FCC** 



Industrie Canada
Industrie Canada
Approved Test Facility







91038

1309

46390-2049

NvLap Lab Code 200093-0

 $ar{L}$ 

SL2-IN-E-1119R

## **TABLE OF CONTENTS**

| <b>EXHIBIT</b> | Г1.    | INTRODUCTION                                                            | 2  |
|----------------|--------|-------------------------------------------------------------------------|----|
| 1.1.           | SCOP   | 3                                                                       | 2  |
| 1.2.           |        | TED SUBMITTAL(S)/GRANT(S)                                               |    |
| 1.3.           | NORM   | IATIVE REFERENCES                                                       | 2  |
| EXHIBIT        | Г 2.   | PERFORMANCE ASSESSMENT                                                  | 3  |
| 2.1.           | CLIEN  | IT INFORMATION                                                          | 3  |
| 2.2.           | EQUII  | PMENT UNDER TEST (EUT) INFORMATION                                      | 3  |
| 2.3.           |        | TECHNICAL SPECIFICATIONS                                                |    |
| 2.4.           |        | CIATED ANTENNA DESCRIPTION                                              |    |
| 2.5.           |        | OF EUT'S PORTS                                                          |    |
| 2.6.           | ANCI   | LARY EQUIPMENT                                                          | 4  |
| EXHIBI7        | Г 3.   | EUT OPERATING CONDITIONS AND CONFIGURATIONS DURING TESTS                | 5  |
| 3.1.           | CLIM   | ATE TEST CONDITIONS                                                     | 5  |
| 3.2.           | OPER   | ATIONAL TEST CONDITIONS & ARRANGEMENT FOR TESTS                         | 5  |
| EXHIBIT        | Г 4.   | SUMMARY OF TEST RESULTS                                                 | 6  |
| 4.1.           | LOCA   | TION OF TESTS                                                           | 6  |
| 4.2.           | APPL   | CABILITY & SUMMARY OF EMC EMISSION TEST RESULTS                         | 6  |
| 4.3.           | MODI   | FICATIONS INCORPORATED IN THE EUT FOR COMPLIANCE PURPOSES               | 6  |
| EXHIBIT        | Г 5.   | MEASUREMENTS, EXAMINATIONS & TEST DATA FOR EMC EMISSIONS                | 7  |
| 5.1.           | TEST   | PROCEDURES                                                              | 7  |
| 5.2.           |        | UREMENT UNCERTAINTIES                                                   |    |
| 5.3.           | MEAS   | UREMENT EQUIPMENT USED                                                  | 7  |
| 5.4.           |        | VTIAL/PRIMARY FUNCTIONS AS DECLARED BY THE MANUACTURER                  |    |
| 5.5.           | ANTE   | NNA REQUIREMENTS [47 CFR § 15.203]                                      | 7  |
| 5.6.           |        | BANDWIDTH [§ 15.215(C)]                                                 | 8  |
| 5.7.           |        | AMETAL FIELD STRENGTH AND HAROMIC EMISSIONS (RADIATED AT 3M) [47 CFR §§ |    |
|                | 15.249 | (A), 15.209 & 15.205]                                                   | 12 |
| EXHIBIT        | Г 6.   | TEST EQUIPMENT LIST                                                     | 19 |
| EXHIBI7        | Г 7.   | MEASUREMENT UNCERTAINTY                                                 | 20 |
| 7 1            | RADI   | ATED EMISSION MEASUREMENT UNCERTAINTY                                   | 20 |

## FCC ID: Z49-00001

## **EXHIBIT 1. INTRODUCTION**

#### 1.1. SCOPE

| Reference:                    | FCC Part 15, Subpart C, Section 15.249                                                                                                    |
|-------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------|
| Title:                        | Code of Federal Regulations (CFR), Title 47 – Telecommunication, Part 15                                                                  |
| Purpose of Test:              | Limited Single Modular Approval Certification for Low Power Licensed-Exempt Transmitters operating in the Frequency Band 2400–2483.5 MHz. |
| Test Procedures:              | American National Standards Institute ANSI C63.10 - American National Standard for Testing Unlicensed Wireless Devices                    |
| Environmental Classification: | [x] Commercial, industrial or business environment [x] Residential environment                                                            |

