TEST REPORT

of

FCC Part 15 Subpart C

 \boxtimes New Application; \square Class I PC; \square Class II PC

Product :	Digital Signage / POS System
Brand:	Zunidata
Model:	7NX-RM; 7FX-RM; 7XXX-XXX (X = 0~9 or A-Z or Blank or -)
Model Difference:	Metal and plastic case. with, and without POE
FCC ID:	Z28-7N-7F-RM
FCC Rule Part:	§15.247, Cat: DTS
Applicant:	Zunidata Systems, Inc.
Address:	6F, No. 945, Boai Street, Jubei City, Hsinchu, Taiwan 302

Test Performed by: International Standards Laboratory Corp.

<LT Lab.> *Site Registration No. BSMI: SL2-IN-E-0013; MRA TW0997; TAF: 0997; IC: IC4067B-4;

*Address: No. 120, Lane 180, San Ho Tsuen, Hsin Ho Rd. Lung-Tan Hsiang, Tao Yuan County 325, Taiwan *Tel : 886-3-407-1718; Fax: 886-3-407-1738

Report No.: ISL-20LR343FCDTS Issue Date : 2020/11/12

Test results given in this report apply only to the specific sample(s) tested and are traceable to national or international standard through calibration of the equipment and evaluating measurement uncertainty herein.

The uncertainty of the measurement does not include in consideration of the test result unless the customer required the determination of uncertainty via the agreement, regulation or standard document specification.

This test report shall not be reproduced except in full, without the written approval of International Standards Laboratory Corp.

VERIFICATION OF COMPLIANCE

Applicant:Zunidata Systems, Inc.	
Product Description:	Digital Signage / POS System
Brand Name:	Zunidata
Model No.: 7NX-RM; 7FX-RM; 7XXX-XXX (X = 0~9 or A-Z or Blank	
Model Difference:	Metal and plastic case. with, and without POE
FCC ID:	Z28-7N-7F-RM
Date of test:	2020/10/15 ~ 2020/11/11
Date of EUT Received:	2020/10/15

We hereby certify that:

All the tests in this report have been performed and recorded in accordance with the standards described above and performed by an independent electromagnetic compatibility consultant, International Standards Laboratory Corp.

The test results contained in this report accurately represent the measurements of the characteristics and the energy generated by sample equipment under test at the time of the test. The sample equipment tested as described in this report is in compliance with the limits of above standards.

Test By:	Weitin Chen	Date:	2020/11/12
Prepared By:	Weitin Chen / Senior Engineer Gigi Jeh	Date:	2020/11/12
Approved By:	Gigi Yeh / Senior Engineer	Date:	2020/11/12

International Standards Laboratory Corp.

Version

Version No.	Date	Description		
00 2020/11/12		Initial creation of document		

Description Of Test	Uncertainty		
Conducted Emission (AC power line)	2.586 dB		
Field Strength of Spurious Radiation	≤ 30MHz: 2.96dB 30-1GHz: 4.22 dB 1-40 GHz: 4.08 dB		
Conducted Power	2.412 GHz: 1.30 dB 5.805 GHz: 1.55 dB		
Power Density	2.412 GHz:1.30 dB 5.805 GHz: 1.67 dB		
Frequency	0.0032%		
Time	0.01%		
DC Voltage	1%		

Uncertainty of Measurement

Table of Contents

1	Gener	al Information	•• /
	1.1	Related Submittal(s) / Grant (s)	.10
	1.2	Test Methodology	.10
	1.3	Test Facility	.10
	1.4	Special Accessories	
	1.5	Equipment Modifications	.10
2	Syster	n Test Configuration	11
	2.1	EUT Configuration	
	2.2	EUT Exercise	
	2.3	Test Procedure	.11
	2.4	Configuration of Tested System	
3	Sumn	nary of Test Results	13
4	Descr	iption of Test Modes	13
5	Cond	iced Emission Test	14
	5.1	Standard Applicable:	
	5.2	Measurement Equipment Used:	
	5.3	EUT Setup:	
	5.4	Measurement Procedure:	
	5.5	Measurement Result:	.15
6	Peak	Output Power	18
U	6.1	Standard Applicable:	
	6.2	Measurement Equipment Used:	
	6.3	Test Set-up:	
	6.4	Measurement Procedure:	
	6.5	Measurement Result:	
7	6dB B	and width	22
7	6dB B 7.1	andwidth Standard Applicable:	
7		Standard Applicable:	.22
7	7.1	Standard Applicable:	.22 .22
7	7.1 7.2	Standard Applicable:	.22 .22 .22
7	7.1 7.2 7.3	Standard Applicable: Measurement Equipment Used: Test Set-up:	.22 .22 .22 .22
	7.1 7.2 7.3 7.4 7.5	Standard Applicable: Measurement Equipment Used: Test Set-up: Measurement Procedure: Measurement Result:	.22 .22 .22 .22 .22
7 8	7.1 7.2 7.3 7.4 7.5 Spuri	Standard Applicable: Measurement Equipment Used: Test Set-up: Measurement Procedure: Measurement Result: Dus Radiated Emission Test	.22 .22 .22 .22 .23 .23 .23
	7.1 7.2 7.3 7.4 7.5 Spuri 8.1	Standard Applicable: Measurement Equipment Used: Test Set-up: Measurement Procedure: Measurement Result: ous Radiated Emission Test Standard Applicable	.22 .22 .22 .22 .23 32 .32
	7.1 7.2 7.3 7.4 7.5 Spuri	Standard Applicable: Measurement Equipment Used: Test Set-up: Measurement Procedure: Measurement Result: Dus Radiated Emission Test Standard Applicable Measurement Equipment Used:	.22 .22 .22 .22 .23 32 .32
	7.1 7.2 7.3 7.4 7.5 Spuri 8.1 8.2	Standard Applicable: Measurement Equipment Used: Test Set-up: Measurement Procedure: Measurement Result: ous Radiated Emission Test Standard Applicable	.22 .22 .22 .22 .23 32 .32 .32 .33
	7.1 7.2 7.3 7.4 7.5 Spuri 8.1 8.2 8.3	Standard Applicable: Measurement Equipment Used: Test Set-up: Measurement Procedure: Measurement Result: Dus Radiated Emission Test Standard Applicable Measurement Equipment Used: Test SET-UP:	.22 .22 .22 .23 32 .32 .32 .33 .34
	7.1 7.2 7.3 7.4 7.5 Spuri 8.1 8.2 8.3 8.4	Standard Applicable: Measurement Equipment Used: Test Set-up: Measurement Procedure: Measurement Result: Dus Radiated Emission Test Standard Applicable Measurement Equipment Used: Test SET-UP: Measurement Procedure:	.22 .22 .22 .22 .23 32 .32 .32 .33 .34 .35
	7.1 7.2 7.3 7.4 7.5 Spuri 8.1 8.2 8.3 8.4 8.5 8.6	Standard Applicable: Measurement Equipment Used: Test Set-up: Measurement Procedure: Measurement Result: Dus Radiated Emission Test Standard Applicable Measurement Equipment Used: Test SET-UP: Measurement Procedure: Field Strength Calculation Measurement Result:	.22 .22 .22 .23 32 .32 .32 .33 .34 .35 .35
8	7.1 7.2 7.3 7.4 7.5 Spuri 8.1 8.2 8.3 8.4 8.5 8.6	Standard Applicable: Measurement Equipment Used: Test Set-up: Measurement Procedure: Measurement Result: Dus Radiated Emission Test Standard Applicable Measurement Equipment Used: Test SET-UP: Measurement Procedure: Field Strength Calculation	.22 .22 .22 .22 .23 32 .32 .32 .33 .34 .35 .35 60
8	7.1 7.2 7.3 7.4 7.5 Spuri 8.1 8.2 8.3 8.4 8.5 8.6 100kH	Standard Applicable: Measurement Equipment Used: Test Set-up: Measurement Procedure: Measurement Result: ous Radiated Emission Test Standard Applicable Measurement Equipment Used: Test SET-UP: Measurement Procedure: Field Strength Calculation Measurement Result: Iz Bandwidth of Band Edges Measurement	.22 .22 .22 .22 .23 32 .32 .32 .33 .34 .35 .35 60 .60
8	7.1 7.2 7.3 7.4 7.5 Spuri 8.1 8.2 8.3 8.4 8.5 8.6 100kH 9.1	Standard Applicable:	.22 .22 .22 .22 .23 32 .32 .32 .33 .34 .35 .60 .60 .60 .62
8	7.1 7.2 7.3 7.4 7.5 Spuri 8.1 8.2 8.3 8.4 8.5 8.6 100kH 9.1 9.2 9.3 9.4	Standard Applicable: Measurement Equipment Used: Test Set-up: Measurement Procedure: Measurement Result: Dus Radiated Emission Test. Standard Applicable. Measurement Equipment Used: Test SET-UP: Measurement Procedure: Field Strength Calculation Measurement Result: Iz Bandwidth of Band Edges Measurement Standard Applicable: Measurement Equipment Used: Test SET-UP: Measurement Result: Iz Bandwidth of Band Edges Measurement Measurement Equipment Used: Test SET-UP: Measurement Equipment Used: Measurement Equipment Used: Measurement Equipment Used: Measurement Equipment Used: Measurement Equipment Used: Measurement Procedure:	.22 .22 .22 .23 32 .32 .32 .33 .34 .35 .60 .60 .60 .62 .63
8	7.1 7.2 7.3 7.4 7.5 Spuri 8.1 8.2 8.3 8.4 8.5 8.6 100kH 9.1 9.2 9.3 9.4 9.5	Standard Applicable: Measurement Equipment Used: Test Set-up: Measurement Procedure: Measurement Result: Dus Radiated Emission Test Standard Applicable Measurement Equipment Used: Test SET-UP: Measurement Procedure: Field Strength Calculation Measurement Result: Iz Bandwidth of Band Edges Measurement Standard Applicable: Measurement Equipment Used: Test SET-UP: Measurement Result: Iz Bandwidth of Band Edges Measurement Standard Applicable: Measurement Equipment Used: Test SET-UP: Measurement Equipment Used: Test SET-UP: Measurement Procedure: Field Strength Calculation: Measurement Procedure: Field Strength Calculation:	.22 .22 .22 .23 32 .32 .32 .33 .34 .35 .35 60 .60 .60 .62 .63 .63
8	7.1 7.2 7.3 7.4 7.5 Spuri 8.1 8.2 8.3 8.4 8.5 8.6 100kH 9.1 9.2 9.3 9.4	Standard Applicable: Measurement Equipment Used: Test Set-up: Measurement Procedure: Measurement Result: Dus Radiated Emission Test. Standard Applicable. Measurement Equipment Used: Test SET-UP: Measurement Procedure: Field Strength Calculation Measurement Result: Iz Bandwidth of Band Edges Measurement Standard Applicable: Measurement Equipment Used: Test SET-UP: Measurement Result: Iz Bandwidth of Band Edges Measurement Measurement Equipment Used: Test SET-UP: Measurement Equipment Used: Measurement Equipment Used: Measurement Equipment Used: Measurement Equipment Used: Measurement Equipment Used: Measurement Procedure:	.22 .22 .22 .23 32 .32 .32 .33 .34 .35 .35 60 .60 .60 .62 .63 .63
8	7.1 7.2 7.3 7.4 7.5 Spuri 8.1 8.2 8.3 8.4 8.5 8.6 100kH 9.1 9.2 9.3 9.4 9.5 9.6	Standard Applicable: Measurement Equipment Used: Test Set-up: Measurement Procedure: Measurement Result: bus Radiated Emission Test Standard Applicable Measurement Equipment Used: Test SET-UP: Measurement Procedure: Field Strength Calculation Measurement Result: Iz Bandwidth of Band Edges Measurement Standard Applicable: Measurement Equipment Used: Test SET-UP: Measurement Equipment Used: Test SET-UP: Measurement Equipment Used: Test SET-UP: Measurement Procedure: Field Strength Calculation: Measurement Procedure: Field Strength Calculation: Measurement Result: Measurement Result: Power Spectral Density	.22 .22 .22 .23 32 .32 .32 .32 .32 .33 .34 .35 .35 60 .60 .60 .62 .63 .63 .63 80
8	7.1 7.2 7.3 7.4 7.5 Spuri 8.1 8.2 8.3 8.4 8.5 8.6 100kH 9.1 9.2 9.3 9.4 9.5 9.6 Peak 10.1	Standard Applicable:	.22 .22 .22 .23 .32 .32 .32 .33 .34 .35 .60 .60 .60 .63 .63 .63 .63 .80
8	7.1 7.2 7.3 7.4 7.5 Spuri 8.1 8.2 8.3 8.4 8.5 8.6 100kH 9.1 9.2 9.3 9.4 9.5 9.6 Peak 10.1 10.2	Standard Applicable: Measurement Equipment Used: Test Set-up: Measurement Procedure: Measurement Result: Dus Radiated Emission Test Standard Applicable Measurement Equipment Used: Test SET-UP: Measurement Procedure: Field Strength Calculation Measurement Result: Iz Bandwidth of Band Edges Measurement Standard Applicable: Measurement Equipment Used: Test SET-UP: Measurement Result: Iz Bandwidth of Band Edges Measurement Standard Applicable: Measurement Result: Measurement Result: Power Spectral Density Standard Applicable: Measurement Equipment Used: Measurement Equipment Us	.22 .22 .22 .23 .32 .32 .32 .32 .32 .32
8	7.1 7.2 7.3 7.4 7.5 Spuri 8.1 8.2 8.3 8.4 8.5 8.6 100kH 9.1 9.2 9.3 9.4 9.5 9.6 Peak 10.1	Standard Applicable:	.22 .22 .22 .23 .32 .32 .32 .32 .32 .32

	10.5	Measurement Result:	81
11.	Anten	na Requirement	. 90
		Standard Applicable:	
	11.2	Antenna Connected Construction:	90

1 General Information

General:

Product Name	Digital Signage / POS System			
Brand Name	Zunidata			
Model Name	7NX-RM; 7FX-RM; 7	XXX-XXX (X = 0~9 or A-Z or Blank or -)		
Model Difference	Metal and plastic case	. with, and without POE		
Power Supply	12Vdc by AC Adapter Model No.: 2ABL024			
AC In Power Port	One provided			
USB 2.0 Port	Two provided			
COM 2 (RS232)Port	One provided			
COM 1 (RS232)Port	One provided			
Micro USB Port	One provided			
LAN Port	One provided			
	12Vdc from AC/DC adapter			
Power Supply	ply Adapter: Adapter: 1. Model : SOY-1200200; Supplier: Shenzhen SOY Co., Ltd. 2. Model : 2ABL024F US; Supplier: CWT 3. Model : 2AAJ024FC ; Supplier: CWT			

BLE:

Frequency Range:	2402 – 2480MHz	
Bluetooth Version:	V4.0	
Channel number:	40 channels	
Tune up power (Peak):	GFSK : 2.509 dBm +/- 1 dB	
Antenna Designation:	PCB Antenna: -1.89 dBi	

WLAN

Wi-Fi	Frequency Range (MHz)	Channels Peak / Average Rated Power		Modulation Technology	
802.11b	2412 - 2462(DTS)	11	19.14Bm (PK)		
802.11g	2412 - 2462(DTS)	11	23.57dBm (PK)	OFDM	
802.11n (2.4G)	HT20 2412 – 2462(DTS)	11	23.61dBm (PK)		
Modula	tion type	CCK, DQPSK, DBPSK for DSSS 256QAM.64QAM. 16QAM, QPSK, BPSK for OFDM			
Antenna I	2500/MM.040/MM. 100/MM, QLOR, DLOR, DL			0	

The EUT is compliance with IEEE 802.11 b/g/n Standard. This report applies for 2.4GHz Wifi + BLE.

