

EMC Test Report Application for Grant of Equipment Authorization FCC Part 15 Subpart C

Model: 2.4GHz Transceiver Module for Ctrax CT Series

FCC ID: Z2CCTRAX

APPLICANT:	Contact Controls 982 Main Street Suite 4, PMB 118 Fishkill, NY 12524
TEST SITE(S):	Elliott Laboratories 41039 Boyce Road. Fremont, CA. 94538-2435
IC SITE REGISTRATION #:	2845B-3; 2845B-5
REPORT DATE:	December 21, 2011
FINAL TEST DATES:	August 11, 12 and 31, September 1 and October 21, 2011

TOTAL NUMBER OF PAGES: 38

PROGRAM MGR / TECHNICAL REVIEWER:

Mark E Hill Staff Engineer QUALITY ASSURANCE DELEGATE / FINAL REPORT PREPARER:

David Guidotti Senior Technical Writer

Elliott Laboratories is accredited by the A2LA, certificate number 2016.01, to perform the test(s) listed in this report, except where noted otherwise. This report and the information contained herein represent the results of testing test articles identified and selected by the client performed to specifications and/or procedures selected by the client. National Technical Systems (NTS) makes no representations, expressed or implied, that such testing is adequate (or inadequate) to demonstrate efficiency, performance, reliability, or any other characteristic of the articles being tested, or similar products. This report should not be relied upon as an endorsement or certification by NTS of the equipment tested, nor does it represent any statement whatsoever as to its merchantability or fitness of the test article, or similar products, for a particular purpose. This report shall not be reproduced except in full

REVISION HISTORY

Rev#	Date	Comments	Modified By
-	12-21-2011	First release	

TABLE OF CONTENTS

REVISION HISTORY	2
TABLE OF CONTENTS	3
SCOPE	4
OBJECTIVE	4
STATEMENT OF COMPLIANCE	5
DEVIATIONS FROM THE STANDARDS	
TEST RESULTS SUMMARY	6
DEVICES OPERATING IN THE 902 – 928 / 2400 – 2483.5 / 5725 – 5850 MHZ BANDS PER 15.249	
GENERAL REQUIREMENTS APPLICABLE TO ALL BANDS	6
MEASUREMENT UNCERTAINTIES	
EQUIPMENT UNDER TEST (EUT) DETAILS	8
GENERAL	8
OTHER EUT DETAILS	
ANTENNA SYSTEM	
ENCLOSURE	
MODIFICATIONS	
SUPPORT EQUIPMENT	
EUT INTERFACE PORTS	
EUT OPERATION	
TEST SITE	
GENERAL INFORMATION	
CONDUCTED EMISSIONS CONSIDERATIONS RADIATED EMISSIONS CONSIDERATIONS	
MEASUREMENT INSTRUMENTATION	
RECEIVER SYSTEM	
INSTRUMENT CONTROL COMPUTER	
LINE IMPEDANCE STABILIZATION NETWORK (LISN) FILTERS/ATTENUATORS	
ANTENNAS	
ANTENNAS	
INSTRUMENT CALIBRATION	
TEST PROCEDURES	
EUT AND CABLE PLACEMENT	
CONDUCTED EMISSIONS	
RADIATED EMISSIONS	
RADIATED EMISSIONS	
BANDWIDTH MEASUREMENTS	
SPECIFICATION LIMITS AND SAMPLE CALCULATIONS	
GENERAL TRANSMITTER RADIATED EMISSIONS SPECIFICATION LIMITS	16
RECEIVER RADIATED SPURIOUS EMISSIONS SPECIFICATION LIMITS	
RADIATEDFUNDAMENTAL & SPURIOUS EMISSIONS SPECIFICATION LIMITS – 15.249 AND RS	
A2.9	17
SAMPLE CALCULATIONS - CONDUCTED EMISSIONS	
SAMPLE CALCULATIONS - RADIATED EMISSIONS	18
SAMPLE CALCULATIONS - FIELD STRENGTH TO EIRP CONVERSION	
APPENDIX A TEST EQUIPMENT CALIBRATION DATA	
APPENDIX B TEST DATA	21
END OF REPORT	

SCOPE

An electromagnetic emissions test has been performed on the Contact Controls model 2.4GHz Transceiver Module for Ctrax CT Series, pursuant to the following rules:

FCC Part 15 Subpart C

Conducted and radiated emissions data has been collected, reduced, and analyzed within this report in accordance with measurement guidelines set forth in the following reference standards and as outlined in Elliott Laboratories test procedures:

ANSI C63.4:2003

The intentional radiator above has been tested in a simulated typical installation to demonstrate compliance with the relevant Industry Canada performance and procedural standards.

Final system data was gathered in a mode that tended to maximize emissions by varying orientation of EUT, orientation of power and I/O cabling, antenna search height, and antenna polarization.

Every practical effort was made to perform an impartial test using appropriate test equipment of known calibration. All pertinent factors have been applied to reach the determination of compliance.

OBJECTIVE

The primary objective of the manufacturer is compliance with the regulations outlined in the previous section.

Prior to marketing in the USA, all unlicensed transmitters and transceivers require certification. Receive-only devices operating between 30 MHz and 960 MHz are subject to either certification or a manufacturer's declaration of conformity, with all other receive-only devices exempt from the technical requirements.

Certification is a procedure where the manufacturer submits test data and technical information to a certification body and receives a certificate or grant of equipment authorization upon successful completion of the certification body's review of the submitted documents. Once the equipment authorization has been obtained, the label indicating compliance must be attached to all identical units, which are subsequently manufactured.

Maintenance of compliance is the responsibility of the manufacturer. Any modification of the product which may result in increased emissions should be checked to ensure compliance has been maintained (i.e., printed circuit board layout changes, different line filter, different power supply, harnessing or I/O cable changes, etc.).

STATEMENT OF COMPLIANCE

The tested sample of Contact Controls model 2.4GHz Transceiver Module for Ctrax CT Series complied with the requirements of the following regulations:

FCC Part 15 Subpart C

Maintenance of compliance is the responsibility of the manufacturer. Any modifications to the product should be assessed to determine their potential impact on the compliance status of the device with respect to the standards detailed in this test report.

The test results recorded herein are based on a single type test of Contact Controls model 2.4GHz Transceiver Module for Ctrax CT Series and therefore apply only to the tested sample. The sample was selected and prepared by Chris Wichman of Contact Controls.

DEVIATIONS FROM THE STANDARDS

No deviations were made from the published requirements listed in the scope of this report.

TEST RESULTS SUMMARY

FCC Rule Part	RSS Rule Part	Description	Measured Value / Comments	Limit / Requirement	Result
15.249 (a)	RSS 210 A2.9 (1)	Fundamental Signal Strength	9.44mV/m @ 3m	50mV/m @ 3m	Complies
15.249 (a) / 15.209	RSS 210 A2.9 (1) & Table 2	Radiated Spurious Emissions, 30 - 25000 MHz	51.4dBµV/m (417uV/m) @ 7322.5MHz (-2.6dB)	Harmonics 500uV/m @ 3m or general limits (see page 16)	Complies

GENERAL REQUIREMENTS APPLICABLE TO ALL BANDS

FCC Rule Part	RSS Rule part	Description	Measured Value / Comments	Limit / Requirement	Result (margin)
15.203	-	RF Connector	The antenna is a trace antenna integral to the module	Unique or integral antenna required	Complies
15.207	RSS GEN Table 2	AC Conducted Emissions	4.90dBµV @ 2.141MHz (-41.1dB)	Refer to page	Complies
15.109	RSS GEN 7.2.3 Table 1	Receiver spurious emissions	50.3dBµV/m @ 2793.0MHz (-3.7dB)	Refer to page 17	Complies

MEASUREMENT UNCERTAINTIES

ISO/IEC 17025 requires that an estimate of the measurement uncertainties associated with the emissions test results be included in the report. The measurement uncertainties given below are based on a 95% confidence level and were calculated in accordance with UKAS document LAB 34.

Measurement Type	Measurement Unit	Frequency Range	Expanded Uncertainty
RF power, conducted (power meter)	dBm	25 to 7000 MHz	$\pm 0.52 \text{ dB}$
RF power, conducted (Spectrum analyzer)	dBm	25 to 7000 MHz	$\pm 0.7 \text{ dB}$
Conducted emission of transmitter	dBm	25 to 26500 MHz	$\pm 0.7 \text{ dB}$
Conducted emission of receiver	dBm	25 to 26500 MHz	$\pm 0.7 \text{ dB}$
Radiated emission (substitution method)	dBm	25 to 26500 MHz	± 2.5 dB
Radiated emission (field strength)	dBµV/m	25 to 1000 MHz 1000 to 40000 MHz	$\frac{\pm 3.6 \text{ dB}}{\pm 6.0 \text{ dB}}$
Conducted Emissions (AC Power)	dBµV	0.15 to 30 MHz	± 2.4 dB

EQUIPMENT UNDER TEST (EUT) DETAILS

GENERAL

The Contact Controls model 2.4GHz Transceiver Module for Ctrax CT Series is designed for use in the Contact Controls wireless electrical energy power meters.

The CT-6000 is a device that tracks electrical energy (known as a Kilowatt meter) for tracking or billing purposes and is read by means of a wireless device.

The sample was received on August 11, 2011 and tested on August 11, 12 and 31, September 1 and October 21, 2011. The EUT consisted of the following component(s):

С	ompany	Model	Description	Serial Number	FCC ID
	Contact Controls	2.4GHz Transceiver Module	2.4GHz Transceiver	N/A	Z2CCTRAX

OTHER EUT DETAILS

During testing, the EUT was mounted to the CT-6000.

ANTENNA SYSTEM

The antenna is a PCB trace antenna (1 dBi) located on the module.

ENCLOSURE

The EUT has no enclosure. It is designed to be installed within the enclosure of a host computer.

MODIFICATIONS

No modifications were made to the EUT during the time the product was at Elliott.

SUPPORT EQUIPMENT

No support equipment was used during testing.

EUT INTERFACE PORTS

The I/O cabling configuration during testing was as follows:

Port	Connected	ted Cable(s)		
Folt	То	Description	Shielded or Unshielded	Length(m)
AC Power	AC Mains	2wire	Unshielded	1.5

EUT OPERATION

During emissions testing the EUT was RF transmitting a modulated signal at the maximum output power.

TEST SITE

GENERAL INFORMATION

Final test measurements were taken at the test sites listed below. Pursuant to section 2.948 of the FCC's Rules and section 3.3 of RSP-100, construction, calibration, and equipment data has been filed with the Commission and with industry Canada.

Site	Registration Numbers		Location
Site	FCC	Canada	Location
Chamber 3	769238	2845B-3	41039 Boyce Road
Chamber 5	211948	2845B-5	Fremont, CA 94538-2435

ANSI C63.4:2003 recommends that ambient noise at the test site be at least 6 dB below the allowable limits. Ambient levels are below this requirement. The test site(s) contain separate areas for radiated and conducted emissions testing. Considerable engineering effort has been expended to ensure that the facilities conform to all pertinent requirements of ANSI C63.4:2003.