## 1.2. RELATED SUBMITTAL(S)/GRANT(S)

None

#### 1.3. NORMATIVE REFERENCES

| Publication                | Year                 | Title                                                                                                                                                               |
|----------------------------|----------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 47 CFR Parts 0-19          | 2010                 | Code of Federal Regulations (CFR), Title 47 – Telecommunication, Parts 0 to 15                                                                                      |
| ANSI C63.4                 | 2003<br>2009         | American National Standard for Methods of Measurement of Radio-Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the Range of 9 KHz to 40 GHz |
| ANSI C63.10                | 2009                 | American National Standard for Testing Unlicensed Wireless Devices                                                                                                  |
| CISPR 22 &<br>EN 55022     | 2008-09<br>2006      | Information Technology Equipment - Radio Disturbance Characteristics - Limits and Methods of Measurement                                                            |
| CISPR 16-1-1<br>+A1<br>+A2 | 2006<br>2006<br>2007 | Specification for radio disturbance and immunity measuring apparatus and methods. Part 1-1: Measuring Apparatus                                                     |
| CISPR 16-1-2<br>+A1<br>+A2 | 2003<br>2004<br>2006 | Specification for radio disturbance and immunity measuring apparatus and methods. Part 1-2: Conducted disturbances                                                  |

## **EXHIBIT 2. PERFORMANCE ASSESSMENT**

#### 2.1. CLIENT INFORMATION

| APPLICANT       |                                                                                            |  |
|-----------------|--------------------------------------------------------------------------------------------|--|
| Name:           | Dimplex North America Limited                                                              |  |
| Address:        | 1367 Industrial Road<br>Cambridge, ON N1R7G8<br>Canada                                     |  |
| Contact Person: | Liming Xia Phone #: 519-650-3630 x 475 Fax #: 519-650-3651 Email Address: dxia@dimplex.com |  |

| MANUFACTURER    |                                                                                            |  |
|-----------------|--------------------------------------------------------------------------------------------|--|
| Name:           | Dimplex North America Limited                                                              |  |
| Address:        | 1367 Industrial Road<br>Cambridge, ON N1R7G8<br>Canada                                     |  |
| Contact Person: | Liming Xia Phone #: 519-650-3630 x 475 Fax #: 519-650-3651 Email Address: dxia@dimplex.com |  |

## 2.2. EQUIPMENT UNDER TEST (EUT) INFORMATION

The applicant supplied the following information.

| Brand Name:                    | Dimplex North America Limited                                                                                                                                                         |
|--------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Product Name:                  | Heater LCD Module                                                                                                                                                                     |
| Model Name or Number:          | 6001560100                                                                                                                                                                            |
| Serial Number:                 | Test Sample                                                                                                                                                                           |
| Type of Equipment:             | Low Power Transceiver                                                                                                                                                                 |
| Input Power Supply Type:       | DC 3V derived from the Heater                                                                                                                                                         |
| Primary User Functions of EUT: | The Heater LCD Module designed to control a heater. It programmed to pick an address that both the Remote control and synchronized baseboard will use to communicate with each other. |

FCC ID: Z49-00001

#### 2.3. EUT'S TECHNICAL SPECIFICATIONS

| TRANSMITTER                     |                                                      |  |
|---------------------------------|------------------------------------------------------|--|
| Equipment Type:                 | Portable, Mobile & Fixed use                         |  |
| Intended Operating Environment: | Residential Commercial, industrial or business       |  |
| Power Supply Requirement:       | +3.0 V DC                                            |  |
| RF Output Power Rating:         | 48.56 dBµV/m AVG at 3m distance                      |  |
| Operating Frequency Range:      | 2402 – 2480 MHz                                      |  |
| 20 dB Bandwidth:                | 1820 kHz                                             |  |
| Duty Cycle:                     | Manual momentary operation (< 4% as Ton is max 4 ms) |  |
| Modulation Type:                | GFSK                                                 |  |
| Antenna Connector Types:        | Integral antenna permanently mounted on PCB          |  |

#### 2.4. ASSOCIATED ANTENNA DESCRIPTION

| Antenna:         |                   |  |
|------------------|-------------------|--|
| Type:            | PCB Antenna       |  |
| Frequency Range: | 2400 – 2483.5 MHz |  |
| Impedance:       | 50 Ohm            |  |
| Gain (dBi):      | 0 dBi             |  |