Remark: The above DUT's information was declared by manufacturer. Please refer to the specifications or user's manual for more detailed description.

2.4G Power Setting

Mode	Freq(MHz)	Power Setting (dBm)	Software value
	2412	default	default
11b	2437	default	default
	2462	default	default
	2412	14	56
11g	2437	14	56
	2462	14	56
	2412	13.5	54
802.11n HT20	2437	13.5	54
	2462	13.5	54
	2402	default	default
BLE	2442	default	default
	2480	default	default

1.1 Related Submittal(s) / Grant (s)

This submittal(s) (test report) is intended for FCC ID: <u>Z28-7N-7F-RM</u> filing to comply with Section 15.247 of the FCC Part 15, Subpart C Rules

1.2 Test Methodology

Both conducted and radiated testing were performed according to the procedures in ANSI C63.10: 2013. Radiated testing was performed at an antenna to EUT distance 3 meters.

KDB Document: 558074 D01 15.247 Meas Guidance v0.5r02

1.3 Test Facility

The measurement facilities used to collect the 3m Radiated Emission and AC power line conducted data are located on the address of International Standards Laboratory Corp. <LT Lab.> No. 120, Lane 180, Hsin Ho Rd., Lung-Tan Dist., Tao Yuan City 325, Taiwan which are constructed and calibrated to meet the FCC requirements in documents . FCC Registration Number is: 487532; Designation Number is: TW0997.

1.4 Special Accessories

Not available for this EUT intended for grant.

1.5 Equipment Modifications

Not available for this EUT intended for grant.

2 System Test Configuration

2.1 EUT Configuration

The EUT configuration for testing is installed on RF field strength measurement to meet the Commissions requirement and operating in a manner which intends to maximize its emission characteristics in a continuous normal application.

2.2 EUT Exercise

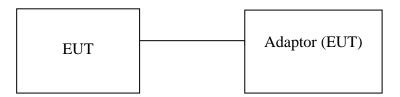
The EUT (Transmitter) was operated in the engineering mode to fix the Tx frequency that was for the purpose of the measurements.

2.3 Test Procedure

2.3.1 Conducted Emissions

The EUT is a placed on as turn table which is 0.8 m above ground plane. According to the requirements in Section 6 of ANSI C63.10: 2013. Conducted emissions from the EUT measured in the frequency range between 0.15 MHz and 30MHz using CISPR 16-1-1 Quasi-Peak and Average detector mode.

2.3.2 Radiated Emissions


The EUT is a placed on as turn table which is 0.8 m/1.5m (Frequency above 1GHz) above ground plane. The turn table shall rotate 360 degrees to determine the position of maxi-mum emission level. EUT is set 3m away from the receiving antenna which varied from 1m to 4m to find out the highest emission. And also, each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical. In order to find out the max. emission, the relative positions of this hand-held transmitter(EUT) was rotated through three orthogonal axes according to the requirements in Section 6 and 11 of ANSI C63.10: 2013.

2.4 Configuration of Tested System

Fig. 2-1 Configuration of Tested System (Fixed channel)

Radiated Emission

Table 2-1 Equipment Used in Tested System

Item	Equipment	Mfr/Brand	Model/ Type No.	Series No.	Data Cable	Power Cord
1	EUT (adaptor)	CWT	2ABL024F US	NA	NA	Non-shielding
2	EUT (adaptor)	Shenzhen SOY Technology Co., Ltd.	SOY-1200200	NA	NA	Non-shielding
3	EUT (adaptor)	CWT	2AAJ024FC	NA	NA	Non-shielding

Note: All the above equipment/cables were placed in worse case positions to maximize emission signals during emission test.

Grounding: Grounding was in accordance with the manufacturer's requirements and conditions for the intended use.

3 Summary of Test Results

FCC Rules	FCC Rules Description Of Test	
§15.207(a)	AC Power Line Conducted Emission	Compliant
§15.247(b) (3),(4)	Peak Output Power/ EIRP	Compliant
§15.247(a)(2)	6dB Power Bandwidth	Compliant
§15.247(d)	100 kHz Bandwidth Of Frequency Band Edges	Compliant
§15.247(d)	Spurious Emission	Compliant
§15.247(e)	Peak Power Density	Compliant
§ 15.203	Antenna Requirement	Compliant

4 Description of Test Modes

The EUT has been tested under engineering operating condition.

Test program used to control the EUT for staying in continuous transmitting mode is programmed.

Wifi:

802.11 b mode: Channel low (2412MHz), mid (2437MHz), high (2462MHz) with 1Mbps lowest data rate are chosen for full testing.

802.11 g mode: Channel low (2412MHz), mid (2437MHz), high (2462MHz) with 6Mbps lowest data rate are chosen for full testing.

802.11 n _20MHz: Channel low (2412MHz), mid (2437MHz), high (2462MHz) with 6.5Mbps lowest data rate are chosen for full testing.

BLE:

Channel low (2402MHz), mid (2442MHz) and high (2480MHz) with each modulation were chosen for full testing.

5 Conduced Emission Test

5.1 Standard Applicable:

According to \$15.207, frequency range within 150kHz to 30MHz shall not exceed the Limit table as below.

	Limits				
Frequency range	dB(uV)				
MHz	Quasi-peak	Average			
0.15 to 0.50	66 to 56	56 to 46			
0.50 to 5	56	46			
5 to 30	60	50			
Noto					

Note

1. The lower limit shall apply at the transition frequencies

2.The limit decreases linearly with the logarithm of the frequency in the range 0.15 MHz to 0.50 MHz.

5.2 Measurement Equipment Used:

Location	Equipment Name	Brand	Model	S/N	Last Cal. Date	Next Cal. Date
Conduction 02	LISN 26	R&S	ENV216	102378	11/21/2019	11/21/2020
Conduction 02	LISN 21	R&S	ENV216	101476	07/21/2020	07/21/2021
Conduction 02	Conduction 02-1 Cable	WOKEN	CFD 300-NL	Conduction 02 -1	09/11/2020	09/11/2021
Conduction 02	EMI Receiver 14	ROHDE&SCHW ARZ	ESCI	101034	05/22/2020	05/22/2021
Conduction 02	ISN T4 07	Teseq GmbH	ISN T400A	49913	08/02/2020	08/02/2021
Conduction 02	ISN T8 10	Teseq GmbH	ISN T800	42773	08/02/2020	08/02/2021

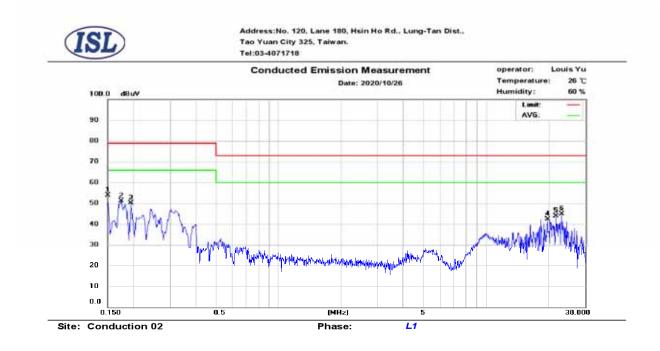
5.3 EUT Setup:

- 1. The conducted emission tests were performed in the test site, using the setup in accordance with the ANSI C63.10: 2014.
- 2. The AC/DC Power adaptor of EUT was plug-in LISN. The EUT was placed flushed with the rear of the table.
- 3. The LISN was connected with 120Vac/60Hz power source.

5.4 Measurement Procedure:

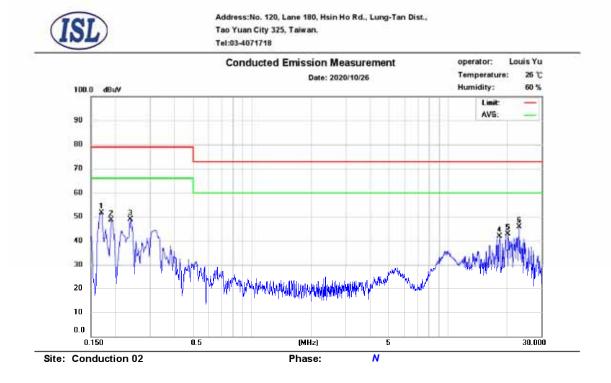
- 1. The EUT was placed on a table which is 0.8m above ground plane.
- 2. Maximum procedure was performed on the six highest emissions to ensure EUT compliance.
- 3. Repeat above procedures until all frequency measured were complete.
- 4. Both 120V & 240V have been verified, and 120V/60Hz was defined as the worst-case and record in the report.

5.5 Measurement Result:


The initial step in collecting conducted data is a spectrum analyzer peak scan of the measurement range. Significant peaks are then marked as shown on the following data page, and these signals are then quasi-peaked.

Note: Refer to next page for measurement data and plots.

AC POWER LINE CONDUCTED EMISSION TEST DATA



No.	Frequency (MHz)	QP_R (dBuV)	AVG_R (dBuV)	Correct Factor (dB)	QP Emission (dBuV)	QP Limit (dBuV)	QP Margin (dB)	AVG Emission (dBuV)	AVG Limit (dBuV)	AVG Margin (dB)
1	0.150	43.88	26.32	9.69	53.57	79.00	-25.43	36.01	66.00	-29.99
2	0.174	39.05	24.07	9.69	48.74	79.00	-30.26	33.76	66.00	-32.24
3	0.194	36.74	22.02	9.68	46.42	79.00	-32.58	31.70	66.00	-34.30
4	19.710	31.63	28.96	9.98	41.61	73.00	-31.39	38.94	60.00	-21.06
5	21.662	32.76	30.30	9.98	42.74	73.00	-30.26	40.28	60.00	-19.72
6	23.130	33.94	32.36	9.97	43.91	73.00	-29.09	42.33	60.00	-17.67

-17 of 90-

No.	Frequency (MHz)	QP_R (dBuV)	AVG_R (dBuV)	Correct Factor (dB)	QP Emission (dBuV)	QP Limit (dBuV)	QP Margin (dB)	AVG Emission (dBuV)	AVG Limit (dBuV)	AVG Margin (dB)
1	0.170	38.37	24.45	9.68	48.05	79.00	-30.95	34.13	66.00	-31.87
2	0.190	35.91	19.87	9.68	45.59	79.00	-33.41	29.55	66.00	-36.45
3	0.238	34.19	22.66	9.68	43.87	79.00	-35.13	32.34	66.00	-33.66
4	18.242	31.32	28.55	10.06	41.38	73.00	-31.62	38.61	60.00	-21.39
5	20.258	31.78	29.16	10.08	41.86	73.00	-31.14	39.24	60.00	-20.76
6	23.130	34.40	31.88	10.10	44.50	73.00	-28.50	41.98	60.00	-18.02

International Standards Laboratory Corp.

6 Peak Output Power

6.1 Standard Applicable:

According to §15.247(b)(3),(4)(b)

(3) For systems using digital modulation in the 902-928 MHz, 2400-2483.5 MHz, and 5725-5850 MHz bands: 1 Watt. As an alternative to a peak power measurement, compliance with the one Watt limit can be based on a measurement of the maximum conducted output power. Maximum Conducted Output Power is defined as the total transmit power delivered to all antennas and antenna elements averaged across all symbols in the signaling alphabet when the transmitter is operating at its maximum power control level. Power must be summed across all antennas and antenna elements. The average must not include any time intervals during which the transmitter is off or is transmitting at a reduced power level. If multiple modes of operation are possible (e.g., alternative modulation methods), the maximum conducted output power is the highest total transmit power occurring in any mode.

(4) The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

(c) Operation with directional antenna gains greater than 6 dBi.

(1) Fixed point-to-point operation:

(i) Systems operating in the 2400-2483.5 MHz band that are used exclusively for fixed, point-to-point operations may employ transmitting antennas with directional gain greater than 6 dBi provided the maximum conducted output power of the intentional radiator is reduced by 1 dB for every 3 dB that the directional gain of the antenna exceeds 6 dBi.

(ii) Systems operating in the 5725-5850 MHz band that are used exclusively for fixed, point-to-point operations may employ transmitting antennas with directional gain greater than 6 dBi without any corresponding reduction in transmitter conducted output power.

