

Appendix B. Maximum Permissible Exposure

1. Maximum Permissible Exposure

1.1. Applicable Standard

Systems operating under the provisions of this section shall be operated in a manner that ensures that the public is not exposed to radio frequency energy levels in excess limit for maximum permissible exposure. In accordance with 47 CFR FCC Part 2 Subpart J, section 2.1091 this device has been defined as a mobile device whereby that distance of at least 0.2 m is normally maintained between the user and the device.

Frequency Range (MHz)	Electric Field Strength (E) (V/m)	Magnetic Field Strength (H) (A/m)	Power Density (S) (mW/ cm²)	Averaging Time E ² , H ² or S (minutes)	
0.3-3.0	614	1.63	(100)*	6	
3.0-30	1842 / f	4.89 / f	(900 / f)*	6	
30-300	61.4	0.163	1.0	6	
300-1500			F/300	6	
1500-100,000			5	6	

(A) Limits for Occupational / Controlled Exposure

(B) Limits for General Population / Uncontrolled Exposure

Frequency Range (MHz)	Electric Field Strength (E) (V/m)	Magnetic Field Strength (H) (A/m)	Power Density (S) (mW/ cm²)	Averaging Time E ² , H ² or S (minutes)		
0.3-1.34	614	1.63	(100)*	30		
1.34-30	824/f	2.19/f	2.19/f (180/f)*			
30-300	27.5	0.073	0.2	30		
300-1500			F/1500	30		
1500-100,000			1.0	30		

Note: f = frequency in MHz ; *Plane-wave equivalent power density

1.2. MPE Calculation Method

$$E (V/m) = \frac{\sqrt{30 \times P \times G}}{d}$$
 Power Density: $Pd (W/m^2) = \frac{E^2}{377}$

E = Electric field (V/m)

P = Average RF output power (W)

G = EUT Antenna numeric gain (numeric)

d = Separation distance between radiator and human body (m)

The formula can be changed to

$$Pd = \frac{30 \times P \times G}{377 \times d^2}$$

From the EUT RF output power, the minimum mobile separation distance, d=0.2m, as well as the gain of the used antenna, the RF power density can be obtained.

1.3. Calculated Result and Limit

Exposure Environment: General Population / Uncontrolled Exposure

For 5GHz Band 1 (NII):

Antenna Type : PCB Antenna

Conducted Power for 802.11ac MCS0/Nss1 VHT20: 26.75 dBm

Distance (m)	Test Freq. (MHz)	Directional Gain (dBi)	Antenna Gain (numeric)	The maximum combined Average Output Power		Power Density (S) (mW/cm²)	Limit of Power Density (S)	Test Result
			((dBm)	(mW)	(,	(mW/cm²)	
0.2	5240	4.77	3.0000	26.7512	473.2872	0.282616	1	Complies

Note: Directional Gain =
$$10\log\left[\frac{\sum_{j=1}^{N_{ss}} \left\{\sum_{k=1}^{N_{aNT}} g_{j,k}\right\}^2}{N_{aNT}}\right]$$

For 5GHz Band 2~3 (NII):

Antenna Type : PCB Antenna

Conducted Power for 802.11ac MCS0/Nss1 VHT40: 23.93 dBm

Distance (m)	Test Freq. (MHz)	Directional Gain (dBi)	Antenna Gain	The maximum combined Average Output Power		Power Density (S) (mW/cm ²)	Limit of Power Density (S)	Test Result
			(numeric)	(dBm)	(mW)		(mW/cm²)	
0.2	5670	4.77	3.0000	23.9252	246.8998	0.147432	1	Complies

Note: Directional Gain = 10 log
$$\frac{\sum_{j=1}^{N_{SS}} \sum_{K=1}^{N_{ANT}} g_{j,k}}{N_{ANT}}$$

Antenna Type : PCB Antenna

Conducted Power for 802.11ac MCS0/Nss1 VHT20: 26.85 dBm

Distance (m)	Test Freq. (MHz)	Directional Gain (dBi)	Antenna Gain (numeric)	The maximum combined (Average Output Power		Power Density (S) (mW/cm²)	Limit of Power Density (S)	Test Result
			(numenc)	(dBm)	(mW)		(mW/cm²)	
0.2	5745	4.77	3.0000	26.8546	484.6883	0.289424	1	Complies

Note: Directional Gain = 10 log
$$\frac{\sum_{j=1}^{N_{SS}} \sum_{K=1}^{N_{ANT}} g_{j,k}^{2}}{N_{ANT}}$$

For 2.4GHz Band:

Antenna Type : PCB Antenna

Conducted Power for IEEE 802.11b: 24.50 dBm

Distance	Test Freq. (MHz)		Antenna Gain	Average Pov	e Output wer	Power Density (S)	Limit of Power	Test Result
(m)		(MHz) Gain (dBi)	(numeric)	(dBm)	(mW)	(mW/cm²)	Density (S) (mW/cm²)	
0.2	2437	2.50	1.7783	24.5000	281.8383	0.099759	1	Complies

Conclusion:

Both of the WLAN 2.4GHz Band and WLAN 5GHz Band can transmit simultaneously, the formula of calculated the MPE is:

CPD1 / LPD1 + CPD2 / LPD2 +etc. < 1

CPD = Calculation power density

LPD = Limit of power density

Therefore, the worst-case situation is 0.099759 / 1 + 0.289424 / 1 = 0.389183, which is less than "1". This confirmed that the device complies.