

Appendix B. Maximum Permissible Exposure

1. Maximum Permissible Exposure

1.1. Applicable Standard

Systems operating under the provisions of this section shall be operated in a manner that ensures that the public is not exposed to radio frequency energy levels in excess limit for maximum permissible exposure. In accordance with 47 CFR FCC Part 2 Subpart J, section 2.1091 this device has been defined as a mobile device whereby that distance of at least 0.2 m is normally maintained between the user and the device.

Frequency Range (MHz)	Electric Field Strength (E) (V/m)	Magnetic Field Strength (H) (A/m)	Power Density (S) (mW/ cm²)	Averaging Time E ² , H ² or S (minutes)	
0.3-3.0	614	1.63	(100)*	6	
3.0-30	1842 / f	4.89 / f	(900 / f)*	6	
30-300	61.4	0.163	1.0	6	
300-1500			F/300	6	
1500-100,000			5	6	

(A) Limits for Occupational / Controlled Exposure

(B) Limits for General Population / Uncontrolled Exposure

Frequency Range (MHz)	Electric Field Strength (E) (V/m)	Magnetic Field Strength (H) (A/m)	Power Density (S) (mW/ cm²)	Averaging Time E ² , H ² or S (minutes)
0.3-1.34	614	1.63	(100)*	30
1.34-30	824/f	2.19/f	(180/f)*	30
30-300	27.5	0.073	0.2	30
300-1500			F/1500	30
1500-100,000			1.0	30

Note: f = frequency in MHz ; *Plane-wave equivalent power density

1.2. MPE Calculation Method

E (V/m) =
$$\frac{\sqrt{30 \times P \times G}}{d}$$
 Power Density: Pd (W/m²) = $\frac{E^2}{377}$

E = Electric field (V/m)

P = Average RF output power (W)

G = EUT Antenna numeric gain (numeric)

d = Separation distance between radiator and human body (m)

The formula can be changed to

$$Pd = \frac{30 \times P \times G}{377 \times d^2}$$

From the EUT RF output power, the minimum mobile separation distance, d=0.2m, as well as the gain of the used antenna, the RF power density can be obtained.

1.3. Calculated Result and Limit

Exposure Environment: General Population / Uncontrolled Exposure

For 5GHz Band (NII):

Antenna Type : PCB Antenna

Conducted Power for IEEE 802.11ac VHT20: 26.75dBm

Distance Test Fi (m) (MH	Test Freq.	Antenna Gain (dBi)	Antenna Gain (numeric)	Average Output Power		Power Density (S)	Limit of Power Density (S)	Test Result
	(IVINZ)			(dBm)	(mW)	(mW/cm²)	(mW/cm ²)	
0.2	5240	4.77	3.0000	26.7512	473.2872	0.282616	1	Complies

For 5GHz Band (DTS):

Antenna Type : PCB Antenna

Conducted Power for IEEE 802.11ac VHT20: 26.85dBm

Distance (m)	Test Freq. (MHz)	Directional Gain (dBi)	Antenna Gain (numeric)	The maximum combined Average Output Power		Power Density (S) (mW/cm²)	Limit of Power Density (S) (mW/cm ²)	Test Result
				(dBm)	(mW)			
0.2	5745	4.77	3.0000	26.8546	484.6883	0.289424	1	Complies

Note:
$$DirectionalGain = 10 \cdot \log \left[\frac{\sum_{j=1}^{N_{SS}} \left\{ \sum_{k=1}^{N_{ANT}} g_{j,k} \right\}^2}{N_{ANT}} \right] = 4.77 \text{dBi}$$

For 2.4GHz Band:

Antenna Type : PIFA Antenna

Conducted Power for IEEE 802.11b: 24.50 dBm

Distance (m) (MHz)	Test Freq.	-	Antenna Gain (numeric)	Average Output Power		Power Density (S)	Limit of Power	Test Result
	(MHz)			(dBm)	(mW)	(mW/cm²)	Density (S) (mW/cm²)	
0.2	2437	2.50	1.7783	24.5000	281.8383	0.099759	1	Complies

Conclusion:

Both of the WLAN 2.4GHz Band and WLAN 5GHz Band can transmit simultaneously, the formula of calculated the MPE is:

CPD1 / LPD1 + CPD2 / LPD2 +etc. < 1

CPD = Calculation power density

LPD = Limit of power density

Therefore, the worst-case situation is 0.099759 / 1 + 0.289424 / 1 = 0.389183, which is less than "1". This confirmed that the device complies.