Location Conducted	Equipment Name	Brand	Model	S/N	Last Cal. Date	Next Cal. Date
Conducted	Power Meter	Anritsu	ML2495A	1116010	09/25/2020	09/25/2021
Conducted	Power Sensor	Anritsu	MA2411B	34NKF50	09/25/2020	09/25/2021
Conducted	Power Sensor	DARE	RPR3006W	13I00030SNO33	01/03/2020	01/03/2021
Conducted	Power Sensor	DARE	RPR3006W	13I00030SNO34	01/09/2020	01/09/2021
Conducted	Power Sensor	DARE	RPR3006W	14I00889SNO35	06/29/2020	06/29/2021
Conducted	Power Sensor	DARE	RPR3006W	14I00889SNO36	06/29/2020	06/29/2021
Conducted	Temperature Cham- ber	KSON	THS-B4H100	2287	03/11/2020	03/11/2021
Conducted	DC Power supply	ABM	8185D	N/A	01/03/2020	01/03/2021
Conducted	AC Power supply	EXTECH	CFC105W	NA	N/A	N/A
Conducted	Spectrum analyzer	Keysight	N9010A	MY56070257	09/23/2020	09/23/2021
Conducted	Spectrum analyzer	R&S	FSP40	100116	01/10/2020	01/10/2021
Conducted	Test Software	DARE	Radiation Ver:2013.1.23	NA	NA	NA
Conducted	Test Software	R&S	CMUGO Ver:2.0.0	N/A	N/A	N/A
Conducted	Radio Communica- tion Analyzer	R&S	CMU200	111968	11/29/2019	11/29/2020
Conducted	Wideband Radio Communication Tester	R&S	CMW500	1201.002K50108 793-JG	10/28/2020	10/28/2021
Conducted	BT Simulator	Agilent	N4010A	MY48100200	NA	NA

6.2 Measurement Equipment Used:

6.3 Test Set-up:

6.4 Measurement Procedure:

- 1. Place the EUT on the table and set it in transmitting mode.
- 2. Remove the antenna from the EUT and then connect a low loss RF cable from the antenna port to the power meter
- 3. Record the max. reading.
- 4. Repeat above procedures until all frequency measured were complete.

6.5 Measurement Result:

Peak Power

I Cak I Owel							T 10	
	Freq.		Output Po	wer (dBm)		Duty Factor	Total Output	Output Power
Mode	(MHz)	Chain 0	Chain 1	Chain 2	Chain 3	(dB)	Power (dBm)	Limit (dBm)
	2412	18.11				0.00	18.11	30.00
802.11b	2437	19.14				0.00	19.14	30.00
	2462	18.81				0.00	18.81	30.00
	2412	22.67				0.00	22.67	30.00
802.11g	2437	23.57				0.00	23.57	30.00
	2462	23.13				0.00	23.13	30.00
000 11	2412	22.53				0.00	22.53	30.00
802.11n HT20	2437	23.61				0.00	23.61	30.00
11120	2462	23.11				0.00	23.11	30.00

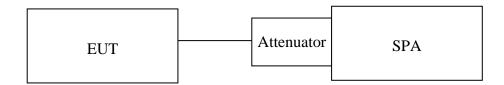
Peak Power

Mode	Freq. (MHz)	Output Power (dBm)	Total Output Power (dBm)	Output Power Limit (dBm)
	2402	1.331	1.33	30.00
BLE 4.0	2442	2.437	2.44	30.00
	2480	1.997	2.00	30.00

Peak Power

Mode	Freq. (MHz)	Output Power (dBm)	Total Output Power (dBm)	Output Power Limit (dBm)
	2402	1.352	1.35	30.00
BLE 5.0	2442	2.509	2.51	30.00
	2480	2	2.00	30.00

7 6dB Bandwidth


7.1 Standard Applicable:

According to §15.247(a)(2), Systems using digital modulation techniques may operate in the 902 - 928 MHz,2400 - 2483.5 MHz, and 5725 - 5850 MHz bands. The minimum 6 dB bandwidth shall be at least 500kHz.

7.2 Measurement Equipment Used:

Refer to section 6.2 for details.

7.3 Test Set-up:

7.4 Measurement Procedure:

- 1. Place the EUT on the table and set it in transmitting mode.
- 2. Remove the antenna from the EUT and then connect a low loss RF cable from the antenna port to the spectrum analyzer.
- 3. Set the spectrum analyzer as RBW=100kHz, VBW = 3*RBW, Span= cover the complete power envelope of the signal of the UUT Sweep=auto
- 4. Mark the peak frequency and –6dB (upper and lower) frequency.
- 5. Repeat above procedures until all frequency measured were complete.

7.5 Measurement Result:

Band	Frequency	6dB Bandwidth	6dB BW Limit
Duite	(MHz)	(MHz)	(kHz)
	2412	8.58	> 500
802.11b	2437	9.02	> 500
	2462	9.05	> 500
	2412	16.09	> 500
802.11g	2437	16.30	> 500
	2462	15.83	> 500
	2412	17.09	> 500
802.11n HT20	2437	17.32	> 500
	2462	15.66	> 500

BT 4.0

Frequency	6dB Bandwidth	6dB BW Limit
(MHz)	(MHz)	(kHz)
2402	0.72	> 500
2442	0.71	> 500
2480	0.72	> 500

BT 5.0

Frequency	6dB Bandwidth	6dB BW Limit
(MHz)	(MHz)	(kHz)
2402	0.72	> 500
2442	0.72	> 500
2480	0.71	> 500

Note: Refer to next page for plots.

802.11b

6dB Band Width Test Data CH-Low

6dB Band Width Test Data CH-Mid

Span 30 MHz Sweep 2.933 ms

24.8 dBm

99.00 %

-6.00 dB

STATUS

CF Step 3.000000 MHz

Freq Offset 0 Hz

Auto

Man

Center 2.462 GHz #Res BW 100 kHz

Occupied Bandwidth

Transmit Freq Error

x dB Bandwidth

#VBW 300 kHz

x dB

Total Power

% of OBW Power

-25 of 90-

6dB Band Width Test Data CH-High

802.11g 6dB Band Width Test Data CH-Low

12.063 MHz

-21.693 kHz

9.051 MHz

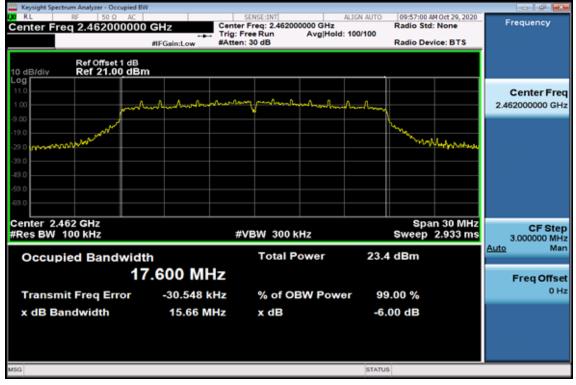
6dB Band Width Test Data CH-Mid

-26 of 90-

6dB Band Width Test Data CH-High

802.11n_20M

6dB Band Width Test Data CH-Low



6dB Band Width Test Data CH-Mid

Keysight Spectrum Analys			course and						
Center Freq 2.4	50 Ω AC 37000000 G	Hz	SENSE:INT Center Freq: 2.43		ALIGN AUTO	Radio Sto	AM Oct 29, 2020 d: None	Frequenc	:y
		IFGain:Low	Trig: Free Run #Atten: 30 dB	Avg Hold	1: 100/100	Radio De	vice: BTS		
-									
	Dffset 1 dB 21.00 dBm								
Log								Contor	Error
1.00		A . A Am	more more	- Andrew Constant	A .A			Center 2.43700000	
-9.00	part and		v	and the second second				2.40700000	0 OTIL
-19.0	March					Www.			
29.0 march walk	<u> </u>					~w	many		
-39.0									
-49.0									
-59.0									
-69.0									
Center 2.437 GH	7					Sna	an 30 MHz		
#Res BW 100 kH			#VBW 30	0 kHz			2.933 ms	CF 3.000000	Step MHz
O second set D	and shared addition		Tota	Power	22.0	9 dBm		Auto	Man
Occupied B				rower	22.3	авт			
	17.	657 M⊦	1Z					Freq C	offset
Transmit Free	q Error	-25.832 k	Hz % of	OBW Pow	er 99	9.00 %			0 Hz
x dB Bandwid	ith	17.32 M	Hz x dB		-6.	.00 dB			
MSG					STATU	s			

6dB Band Width Test Data CH-High

BT BLE 4.0

6dB Band Width Test Data CH-Low

6dB Band Width Test Data CH-Mid

6dB Band Width Test Data CH-High

BT BLE 5.0 6dB Band Width Test Data CH-Low

Comparison Comparison Analyzer - Occupied Bi Comparison RL RF 50 Ω AC				8 PM Oct 28, 2020	Frequency
Center Freq 2.40200000	Irig: I	r Freq: 2.402000000 GHz Free Run Avg Hold:	100/100	td: None	Frequency
	#IFGain:Low #Atter	n: 30 dB	Radio D	evice: BTS	
10 dB/div Ref Offset 1 dB Ref 21.00 dBr	n				
11.0					Center Freq
1.00					2.402000000 GHz
-9.00					
-29.0					
-39.0					
-49.0					
-69.0					
Center 2.402 GHz				pan 3 MHz	CF Step
#Res BW 100 kHz	#	VBW 300 kHz	Sv	veep 1 ms	300.000 kHz
Occupied Bandwidt	th	Total Power	7.87 dBm		<u>Auto</u> Man
1.	0902 MHz				Freq Offset
Transmit Freq Error	-10.462 kHz	% of OBW Powe	r 99.00 %		0 Hz
x dB Bandwidth	715.7 kHz	x dB	-6.00 dB		
MSG			STATUS		

6dB Band Width Test Data CH-Mid

6dB Band Width Test Data CH-High

8 Spurious Radiated Emission Test

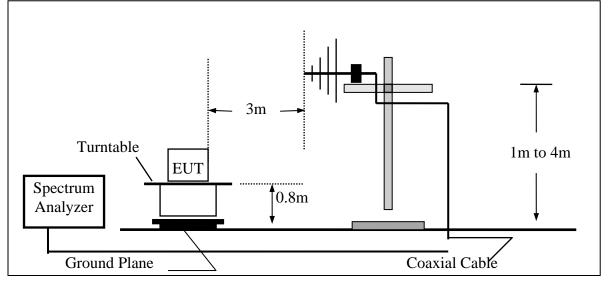
8.1 Standard Applicable

According to §15.247(d), all other emissions outside these bands shall not exceed the general radiated emission limits specified in §15.209(a). And according to §15.33(a)(1), for an intentional radiator operates below 10GHz, the frequency range of measurements: to the tenth harmonic of the highest fundamental frequency or to 40GHz, whichever is lower.

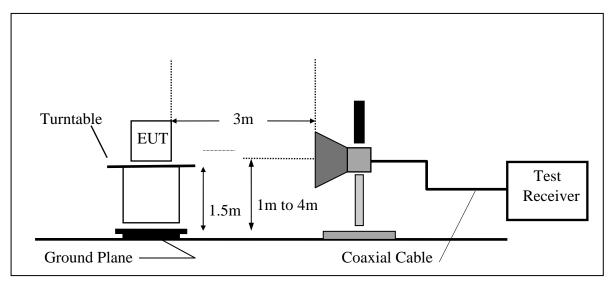
8.2 Measurement Equipment Used:

8.2.1 Conducted Emission at antenna port:

Refer to section 6.2 for details.


8.2.2 Radiated emission:

Location	Equipment Name	Brand	Model	S/N	Last Cal. Date	Next Cal. Date
Chamber 19	Signal analyzer	R&S	FSV40	101919	8/13/2020	8/13/2021
Chamber 19	EMI Receiver	R&S	ESR3	102461	05/05/2020	05/05/2021
Chamber 19	Loop Antenna	EM	EM-6879	271	05/21/2020	05/21/2021
Chamber 19	Bilog Antenna (30MHz-1GHz)	Schwarzbeck	VULB9168 w 6dB Att.	736	02/11/2020	02/11/2021
Chamber 19	Horn antenna (1GHz-18GHz)	ETS LINDGREN	3117	00218718	09/25/2020	09/25/2021
Chamber 19	Horn antenna (18GHz-26GHz)	Com-power	AH-826	081001	11/25/2019	11/25/2020
Chamber 19	Horn antenna (26GHz-40GHz)	Com-power	AH-640	100A	03/13/2020	03/13/2021
Chamber 19	Preamplifier (9kHz-1GHz)	HP	8447F	3113A04621	06/19/2020	06/19/2021
Chamber 19	Preamplifier (1GHz - 26GHz)	EM	EM01M26G	060681	05/04/2020	05/04/2021
Chamber 19	Preamplifier (26GHz-40GHz)	MITEQ	JS4-26004000- 27-5A	818471	05/04/2020	05/04/2021
Chamber 19	RF Cable (9kHz-18GHz)	HUBER SU- HNER	Sucoflex 104A	MY1397/4A	01/10/2020	01/10/2021
Chamber 19	RF Cable (18GHz-40GHz)	HUBER SU- HNER	Sucoflex 102	27963/2&374 21/2	11/21/2019	11/21/2020
Chamber 19	Signal Generator	Anritsu	MG3692A	20311	01/06/2020	01/06/2021
Chamber 19	Test Software	Audix	E3 Ver:6.12023	N/A	N/A	N/A



8.3 Test SET-UP:

The test item only performed radiated mode (A) Radiated Emission Test Set-Up, Frequency Below 1000MHz

(B) Radiated Emission Test Set-UP Frequency Over 1 GHz

8.4 Measurement Procedure:

- 1. According 414788 section 2, Either OATS or chamber for radiated emission below 30MHz, the test was done at 966 chamber, the test site was evaluated with OATS and the Chamber has test signals level greater than OATS's.
- 2. The EUT was placed on a turn table which is 0.8m/1.5m above ground plane in 966 chamber.
- 3. The turn table shall rotate 360 degrees to determine the position of maximum emission level.
- 4. EUT is set 3m away from the receiving antenna which varied from 1m to 4m to find out the highest emissions.
- 5. When measurement procedures for electric field radiated emissions above 1 GHz the EUT measurement is to be made "while keeping the antenna in the 'cone of radiation' from that area and pointed at the area both in azimuth and elevation, with polarization oriented for maximum response." is still within the 3dB illumination BW of the measurement antenna.
- 6. Maximum procedure was performed on the six highest emissions to ensure EUT compliance.
- 7. And also, each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical.
- 8. Repeat above procedures until all frequency measured were complete.