CONDUCTED EMISSIONS CONSIDERATIONS

Conducted emissions testing is performed in conformance with ANSI C63.4:2003. Measurements are made with the EUT connected to the public power network through a nominal, standardized RF impedance, which is provided by a line impedance stabilization network, known as a LISN. A LISN is inserted in series with each current-carrying conductor in the EUT power cord.

RADIATED EMISSIONS CONSIDERATIONS

The FCC has determined that radiation measurements made in a shielded enclosure are not suitable for determining levels of radiated emissions. Radiated measurements are performed in an open field environment or in a semi-anechoic chamber. The test sites are maintained free of conductive objects within the CISPR defined elliptical area incorporated in ANSI C63.4:2003 guidelines and meet the Normalized Site Attenuation (NSA) requirements of ANSI C63.4:2003.

MEASUREMENT INSTRUMENTATION

RECEIVER SYSTEM

An EMI receiver as specified in CISPR 16-1-1 is used for emissions measurements. The receivers used can measure over the frequency range of 9 kHz up to 2000 MHz. These receivers allow both ease of measurement and high accuracy to be achieved. The receivers have Peak, Average, and CISPR (Quasi-peak) detectors built into their design so no external adapters are necessary. The receiver automatically sets the required bandwidth for the CISPR detector used during measurements. If the repetition frequency of the signal being measured is below 20Hz, peak measurements are made in lieu of Quasi-Peak measurements.

For measurements above the frequency range of the receivers, a spectrum analyzer is utilized because it provides visibility of the entire spectrum along with the precision and versatility required to support engineering analysis. Average measurements above 1000MHz are performed on the spectrum analyzer using the linear-average method with a resolution bandwidth of 1 MHz and a video bandwidth of 10 Hz, unless the signal is pulsed in which case the average (or video) bandwidth of the measuring instrument is reduced to onset of pulse desensitization and then increased.

INSTRUMENT CONTROL COMPUTER

The receivers utilize either a Rohde & Schwarz EZM Spectrum Monitor/Controller or contain an internal Spectrum Monitor/Controller to view and convert the receiver measurements to the field strength at an antenna or voltage developed at the LISN measurement port, which is then compared directly with the appropriate specification limit. This provides faster, more accurate readings by performing the conversions described under Sample Calculations within the Test Procedures section of this report. Results are printed in a graphic and/or tabular format, as appropriate. A personal computer is used to record all measurements made with the receivers.

The Spectrum Monitor provides a visual display of the signal being measured. In addition, the controller or a personal computer run automated data collection programs which control the receivers. This provides added accuracy since all site correction factors, such as cable loss and antenna factors are added automatically.

LINE IMPEDANCE STABILIZATION NETWORK (LISN)

Line conducted measurements utilize a fifty microhenry Line Impedance Stabilization Network as the monitoring point. The LISN used also contains a 250 uH CISPR adapter. This network provides for calibrated radio frequency noise measurements by the design of the internal low pass and high pass filters on the EUT and measurement ports, respectively.

FILTERS/ATTENUATORS

External filters and precision attenuators are often connected between the receiving antenna or LISN and the receiver. This eliminates saturation effects and non-linear operation due to high amplitude transient events.

ANTENNAS

A loop antenna is used below 30 MHz. For the measurement range 30 MHz to 1000 MHz either a combination of a biconical antenna and a log periodic or a bi-log antenna is used. Above 1000 MHz, horn antennas are used. The antenna calibration factors to convert the received voltage to an electric field strength are included with appropriate cable loss and amplifier gain factors to determine an overall site factor, which is then programmed into the test receivers or incorporated into the test software.

ANTENNA MAST AND EQUIPMENT TURNTABLE

The antennas used to measure the radiated electric field strength are mounted on a nonconductive antenna mast equipped with a motor-drive to vary the antenna height. Measurements below 30 MHz are made with the loop antenna at a fixed height of 1m above the ground plane.

ANSI C63.4:2003 specifies that the test height above ground for table mounted devices shall be 80 centimeters. Floor mounted equipment shall be placed on the ground plane if the device is normally used on a conductive floor or separated from the ground plane by insulating material from 3 to 12 mm if the device is normally used on a non-conductive floor. During radiated measurements, the EUT is positioned on a motorized turntable in conformance with this requirement.

INSTRUMENT CALIBRATION

All test equipment is regularly checked to ensure that performance is maintained in accordance with the manufacturer's specifications. All antennas are calibrated at regular intervals with respect to tuned half-wave dipoles. An exhibit of this report contains the list of test equipment used and calibration information.

TEST PROCEDURES

EUT AND CABLE PLACEMENT

The regulations require that interconnecting cables be connected to the available ports of the unit and that the placement of the unit and the attached cables simulate the worst case orientation that can be expected from a typical installation, so far as practicable. To this end, the position of the unit and associated cabling is varied within the guidelines of ANSI C63.4:2003, and the worst-case orientation is used for final measurements.

CONDUCTED EMISSIONS

Conducted emissions are measured at the plug end of the power cord supplied with the EUT. Excess power cord length is wrapped in a bundle between 30 and 40 centimeters in length near the center of the cord. Preliminary measurements are made to determine the highest amplitude emission relative to the specification limit for all the modes of operation. Placement of system components and varying of cable positions are performed in each mode. A final peak mode scan is then performed in the position and mode for which the highest emission was noted on all current carrying conductors of the power cord.

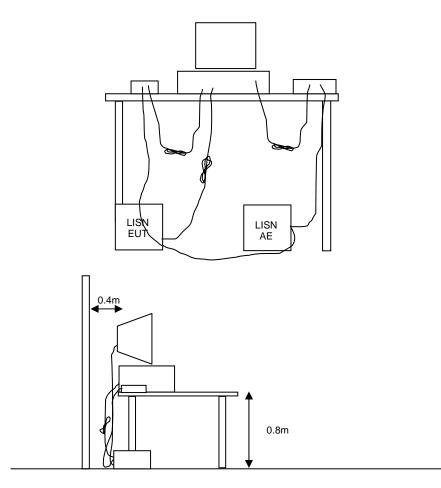
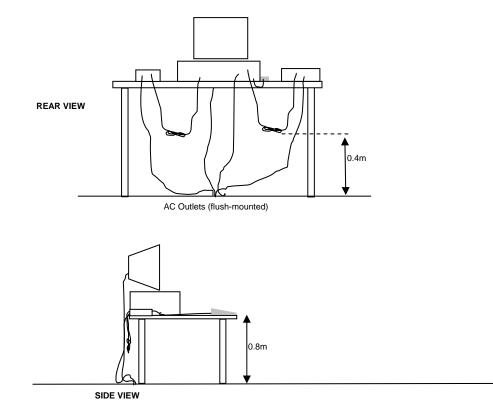
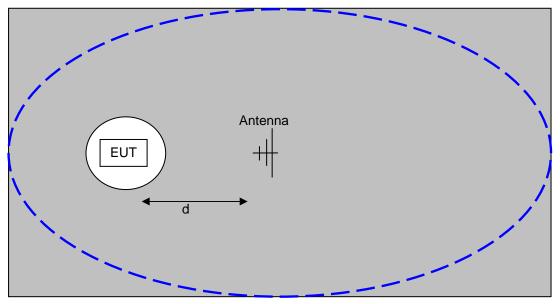


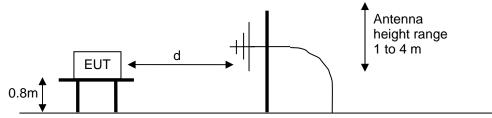
Figure 1 Typical Conducted Emissions Test Configuration

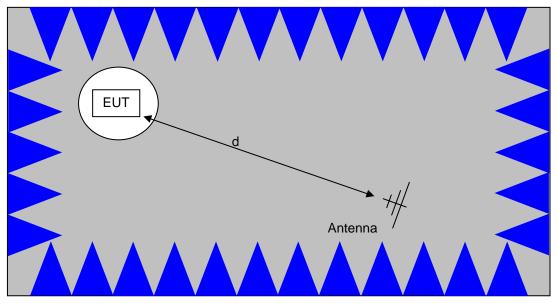

RADIATED EMISSIONS

A preliminary scan of the radiated emissions is performed in which all significant EUT frequencies are identified with the system in a nominal configuration. At least two scans are performed, one scan for each antenna polarization (horizontal and vertical; loop parallel and perpendicular to the EUT). During the preliminary scans, the EUT is rotated through 360°, the antenna height is varied (for measurements above 30 MHz) and cable positions are varied to determine the highest emission relative to the limit. Preliminary scans may be performed in a fully anechoic chamber for the purposes of identifying the frequencies of the highest emissions from the EUT.

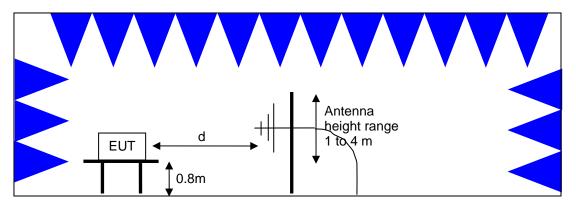

A speaker is provided in the receiver to aid in discriminating between EUT and ambient emissions. Other methods used during the preliminary scan for EUT emissions involve scanning with near field magnetic loops, monitoring I/O cables with RF current clamps, and cycling power to the EUT.

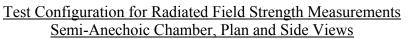
Final maximization is a phase in which the highest amplitude emissions identified in the spectral search are viewed while the EUT azimuth angle is varied from 0 to 360 degrees relative to the receiving antenna. The azimuth, which results in the highest emission is then maintained while varying the antenna height from one to four meters (for measurements above 30 MHz, measurements below 30 MHz are made with the loop antenna at a fixed height of 1m). The result is the identification of the highest amplitude for each of the highest peaks. Each recorded level is corrected in the receiver using appropriate factors for cables, connectors, antennas, and preamplifier gain.


When testing above 18 GHz, the receive antenna is located at 1 meter from the EUT and the antenna height is restricted to a maximum of 2.5 meters.


Typical Test Configuration for Radiated Field Strength Measurements

The ground plane extends beyond the ellipse defined in CISPR 16 / CISPR 22 / ANSI C63.4 and is large enough to accommodate test distances (d) of 3m and 10m. Refer to the test data tables for the actual measurement distance.




<u>Test Configuration for Radiated Field Strength Measurements</u> <u>OATS- Plan and Side Views</u>

The anechoic materials on the walls and ceiling ensure compliance with the normalized site attenuation requirements of CISPR 16 / CISPR 22 / ANSI C63.4 for an alternate test site at the measurement distances used.