## 2.5. LIST OF EUT'S PORTS

None

#### 2.6. ANCILLARY EQUIPMENT

None

# EXHIBIT 3. EUT OPERATING CONDITIONS AND CONFIGURATIONS DURING TESTS

#### 3.1. CLIMATE TEST CONDITIONS

The climate conditions of the test environment are as follows:

| Temperature:        | 21 to 23 °C       |
|---------------------|-------------------|
| Humidity:           | 45 to 58%         |
| Pressure:           | 102 kPa           |
| Power Input Source: | 3V DC from Heater |

#### 3.2. OPERATIONAL TEST CONDITIONS & ARRANGEMENT FOR TESTS

| Operating Modes:          | EUT was configured to transmit continuously for emissions measurements at of lowest, middle and highest channel frequencies. |
|---------------------------|------------------------------------------------------------------------------------------------------------------------------|
| Special Test Software:    | None                                                                                                                         |
| Special Hardware Used:    | None                                                                                                                         |
| Transmitter Test Antenna: | The EUT tested with its permanently attached integral antenna intended in normal use.                                        |

| Transmitter Test Signals                                                                                          |                                 |
|-------------------------------------------------------------------------------------------------------------------|---------------------------------|
| Frequency Band(s):                                                                                                | 2402 - 2480 MHz                 |
| Frequency(ies) Tested: (Near lowest, near middle & near highest frequencies in the frequency range of operation.) | 2402, 2440 and 2480 MHz         |
| RF Power Output: (measured maximum output power):                                                                 | 48.56 dBµV/m AVG at 3m distance |
| Normal Test Modulation:                                                                                           | GFSK                            |
| Modulating Signal Source:                                                                                         | Internal                        |

FCC ID: Z49-00001

## **EXHIBIT 4. SUMMARY OF TEST RESULTS**

#### 4.1. LOCATION OF TESTS

All of the measurements described in this report were performed at Ultratech Group of Labs located in the city of Oakville, Province of Ontario, Canada.

- AC Power Line Conducted Emissions were performed in UltraTech's shielded room, 24'(L) by 16'(W) by 8'(H).
- Radiated Emissions were performed at the Ultratech's 3-10 TDK Semi-Anechoic Chamber situated in the Town of Oakville, province of Ontario. This test site been calibrated in accordance with ANSI C63.4, and found to be in compliance with the requirements of Sec. 2.948 of the FCC Rules. The descriptions and site measurement data of the Oakville 3-10 TDK Semi-Anechoic Chamber has been filed with FCC office (FCC File No.: 91038) and Industry Canada office (Industry Canada File No.: 2049A-3). Expiry Date: 2014-04-04.

## 4.2. APPLICABILITY & SUMMARY OF EMC EMISSION TEST RESULTS

| FCC Section(s)               | Test Requirements                                  | Compliance<br>(Yes/No) |
|------------------------------|----------------------------------------------------|------------------------|
| 15.203                       | Antenna requirements                               | Yes                    |
| 15.207(a)                    | AC Power Line Conducted Emissions                  | Yes                    |
| 15.215(c)                    | 20 dB Bandwidth                                    | Yes                    |
| 15.249(a), 15.209,<br>15.205 | Transmitter Radiated Emissions, Harmonic Emissions | Yes                    |

#### 4.3. MODIFICATIONS INCORPORATED IN THE EUT FOR COMPLIANCE PURPOSES

None

# EXHIBIT 5. MEASUREMENTS, EXAMINATIONS & TEST DATA FOR EMC EMISSIONS

#### 5.1. TEST PROCEDURES

This section contains test results only. Details of test methods and procedures can be found in ANSI C63.10.

#### 5.2. MEASUREMENT UNCERTAINTIES

The measurement uncertainties stated were calculated in accordance with the requirements of CISPR 16-4-2 @ IEC: 2003 and JCGM 100:2008 (GUM 1995) – Guide to the Expression of Uncertainty in Measurement.

#### 5.3. MEASUREMENT EQUIPMENT USED

The measurement equipment used complied with the requirements of the Standards referenced in the Methods & Procedures ANSI C63.4 and CISPR 16-1-1.

#### 5.4. ESSENTIAL/PRIMARY FUNCTIONS AS DECLARED BY THE MANUACTURER

The Heater LCD Module designed to provide wireless communication to control a heater.