Test receiver setting	:	Blew 1GHz
Detector	:	Average(9kHz – 90kHz, 110kHz – 90kHz), Quasi-Peak
Bandwidth	:	200Hz, 120kHz
Test spectrum setting	:	Above 1GHz
Peak	:	RBW=1MHz, VBW=3MHz,Sweep=auto
Average (for Wi-Fi)	:	RBW=1MHz, VBW≥1/Ton, Sweep=auto
Average (for BLE)	:	RBW=1MHz, VBW ≥1/Ton 1, Sweep=auto

Mode	ON time (ms)	Total time (ms)	Duty Cycle	Duty Factor	1/Ton (kHz)	VBW for average de- tector (kHz)
b	30.000	30.000	100.000%	0.00	0.033	1
g	1.379	1.439	95.811%	0.19	0.725	1
HT20	1.296	1.348	96.089%	0.17	0.772	1
BLE	0.390	0.620	62.903%	2.01	2.564	1

Average Measurement Setting (VBW)

8.5 Field Strength Calculation

The field strength is calculated by adding the Antenna Factor and Cable Factor and subtracting the Amplifier Gain and Duty Cycle Correction Factor(if any) from the measured reading. The basic equation with a sample calculation is as follows:

FS = RA + AF + CL - AG

Where	FS = Field Strength	CL = Cable Attenuation Factor (Cable Loss)
	RA = Reading Amplitude	AG = Amplifier Gain
	AF = Antenna Factor	

8.6 Measurement Result:

Note: Refer to next page spectrum analyzer data chart and tabular data sheets.

Operat	ion Mode	ТХ	TX mode				TX mode			Test Dat		
Chann	el number	CH	I Low		Test	t By 🛛 V	Veitin					
Temperature						Pol	V	/er./Hor				
Humidity		60	%									
No	Freq	Reading	Factor	Level	Limit	Margin	Remark	Pol				

No	Freq	Reading	Factor	Level	Limit	Margin	Remark	Pol
	MHz	dBuV	dB	dBuV/m	dBuV/m	dB		V/H
1	74.62	38.97	-8.65	30.32	40.00	-9.68	Peak	VERTICAL
2	125.06	33.04	-7.31	25.73	43.50	-17.77	Peak	VERTICAL
3	263.77	29.60	-5.15	24.45	46.00	-21.55	Peak	VERTICAL
4	395.69	37.50	-2.11	35.39	46.00	-10.61	Peak	VERTICAL
5	513.06	33.91	-0.36	33.55	46.00	-12.45	Peak	VERTICAL
6	730.34	29.92	3.60	33.52	46.00	-12.48	Peak	VERTICAL
1	118.27	34.33	-7.80	26.53	43.50	-16.97	Peak	HORIZONTAL
2	204.60	34.75	-7.39	27.36	43.50	-16.14	Peak	HORIZONTAL
3	395.69	34.17	-2.11	32.06	46.00	-13.94	Peak	HORIZONTAL
4	520.82	30.74	-0.08	30.66	46.00	-15.34	Peak	HORIZONTAL
5	698.33	28.43	3.05	31.48	46.00	-14.52	Peak	HORIZONTAL
6	837.04	28.09	5.16	33.25	46.00	-12.75	Peak	HORIZONTAL

Radiated Spurious Emission Measurement Result (below 1GHz) (802.11b mode)

Remark:

- 1 No further spurious emissions detected from the lowest internal frequency and 30MHz.
- 2 Measuring frequencies from the lowest internal frequency to the 1GHz.
- 3 Radiated emissions measured in frequency range from 9kHz to 1000MHz were made with an instrument detector setting 9-90kHz/110-490kHz using PK/AV and other Frequency Band using PK/QP
- 4 Measurement result within this frequency range shown "-" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.

Radiated Spurious Emission Measurement Result (below 1GHz) (802.11b mode)

Operation Mode	TX mode	Test Date	2020/11/10
Channel number	CH Mid	Test By	Weitin
Temperature	25	Pol	Ver./Hor
Humidity	60 %		

No	Freq MHz	Reading dBuV	Factor dB	Level dBuV/m	Limit dBuV/m	Margin dB	Remark	Pol V/H
1	74.62	38.56	-8.65	29.91	40.00	-10.09	Peak	VERTICAL
2	264.74	30.16	-5.11	25.05	46.00	-20.95	Peak	VERTICAL
3	395.69	38.59	-2.11	36.48	46.00	-9.52	Peak	VERTICAL
4	521.79	30.38	-0.04	30.34	46.00	-15.66	Peak	VERTICAL
5	642.07	29.26	2.01	31.27	46.00	-14.73	Peak	VERTICAL
6	760.41	28.14	4.41	32.55	46.00	-13.45	Peak	VERTICAL
1	118.27	33.62	-7.80	25.82	43.50	-17.68	Peak	HORIZONTAL
2	204.60	33.24	-7.39	25.85	43.50	-17.65	Peak	HORIZONTAL
3	395.69	29.63	-2.11	27.52	46.00	-18.48	Peak	HORIZONTAL
4	521.79	33.44	-0.04	33.40	46.00	-12.60	Peak	HORIZONTAL
5	654.68	28.66	2.23	30.89	46.00	-15.11	Peak	HORIZONTAL
6	811.82	28.44	4.67	33.11	46.00	-12.89	Peak	HORIZONTAL

- 1 No further spurious emissions detected from the lowest internal frequency and 30MHz.
- 2 Measuring frequencies from the lowest internal frequency to the 1GHz.
- 3 Radiated emissions measured in frequency range from 9kHz to 1000MHz were made with an instrument detector setting 9-90kHz/110-490kHz using PK/AV and other Frequency Band using PK/QP
- 4 Measurement result within this frequency range shown "-" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.

-38	of	90-	
00	UI.	/0	

Radiated Spurious Emission Measurement Result (below 1GHz) (802.11b mode)

Operation Mode	TX mode	Test Date	2020/11/10
Channel number	CH High	Test By	Weitin
Temperature	25	Pol	Ver./Hor
Humidity	60 %		

No	Freq MHz	Reading dBuV	Factor dB	Level dBuV/m	Limit dBuV/m	Margin dB	Remark	Pol V/H
1	74.62	39.27	-8.65	30.62	40.00	-9.38	Peak	VERTICAL
2	137.67	31.21	-5.73	25.48	43.50	-18.02	Peak	VERTICAL
3	257.95	29.67	-5.41	24.26	46.00	-21.74	Peak	VERTICAL
4	395.69	37.97	-2.11	35.86	46.00	-10.14	Peak	VERTICAL
5	611.03	28.93	1.78	30.71	46.00	-15.29	Peak	VERTICAL
6	793.39	28.14	4.65	32.79	46.00	-13.21	Peak	VERTICAL
1	121.18	33.31	-7.64	25.67	43.50	-17.83	Peak	HORIZONTAL
2	204.60	33.83	-7.39	26.44	43.50	-17.06	Peak	HORIZONTAL
3	356.89	28.62	-2.90	25.72	46.00	-20.28	Peak	HORIZONTAL
4	520.82	35.34	-0.08	35.26	46.00	-10.74	Peak	HORIZONTAL
5	648.86	28.31	2.11	30.42	46.00	-15.58	Peak	HORIZONTAL
6	762.35	28.40	4.38	32.78	46.00	-13.22	Peak	HORIZONTAL

- 1 No further spurious emissions detected from the lowest internal frequency and 30MHz.
- 2 Measuring frequencies from the lowest internal frequency to the 1GHz.
- 3 Radiated emissions measured in frequency range from 9kHz to 1000MHz were made with an instrument detector setting 9-90kHz/110-490kHz using PK/AV and other Frequency Band using PK/QP
- 4 Measurement result within this frequency range shown "-" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.

Radiated Spurious Emission Measurement Result (below 1GHz) (802.11g mode)

Operation Mode	TX mode	Test Date	2020/11/10
Channel number	CH Low	Test By	Weitin
Temperature	25	Pol	Ver./Hor
Humidity	60 %		

No	Freq MHz	Reading dBuV	Factor dB	Level dBuV/m	Limit dBuV/m	Margin dB	Remark	Pol V/H
1	74.62	39.16	-8.65	30.51	40.00	-9.49	Peak	VERTICAL
2	166.77	29.81	-4.95	24.86	43.50	-18.64	Peak	VERTICAL
3	307.42	30.46	-3.75	26.71	46.00	-19.29	Peak	VERTICAL
4	395.69	44.67	-2.11	42.56	46.00	-3.44	Peak	VERTICAL
5	514.03	29.99	-0.34	29.65	46.00	-16.35	Peak	VERTICAL
6	689.60	28.59	2.93	31.52	46.00	-14.48	Peak	VERTICAL
1	122.15	33.26	-7.54	25.72	43.50	-17.78	Peak	HORIZONTAL
2	222.06	33.53	-7.10	26.43	46.00	-19.57	Peak	HORIZONTAL
3	396.66	29.49	-2.10	27.39	46.00	-18.61	Peak	HORIZONTAL
4	520.82	30.56	-0.08	30.48	46.00	-15.52	Peak	HORIZONTAL
5	678.93	28.20	2.58	30.78	46.00	-15.22	Peak	HORIZONTAL
6	862.26	28.70	5.43	34.13	46.00	-11.87	Peak	HORIZONTAL

- 1 No further spurious emissions detected from the lowest internal frequency and 30MHz.
- 2 Measuring frequencies from the lowest internal frequency to the 1GHz.
- 3 Radiated emissions measured in frequency range from 9kHz to 1000MHz were made with an instrument detector setting 9-90kHz/110-490kHz using PK/AV and other Frequency Band using PK/QP
- 4 Measurement result within this frequency range shown "-" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.

Ra	diated Spurious	Emission Measu	rement Result (below	w 1GHz) (802.11g	mode)
0				T D	2020/

Operation Mode	TX mode	Test Date	2020/11/10
Channel number	CH Mid	Test By	Weitin
Temperature	25	Pol	Ver./Hor
Humidity	60 %		

-40 of 90-

No	Freq MHz	Reading dBuV	Factor dB	Level dBuV/m	Limit dBuV/m	Margin dB	Remark	Pol V/H
1	74.62	38.62	-8.65	29.97	40.00	-10.03	Peak	VERTICAL
2	307.42	29.74	-3.75	25.99	46.00	-20.01	Peak	VERTICAL
3	395.69	37.50	-2.11	35.39	46.00	-10.61	Peak	VERTICAL
4	522.76	33.04	0.00	33.04	46.00	-12.96	Peak	VERTICAL
5	664.38	28.54	2.29	30.83	46.00	-15.17	Peak	VERTICAL
6	821.52	28.03	5.04	33.07	46.00	-12.93	Peak	VERTICAL
1	121.18	33.62	-7.64	25.98	43.50	-17.52	Peak	HORIZONTAL
2	204.60	33.88	-7.39	26.49	43.50	-17.01	Peak	HORIZONTAL
3	396.66	29.81	-2.10	27.71	46.00	-18.29	Peak	HORIZONTAL
4	513.06	30.37	-0.36	30.01	46.00	-15.99	Peak	HORIZONTAL
5	700.27	28.40	3.08	31.48	46.00	-14.52	Peak	HORIZONTAL
6	760.41	29.00	4.41	33.41	46.00	-12.59	Peak	HORIZONTAL

- 1 No further spurious emissions detected from the lowest internal frequency and 30MHz.
- 2 Measuring frequencies from the lowest internal frequency to the 1GHz.
- 3 Radiated emissions measured in frequency range from 9kHz to 1000MHz were made with an instrument detector setting 9-90kHz/110-490kHz using PK/AV and other Frequency Band using PK/QP
- 4 Measurement result within this frequency range shown "-" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.

Radiated Spurious Emission Measurement Result (below 1GHz) (802.11g mode)

Operation Mode	TX mode	Test Date	2020/11/10
Channel number	CH High	Test By	Weitin
Temperature	25	Pol	Ver./Hor
Humidity	60 %		

No	Freq MHz	Reading dBuV	Factor dB	Level dBuV/m	Limit dBuV/m	Margin dB	Remark	Pol V/H
1	74.62	38.93	-8.65	30.28	40.00	-9.72	Peak	VERTICAL
2	161.92	29.97	-4.89	25.08	43.50	-18.42	Peak	VERTICAL
3	248.25	30.15	-5.70	24.45	46.00	-21.55	Peak	VERTICAL
4	395.69	37.96	-2.11	35.85	46.00	-10.15	Peak	VERTICAL
5	522.76	33.33	0.00	33.33	46.00	-12.67	Peak	VERTICAL
6	746.83	31.24	3.91	35.15	46.00	-10.85	Peak	VERTICAL
1	124.09	33.94	-7.33	26.61	43.50	-16.89	Peak	HORIZONTAL
2	205.57	33.25	-7.37	25.88	43.50	-17.62	Peak	HORIZONTAL
3	395.69	29.83	-2.11	27.72	46.00	-18.28	Peak	HORIZONTAL
4	495.60	29.17	-0.71	28.46	46.00	-17.54	Peak	HORIZONTAL
5	611.03	28.33	1.78	30.11	46.00	-15.89	Peak	HORIZONTAL
6	753.62	27.88	4.14	32.02	46.00	-13.98	Peak	HORIZONTAL

- 1 No further spurious emissions detected from the lowest internal frequency and 30MHz.
- 2 Measuring frequencies from the lowest internal frequency to the 1GHz.
- 3 Radiated emissions measured in frequency range from 9kHz to 1000MHz were made with an instrument detector setting 9-90kHz/110-490kHz using PK/AV and other Frequency Band using PK/QP
- 4 Measurement result within this frequency range shown "-" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.