Floor-standing equipment is placed on the floor with insulating supports between the unit and the ground plane.

BANDWIDTH MEASUREMENTS

The 6dB, 20dB and/or 26dB signal bandwidth is measured in using the bandwidths recommended by ANSI C63.4. When required, the 99% bandwidth is measured using the methods detailed in RSS GEN.

SPECIFICATION LIMITS AND SAMPLE CALCULATIONS

The limits for conducted emissions are given in units of microvolts, and the limits for radiated emissions are given in units of microvolts per meter at a specified test distance. Data is measured in the logarithmic form of decibels relative to one microvolt, or dB microvolts (dBuV). For radiated emissions, the measured data is converted to the field strength at the antenna in dB microvolts per meter (dBuV/m). The results are then converted to the linear forms of uV and uV/m for comparison to published specifications.

For reference, converting the specification limits from linear to decibel form is accomplished by taking the base ten logarithm, then multiplying by 20. These limits in both linear and logarithmic form are as follows:

GENERAL TRANSMITTER RADIATED EMISSIONS SPECIFICATION LIMITS

The table below shows the limits for the spurious emissions from transmitters that fall in restricted bands¹ (with the exception of transmitters operating under FCC Part 15 Subpart D and RSS 210 Annex 9), the limits for all emissions from a low power device operating under the general rules of RSS 310 (tables 3 and 4), RSS 210 (table 2) and FCC Part 15 Subpart C section 15.209.

Frequency Range (MHz)	Limit (uV/m)	Limit (dBuV/m @ 3m)
0.009-0.490	2400/F _{KHz} @ 300m	67.6-20*log ₁₀ (F _{KHz}) @ 300m
0.490-1.705	24000/F _{KHz} @ 30m	87.6-20*log ₁₀ (F _{KHz}) @ 30m
1.705 to 30	30 @ 30m	29.5 @ 30m
30 to 88	100 @ 3m	40 @ 3m
88 to 216	150 @ 3m	43.5 @ 3m
216 to 960	200 @ 3m	46.0 @ 3m
Above 960	500 @ 3m	54.0 @ 3m

¹ The restricted bands are detailed in FCC 15.203, RSS 210 Table 1 and RSS 310 Table 2

RECEIVER RADIATED SPURIOUS EMISSIONS SPECIFICATION LIMITS

The table below shows the limits for the spurious emissions from receivers as detailed in FCC Part 15.109, RSS 210 Table 2, RSS GEN Table 1 and RSS 310 Table 3. Note that receivers operating outside of the frequency range 30 MHz – 960 MHz are exempt from the requirements of 15.109.

Frequency Range (MHz)	Limit (uV/m @ 3m)	Limit (dBuV/m @ 3m)
30 to 88	100	40
88 to 216	150	43.5
216 to 960	200	46.0
Above 960	500	54.0

RADIATEDFUNDAMENTAL & SPURIOUS EMISSIONS SPECIFICATION LIMITS – 15.249 and RSS 210 A2.9

The table below shows the limits for the fundamental emission and for its harmonics. Harmonics that that fall in restricted bands² and all other spurious emissions are subject to the general limits of RSS 210 and FCC Part 15 Subpart C.

Frequency Range (MHz)	Limit for Fundamental @ 3m	Limit for Harmonics @ 3m		
902 - 928	50,000 uV/m 94dBuV/m	500 uV/m 54dBuV/m		
2400 - 2483.5	50,000 uV/m 94dBuV/m	500 uV/m 54dBuV/m		
5725 - 5850	50,000 uV/m 94dBuV/m	500 uV/m 54dBuV/m		

SAMPLE CALCULATIONS - CONDUCTED EMISSIONS

Receiver readings are compared directly to the conducted emissions specification limit (decibel form) as follows:

$$R_r - S = M$$

where:

 $R_r = Receiver Reading in dBuV$

S = Specification Limit in dBuV

M = Margin to Specification in +/- dB

² The restricted bands are detailed in FCC 15.203, RSS 210 Table 1 and RSS 310 Table 2

SAMPLE CALCULATIONS - RADIATED EMISSIONS

Receiver readings are compared directly to the specification limit (decibel form). The receiver internally corrects for cable loss, preamplifier gain, and antenna factor. The calculations are in the reverse direction of the actual signal flow, thus cable loss is added and the amplifier gain is subtracted. The Antenna Factor converts the voltage at the antenna coaxial connector to the field strength at the antenna elements.

A distance factor, when used for electric field measurements above 30MHz, is calculated by using the following formula:

$$F_d = 20*LOG_{10} (D_m/D_s)$$

where:

 F_d = Distance Factor in dB D_m = Measurement Distance in meters D_s = Specification Distance in meters

For electric field measurements below 30MHz the extrapolation factor is either determined by making measurements at multiple distances or a theoretical value is calculated using the formula:

$$F_d = 40*LOG_{10} (D_m/D_s)$$

Measurement Distance is the distance at which the measurements were taken and Specification Distance is the distance at which the specification limits are based. The antenna factor converts the voltage at the antenna coaxial connector to the field strength at the antenna elements.

The margin of a given emission peak relative to the limit is calculated as follows:

$$R_c = R_r + F_d$$

and

 $M = R_c - L_s$

where:

 R_r = Receiver Reading in dBuV/m

 F_d = Distance Factor in dB

 R_c = Corrected Reading in dBuV/m

 L_S = Specification Limit in dBuV/m

M = Margin in dB Relative to Spec

SAMPLE CALCULATIONS - FIELD STRENGTH TO EIRP CONVERSION

Where the radiated electric field strength is expressed in terms of the equivalent isotropic radiated power (eirp), or where a field strength measurement of output power is made in lieu of a direct measurement, the following formula is used to convert between eirp and field strength at a distance of d (meters) from the equipment under test:

E = $\underline{1000000 \sqrt{30 P}}$ microvolts per meter

d

where P is the eirp (Watts)

For a measurement at 3m the conversion from a logarithmic value for field strength (dBuV/m) to an eirp power (dBm) is -95.3dB.

Appendix A Test Equipment Calibration Data

Conducted Emissions	- AC Power Ports, 12-Aug-11			
Manufacturer	Description	Model	<u>Asset #</u>	Cal Due
Rohde & Schwarz Sunol Sciences	EMI Test Receiver, 20 Hz-7 GHz Biconilog, 30-3000 MHz	ESIB7 JB3	1630 2197	13-Apr-12 29-Dec-11
Com-Power Corp.	Preamplifier, 30-1000 MHz	PAM-103	2380	13-Apr-12
			2000	13-Api-12
Radiated Emissions,	30 - 1,000 MHz, 12-Aug-11			
Manufacturer	Description	Model	Asset #	Cal Due
Rohde & Schwarz	EMI Test Receiver, 20 Hz-7 GHz	ESIB7	1630	4/13/2012
Sunol Sciences	Biconilog, 30-3000 MHz	JB3	2197	12/29/2011
Com-Power Corp.	Preamplifier, 30-1000 MHz	PAM-103	2380	4/13/2012
Conducted Emissions	- AC Power Ports, 12-Aug-11			
Manufacturer	Description	Model	Asset #	Cal Due
EMCO	LISN, 10 kHz-100 MHz, 25A	3825/2	1292	3/1/2012
Rohde & Schwarz	Pulse Limiter	ESH3 Z2	1401	4/21/2012
Rohde & Schwarz	EMI Test Receiver, 20 Hz-7 GHz	ESIB7	1630	4/13/2012
Radiated Emissions, 2	1,000 - 6,500 MHz, 31-Aug-11			
Manufacturer	Description	Model	Asset #	Cal Due
EMCO	Antenna, Horn, 1-18 GHz	3115	1142	8/2/2012
	(SA40-Red)			
Hewlett Packard	Microwave Preamplifier, 1-	8449B	2199	2/23/2012
	26.5GHz		0445	7/00/0040
Hewlett Packard	Shochn u v u = 10 (C u = (Shochn u v u = 1))		2415	7/28/2012
Homoter admara	SpecAn 9 kHz - 40 GHz, (SA40) Purple	8564E (84125C)	2410	1/20/2012

Appendix B Test Data

T84184 Pages 22 – 37

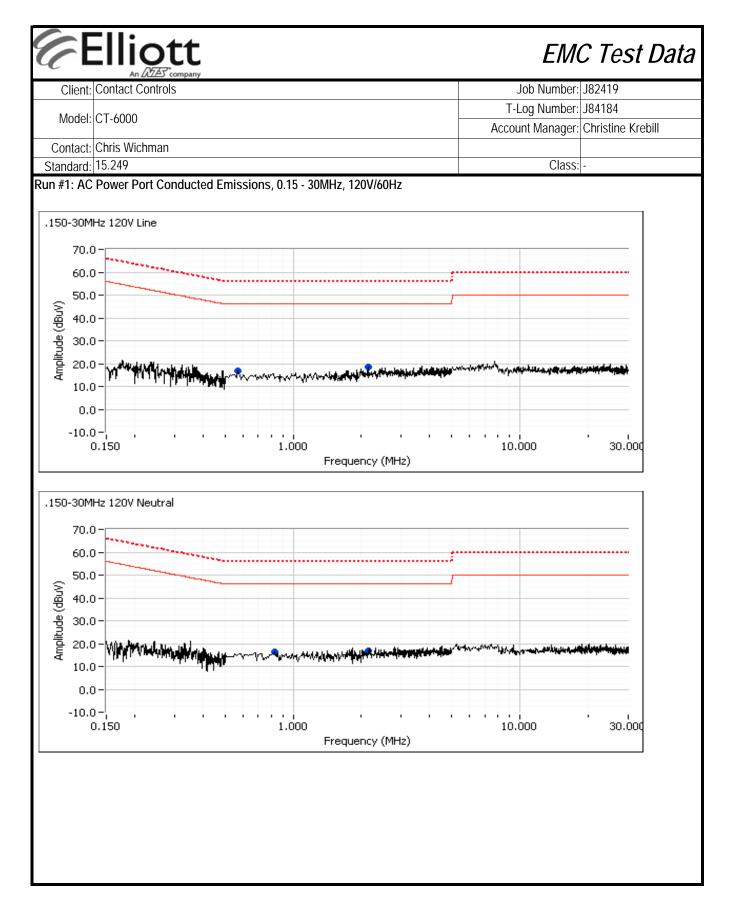
©Elliott

EMC Test Data

Ph DLC	2 company		
Client:	Contact Controls	Job Number:	J82419
Model:	CT-6000	T-Log Number:	J84184
		Account Manager:	Christine Krebill
Contact:	Chris Wichman		-
Emissions Standard(s):	15.249	Class:	-
Immunity Standard(s):	-	Environment:	-
á			