#### 5.5. ANTENNA REQUIREMENTS [47 CFR § 15.203]

## 5.5.1. Requirements

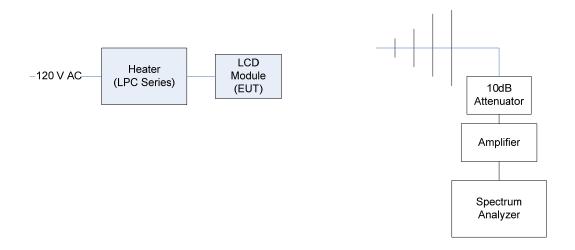
An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device.

Notes: This requirement does not apply to carrier current devices operated under the provisions of @ 15.211, 15.213, 15.217, 17.219 or 15.221.

#### 5.5.2. Engineering Analysis

The Antenna permanently integrated to the PCB, located inside the enclosure.

#### 5.6. 20 dB BANDWIDTH [§ 15.215(c)]


#### 5.6.1. Limit(s)

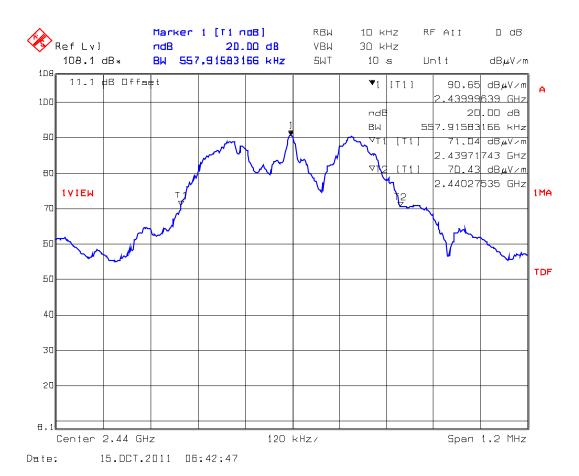
The fundamental emission must be in the authorized bandwidth.

#### 5.6.2. Method of Measurements

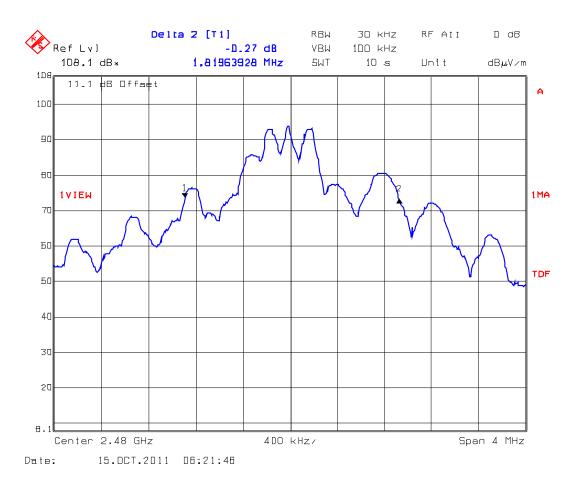
ANSI C63.10; 2009.

#### 5.6.3. Test Arrangement




### 5.6.4. Test Data

| Frequency (MHz) 20 dB Bandwidth (kHz |         |
|--------------------------------------|---------|
| 2402                                 | 555.51  |
| 2440                                 | 557.92  |
| 2480                                 | 1819.64 |


See the following plots for detailed measurements.

Plot 5.6.4.1. 20 dB Bandwidth Test Frequency: 2402 MHz





Plot 5.6.4.3. 20 dB Bandwidth Test Frequency: 2480 MHz



# 5.7. FUNDAMETAL FIELD STRENGTH AND HAROMIC EMISSIONS (RADIATED AT 3m) [47 CFR §§ 15.249(a), 15.209 & 15.205]

#### 5.7.1. Limits

(a) The Field Strength of emissions from intentional radiators operated within 2400–2483.5 MHz band shall comply with the following:

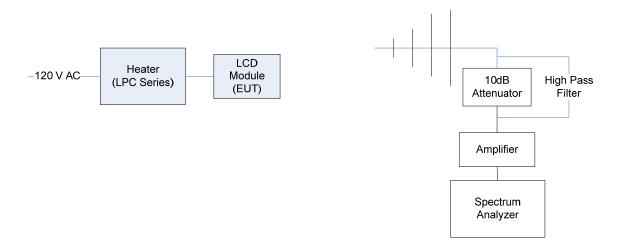
| Fundamental Frequency (MHz) | Field Strength of Fundamental (mV/m) | Field Strength of Harmonics<br>(μV/m) |
|-----------------------------|--------------------------------------|---------------------------------------|
| 2400-2483.5 MHz             | 50                                   | 500                                   |