Radiated Spurious Emission Measurement Result (below 1GHz) (802.11n HT20 mode)

-42 of 90-

Operation Mode	TX mode	Test Date	2020/11/10
Channel number	CH Low	Test By	Weitin
Temperature	25	Pol	Ver./Hor
Humidity	60 %		

No	Freq MHz	Reading dBuV	Factor dB	Level dBuV/m	Limit dBuV/m	Margin dB	Remark	Pol V/H
1	74.62	38.99	-8.65	30.34	40.00	-9.66	Peak	VERTICAL
2	181.32	30.62	-6.38	24.24	43.50	-19.26	Peak	VERTICAL
3	395.69	38.71	-2.11	36.60	46.00	-9.40	Peak	VERTICAL
4	520.82	32.96	-0.08	32.88	46.00	-13.12	Peak	VERTICAL
5	618.79	29.38	1.73	31.11	46.00	-14.89	Peak	VERTICAL
6	759.44	28.47	4.40	32.87	46.00	-13.13	Peak	VERTICAL
1	120.21	32.98	-7.68	25.30	43.50	-18.20	Peak	HORIZONTAL
2	203.63	33.92	-7.40	26.52	43.50	-16.98	Peak	HORIZONTAL
3	395.69	31.05	-2.11	28.94	46.00	-17.06	Peak	HORIZONTAL
4	560.59	28.14	0.45	28.59	46.00	-17.41	Peak	HORIZONTAL
5	687.66	28.21	2.86	31.07	46.00	-14.93	Peak	HORIZONTAL
6	864.20	28.82	5.42	34.24	46.00	-11.76	Peak	HORIZONTAL

- 1 No further spurious emissions detected from the lowest internal frequency and 30MHz.
- 2 Measuring frequencies from the lowest internal frequency to the 1GHz.
- 3 Radiated emissions measured in frequency range from 9kHz to 1000MHz were made with an instrument detector setting 9-90kHz/110-490kHz using PK/AV and other Frequency Band using PK/QP
- 4 Measurement result within this frequency range shown "-" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.

Radiated Spurious Emission Measurement Result (below 1GHz) (802.11n HT20 mode)

-43 of 90-

Operation Mode	TX mode	Test Date	2020/11/10
Channel number	CH Mid	Test By	Weitin
Temperature	25	Pol	Ver./Hor
Humidity	60 %		

No	Freq MHz	Reading dBuV	Factor dB	Level dBuV/m	Limit dBuV/m	Margin dB	Remark	Pol V/H
1	75.59	38.82	-8.79	30.03	40.00	-9.97	Peak	VERTICAL
2	139.61	30.65	-5.52	25.13	43.50	-18.37	Peak	VERTICAL
3	257.95	30.48	-5.41	25.07	46.00	-20.93	Peak	VERTICAL
4	395.69	40.08	-2.11	37.97	46.00	-8.03	Peak	VERTICAL
5	522.76	29.72	0.00	29.72	46.00	-16.28	Peak	VERTICAL
6	666.32	28.69	2.28	30.97	46.00	-15.03	Peak	VERTICAL
1	121.18	33.29	-7.64	25.65	43.50	-17.85	Peak	HORIZONTAL
2	205.57	33.58	-7.37	26.21	43.50	-17.29	Peak	HORIZONTAL
3	395.69	30.83	-2.11	28.72	46.00	-17.28	Peak	HORIZONTAL
4	520.82	31.41	-0.08	31.33	46.00	-14.67	Peak	HORIZONTAL
5	688.63	28.42	2.90	31.32	46.00	-14.68	Peak	HORIZONTAL
6	892.33	28.27	5.99	34.26	46.00	-11.74	Peak	HORIZONTAL

- 1 No further spurious emissions detected from the lowest internal frequency and 30MHz.
- 2 Measuring frequencies from the lowest internal frequency to the 1GHz.
- 3 Radiated emissions measured in frequency range from 9kHz to 1000MHz were made with an instrument detector setting 9-90kHz/110-490kHz using PK/AV and other Frequency Band using PK/QP
- 4 Measurement result within this frequency range shown "-" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.

Radiated Spurious Emission Measurement Result (below 1GHz) (802.11n HT20 mode)

-44 of 90-

Operation Mode	TX mode	Test Date	2020/11/10
Channel number	CH High	Test By	Weitin
Temperature	25	Pol	Ver./Hor
Humidity	60 %		

No	Freq MHz	Reading dBuV	Factor dB	Level dBuV/m	Limit dBuV/m	Margin dB	Remark	Pol V/H
1	74.62	38.42	-8.65	29.77	40.00	-10.23	Peak	VERTICAL
2	121.18	33.76	-7.64	26.12	43.50	-17.38	Peak	VERTICAL
3	254.07	30.14	-5.56	24.58	46.00	-21.42	Peak	VERTICAL
4	395.69	37.57	-2.11	35.46	46.00	-10.54	Peak	VERTICAL
5	520.82	31.97	-0.08	31.89	46.00	-14.11	Peak	VERTICAL
6	729.37	33.06	3.57	36.63	46.00	-9.37	Peak	VERTICAL
1	120.21	32.91	-7.68	25.23	43.50	-18.27	Peak	HORIZONTAL
2	203.63	33.38	-7.40	25.98	43.50	-17.52	Peak	HORIZONTAL
3	395.69	29.87	-2.11	27.76	46.00	-18.24	Peak	HORIZONTAL
4	522.76	33.11	0.00	33.11	46.00	-12.89	Peak	HORIZONTAL
5	698.33	29.35	3.05	32.40	46.00	-13.60	Peak	HORIZONTAL
6	800.18	28.60	4.57	33.17	46.00	-12.83	Peak	HORIZONTAL

- 1 No further spurious emissions detected from the lowest internal frequency and 30MHz.
- 2 Measuring frequencies from the lowest internal frequency to the 1GHz.
- 3 Radiated emissions measured in frequency range from 9kHz to 1000MHz were made with an instrument detector setting 9-90kHz/110-490kHz using PK/AV and other Frequency Band using PK/QP
- 4 Measurement result within this frequency range shown "-" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.

Radiated Sparrous Emission Measurement Result (above 10112) (002.110 mode)								
Operation Mode	TX mode	Test Date	2020/11/10					
Channel number	CH Low	Test By	Weitin					
Temperature	25	Pol	Ver./Hor					
Humidity	60 %							

Radiated Spurious Emission Measurement Result (above 1GHz) (802.11b mode)

No	Freq	Reading	Factor	Level	Limit	Margin	Remark	Pol
	MHz	dBuV	dB	dBuV/m	dBuV/m	dB		V/H
1	4824.00	47.35	-7.33	40.02	74.00	-33.98	Peak	VERTICAL
2	6984.00	48.82	-1.29	47.53	74.00	-26.47	Peak	VERTICAL
1	4824.00	47.87	-7.33	40.54	74.00	-33.46	Peak	HORIZONTAL
2	7358.00	47.85	-1.12	46.73	74.00	-27.27	Peak	HORIZONTAL

- 1 Measuring frequencies from the lowest internal frequency to the 10th of fundamental frequency
- 2 Field strength limits for frequency above 1000MHz are based on average limits. However, Peak mode field strength shall not exceed the average limits specified plus 20dB.
- 3 Measurement of data within this frequency range shown "-" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.

Operation Mode Channel number Temperature		el number	TX mode CH Mid 25				Test Date Test By Pol		2020/11/10 Weitin Ver./Hor	
Humidity		60	%							
	No	Freq	Reading	Factor	Level	Limit	Margin	Remark	Pol	
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB		V/H	
	1	4874.00	47.04	-7.07	39.97	74.00	-34.03	Peak	VERTICAL	
	2	7239.00	48.59	-1.15	47.44	74.00	-26.56	Peak	VERTICAL	

40.44

46.07

-46 of 90-

Radiated Spurious Emission Measurement Result (above 1GHz) (802.11b mode)

Remark:

 $\frac{1}{2}$

4874.00

7069.00

47.51

47.33

-7.07

-1.26

1 Measuring frequencies from the lowest internal frequency to the 10th of fundamental frequency

74.00

74.00

-33.56

-27.93

Peak

Peak

HORIZONTAL

HORIZONTAL

2 Field strength limits for frequency above 1000MHz are based on average limits. However, Peak mode field strength shall not exceed the average limits specified plus 20dB.

3 Measurement of data within this frequency range shown "-" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.

Peak

HORIZONTAL

Operation Mode Channel number Temperature Humidity		el number erature		mode High %			Г	Fest Date Fest By Pol	2020/11/10 Weitin Ver./Hor
	No	Freq	Reading	Factor	Level	Limit	Margin	Remark	Pol
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB		V/H
	1	4924.00	47.67	-7.01	40.66	74.00	-33.34	Peak	VERTICAL
	2	7239.00	47.97	-1.15	46.82	74.00	-27.18	Peak	VERTICAL
	1	4924.00	47.52	-7.01	40.51	74.00	-33.49	Peak	HORIZONTAL

-47 of 90-

Radiated Spurious Emission Measurement Result (above 1GHz) (802.11b mode)

Remark:

7069.00

48.47

-1.26

2

1 Measuring frequencies from the lowest internal frequency to the 10th of fundamental frequency

74.00

-26.79

47.21

- 2 Field strength limits for frequency above 1000MHz are based on average limits. However, Peak mode field strength shall not exceed the average limits specified plus 20dB.
- 3 Measurement of data within this frequency range shown "-" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.

Radiated Spurious I	Emission Measur	ement Result (above 1GHz) (802.11g m	node)
Operation Mode	TX mode	Test Date	2020/

Operation Mode	TX mode	Test Date	2020/11/10
Channel number	CH Low	Test By	Weitin
Temperature	25	Pol	Ver./Hor
Humidity	60 %		

-48 of 90-

No	Freq MHz	Reading dBuV	Factor dB	Level dBuV/m	Limit dBuV/m	Margin dB	Remark	Pol V/H
1	4824.00	48.14	-7.33	40.81	74.00	-33.19	Peak	VERTICAL
2	7358.00	48.36	-1.12	47.24	74.00	-26.76	Peak	VERTICAL
1	4824.00	48.55	-7.33	41.22	74.00	-32.78	Peak	HORIZONTAL
2	7375.00	47.16	-1.05	46.11	74.00	-27.89	Peak	HORIZONTAL

- 1 Measuring frequencies from the lowest internal frequency to the 10th of fundamental frequency
- 2 Field strength limits for frequency above 1000MHz are based on average limits. However, Peak mode field strength shall not exceed the average limits specified plus 20dB.
- 3 Measurement of data within this frequency range shown "-" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.

Operation Mode		TX	mode			Tes	t Date 2	020/11/10	
(Chann	el number	CH	Mid			Tes	t By V	Veitin
1	Гетре	erature	25				Pol	V	/er./Hor
Humidity		lity	60 %						
	No	Freq	Reading	Factor	Level	Limit	Margin	Remark	Pol
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB		V/H
	1	4874.00	47.58	-7.07	40.51	74.00	-33.49	Peak	VERTICAL
	2	7409.00	47.76	-0.96	46.80	74.00	-27.20	Peak	VERTICAL

41.08

47.30

-49 of 90-

Radiated Spurious Emission Measurement Result (above 1GHz) (802.11g mode)

Remark:

 $\frac{1}{2}$

4874.00

7409.00

48.15

48.26

-7.07

-0.96

1 Measuring frequencies from the lowest internal frequency to the 10th of fundamental frequency

74.00

74.00

-32.92

-26.70

Peak

Peak

HORIZONTAL

HORIZONTAL

2 Field strength limits for frequency above 1000MHz are based on average limits. However, Peak mode field strength shall not exceed the average limits specified plus 20dB.

3 Measurement of data within this frequency range shown "-" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.

HORIZONTAL

Operation Mode Channel number Temperature Humidity			mode High %			Г	Fest Date Fest By Pol	2020/11/10 Weitin Ver./Hor	
	No	Freq MHz	Reading dBuV	Factor dB	Level dBuV/m	Limit dBuV/m	Margin dB	Remark	Pol V/H
	1	4924.00	47.33	-7.01	40.32	74.00	-33.68	Peak	VERTICAL
	2	7188.00	46.98	-1.07	45.91	74.00	-28.09	Peak	VERTICAL
	1	4924.00	47.39	-7.01	40.38	74.00	-33.62	Peak	HORIZONTAL

-50 of 90-

Radiated Spurious Emission Measurement Result (above 1GHz) (802.11g mode)

Remark:

7171.00

48.08

-1.18

2

1 Measuring frequencies from the lowest internal frequency to the 10th of fundamental frequency

74.00

-27.10

Peak

46.90

2 Field strength limits for frequency above 1000MHz are based on average limits. However, Peak mode field strength shall not exceed the average limits specified plus 20dB.

3 Measurement of data within this frequency range shown "-" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.

-51	of	90-
-----	----	-----

Radiated Spurious Emission Measurement Result (above 1GHz) (802.11n HT20 mode)

Operation Mode	TX mode	Test Date	2020/11/10
Channel number	CH Low	Test By	Weitin
Temperature	25	Pol	Ver./Hor
Humidity	60 %		

No	Freq MHz	Reading dBuV	Factor dB	Level dBuV/m	Limit dBuV/m	Margin dB	Remark	Pol V/H
1	4824.00	47.21	-7.33	39.88	74.00	-34.12	Peak	VERTICAL
2	7375.00	47.80	-1.05	46.75	74.00	-27.25	Peak	VERTICAL
1	4824.00	48.08	-7.33	40.75	74.00	-33.25	Peak	HORIZONTAL
2	6916.00	48.13	-1.28	46.85	74.00	-27.15	Peak	HORIZONTAL

- 1 Measuring frequencies from the lowest internal frequency to the 10th of fundamental frequency
- 2 Field strength limits for frequency above 1000MHz are based on average limits. However, Peak mode field strength shall not exceed the average limits specified plus 20dB.
- 3 Measurement of data within this frequency range shown "-" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.