EMC Test Data

For The


Contact Controls

Model

CT-6000

Date of Last Test: 8/31/2011

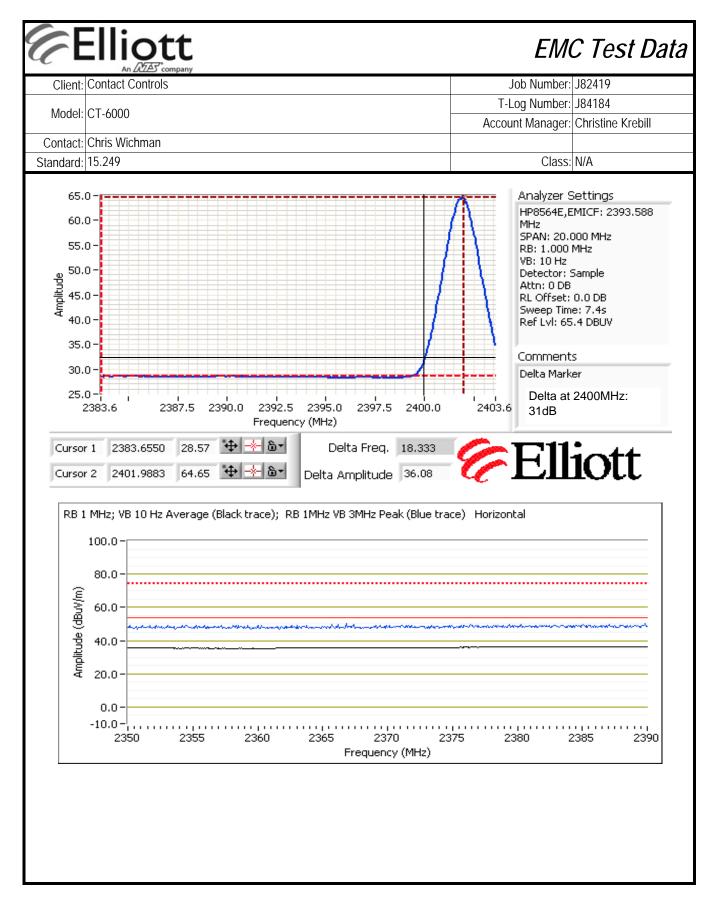
Client Contact Controls Job Number: [82419 Model: CT-6000 T-Log Number: [3419 Contact Controls Job Number: [3419 Contact Control Account Manager: Christine Krebill Contact Control Conscience Standard 15.249 Class: Conducted Emissions Class: Dipicitive: The objective of this test session is to perform final qualification testing of the EUT with respect to the specification listed above. Date of Test: 8/12/2011 Config. Used: 1 Test Engineer: Joseph Cadigal Config. Used: 1 Test Standard Test Configuration Eut Voltage: 120V/80Hz For tabletop equipment, the EUT was located on a wooden table inside the semi-anecholic chamber, 40 cm from a vertical coupling plant and 80m from the LISM. A second LISM was used for all local support equipment. Remote support equipment was located outside of the semi-anecholic chamber. Any cables running to remote support eq							
Model: CT-6000 T-Log Number: J44184 Account Manager: Christine Krebill Standard: 15.249 Class: Conducted Emissions (Elliott Laboratories Fremont Facility, Semi-Anechoic Chamber) Test Specific Details Objective: The objective of this test session is to perform final qualification testing of the EUT with respect to the specification listed above. Date of Test: 8/12/2011 Config Used: 1 Test Engineer: Joseph Cadigal Config Change: none Test Location: Fremont Chamber #3 EUT Voltage: 120V/60Hz General Test Configuration For tabletop equipment, the EUT was tocated on a wooden table inside the semi-anechoic chamber, 40 cm from a vertical coupling plant and 80cm from the LISN. A second LISN was used for all local support equipment. Remote support equipment was located outside of the semi-anechoic chamber. Any cables running to remote support equipment where routed through metal conduit and when possible passed through a ferrite clamp upon exiting the chamber. Ambient Conditions: Temperature: 20-25 °C Rel. Humidity: 35-45 % Summary of Results Imit Result Margin 1 CE, AC Power,120V/60Hz Class B Pass 4.90dBµV @ 2.141MHz (-41.1dB) Modifications Made During Testing No modifications were made to the EUT during testing <td< th=""><th>6F</th><th></th><th>Stt</th><th></th><th></th><th>EM</th><th>C Test Data</th></td<>	6F		Stt			EM	C Test Data
Model: C1-6000 Account Manage: Christine Krebill Contact: Christ Wichman	Client:	Contact Con	trols			Job Number:	J82419
Account Manager: Christine Krebill Contact: Chris Wichman Standard: 15.249 Class: - Conducted Emissions (Elliott Laboratories Fremont Facility, Semi-Anechoic Chamber) Test Specific Details Objective: The objective of this test session is to perform final qualification testing of the EUT with respect to the specification listed above. Date of Test: 8/12/2011 Config. Used: 1 Test Engineer: Joseph Cadigal Config Change: none Test Location: Fremont Chamber #3 EUT Voltage: 120V/60Hz General Test Configuration For tabletop equipment, the EUT was located on a wooden table inside the semi-anechoic chamber, 40 cm from a vertical coupling plana and 80cm from the LISN. A second LISN was used for all local support equipment. Remote support equipment was located outside of the semi-anechoic chamber. Any cables running to remote support equipment where routed through metal conduit and when possible passed through a ferrite clamp upon exiting the chamber. Ambient Conditions: Tenst Performed Run # Test Performed 1 CE, AC Power,120V/60Hz Class B Pass 4.90dBµV @ 2.141MHz (-41.1dB) Modifications Made During Testing No modifications Krem The Standard	Model	CT-6000			T-	Log Number:	J84184
Standard: 15.249 Class: I- Conducted Emissions (Elliott Laboratories Fremont Facility, Semi-Anechoic Chamber) Test Specific Details Objective: The objective of this test session is to perform final qualification testing of the EUT with respect to the specification listed above. Date of Test: &/12/2011 Config. Used: 1 Test Engineer: Joseph Cadigal Config Change: none Test Location: Fremont Chamber #3 EUT Voltage: 120V/60Hz General Test Configuration For tabletop equipment, the EUT was located on a wooden table inside the semi-anechoic chamber, 40 cm from a vertical coupling plane and 80cm from the LISN. A second LISN was used for all local support equipment. Remote support equipment was located outside of the semi-anechoic chamber. Any cables running to remote support equipment where routed through metal conduit and when possible passed through a ferrite clamp upon exiting the chamber. Ambient Conditions: Temperature: 20-25 °C Rel. Humidity: 35-45 % Summary of Results Modifications Made During Testing No modifications Made During Testing No modifications were made to the EUT during testing Dass d. 90dBµV @ 2.141MHz (-41.1dB)					Accou	unt Manager:	Christine Krebill
Conducted Emissions (Elliott Laboratories Fremont Facility, Semi-Anechoic Chamber) Test Specific Details Objective: The objective of this test session is to perform final qualification testing of the EUT with respect to the specification listed above. Date of Test: 8/12/2011 Config. Used: 1 Test Engineer: Joseph Cadigal Config Change: none Test Location: Fremont Chamber #3 EUT Voltage: 120V/60Hz General Test Configuration For tabletop equipment, the EUT was located on a wooden table inside the semi-anechoic chamber, 40 cm from a vertical coupling plana and 80cm from the LISN. A second LISN was used for all local support equipment. Remote support equipment was located outside of the semi-anechoic chamber. Any cables running to remote support equipment. Remote support equipment was located outside of the semi-anechoic chamber. Any cables running to remote support equipment where routed through metal conduit and when possible passed through a ferrite clamp upon exiting the chamber. Ambient Conditions: Temperature: 20-25 °C Rel. Humidity: 35-45 % Summary of Results Image: Run # Test Performed Limit Result Margin 1 CE, AC Power, 120V/60Hz Class B Pass 4.90dBµV @ 2.141MHz (-41.1dB) Modifications Made During Testing No modifications were made to the EUT during testing Deviations From The Standard			an			Class	
(Elliott Laboratories Fremont Facility, Semi-Anechoic Chamber) Test Specific Details Objective: The objective of this test session is to perform final qualification testing of the EUT with respect to the specification listed above. Date of Test: 8/12/2011 Config Change: none Test Location: Fremont Chamber #3 Config Change: none Test Location: Fremont Chamber #3 Config Change: 100/60Hz General Test Configuration For tabletop equipment, the EUT was located on a wooden table inside the semi-anechoic chamber, 40 cm from a vertical coupling plane and 80cm from the LISN. A second LISN was used for all local support equipment. Remote support equipment was located outside of the semi-anechoic chamber. Any cables running to remote support equipment where routed through metal conduit and when possible passed through a ferrite clamp upon exiting the chamber. Ambient Conditions: Temperature: 20-25 °C Rel. Humidity: 35-45 % Summary of Results Modifications Made During Testing No modifications were made to the EUT during testing Detivations From The Standard	Standard:	15.249				Class:	-
(Elliott Laboratories Fremont Facility, Semi-Anechoic Chamber) Test Specific Details Objective: The objective of this test session is to perform final qualification testing of the EUT with respect to the specification listed above. Date of Test: 8/12/2011 Config Change: none Test Location: Fremont Chamber #3 Config Change: none Test Location: Fremont Chamber #3 Config Change: 100/60Hz General Test Configuration For tabletop equipment, the EUT was located on a wooden table inside the semi-anechoic chamber, 40 cm from a vertical coupling plane and 80cm from the LISN. A second LISN was used for all local support equipment. Remote support equipment was located outside of the semi-anechoic chamber. Any cables running to remote support equipment where routed through metal conduit and when possible passed through a ferrite clamp upon exiting the chamber. Ambient Conditions: Temperature: 20-25 °C Rel. Humidity: 35-45 % Summary of Results Modifications Made During Testing No modifications were made to the EUT during testing Detivations From The Standard			Condu	ucted Emissions			