- (c) Field strength limits specified at a distance of 3 meters.
- (d) Emissions radiated outside of the specified frequency bands, except for harmonics, shall be attenuated by at least 50 dB below the level of the fundamental or to the general radiated emission limits in § 15.209, whichever is the lesser attenuation.
- (e) As shown in § 15.35(b), for frequencies above 1000 MHz, the field strength limits in paragraphs (a) and (b) of this section are based on average limits. However, the peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation. For point-to-point operation under paragraph (b) of this section, the peak field strength shall not exceed 2500 millivolts/meter at 3 meters along the antenna azimuth.
- The fundamental frequency shall not fall within any restricted frequency band specified in 15.205. All rf other emissions that fall in the restricted bands shall not exceed the general radiated emission limits specified in at 15.209(a).

47 CFR 15.205 - Restricted Bands of Operation

| MHz                      | MHz                 | MHz           | GHz         |
|--------------------------|---------------------|---------------|-------------|
| 0.090-0.110              | 16.42–16.423        | 399.9–410     | 4.5–5.15    |
| <sup>1</sup> 0.495–0.505 | 16.69475–16.69525   | 608–614       | 5.35–5.46   |
| 2.1735–2.1905            | 16.80425-16.80475   | 960–1240      | 7.25–7.75   |
| 4.125–4.128              | 25.5–25.67          | 1300–1427     | 8.025-8.5   |
| 4.17725-4.17775          | 37.5–38.25          | 1435–1626.5   | 9.0–9.2     |
| 4.20725-4.20775          | 73–74.6             | 1645.5–1646.5 | 9.3–9.5     |
| 6.215–6.218              | 74.8–75.2           | 1660–1710     | 10.6–12.7   |
| 6.26775–6.26825          | 108–121.94          | 1718.8–1722.2 | 13.25–13.4  |
| 6.31175–6.31225          | 123–138             | 2200–2300     | 14.47–14.5  |
| 8.291-8.294              | 149.9–150.05        | 2310–2390     | 15.35–16.2  |
| 8.362-8.366              | 156.52475–156.52525 | 2483.5–2500   | 17.7–21.4   |
| 8.37625-8.38675          | 156.7–156.9         | 2690–2900     | 22.01–23.12 |
| 8.41425-8.41475          | 162.0125–167.17     | 3260–3267     | 23.6–24.0   |
| 12.29–12.293             | 167.72–173.2        | 3332–3339     | 31.2–31.8   |
| .51975–12.52025          | 240–285             | 3345.8–3358   | 36.43–36.5  |
| 12.57675–12.57725        | 322–335.4           | 3600–4400     | (2)         |
| 13.36–13.41.             |                     |               |             |

<sup>&</sup>lt;sup>1</sup>Until February 1, 1999, this restricted band shall be 0.490–0.510 MHz.


<sup>&</sup>lt;sup>2</sup>Above 38.6

| 47 CFR 15.209(a) - Field Strength Limits within Restricted Frequency Bands                      |                                                                       |                                     |  |  |  |  |  |
|-------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------|-------------------------------------|--|--|--|--|--|
| Frequency (MHz) Field Strength Limits (µV/m) Distance (Meters)                                  |                                                                       |                                     |  |  |  |  |  |
| 0.009 - 0.490<br>0.490 - 1.705<br>1.705 - 30.0<br>30 - 88<br>88 - 216<br>216 - 960<br>Above 960 | 2,400 / F (KHz)<br>24,000 / F (KHz)<br>30<br>100<br>150<br>200<br>500 | 300<br>30<br>30<br>3<br>3<br>3<br>3 |  |  |  |  |  |

## 5.7.2. Method of Measurements

Refer to ANSI C63.10 and ANSI C63.4 for measurement methods.

## 5.7.3. Test Arrangement



#### 5.7.4. Test Data

#### Remarks:

- All spurious emissions that are in excess of 20 dB below the specified limit recorded.

- EUT tested in three orthogonal positions.

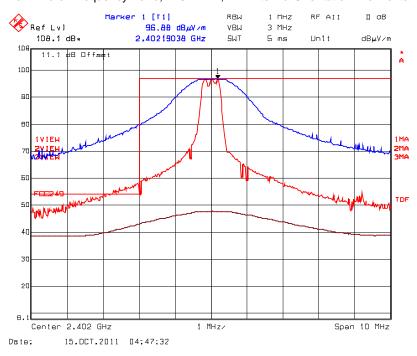
- The following test results are the worst-case measurements.