-27.38

Peak

HORIZONTAL

(]	Operation Mode Channel number Temperature Humidity		TX mode CH Mid 25 60 %					Test Date2020/11/Test ByWeitinPolVer./Hor	
	No	Freq MHz	Reading dBuV	Factor dB	Level dBuV/m	Limit dBuV/m	Margin dB	Remark	Pol V/H
	1	4874.00	47.20	-7.07	40.13	74.00	-33.87	Peak	VERTICAL
	2	7426.00	47.16	-0.99	46.17	74.00	-27.83	Peak	VERTICAL
	1	4874.00	47.72	-7.07	40.65	74.00	-33.35	Peak	HORIZONTAL

-52 of 90-

Radiated Spurious Emission Measurement Result (above 1GHz) (802.11n HT20 mode)

Remark:

7239.00

47.77

-1.15

2

1 Measuring frequencies from the lowest internal frequency to the 10th of fundamental frequency

74.00

46.62

2 Field strength limits for frequency above 1000MHz are based on average limits. However, Peak mode field strength shall not exceed the average limits specified plus 20dB.

3 Measurement of data within this frequency range shown "-" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.

Peak

HORIZONTAL

(Chann	nel numberCH HighTest Byerature25Poldity60 %		2020/11/10 Weitin Ver./Hor					
	No	Freq MHz	Reading dBuV	Factor dB	Level dBuV/m	Limit dBuV/m	Margin dB	Remark	Pol V/H
	1	4924.00	46.62	-7.01	39.61	74.00	-34.39	Peak	VERTICAL
	2	7069.00	48.23	-1.26	46.97	74.00	-27.03	Peak	VERTICAL
	1	4924.00	46.20	-7.01	39.19	74.00	-34.81	Peak	HORIZONTAL

-53 of 90-

Radiated Spurious Emission Measurement Result (above 1GHz) (802.11n HT20 mode)

-1.33

Remark:

6967.00

47.64

2

1 Measuring frequencies from the lowest internal frequency to the 10th of fundamental frequency

74.00

-27.69

46.31

2 Field strength limits for frequency above 1000MHz are based on average limits. However, Peak mode field strength shall not exceed the average limits specified plus 20dB.

3 Measurement of data within this frequency range shown "-" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.

Ruulatea Sparious Elli	Ruduced Spurious Emission freusurement Result (below Foriz) bill froue							
Operation Mode	TX mode	Test Date	2020/11/10					
Channel number	CH Low	Test By	Weitin					
Temperature	25	Pol	Ver./Hor					
Humidity	60 %							

No	Freq	Reading	Factor	Level	Limit	Margin	Remark	Pol
	MHz	dBuV	dB	dBuV/m	dBuV/m	dB		V/H
1	75.59	38.73	-8.79	29.94	40.00	-10.06	Peak	VERTICAL
2	118.27	33.17	-7.80	25.37	43.50	-18.13	Peak	VERTICAL
3	251.16	30.13	-5.64	24.49	46.00	-21.51	Peak	VERTICAL
4	520.82	31.69	-0.08	31.61	46.00	-14.39	Peak	VERTICAL
5	638.19	28.81	2.03	30.84	46.00	-15.16	Peak	VERTICAL
6	781.75	28.57	4.41	32.98	46.00	-13.02	Peak	VERTICAL
1	123.12	34.04	-7.43	26.61	43.50	-16.89	Peak	HORIZONTAL
2	204.60	33.29	-7.39	25.90	43.50	-17.60	Peak	HORIZONTAL
3	307.42	27.93	-3.75	24.18	46.00	-21.82	Peak	HORIZONTAL
4	395.69	29.10	-2.11	26.99	46.00	-19.01	Peak	HORIZONTAL
5	522.76	30.67	0.00	30.67	46.00	-15.33	Peak	HORIZONTAL
6	746.83	31.13	3.91	35.04	46.00	-10.96	Peak	HORIZONTAL

- 1 No further spurious emissions detected from the lowest internal frequency and 30MHz.
- 2 Measuring frequencies from the lowest internal frequency to the 1GHz.
- 3 Radiated emissions measured in frequency range from 9kHz to 1000MHz were made with an instrument detector setting 9-90kHz/110-490kHz using PK/AV and other Frequency Band using PK/QP
- 4 Measurement result within this frequency range shown "-" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.

Radiated Spurious Emission Measurement Result (below 1GHz) BLE Mode

Operation Mode	TX mode	Test Date	2020/11/10
Channel number	CH Mid	Test By	Weitin
Temperature	25	Pol	Ver./Hor
Humidity	60 %		

No	Freq MHz	Reading dBuV	Factor dB	Level dBuV/m	Limit dBuV/m	Margin dB	Remark	Pol V/H
1	75.59	38.80	-8.79	30.01	40.00	-9.99	Peak	VERTICAL
2	121.18	33.09	-7.64	25.45	43.50	-18.05	Peak	VERTICAL
3	250.19	30.28	-5.66	24.62	46.00	-21.38	Peak	VERTICAL
4	395.69	37.74	-2.11	35.63	46.00	-10.37	Peak	VERTICAL
5	521.79	32.95	-0.04	32.91	46.00	-13.09	Peak	VERTICAL
6	689.60	29.28	2.93	32.21	46.00	-13.79	Peak	VERTICAL
1	123.12	33.35	-7.43	25.92	43.50	-17.58	Peak	HORIZONTAL
2	205.57	33.26	-7.37	25.89	43.50	-17.61	Peak	HORIZONTAL
3	395.69	29.91	-2.11	27.80	46.00	-18.20	Peak	HORIZONTAL
4	575.14	28.37	1.05	29.42	46.00	-16.58	Peak	HORIZONTAL
5	698.33	28.64	3.05	31.69	46.00	-14.31	Peak	HORIZONTAL
6	844.80	29.18	5.20	34.38	46.00	-11.62	Peak	HORIZONTAL

- 1 No further spurious emissions detected from the lowest internal frequency and 30MHz.
- 2 Measuring frequencies from the lowest internal frequency to the 1GHz.
- 3 Radiated emissions measured in frequency range from 9kHz to 1000MHz were made with an instrument detector setting 9-90kHz/110-490kHz using PK/AV and other Frequency Band using PK/QP
- 4 Measurement result within this frequency range shown "-" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.

Radiated Spurious Emission Measurement Result (below 1GHz) BLE Mode

Operation Mode	TX mode	Test Date	2020/11/10
Channel number	CH High	Test By	Weitin
Temperature	25	Pol	Ver./Hor
Humidity	60 %		

No	Freq MHz	Reading dBuV	Factor dB	Level dBuV/m	Limit dBuV/m	Margin dB	Remark	Pol V/H
1	74.62	38.73	-8.65	30.08	40.00	-9.92	Peak	VERTICAL
2	180.35	30.63	-6.22	24.41	43.50	-19.09	Peak	VERTICAL
3	395.69	42.87	-2.11	40.76	46.00	-5.24	Peak	VERTICAL
4	521.79	36.96	-0.04	36.92	46.00	-9.08	Peak	VERTICAL
5	592.60	29.81	1.32	31.13	46.00	-14.87	Peak	VERTICAL
6	746.83	28.04	3.91	31.95	46.00	-14.05	Peak	VERTICAL
1	121.18	33.48	-7.64	25.84	43.50	-17.66	Peak	HORIZONTAL
2	204.60	33.67	-7.39	26.28	43.50	-17.22	Peak	HORIZONTAL
3	395.69	29.85	-2.11	27.74	46.00	-18.26	Peak	HORIZONTAL
4	520.82	33.16	-0.08	33.08	46.00	-12.92	Peak	HORIZONTAL
5	733.25	34.16	3.62	37.78	46.00	-8.22	Peak	HORIZONTAL
6	829.28	28.37	5.13	33.50	46.00	-12.50	Peak	HORIZONTAL

- 1 No further spurious emissions detected from the lowest internal frequency and 30MHz.
- 2 Measuring frequencies from the lowest internal frequency to the 1GHz.
- 3 Radiated emissions measured in frequency range from 9kHz to 1000MHz were made with an instrument detector setting 9-90kHz/110-490kHz using PK/AV and other Frequency Band using PK/QP
- 4 Measurement result within this frequency range shown "-" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.

Radiated Spurious Emission Measurement Result (above 1GHz) BLE Mode

Operation Mode	TX mode	Test Date	2020/11/10
Channel number	CH Low	Test By	Weitin
Temperature	25	Pol	Ver./Hor
Humidity	60 %		

No	Freq	Reading	Factor	Level	Limit	Margin	Remark	Pol
	MHz	dBuV	dB	dBuV/m	dBuV/m	dB		V/H
1	4804.00	47.94	-7.42	40.52	74.00	-33.48	Peak	VERTICAL
2	7409.00	48.14	-0.96	47.18	74.00	-26.82	Peak	VERTICAL
1	4804.00	47.38	-7.42	39.96	74.00	-34.04	Peak	HORIZONTAL
2	7375.00	47.43	-1.05	46.38	74.00	-27.62	Peak	HORIZONTAL

Remark:

1 Measuring frequencies from the lowest internal frequency to the 10th of fundamental frequency

- 2 Field strength limits for frequency above 1000MHz are based on average limits. However, Peak mode field strength shall not exceed the average limits specified plus 20dB.
- 3 Measurement of data within this frequency range shown "-" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.

Operation Mode Channel number		TX mode CH Mid				Test Date Test By		2020/11/10 Weitin	
Temperature		25				Pol	/er./Hor		
Humidity			60	%					
	No	Freq	Reading	Factor	Level	Limit	Margin	Remark	Pol
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB		V/H
	1	4884.00	46.86	-7.01	39.85	74.00	-34.15	Peak	VERTICAL
	2	7307.00	47.98	-1.08	46.90	74.00	-27.10	Peak	VERTICAL

40.45

46.00

-58 of 90-

Radiated Spurious Emission Measurement Result (above 1GHz) BLE Mode

Remark:

1

2

4884.00

7086.00

47.46

47.20

-7.01

-1.20

1 Measuring frequencies from the lowest internal frequency to the 10th of fundamental frequency

74.00

74.00

-33.55

-28.00

Peak

Peak

HORIZONTAL

HORIZONTAL

- ² Field strength limits for frequency above 1000MHz are based on average limits. However, Peak mode field strength shall not exceed the average limits specified plus 20dB.
- 3 Measurement of data within this frequency range shown "-" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.

Operation Mode Channel number Temperature Humidity		el number erature		mode High %			Г	Test Date Test By Pol	2020/11/10 Weitin Ver./Hor
	No	Freq	Reading	Factor	Level	Limit	Margin	Remark	Pol
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB		V/H
	1	4960.00	46.71	-7.05	39.66	74.00	-34.34	Peak	VERTICAL
	2	7205.00	47.30	-1.02	46.28	74.00	-27.72	Peak	VERTICAL

-59 of 90-

Radiated Spurious Emission Measurement Result (above 1GHz) BLE Mode

Remark:

 $\frac{1}{2}$

4960.00

7086.00

47.35

47.64

-7.05

-1.20

1 Measuring frequencies from the lowest internal frequency to the 10th of fundamental frequency

74.00

74.00

-33.70

-27.56

Peak

Peak

HORIZONTAL

HORIZONTAL

2 Field strength limits for frequency above 1000MHz are based on average limits. However, Peak mode field strength shall not exceed the average limits specified plus 20dB.

40.30

46.44

3 Measurement of data within this frequency range shown "-" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.

9. 100kHz Bandwidth of Band Edges Measurement

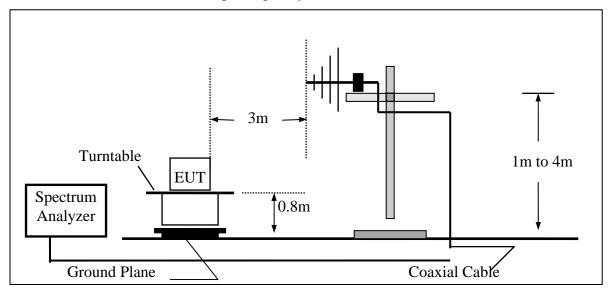
9.1 Standard Applicable:

According to \$15.247(d), in any 100 kHz bandwidth outside the frequency bands in which the spread spectrum intentional radiator in operating, the radio frequency power that is produced by the intentional radiator shall be at least 20dB below that in the 100kHz bandwidth within the band that contains the highest level of the desired power, In addition, radiated emissions which fall in the restricted bands, as defined in \$15.205(a), must also comply with the radiated emission limits specified in15.209(a).

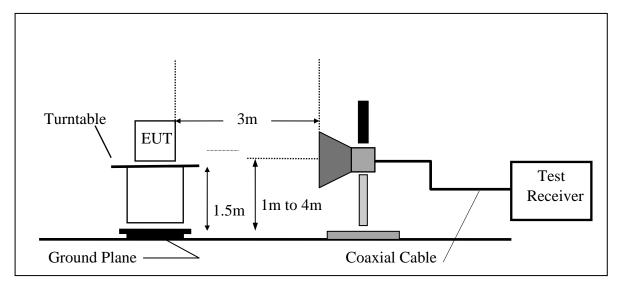
9.2 Measurement Equipment Used:

9.2.1. Conducted Emission at antenna port:

Refer to section 6.2 for details.


9.2.2. Radiated emission:

Location	Equipment Name	Brand	Model	S/N	Last Cal. Date	Next Cal. Date
Chamber 19	Signal analyzer	R&S	FSV40	101919	8/13/2020	8/13/2021
Chamber 19	EMI Receiver	R&S	ESR3	102461	05/05/2020	05/05/2021
Chamber 19	Loop Antenna	EM	EM-6879	271	05/21/2020	05/21/2021
Chamber 19	Bilog Antenna (30MHz-1GHz)	Schwarzbeck	VULB9168 w 6dB Att.	736	02/11/2020	02/11/2021
Chamber 19	Horn antenna (1GHz-18GHz)	ETS LINDGREN	3117	00218718	09/25/2020	09/25/2021
Chamber 19	Horn antenna (18GHz-26GHz)	Com-power	AH-826	081001	11/25/2019	11/25/2020
Chamber 19	Horn antenna (26GHz-40GHz)	Com-power	AH-640	100A	03/13/2020	03/13/2021
Chamber 19	Preamplifier (9kHz-1GHz)	HP	8447F	3113A04621	06/19/2020	06/19/2021
Chamber 19	Preamplifier (1GHz - 26GHz)	EM	EM01M26G	060681	05/04/2020	05/04/2021
Chamber 19	Preamplifier (26GHz-40GHz)	MITEQ	JS4-26004000- 27-5A	818471	05/04/2020	05/04/2021
Chamber 19	RF Cable (9kHz-18GHz)	HUBER SU- HNER	Sucoflex 104A	MY1397/4A	01/10/2020	01/10/2021
Chamber 19	RF Cable (18GHz-40GHz)	HUBER SU- HNER	Sucoflex 102	27963/2&374 21/2	11/21/2019	11/21/2020
Chamber 19	Signal Generator	Anritsu	MG3692A	20311	01/06/2020	01/06/2021
Chamber 19	Test Software	Audix	E3 Ver:6.12023	N/A	N/A	N/A



9.3 Test SET-UP:

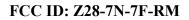
The test item only performed radiated mode (A) Radiated Emission Test Set-Up, Frequency Below 1000MHz

(B) Radiated Emission Test Set-UP Frequency Over 1 GHz

9.4 Measurement Procedure:

- 1. Place the EUT on the table and set it in transmitting mode.
- 2. Remove the antenna from the EUT and then connect a low loss RF cable from the antenna port to the spectrum analyzer.
- 3. Set center frequency of spectrum analyzer = operating frequency.
- 4. Set the spectrum analyzer as RBW, VBW=100kHz, Span=25MHz, Sweep = auto
- 5. Mark Peak, 2.390GHz and 2.4835GHz and record the max. level.
- 6. Repeat above procedures until all frequency measured were complete.