Test Specific Details Objective: The objective of this test session is to perform final qualification testing of the EUT with respect to the specification listed above. Date of Test: 8/12/2011 Config. Used: 1 Test Engineer: Joseph Cadigal Config Change: none Test Location: Fremont Chamber #3 EUT Voltage: 120V/60Hz General Test Configuration For tabletop equipment, the EUT was located on a wooden table inside the semi-anechoic chamber, 40 cm from a vertical coupling plane and 80cm from the LISN. A second LISN was used for all local support equipment. Remote support equipment was located outside of the semi-anechoic chamber. Any cables running to remote support equipment. Remote support equipment was located outside of the semi-anechoic chamber. Any cables running to remote support equipment where routed through metal conduit and when possible passed through a ferrite clamp upon exiting the chamber. Ambient Conditions: Temperature: 20-25 °C Rel. Humidity: 35-45 % Summary of Results Yeat Performed Modifications Made During Testing No modifications were made to the EUT during testing No modifications were made to the EUT during testing Deviations From The Standard					hoic Chamb	er)	
Objective: The objective of this test session is to perform final qualification testing of the EUT with respect to the specification listed above. Date of Test: 8/12/2011 Config. Used: 1 Test Engineer: Joseph Cadigal Config Change: none Test Location: Fremont Chamber #3 EUT Voltage: 120V/60Hz General Test Configuration For tabletop equipment, the EUT was located on a wooden table inside the semi-anechoic chamber, 40 cm from a vertical coupling plane and 80cm from the LISN. A second LISN was used for all local support equipment. Remote support equipment was located outside of the semi-anechoic chamber. Any cables running to remote support equipment where routed through metal conduit and when possible passed through a ferrite clamp upon exiting the chamber. Ambient Conditions: Temperature: 20-25 °C Run # Test Performed Limit Result Margin 1 CE, AC Power,120V/60Hz Class B Pass 4.90dBµV @ 2.1411MHz (-41.1dB) Modifications Made During Testing No modifications were made to the EUT during testing Deviations From The Standard EUT during testing			,	,			
specification listed above. Date of Test: 8/12/2011 Config. Used: 1 Test Engineer: Joseph Cadigal Config Change: none Test Location: Fremont Chamber #3 EUT Voltage: 120V/60Hz General Test Configuration For tabletop equipment, the EUT was located on a wooden table inside the semi-anechoic chamber, 40 cm from a vertical coupling plane and 80cm from the LISN. A second LISN was used for all local support equipment. Remote support equipment was located outside of the semi-anechoic chamber. Any cables running to remote support equipment where routed through metal conduit and when possible passed through a ferrite clamp upon exiting the chamber. Ambient Conditions: Temperature: 20-25 °C Rel. Humidity: 35-45 % Summary of Results Margin 1 CE, AC Power, 120V/60Hz Class B Pass 4.90dBµV @ 2.141MHz (-41.1dB) Modifications Made During Testing No modifications were made to the EUT during testing Deviations From The Standard Eutropy of the set of the EUT during testing	Test Spec	ific Detail	S				
Test Engineer: Joseph Cadigal Config Change: none Test Location: Fremont Chamber #3 EUT Voltage: 120V/60Hz General Test Configuration For tabletop equipment, the EUT was located on a wooden table inside the semi-anechoic chamber, 40 cm from a vertical coupling plane and 80cm from the LISN. A second LISN was used for all local support equipment. Remote support equipment was located outside of the semi-anechoic chamber. Any cables running to remote support equipment where routed through metal conduit and when possible passed through a ferrite clamp upon exiting the chamber. Ambient Conditions: Temperature: 20-25 °C Rel. Humidity: Run # Test Performed Limit Margin 1 CE, AC Power,120V/60Hz Class B Pass 4.90dBµV @ 2.141MHz (-41.1dB) Modifications Made During Testing No modifications were made to the EUT during testing Deviations From The Standard EUT during testing		•	2	o perform final qualificatio	n testing of th	ne EUT with r	espect to the
Test Location: Fremont Chamber #3 EUT Voltage: 120V/60Hz General Test Configuration For tabletop equipment, the EUT was located on a wooden table inside the semi-anechoic chamber, 40 cm from a vertical coupling plane and 80cm from the LISN. A second LISN was used for all local support equipment. Remote support equipment was located outside of the semi-anechoic chamber. Any cables running to remote support equipment where routed through metal conduit and when possible passed through a ferrite clamp upon exiting the chamber. Ambient Conditions: Temperature: 20-25 °C Rel. Humidity: 35-45 % Summary of Results Imit Result Margin 1 CE, AC Power, 120V/60Hz Class B Pass 4.90dBµV @ 2.141MHz (-41.1dB) Modifications Made During Testing No modifications were made to the EUT during testing Deviations From The Standard	D	ate of Test:	8/12/2011	Config. Used	: 1		
General Test Configuration For tabletop equipment, the EUT was located on a wooden table inside the semi-anechoic chamber, 40 cm from a vertical coupling plane and 80cm from the LISN. A second LISN was used for all local support equipment. Remote support equipment was located outside of the semi-anechoic chamber. Any cables running to remote support equipment where routed through metal conduit and when possible passed through a ferrite clamp upon exiting the chamber. Ambient Conditions: Temperature: 20-25 °C Rel. Humidity: Summary of Results Run # Test Performed Limit Margin 1 CE, AC Power,120V/60Hz Class B Pass 4.90dBµV @ 2.1411MHz (-41.1dB) Modifications Made During Testing No modifications were made to the EUT during testing Deviations From The Standard		0		o o			
For tabletop equipment, the EUT was located on a wooden table inside the semi-anechoic chamber, 40 cm from a vertical coupling plane and 80cm from the LISN. A second LISN was used for all local support equipment. Remote support equipment was located outside of the semi-anechoic chamber. Any cables running to remote support equipment where routed through metal conduit and when possible passed through a ferrite clamp upon exiting the chamber. Ambient Conditions: Temperature: 20-25 °C Rel. Humidity: Summary of Results Test Performed Limit Margin 1 CE, AC Power, 120V/60Hz Class B Pass 4.90dBµV @ 2.141MHz (-41.1dB) Modifications Made During Testing No modifications were made to the EUT during testing Deviations From The Standard Esting	le	st Location:	Fremont Chamber #3	EUT Voltage	: 120V/60Hz		
and 80cm from the LISN. A second LISN was used for all local support equipment. Remote support equipment was located outside of the semi-anechoic chamber. Any cables running to remote support equipment where routed through metal conduit and when possible passed through a ferrite clamp upon exiting the chamber. Ambient Conditions: Temperature: 20-25 °C Rel. Humidity: 35-45 % Summary of Results Run # Test Performed Limit Result Margin CE, AC Power,120V/60Hz Class B Pass 4.90dBµV @ 2.141MHz (-41.1dB) Modifications Made During Testing No modifications were made to the EUT during testing Deviations From The Standard	General T	est Confi	juration				
Rel. Humidity: 35-45 % Summary of Results Run # Test Performed 1 CE, AC Power,120V/60Hz Class B Pass 4.90dBµV @ 2.141MHz (-41.1dB) Modifications Made During Testing No modifications were made to the EUT during testing Deviations From The Standard	and 80cm fro the semi-ane	m the LISN. choic chamb	A second LISN was used for all lover. Any cables running to remote su	cal support equipment. F	Remote suppo	ort equipment	was located outside of
Rel. Humidity: 35-45 % Summary of Results Run # Test Performed 1 CE, AC Power,120V/60Hz Class B Pass 4.90dBµV @ 2.141MHz (-41.1dB) Modifications Made During Testing No modifications were made to the EUT during testing Deviations From The Standard	Ambient (Conditions	: Temperature	: 20-25 °C			
Run # Test Performed Limit Result Margin 1 CE, AC Power,120V/60Hz Class B Pass 4.90dBµV @ 2.141MHz (-41.1dB) Modifications Made During Testing No modifications were made to the EUT during testing Deviations From The Standard							
1 CE, AC Power,120V/60Hz Class B Pass 4.90dBμV @ 2.141MHz (-41.1dB) Modifications Made During Testing No modifications were made to the EUT during testing Deviations From The Standard	Summary	of Result	5				
Modifications Made During Testing No modifications were made to the EUT during testing Deviations From The Standard		า #				, v	
No modifications were made to the EUT during testing Deviations From The Standard	1		CE, AC Power, 120V/60Hz	Class B	Pass	4.90dBµV @	⊉ 2.141MHz (-41.1dB)
	No modificat	ions were ma s From Th	ade to the EUT during testing e Standard	rd.			