Test Frequency:: 2402 MHz

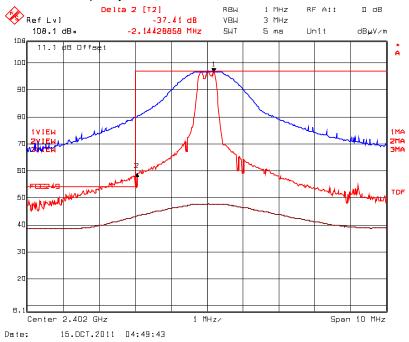
Test Frequency Range: 30 MHz - 25 GHz Peak **Average** Antenna Field Strength Limit of Field Strength Frequency E-Field @3m E-Field @3m **Plane** Fundamental/Harmonic Limit of § 15.209 Margin (MHz) (dBµV/m) (dBµV/m) (H/V) Peak/Avg (dBµV/m) (dBµV/m) (dB) V 2402 98.06 48.03 114/94 -46.0 2402 96.88 47.86 Н 114 / 94 -46.1 4804 53.76 34.94 ٧ 74 / 54 -19.1 54.0 4804 52.59 34.79 Н 74 / 54 54.0 -19.27206 57.88 40.49 V 74 / 54 54.0 -13.5 7206 56.95 39.83 Н 74 / 54 54.0 -14.2

Test Frequency:: 2440 MHz

Test Frequency Range: 30 MHz - 25 GHz


| Frequency<br>(MHz) | Peak<br>E-Field @3m<br>(dBµV/m) | Average<br>E-Field @3m<br>(dBµV/m) | Antenna<br>Plane<br>(H/V) | Field Strength Limit of<br>Fundamental/Harmonic<br>(dBµV/m) | Field Strength<br>Limit of § 15.209<br>(dBµV/m) | Margin<br>(dB) |  |
|--------------------|---------------------------------|------------------------------------|---------------------------|-------------------------------------------------------------|-------------------------------------------------|----------------|--|
| 2440               | 95.89                           | 48.35                              | V                         | 114 / 94                                                    |                                                 | -45.6          |  |
| 2440               | 94.66                           | 48.19                              | Н                         | 114 / 94                                                    |                                                 | -45.8          |  |
| 4880               | 52.83                           | 35.35                              | V                         | 74 / 54                                                     | 54.0                                            | -18.6          |  |
| 4880               | 52.34                           | 34.85                              | Н                         | 74 / 54                                                     | 54.0                                            | -19.1          |  |
| 7320               | 59.80                           | 39.84                              | V                         | 74 / 54                                                     | 54.0                                            | -14.2          |  |
| 7320               | 58.54                           | 40.29                              | Н                         | 74 / 54                                                     | 54.0                                            | -13.7          |  |

Test Frequency:: 2480 MHz

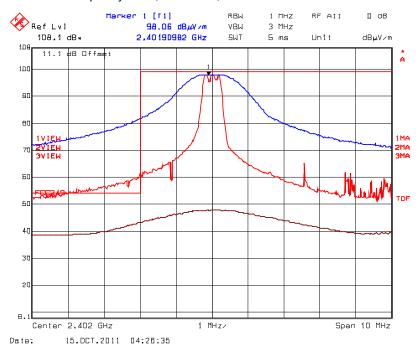

Test Frequency Range: 30 MHz – 25 GHz

| rest i requerit    | rest requerity realige. So will 2 20 SH2 |                                    |                           |                                                             |                                                 |                |  |
|--------------------|------------------------------------------|------------------------------------|---------------------------|-------------------------------------------------------------|-------------------------------------------------|----------------|--|
| Frequency<br>(MHz) | Peak<br>E-Field @3m<br>(dBµV/m)          | Average<br>E-Field @3m<br>(dBµV/m) | Antenna<br>Plane<br>(H/V) | Field Strength Limit of<br>Fundamental/Harmonic<br>(dBµV/m) | Field Strength<br>Limit of § 15.209<br>(dBµV/m) | Margin<br>(dB) |  |
| 2480               | 96.26                                    | 47.96                              | V                         | 114 / 94                                                    |                                                 | -46.0          |  |
| 2480               | 98.18                                    | 48.56                              | Н                         | 114 / 94                                                    |                                                 | -45.4          |  |
| 4960               | 53.09                                    | 34.53                              | V                         | 74 / 54                                                     | 54.0                                            | -19.5          |  |
| 4960               | 51.21                                    | 34.81                              | Н                         | 74 / 54                                                     | 54.0                                            | -19.2          |  |
| 7440               | 64.08                                    | 42.17                              | V                         | 74 / 54                                                     | 54.0                                            | -11.8          |  |
| 7440               | 66.13                                    | 42.89                              | Н                         | 74 / 54                                                     | 54.0                                            | -11.1          |  |