9.5 Field Strength Calculation:

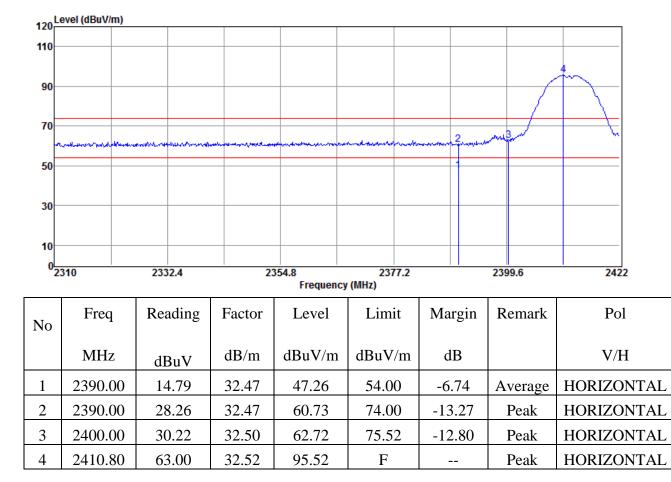

The field strength is calculated by adding the Antenna Factor and Cable Factor and subtracting the Amplifier Gain and Duty Cycle Correction Factor(if any) from the measured reading. The basic equation with a sample calculation is as follows:

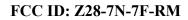
FS = RA + AF + CL - AG

Where	FS = Field Strength	CL = Cable Attenuation Factor (Cable Loss)
	RA = Reading Amplitude	AG = Amplifier Gain
	AF = Antenna Factor	

9.6 Measurement Result:

Note: Refer to next page spectrum analyzer data chart and tabular data sheets.

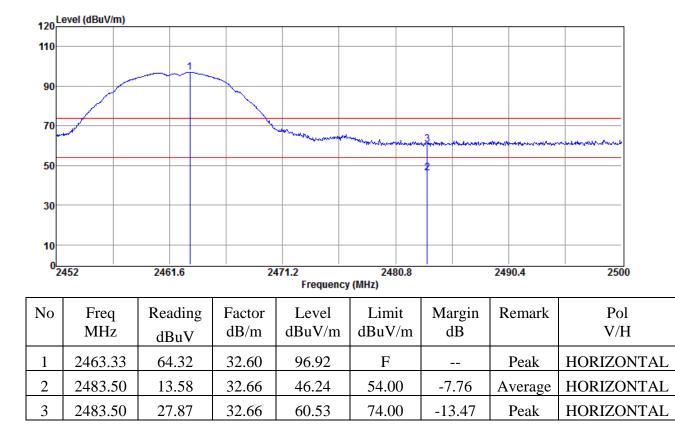


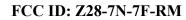

Radiated Emission: 802.11 b mode

perati undan	ion Mode nental Freque rature	TX Clency 2412	H Low			Test Date Test By Humidity	Weitin	
emper	lature	25				munuty	00 %	
120	evel (dBuV/m)							
110								
90								\bigwedge
70						2	Bar	=
50	***************************************		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~			an la din tradicio de la Constantia		
30								
10								
0 ^L 2	2310	2332.4	I	2354.8 Frequen	2377. cy (MHz)	2	2399.6	24
	Erog	Reading	Factor	Level	Limit	Margin	Remark	Pol
No	Freq MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Ttemark	V/H
No 1	-	-				-	Average	V/H
	MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB		V/H VERTICAL
1	MHz 2390.00	dBuV 13.57	dB/m 32.47	dBuV/m 46.04	dBuV/m 54.00	dB -7.96	Average	

Remark: F" denotes fundamental frequency

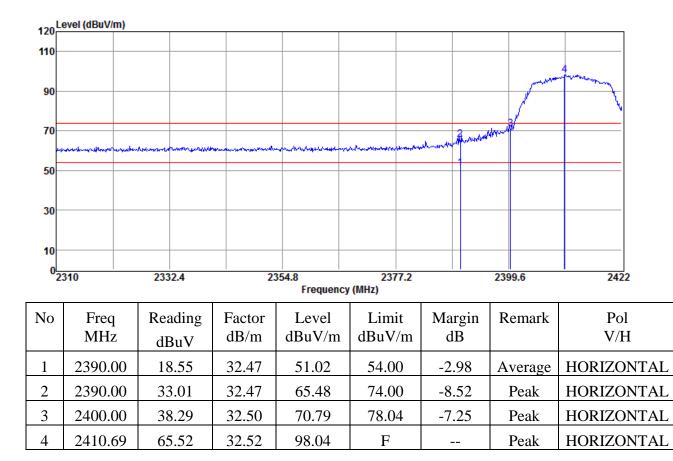
-65 of 90-





	on Mode nental Freque rature		H High MHz			Test Date Test By Humidity	Weitin	
420 LG	evel (dBuV/m)							
120								
90								
70								
				and the second of the second o	www.www.www.ash	man	-	-
50					2			
30-								
50								
10								
0 <mark></mark>	152	2461.6	2471		2480.8	249	0.4	2500
				Frequency (M	HZ)			
No	Freq	Reading	Factor	Level	Limit	Margin	Remark	Pol
	MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB		V/H
1	2463.33	64.76	32.60	97.36	F		Peak	VERTICAL
2	2483.50	14.59	32.66	47.25	54.00	-6.75	Average	VERTICAL
3	2483.50	28.37	32.66	61.03	74.00	-12.97	Peak	VERTICAL

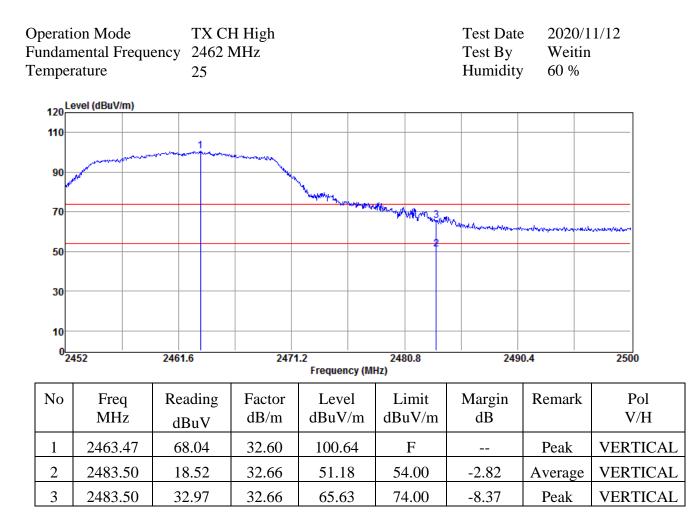
Remark: F" denotes fundamental frequency



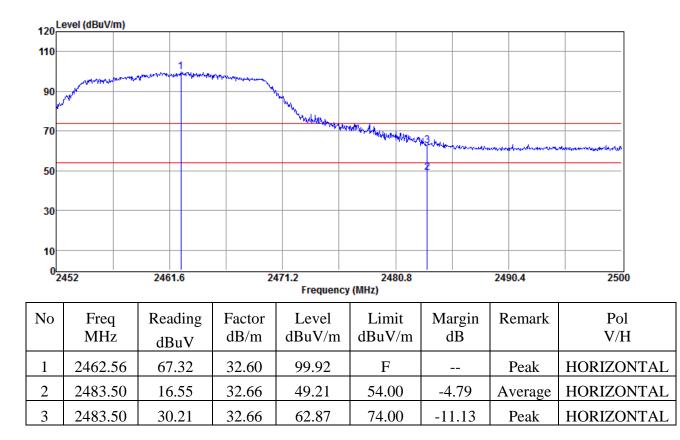
Radiated Emission: 802.11 g mode

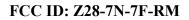
-	on Mode nental Frequerature						Test Date2020/11/12Test ByWeitinHumidity60 %		
120	evel (dBuV/m)								
110									
90-								many -	
70						B Wintf			
	urananinalananagrusukihas	adarah dari karana k	New market and the Market and the second		ana an	new for many			
50									
30									
10									
0	310	2332.4	2354	l.8	2377.2	239	9.6	2422	
	ſ	ſ		Frequency (M	Hz)		1		
No	Freq	Reading	Factor	Level	Limit	Margin	Remark	Pol	
	MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB		V/H	
1	2390.00	17.59	32.47	50.06	54.00	-3.94	Average	VERTICAL	
2	2390.00	32.89	32.47	65.36	74.00	-8.64	Peak	VERTICAL	
3	2400.00	40.42	32.50	72.92	77.27	-4.35	Peak	VERTICAL	
4	2411.36	64.75	32.52	97.27	F		Peak	VERTICAL	

Remark: F" denotes fundamental frequency



-69 of 90-

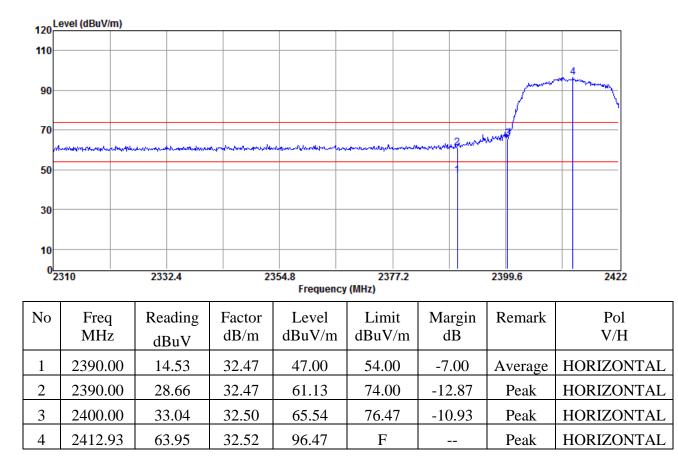

Remark: F" denotes fundamental frequency



Remark: F" denotes fundamental frequency

Remark: F" denotes fundamental frequency

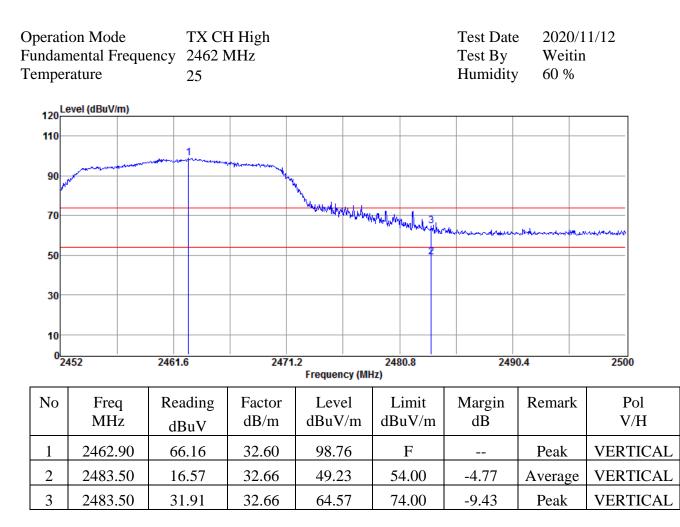
Radiated Emission: 802.11 n_20 mode


Dperation Mode Fundamental Frequency Femperature		TX CH Low 2412 MHz 25				Test Dat Test By Humidit	Wei	Weitin	
120	vel (dBuV/m)						1	· · · · · · · · · · · · · · · · · · ·	
110									
90—							A manual second	the second second	
70		person and have been a feature and	hand the second	ware for the second	nyahara wana makatara	Winnerstronghall			
50						*			
30—									
10									
0 ^L 23	10 2332	.4 235	54.8	237	7.2	239	99.6	2422	

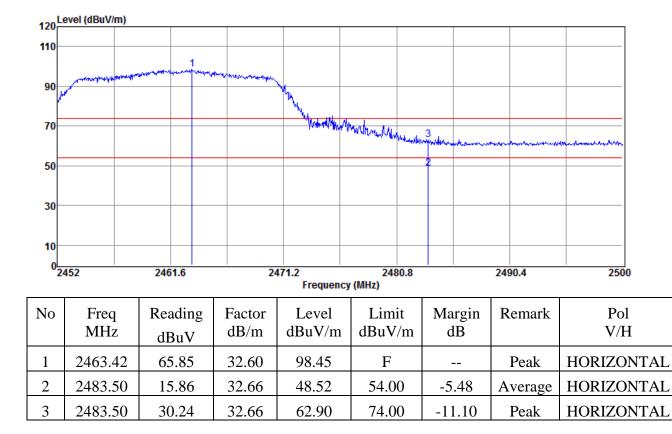
Frequency (MHz)

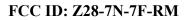
No	Freq MHz	Reading dBuV	Factor dB/m	Level dBuV/m	Limit dBuV/m	Margin dB	Remark	Pol V/H
1	2390.00	16.59	32.47	49.06	54.00	-4.94	Average	VERTICAL
2	2390.00	30.74	32.47	63.21	74.00	-10.79	Peak	VERTICAL
3	2400.00	34.65	32.50	67.15	76.06	-8.91	Peak	VERTICAL
4	2411.47	63.54	32.52	96.06	F		Peak	VERTICAL