EIIIOTT
An ATAS company
Client Contact Controls

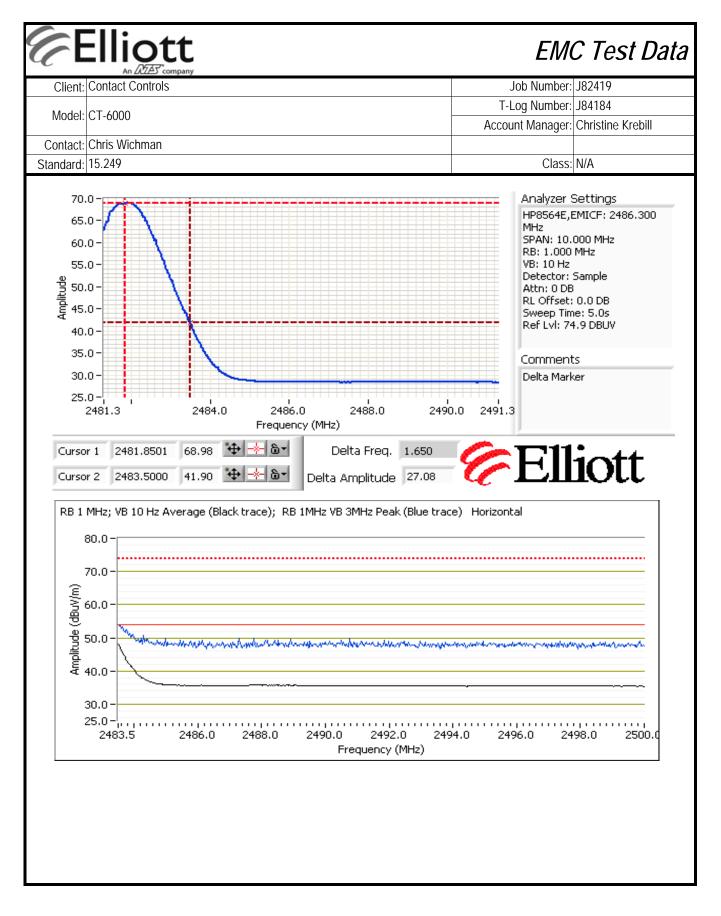
EMC Test Data

Model: CT-6000 T-Log Number: J84184 Account Manager: Christine Kr Contact: Chris Wichman Class: Standard: 15.249 Class: Preliminary peak readings captured during pre-scan (peak readings vs. average limit) Class: Preliminary peak readings captured during pre-scan (peak readings vs. average limit) Preliminary peak readings captured during pre-scan (peak readings vs. average limit) Prequency Level AC Class B Detector Comments MHz dBµV Line Limit Margin QP/Ave OP/Ave 0.570 17.0 Line 1 46.0 -29.0 Peak OP/Ave 2.139 18.5 Line 1 46.0 -29.0 Peak OP/Ave 0.821 16.5 Neutral 46.0 -29.5 Peak OP/Ave Final quasi-peak and average readings Frequency Level AC Class B Detector Comments MHz dBµV Line Limit Margin QP/Ave Comments	ebill
Model: C1-6000 Account Manager: Christine Kr Contact: Chris Wichman	ebill
Contact: Chris Wichman Standard: 15.249 Class: - eliminary peak readings captured during pre-scan (peak readings vs. average limit) requency Level AC Class B Detector Comments MHz dB _µ V Line Limit Margin QP/Ave Comments Class <	
Standard: 15.249 Class: - reliminary peak readings captured during pre-scan (peak readings vs. average limit) requency Level AC Class B Detector Comments MHz dB _µ V Line Limit Margin QP/Ave Comments 0.570 17.0 Line 1 46.0 -29.0 Peak	
reliminary peak readings captured during pre-scan (peak readings vs. average limit) irrequency Level AC Class B Detector Comments MHz dBμV Line Limit Margin QP/Ave Comments 0.570 17.0 Line 1 46.0 -29.0 Peak	
requencyLevelACClass BDetectorCommentsMHzdBμVLineLimitMarginQP/AveComments0.57017.0Line 146.0-29.0Peak2.13918.5Line 146.0-27.5Peak2.14117.0Neutral46.0-29.0Peak0.82116.5Neutral46.0-29.5Peaknal quasi-peak and average readingsrequencyLevelACClass BDetectorCommentsMHzdBμVLineLimitMarginQP/AveComments2.1414.9Neutral46.0-41.1AVGAVG (0.10s)	
MHz dBμV Line Limit Margin QP/Ave 0.570 17.0 Line 1 46.0 -29.0 Peak 2.139 18.5 Line 1 46.0 -27.5 Peak 2.141 17.0 Neutral 46.0 -29.0 Peak 0.821 16.5 Neutral 46.0 -29.5 Peak nal quasi-peak and average readings requency Level AC Class B Detector Comments MHz dBμV Line Limit Margin QP/Ave 2.141 4.9 Neutral 46.0 -29.5 Peak 4.00 -20.00 4.00 -20.00 4.00 -20.00 4.00 -20.00 4.00 -20.00 4.00 -20.00 4.00	
0.570 17.0 Line 1 46.0 -29.0 Peak 2.139 18.5 Line 1 46.0 -27.5 Peak 2.141 17.0 Neutral 46.0 -29.0 Peak 0.821 16.5 Neutral 46.0 -29.5 Peak nal quasi-peak and average readings requency Level AC Class B Detector Comments MHz dBμV Line Limit Margin QP/Ave 2.141 4.9 Neutral 46.0 -41.1 AVG AVG (0.10s)	
2.139 18.5 Line 1 46.0 -27.5 Peak 2.141 17.0 Neutral 46.0 -29.0 Peak 0.821 16.5 Neutral 46.0 -29.5 Peak nal quasi-peak and average readings requency Level AC Class B Detector Comments MHz dBμV Line Limit Margin QP/Ave AVG (0.10s)	
2.141 17.0 Neutral 46.0 -29.0 Peak 0.821 16.5 Neutral 46.0 -29.5 Peak nal quasi-peak and average readings requency Level AC Class B Detector Comments MHz dBµV Line Limit Margin QP/Ave AVG (0.10s)	
0.821 16.5 Neutral 46.0 -29.5 Peak nal quasi-peak and average readings requency Level AC Class B Detector Comments MHz dBµV Line Limit Margin QP/Ave 2.141 4.9 Neutral 46.0 -41.1 AVG AVG (0.10s)	
nal quasi-peak and average readings requency Level AC Class B Detector Comments MHz dBμV Line Limit Margin QP/Ave 2.141 4.9 Neutral 46.0 -41.1 AVG AVG (0.10s)	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	
MHz dBμV Line Limit Margin QP/Ave 2.141 4.9 Neutral 46.0 -41.1 AVG AVG (0.10s)	
2.141 4.9 Neutral 46.0 -41.1 AVG AVG (0.10s)	
2.139 4.8 Line 1 46.0 -41.2 AVG AVG (0.10s)	
0.570 4.5 Line 1 46.0 -41.5 AVG AVG (0.10s)	
0.821 4.2 Neutral 46.0 -41.8 AVG AVG (0.10s)	
2.139 9.1 Line 1 56.0 -46.9 QP QP (1.00s)	
2.141 9.1 Neutral 56.0 -46.9 QP QP (1.00s)	
0.570 9.0 Line 1 56.0 -47.0 QP QP (1.00s)	
0.821 8.5 Neutral 56.0 -47.5 QP QP (1.00s)	

Elliott EMC Test Data Client: Contact Controls Job Number: J82419 T-Log Number: J84184 Model: CT-6000 Account Manager: Christine Krebill Contact: Chris Wichman Standard: 15.249 Class: N/A RSS 210 and FCC 15.249 Radiated Emissions Test Specific Details Objective: The objective of this test session is to perform final qualification testing of the EUT with respect to the specification listed above. General Test Configuration The EUT and all local support equipment were located on the turntable for radiated spurious emissions testing. For radiated emissions testing the measurement antenna was located 3 meters from the EUT. Ambient Conditions: Temperature: 20-25 °C Rel. Humidity: 35-45 % Summary of Results - Device Operating in the 2400-2483.5 MHz Band Power Measured Test Performed Run # Channel Channel Limit Result / Margin Setting Power **Fundamental Field** 73.6dBµV/m@ -20 dBm FCC Part 15.249 2401.8MHz (-20.4dB) Strength 1 Low 2402 Restricted Band Edge 42.6dBµV/m @ FCC Part 15.209 -20 dBm 2383.6MHz (-11.4dB) (2400 MHz) Fundamental Field 77.3dBµV/m@ FCC Part 15.249 -20 dBm Strength 2481.8MHz (-16.7dB) 2 High 2482 Restricted Band Edge 48.8dBµV/m @ -20 dBm FCC Part 15.209 (2483.5 MHz) 2483.5MHz (-5.2dB) Fundamental Field 79.5dBµV/m @ FCC Part 15.249 3 Middle 2441 -20 dBm 2440.8MHz (-14.5dB) Strength Low. 2402, 99% BW 599kHz N/A - Informative Only 4 Middle, -20 dBm 2441, 2482 High

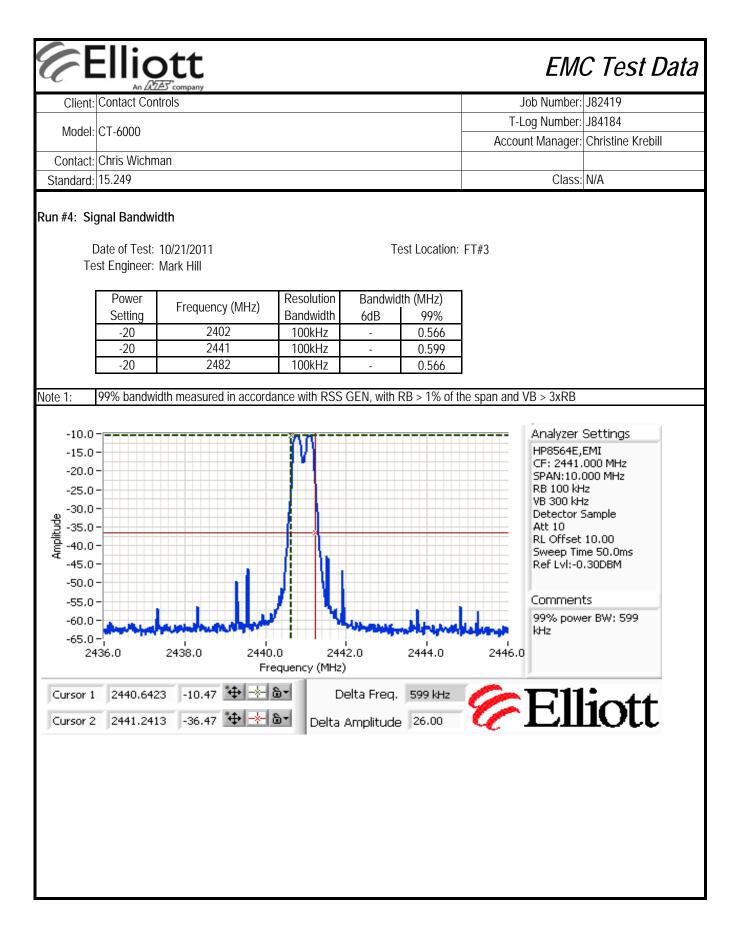

Modifications Made During Testing

No modifications were made to the EUT during testing


Deviations From The Standard

No deviations were made from the requirements of the standard.