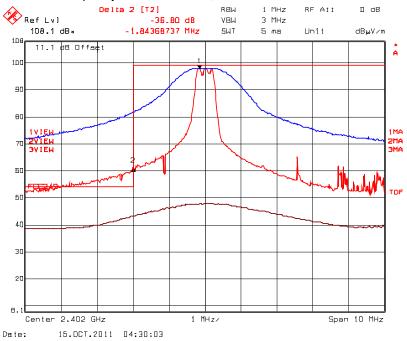
Plot 5.7.4.1. Band-Edge RF Radiated Emissions @ 3 m, Continuous Mode Low End of Frequency Band, 2402 MHz, Rx Antenna Orientation: Horizontal



Plot 5.7.4.2. Band-Edge RF Radiated Emissions @ 3 m, Continuous Mode Low End of Frequency Band, 2402 MHz, Rx Antenna Orientation: Horizontal




Trace 2: RBW= 100 kHz, VBW= 300 kHz, Delta (Peak to Band-Edge): 37.41dB


Trace 3: RBW= 1 MHz, VBW= 10 Hz

Peak Band-Edge at 2400 MHz: Peak= 96.88dBuV/m - 37.41dB= 59.47dBuV/m

Plot 5.7.4.3. Band-Edge RF Radiated Emissions @ 3 m, Continuous Mode Low End of Frequency Band, 2402 MHz, Rx Antenna Orientation: Vertical



Plot 5.7.4.4. Band-Edge RF Radiated Emissions @ 3 m, Continuous Mode Low End of Frequency Band, 2402 MHz, Rx Antenna Orientation: Vertical




Trace 2: RBW= 100 kHz, VBW= 300 kHz, Delta (Peak to Band-Edge): 36.80dB

Trace 3: RBW= 1 MHz, VBW= 10 Hz

Peak Band-Edge at 2400 MHz: Peak= 98.06dBuV/m - 36.80dB= 61.26dBuV/m

Plot 5.7.4.5. Band-Edge RF Radiated Emissions @ 3 m, Continuous Mode High End of Frequency Band, 2480 MHz, Rx Antenna Orientation: Horizontal



Plot 5.7.4.6. Band-Edge RF Radiated Emissions @ 3 m, Continuous Mode High End of Frequency Band, 2480 MHz, Rx Antenna Orientation: Horizontal




Trace 2: RBW= 100 kHz, VBW= 300 kHz, Delta (Peak to Band-Edge): 43.78dB

Trace 3: RBW= 1 MHz, VBW= 10 Hz

Peak Band-Edge at 2483.5 MHz: Peak= 98.18dBuV/m - 43.78dB= 54.40dBuV/m

Plot 5.7.4.7. Band-Edge RF Radiated Emissions @ 3 m, Continuous Mode High End of Frequency Band, 2480 MHz, Rx Antenna Orientation: Vertical



Plot 5.7.4.8. Band-Edge RF Radiated Emissions @ 3 m, Continuous Mode High End of Frequency Band, 2480 MHz, Rx Antenna Orientation: Vertical



Trace 2: RBW= 100 kHz, VBW= 300 kHz, Delta (Peak to Band-Edge): 41.21dB

Trace 3: RBW= 1 MHz, VBW= 10 Hz

Peak Band-Edge at 2483.5 MHz: Peak= 96.26dBuV/m - 41.21dB= 55.05dBuV/m

## **EXHIBIT 6. TEST EQUIPMENT LIST**

| Test Instruments   | Manufacturer    | Model No.            | Serial No. | Frequency Range    | Cal. Due Date |
|--------------------|-----------------|----------------------|------------|--------------------|---------------|
| Spectrum Analyzer  | Rohde & Schwarz | ESU40                | 100037     | 20 Hz – 40 GHz     | 15 Mar 2012   |
| Spectrum Analyzer  | Rohde & Schwarz | FSEK30               | 100077     | 20 Hz – 40 GHz     | 27 Sep 2012   |
| RF Amplifier       | Hewlett Packard | 84498                | 3008A00769 | 1 – 26.5 GHz       | 4 Aug 2012    |
| RF Amplifier       | AH System       | PAM-0118             | 225        | 20 MHz – 18 GHz    | 15 Mar 2012   |
| RF Amplifier       | Com-Power       | PA-103A              | 161243     | 10 MHz – 1 GHz     | 23 Feb. 2012  |
| Signal Generator   | Hewlett Packard | 8648C                | 3443U00391 | 100 kHz – 3200 MHz | 16 Dec, 2011  |
| Signal Generator   | Hewlett Packard | 83752B               | 3610A00457 | 0.01 – 20 GHz      | 19 Oct , 2011 |
| Horn Antenna       | ETS-Lindgren    | 360-09               | 00118385   | 18 – 26.5 GHz      | 30 May 2012   |
| Horn Antenna       | Emco            | 3115                 | 5955       | 1 – 18 GHz         | 09 Jan 2012   |
| Horn Antenna       | Emco            | 3115                 | 6570       | 1 – 18 GHz         | 22 Feb 2012   |
| Biconi-Log Antenna | Emco            | 3142C                | 00034792   | 26 – 3000 MHz      | 26 April 2012 |
| Log Periodic       | ETS-Lindgren    | 93148                | 1101       | 200 – 2000 MHz     | 04 Jan 2012   |
| Attenuator         | Narda           | 4768-20              | -          | DC - 40 GHz (2w)   | Cal. on use   |
| Attenuator         | Narda           | 4768-10              | -          | DC – 40 GHz (2w)   | Cal. on use   |
| DC-Block           | Hewlett Packard | 11742A               | 12460      | 0.045-26.5 GHz     | Cal. on use   |
| High Pass Filter   | K&L             | 11SH10-<br>4000/1200 | 4          | Cut off 2400 MHz   | Cal. on use   |

## **EXHIBIT 7. MEASUREMENT UNCERTAINTY**

The measurement uncertainties stated were calculated in accordance with the requirements of CISPR 16-4-2 @ IEC:2003 and JCGM 100:2008 (GUM 1995) – Guide to the Expression of Uncertainty in Measurement.

#### 7.1. RADIATED EMISSION MEASUREMENT UNCERTAINTY

|                | Radiated Emission Measurement Uncertainty @ 3m, Horizontal (30-1000 MHz):                     | Measured      | Limit        |
|----------------|-----------------------------------------------------------------------------------------------|---------------|--------------|
| u <sub>c</sub> | Combined standard uncertainty:<br>$u_c(y) = \sqrt[M]{\sum_{i=1}^{m} \sum_{i=1}^{m} u_i^2(y)}$ | <u>+</u> 2.15 | <u>+</u> 2.6 |
| U              | Expanded uncertainty U:<br>U = 2u <sub>c</sub> (y)                                            | <u>+</u> 4.30 | <u>+</u> 5.2 |

|                | Radiated Emission Measurement Uncertainty @ 3m, Vertical (30-1000 MHz):                    | Measured      | Limit        |
|----------------|--------------------------------------------------------------------------------------------|---------------|--------------|
| u <sub>c</sub> | Combined standard uncertainty:<br>$u_c(y) = \sqrt{\sum_{i=1}^{m} \sum_{i=1}^{m} u_i^2(y)}$ | <u>+</u> 2.39 | <u>+</u> 2.6 |
| U              | Expanded uncertainty U:<br>U = 2u <sub>c</sub> (y)                                         | <u>+</u> 4.78 | <u>+</u> 5.2 |

|                | Radiated Emission Measurement Uncertainty @ 3 m, Horizontal & Vertical (1 – 18 GHz):    | Measured      | Limit               |
|----------------|-----------------------------------------------------------------------------------------|---------------|---------------------|
| u <sub>c</sub> | Combined standard uncertainty:<br>$u_c(y) = \sqrt[m]{\sum_{i=1}^{m} \sum_{i} u_i^2(y)}$ | <u>+</u> 1.87 | Under consideration |
| U              | Expanded uncertainty U: $U = 2u_c(y)$                                                   | <u>+</u> 3.75 | Under consideration |