Model: Contact: Standard:		trols		Job Number:	J82419					
Contact:	OT (000		T-	Log Number:	J84184					
	CT-6000			Accou	unt Manager:	Christine Kr	ebill			
Standard:	Contact: Chris Wichman									
_	15.249							Class:	N/A	
ا Te Run #1: Lo	adiated Spur Date of Test: est Engineer: ow Channel o ental Signal I	9/1/2011 Mehran Birg @ 2402 MHz	ani with -20dBr	n power set	Te ting		FT Chambe	r #5		
Fundame Frequency	Level	Pol		/ 15.247	Detector	Azimuth	Height	Comments		
MHz	dBµV/m	V/H	Limit	Margin	Pk/QP/Avg	degrees	meters	COMINCHIS		
2401.840	73.6	Н	94.0	-20.4	AVG	175	1.0	RB 1 MHz;V	/B 10 Hz:Pk	
2401.760	74.4	Н	114.0	-39.6	PK	175	1.0	RB 1 MHz;V		
2401.770	69.7	V	94.0	-24.3	AVG	79	1.3	RB 1 MHz;V		
2401.730	70.2	V	114.0	-43.8	PK	79	1.3	RB 1 MHz;V	/B 3 MHz;Pk	
	Fundamental				H 74.4	V 70.2	Doak Moasi	urement (RB=		
		ted Band-Edg	<i>Delta Mai</i> ge Measurer	<i>rker - 30kHz</i> nent (Peak):	73.6	69.7 <i>dB</i> dBuV/m	Average Me <- this can o	easurement (ICD- conly be used in 2MHz of b	RB=1MHz, \ <mark>if band edge</mark>	signal is
	Calcula	ted Band-Edg ated Band-Ed	<i>Delta Mai</i> ge Measurer dge Measure	<i>rker - 30kHz</i> nent (Peak): ement (Avg):	74.4 73.6	69.7 <i>dB</i> dBuV/m dBuV/m	Average Me <- this can o highest with Margin	easurement (I only be used in 2MHz of b Level	RB=1MHz, V if band edge and edge. Limit	signal is Detecto
	Calcula	ted Band-Edg ated Band-Ed Deli	<i>Delta Mai</i> ge Measurer dge Measure <i>ta Marker - 1</i>	<i>rker - 30kHz</i> nent (Peak): ement (Avg): <i>MHz/1MHz:</i>	74.4 73.6 <i>23.0</i>	69.7 dB dBuV/m dBuV/m dB	Average Me <- this can o highest with Margin -11.4	easurement (I only be used in 2MHz of b Level 42.6	RB=1MHz, V if band edge and edge. Limit 54	signal isDetectorAvg
	Calcula Calcul	ted Band-Ed ated Band-Ed Deli Deli	Delta Mai ge Measurer dge Measure ta Marker - 1 Ita Marker - 1	rker - 30kHz nent (Peak): ement (Avg): MHz/1MHz: 1MHz/10Hz:	74.4 73.6 <i>23.0</i> 31.0	69.7 dB dBuV/m dBuV/m dB dB	Average Me <- this can of highest with Margin -11.4 -22.6	easurement (I only be used in 2MHz of b Level 42.6 51.4	RB=1MHz, V if band edge and edge. Limit	signal is Detecto
	Calcula Calcul Calcula	ted Band-Edg ated Band-Ed Deli	<i>Delta Mai</i> ge Measurer dge Measure ta Marker - 1 Ita Marker - 1 ge Measurer	rker - 30kHz nent (Peak): ement (Avg): MHz/1MHz: 1MHz/10Hz: nent (Peak):	74.4 73.6 23.0 31.0 51.4	69.7 dB dBuV/m dBuV/m dB	Average Me <- this can of highest with Margin -11.4 -22.6 Using 1MHz	easurement (I only be used in 2MHz of b Level 42.6	RB=1MHz, V if band edge and edge. Limit 54	signal isDetectorAvg
	Calcula Calcul Calcula Calcula	ted Band-Ed ated Band-Ed Deli Del ted Band-Ed ated Band-Ed	Delta Mar ge Measurer dge Measurer ta Marker - 1 Ita Marker - 1 ge Measurer dge Measurer	rker - 30kHz nent (Peak): ement (Avg): MHz/1MHz: 1MHz/10Hz: nent (Peak): ement (Avg):	74.4 73.6 23.0 31.0 51.4 42.6	69.7 dB dBuV/m dBuV/m dB dB dBuV/m dBuV/m	Average Me <- this can of highest with Margin -11.4 -22.6 Using 1MHz Using 1MHz	easurement (I only be used in 2MHz of b Level 42.6 51.4 z delta value z delta value	RB=1MHz, V if band edge and edge. Limit 54	signal isDetectorAvg
	Calcula Calcul Calcula Calcula Calcul	ted Band-Edg ated Band-Edg Deli Del ted Band-Edg	Delta Mar ge Measurer dge Measurer ta Marker - 1 Ita Marker - 1 ge Measurer dge Measurer	rker - 30kHz nent (Peak): ement (Avg): MHz/1MHz: 1MHz/10Hz: nent (Peak): ement (Avg): 15.209	74.4 73.6 23.0 31.0 51.4	69.7 dB dBuV/m dBuV/m dB dB dBuV/m dBuV/m Azimuth	Average Me <- this can of highest with Margin -11.4 -22.6 Using 1MHz Using 1MHz Height	asurement (I only be used in 2MHz of b Level 42.6 51.4 z delta value	RB=1MHz, V if band edge and edge. Limit 54	signal isDetectorAvg
requency MHz	Calcula Calcul Calcula Calcula	ted Band-Ed ated Band-Ed Den ted Band-Ed ated Band-Ed Pol	Delta Mar ge Measurer dge Measurer ta Marker - 1 Ita Marker - 1 ge Measurer dge Measurer FCC 1	rker - 30kHz nent (Peak): ement (Avg): MHz/1MHz: 1MHz/10Hz: nent (Peak): ement (Avg):	74.4 73.6 23.0 31.0 51.4 42.6 Detector	69.7 dB dBuV/m dBuV/m dB dB dBuV/m dBuV/m	Average Me <- this can of highest with Margin -11.4 -22.6 Using 1MHz Using 1MHz	easurement (I only be used in 2MHz of b Level 42.6 51.4 z delta value z delta value	RB=1MHz, V if band edge and edge. Limit 54 74	Detecti Avg Pk
requency MHz 2400.000	Calcula Calcula Calcula Calcula Level dBµV/m 42.6	ted Band-Ed ated Band-Ed Deli Del ted Band-Ed ated Band-Ed Pol V/H	Delta Mar ge Measurer dge Measurer ta Marker - 1 lta Marker - 1 ge Measurer dge Measurer dge Measurer FCC 1 Limit 54.0	rker - 30kHz ment (Peak): ement (Avg): MHz/1MHz: 1MHz/10Hz: nent (Peak): ement (Avg): 15.209 Margin -11.4	74.4 73.6 23.0 31.0 51.4 42.6 Detector Pk/QP/Avg Avg	69.7 dB dBuV/m dBuV/m dB dBuV/m dBuV/m Azimuth degrees -	Average Me <- this can of highest with Margin -11.4 -22.6 Using 1MHz Using 1MHz Height meters -	easurement (I only be used in 2MHz of b Level 42.6 51.4 z delta value z delta value Comments Using 1MHz	RB=1MHz, V if band edge and edge. Limit 54 74	Detecto Avg Pk
requency	Calcula Calcula Calcula Calcula Level dBµV/m	ted Band-Ed ated Band-Ed Del Del ted Band-Ed ated Band-Ed Pol V/H	Delta Mar ge Measurer dge Measurer ta Marker - 1 lta Marker - 1 ge Measurer dge Measurer dge Measurer FCC 1 Limit 54.0	rker - 30kHz nent (Peak): ement (Avg): MHz/1MHz: 1MHz/10Hz: nent (Peak): ement (Avg): 15.209 Margin	74.4 73.6 23.0 31.0 51.4 42.6 Detector Pk/QP/Avg	69.7 dB dBuV/m dBuV/m dB dB dBuV/m dBuV/m dBuV/m Azimuth degrees	Average Me <- this can of highest with Margin -11.4 -22.6 Using 1MHz Using 1MHz Height meters	easurement (I only be used in 2MHz of b Level 42.6 51.4 z delta value z delta value Comments	RB=1MHz, V if band edge and edge. Limit 54 74	Detecto Avg Pk
requency MHz 2400.000	Calcula Calcula Calcula Calcula Calcul Level dBµV/m 42.6 Level	ted Band-Ed ated Band-Ed Deli Deli ted Band-Ed ated Band-Ed ated Band-Ed Pol V/H -	Delta Mar ge Measurer dge Measurer ta Marker - 1 Ita Marker - 2 ge Measurer dge Measurer dge Measurer FCC 1 Limit 54.0	rker - 30kHz nent (Peak): ement (Avg): MHz/1MHz: 1MHz/10Hz: 1MHz/10Hz: 1MHz/10Hz: 1MHz/10Hz: 1000000000000000000000000000000000000	74.4 73.6 23.0 31.0 51.4 42.6 Detector Pk/QP/Avg Avg Detector	69.7 dB dBuV/m dB dB dB dBuV/m dBuV/m dBuV/m Azimuth degrees - Azimuth	Average Me <- this can of highest with Margin -11.4 -22.6 Using 1MHz Using 1MHz Height meters - Height	easurement (I only be used in 2MHz of b Level 42.6 51.4 z delta value z delta value Comments Using 1MHz Comments	RB=1MHz, V if band edge and edge. Limit 54 74 2 delta value /B 10 Hz;Pk	Detecto Avg Pk



Model: CT Contact: Ch Standard: 15	T-6000 hris Wichm							Job Number:			
Contact: Ch Standard: 15	nris Wichm	ian		Client: Contact Controls							
Standard: 15		ian	Model: CT-6000								
Standard: 15							ALLU	unt Manager:		CDIII	
								Class:	N/A		
Run #2: High (Channel @	₽ 2482 MHz									
Fundamenta											
Frequency MHz c	Level	Pol 15.209 / 15.247 Detector Azi					Height	Comments			
2481.820	dBµV/m 77.3	V/H H	Limit 94.0	Margin -16.7	Pk/QP/Avg AVG	degrees 186	1.0	neters 1.0 RB 1 MHz;VB 10 Hz;Pk			
2481.710	77.7	H	114.0	-36.3	PK	186	1.0	RB 1 MHz;V			
2481.620	71.6	V	94.0	-22.4	AVG	77	1.0	RB 1 MHz;V			
2481.760	72.4	V	114.0	-41.6	PK	77	1.0	RB 1 MHz;V	/B 3 MHz;Pk		
	and Edge	Cianal Dad	istad Field (tronath 11	arkar Dalta						
2483.5 MHz Ba	and Edge	Signal Raul	alea Fiela S	orengin - Ma	H H	V	1				
Fur	ndamental	emission lev	/el @ 3m in [·]	1MHz RBW:	77.7	72.4	Peak Meas	urement (RB=	=VB=1MHz)		
-			/el @ 3m in [·]		77.3	71.6		ge Measurement (RB=1MHz, VB=10Hz)			
				rker - 30kHz		dB	<- this can only be used if band edge signal is				
	Calculat	ed Band-Ed	ge Measurer	nent (Peak):	77.7	dBuV/m	highest within 2MHz of band edge.			5	
	Calcula	ated Band-E	dge Measure	ement (Avg):	77.3	dBuV/m	Margin	Level Limit Detect			
			ta Marker - 1		20.7	dB	-3.8	-3.8 50.2 54 Avg			
			lta Marker -		27.1		-17.0				
			ge Measurer	1 /		dBuV/m	Using 1MHz delta value				
	Calcula	ated Band-E	dge Measure	ement (Avg):	50.2	dBuV/m	Using 1MHz delta value				
Frequency	Level	Pol	FCC 2	15.209	Detector	Azimuth	Height	Comments			
	dBµV/m	V/H	Limit	Margin	Pk/QP/Avg	degrees	meters	Commonto			
2485.453	50.2	Н	54.0	-3.8	AVG	187	1.0	Using 1MHz	delta value		
Band Edge Sig	<u> </u>	Ŭ.						<u> </u>			
Frequency	Level	Pol		/ 15.247	Detector	Azimuth	Height	Comments			
MHz c 2483.500	dBµV/m	V/H	Limit	Margin	Pk/QP/Avg	degrees	meters 1.0	RB 1 MHz;V			
2483.500	48.8 53.3	H H	54.0 74.0	-5.2 -20.7	AVG PK	180 180	1.0		/B 3 MHz;Pk		

(F		y		EM	C Test Data			
Client:	Contact Controls						Job Number:	J82419
Madalı	CT (000					T·	Log Number:	J84184
woder:	Model: CT-6000					Ассо	unt Manager:	Christine Krebill
Contact:	Chris Wichman							
Standard:	15.249						Class:	N/A
	adiated Spurious Em el @ 2441 MHz with		is, Fundamental and n power setting	Bandedge				
	Date of Test: 10/21/20	•••		Те	st Location:	FT#3		
Те	est Engineer: Mark Hi	II			`			
Fundame	ental Signal Field Str	ength	: Peak and average va	lues measure	d in 1 MHz.			
Frequency	Level Pol		15.209 / 15.247	Detector	Azimuth	Height	Comments	

Trequency	LEVEI	FUI	13.207	113.247	DEIECIUI	Azimum	TICIYIII	COMMENIS
MHz	dBµV/m	V/H	Limit	Margin	Pk/QP/Avg	degrees	meters	
2440.750	79.5	Н	94.0	-14.5	AVG	172	1.0	RB 1 MHz;VB 10 Hz;Pk
2441.050	79.9	Н	114.0	-34.1	PK	172	1.0	RB 1 MHz;VB 3 MHz;Pk
2440.850	68.4	V	94.0	-25.6	AVG	184	1.0	RB 1 MHz;VB 10 Hz;Pk
2440.920	69.9	V	114.0	-44.1	PK	184	1.0	RB 1 MHz;VB 3 MHz;Pk

EMC Test DataJob Number: J82419T-Log Number: J84184Account Manager: Christine Krebill

Class: N/A

Standard: 15.249

Model: CT-6000

Contact: Chris Wichman

Elliott

Client: Contact Controls

RSS 210 and FCC 15.249 Radiated Emissions

Test Specific Details

Objective: The objective of this test session is to perform final qualification testing of the EUT with respect to the specification listed above.

General Test Configuration

The EUT and all local support equipment were located on the turntable for radiated spurious emissions testing.

For radiated emissions testing the measurement antenna was located 3 meters from the EUT.

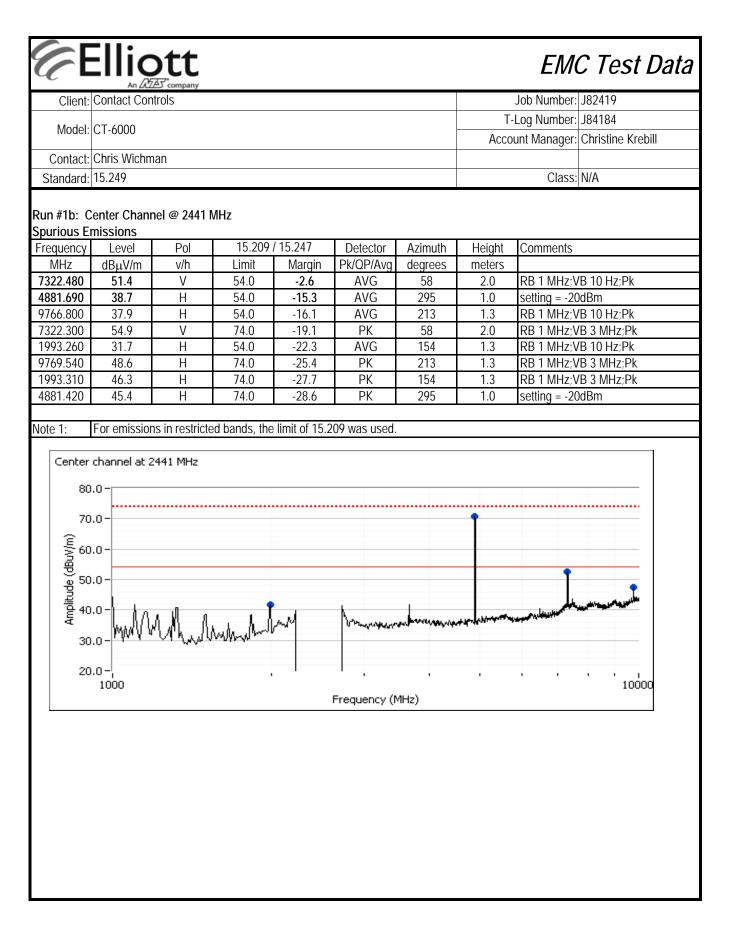
Ambient Conditions:	Temperature:	20-25 °C
	Rel. Humidity:	35-45 %

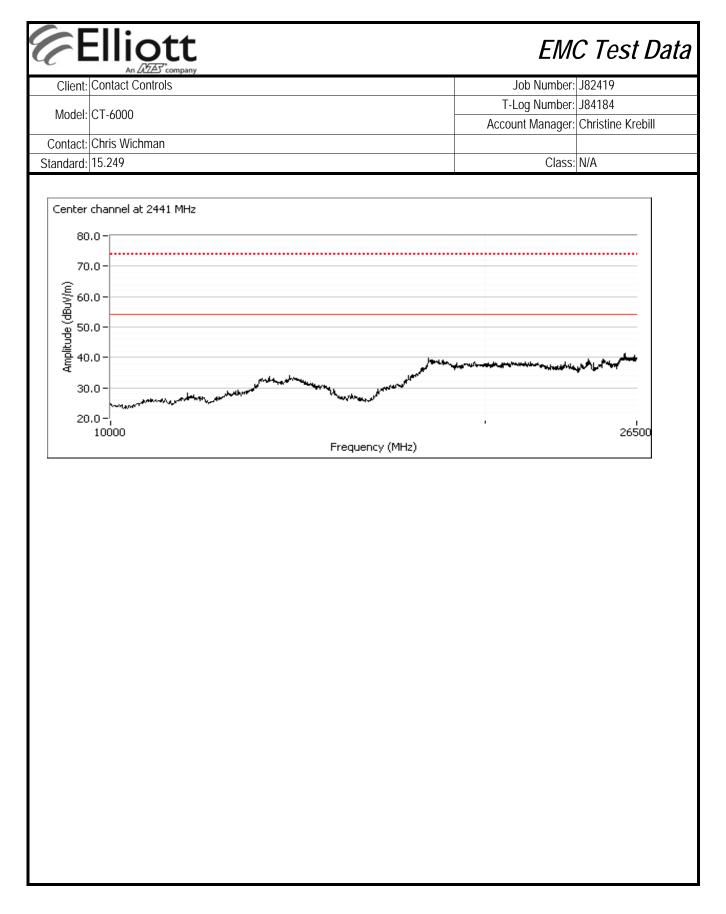
Summary of Results - Device Operating in the 2400-2483.5 MHz Band

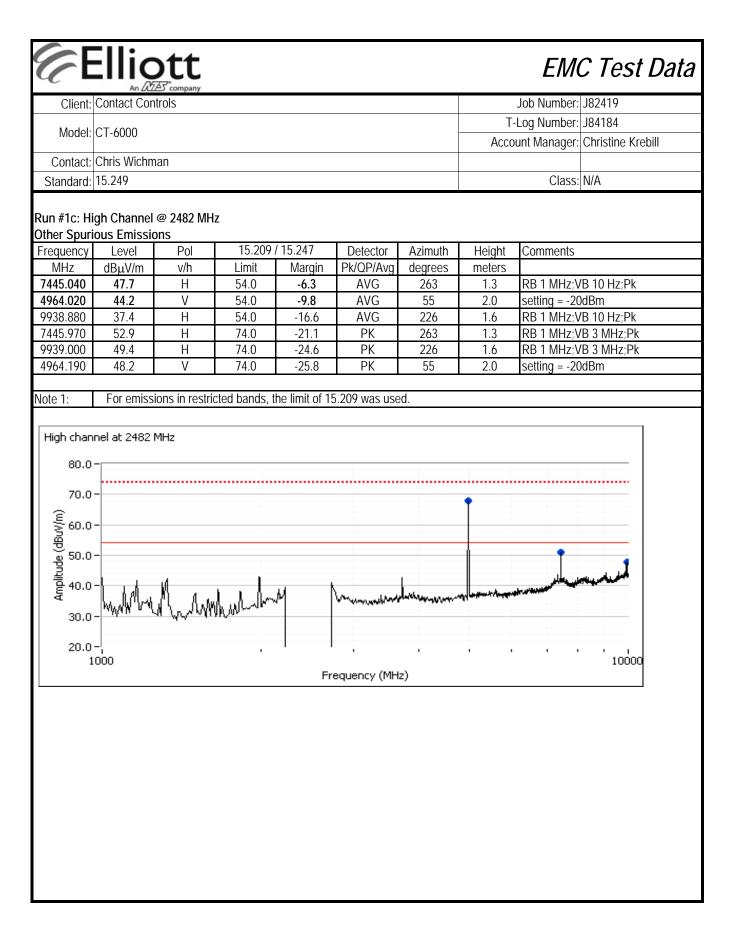
Run #	Channel	Channel	Power Setting	Measured Power	Test Performed	Limit	Result / Margin
10	Low	2402	-20 dBm		Radiated Emissions	FCC Part 15.209 /	48.3dBµV/m @
Id	1a Low 2402		-20 UDIII		1 - 26 GHz	15.247(c)	7206.1MHz (-5.7dB)
1b	Center	2441	-20 dBm		Radiated Emissions	FCC Part 15.209 /	51.4dBµV/m @
ai	Center	Z44 I	-20 UBIII		1 - 26 GHz	15.247(c)	7322.5MHz (-2.6dB)
10	Lliab	2402	20 dDm		Radiated Emissions	FCC Part 15.209 /	47.7dBµV/m @
1c	High	2482	-20 dBm		1 - 26 GHz	15.247(c)	7445.0MHz (-6.3dB)

Modifications Made During Testing

No modifications were made to the EUT during testing


Deviations From The Standard


No deviations were made from the requirements of the standard.


Notes:

No transmitter spurious emissions below 1GHz were observed. Initial testing was performed with the EUT transmitting at a power level that exceeded the final output power level.

Client:	Contact Con	trols						Job Number:	J82419
Modal	CT-6000							-Log Number:	
							Acco	ount Manager:	Christine Krebill
	Chris Wichm	an							
Standard:	15.249							Class:	N/A
[Te 2un #1a: L	diated Spuri Date of Test: st Engineer: ow Channel	8/11/2011 Mehran Birg @ 2402 MH	jani/ Joseph	Cadigal		est Location:	FT Chamb	er #5	
Frequency	ious Emissic Level	Pol	15 209	/ 15.247	Detector	Azimuth	Height	Comments	
MHz	dBµV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	COMMENIS	
7206.120	48.3	V	54.0	-5.7	AVG	53	1.7	RB 1 MHz;\	/B 10 Hz:Pk
4804.060	40.6	H	54.0	-13.4	AVG	303	1.3	setting = -20	
9614.330	37.1	Н	54.0	-16.9	AVG	226	1.3	RB 1 MHz;\	
7206.110	52.4	V	74.0	-21.6	PK	53	1.7	RB 1 MHz;\	/B 3 MHz;Pk
9612.990	48.8	Н	74.0	-25.2	PK	226	1.3	RB 1 MHz;V	/B 3 MHz;Pk
	45.0								
lote 1:	45.9 For emission		74.0 ed bands, the	-28.1	PK 209 was used.	303	1.3	setting = -20)dBm
Fow ch P mplitude (dBuV/m) C M (m) C M	For emission	s in restricte	ed bands, the	e limit of 15.2			1.3	setting = -20	DdBm

End of Report

This page is intentionally blank and marks the last page of this test report.