Remark: F" denotes fundamental frequency



-73 of 90-


Remark: F" denotes fundamental frequency



Remark: F" denotes fundamental frequency

Remark: F" denotes fundamental frequency

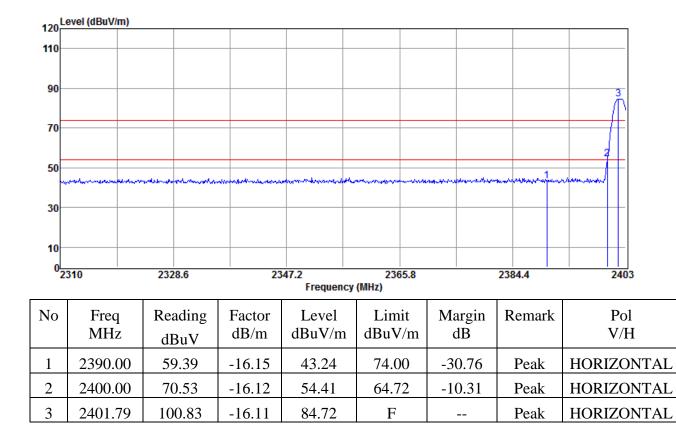
70

50

30

10

Radiated Emission: BT LE mode


Operation Mode Fundamental Free Temperature 120	quency 2	TX CH L 2402 MH 25		Test Test Hum	By V	020/01/22 Veitin 0 %	2
120	-/						
90							
50							

-76 of 90-

0 <mark>_2</mark>	2310	2328.6	2347.2 Frequenc		2365.8 cy (MHz)		2384.4	2403
No	Freq MHz	Reading dBuV	Factor dB/m	Level dBuV/m	Limit dBuV/m	Margin dB	Remark	Pol V/H
1	2390.00	59.24	-16.15	43.09	74.00	-30.91	Peak	VERTICAL
2	2400.00	72.57	-16.12	56.45	64.47	-8.02	Peak	VERTICAL
3	2401.79	100.58	-16.11	84.47	F		Peak	VERTICAL

Remark: F" denotes fundamental frequency

-77 of 90-

Remark: F" denotes fundamental frequency

2

2483.50

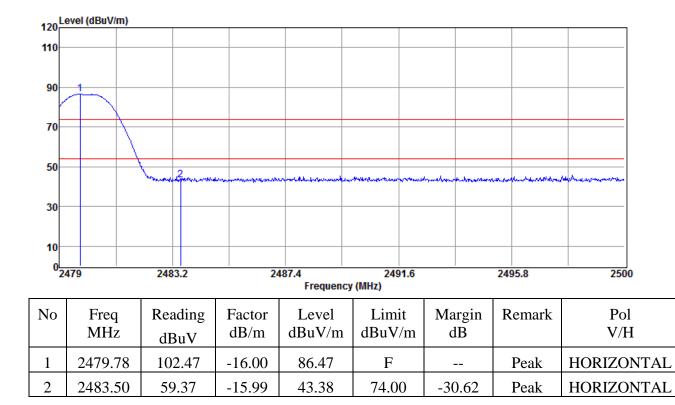
Peak

VERTICAL

-	ion Mod nental F rature		ency		H High MHz				Test Da Test By Humidit		2020/0 Weitin 60 %		
120	evel (dBuV/	m)											1
110													
90	$\frac{1}{1}$												
70													
50		\rightarrow	mm	Er.		-		 	-	-	mound	ng/lft/gander/accienter	
30-													
10-													
0 2/	479		2483	5.2	2487	7.4 Frequer	icy (Mi	91.6	24	95.8	I	250	0
No	Free MH	-		ading BuV	Factor dB/m	Leve dBuV		imit uV/m	Margin dB	Re	mark		Pol 7/H
1	2479.	76	10	3.61	-16.00	87.6	1	F		Р	Peak	VER	TICAL

42.39

74.00


-31.61

Remark: F" denotes fundamental frequency

58.38

-15.99

-79 of 90-

Remark: F" denotes fundamental frequency

10. Peak Power Spectral Density

10.1 Standard Applicable:

According to §15.247(e) For digitally modulated systems, the power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission. This power spectral density shall be determined in accordance with the provisions of paragraph (b) of this section. The same method of determining the conducted output power shall be used to determine the power spectral density.

10.2 Measurement Equipment Used:

Refer to section 6.2 for details.

10.3 Test Set-up:

Refer to section 7.3 for details.

10.4 Measurement Procedure:

- 1. Place the EUT on the table and set it in transmitting mode.
- 2. Remove the antenna from the EUT and then connect a low loss RF cable from the antenna port to the spectrum analyzer.
- 3. Set the spectrum analyzer as RBW =3kHz, VBW = 10kHz, Set the span to 1.5 DTS bandwidth., Sweep=Auto
- 4. Record the max. reading.
- 5. Repeat above procedures until all frequency measured were complete.

10.5 Measurement Result:

Mode	Frequency		PSD (dB	Total PSD	PSD Limit		
Mode	(MHz)	Chain 0	Chain 1	Chain 2	Chain 3	(dBm/3kHz)	(dBm/3kHz)
	2412	-5.3				-5.30	8.00
802.11b	2437	-5.542				-5.54	8.00
	2462	-4.805				-4.81	8.00
	2412	-7.211				-7.21	8.00
802.11g	2437	-6.877				-6.88	8.00
	2462	-6.324				-6.32	8.00
000.11	2412	-9.201				-9.20	8.00
802.11n HT20	2437	-8.377				-8.38	8.00
11120	2462	-7.639				-7.64	8.00

Mode	Frequency (MHz)	PSD (dBm/3kHz)	Total PSD (dBm/3kHz)	PSD Limit (dBm/3kHz)
	2402	-12.705	-12.71	8.00
BLE 4.0	2442	-11.587	-11.59	8.00
	2480	-12.119	-12.12	8.00

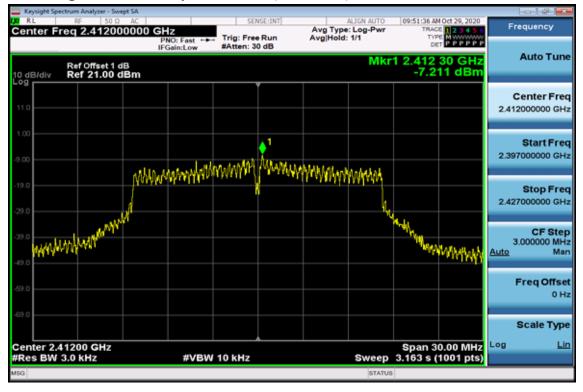
Mode	Frequency (MHz)	PSD (dBm/3kHz)	Total PSD (dBm/3kHz)	PSD Limit (dBm/3kHz)
	2402	-12.734	-12.73	8.00
BLE 5.0	2442	-11.565	-11.57	8.00
	2480	-12.194	-12.19	8.00

802.11b

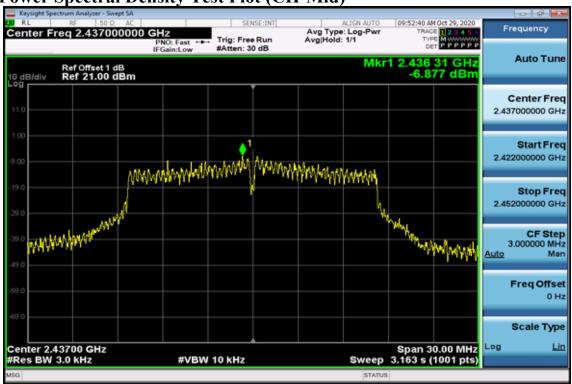
Power Spectral Density Test Plot (CH-Low)

-82 of 90-

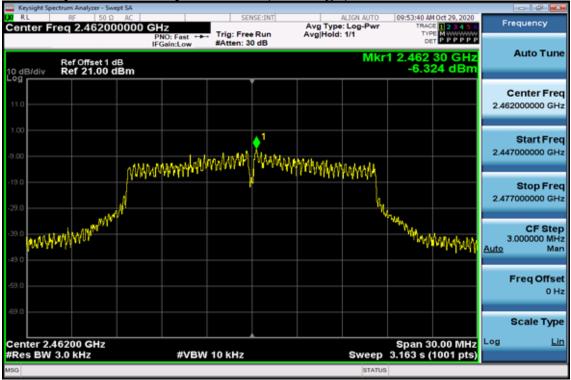
Power Spectral Density Test Plot (CH-Mid)

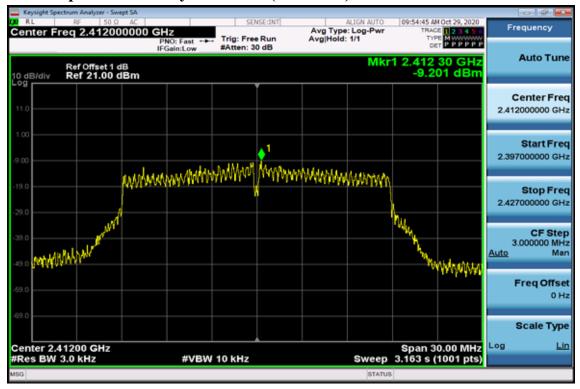


-83 of 90-

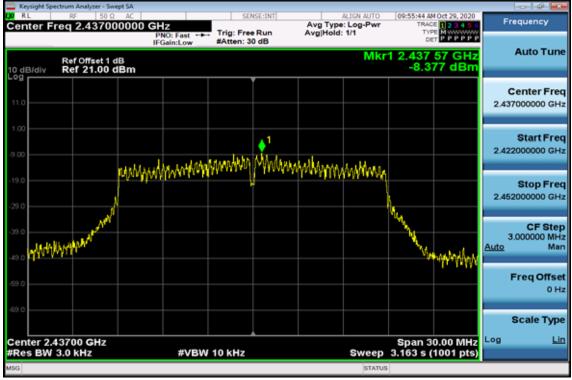

Power Spectral Density Test Plot (CH-High)

802.11g **Power Spectral Density Test Plot (CH-Low)**

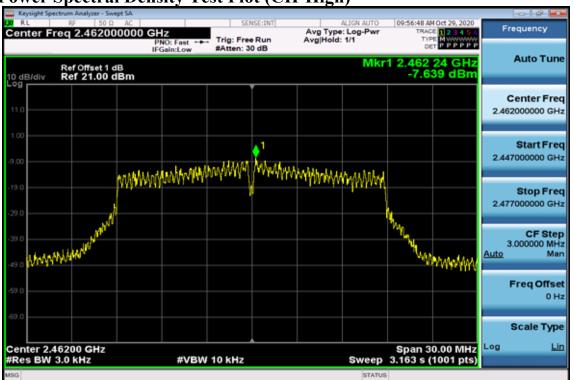



Power Spectral Density Test Plot (CH-Mid)

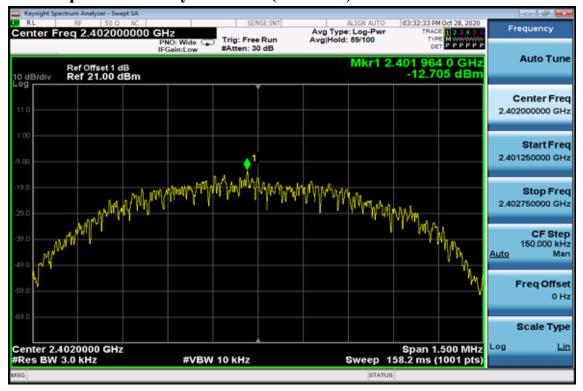
Power Spectral Density Test Plot (CH-High)

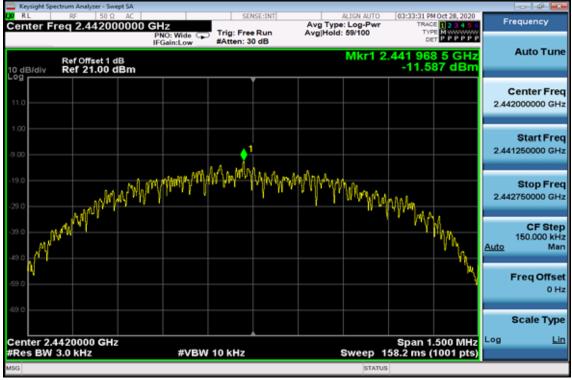


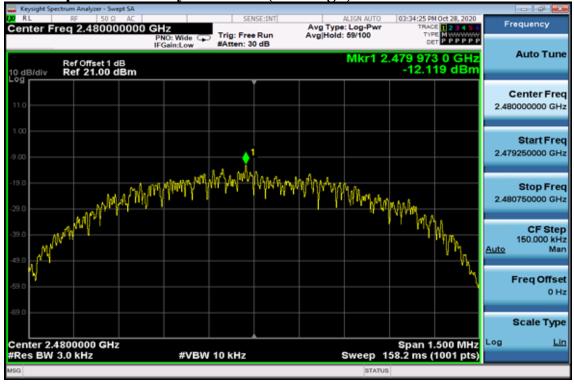
802.11n_20M Power Spectral Density Test Plot (CH-Low)



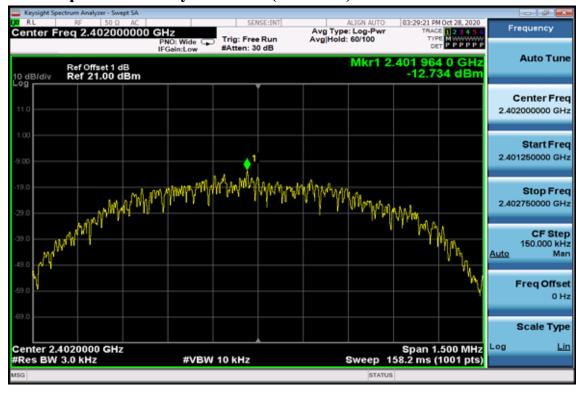
Power Spectral Density Test Plot (CH-Mid)

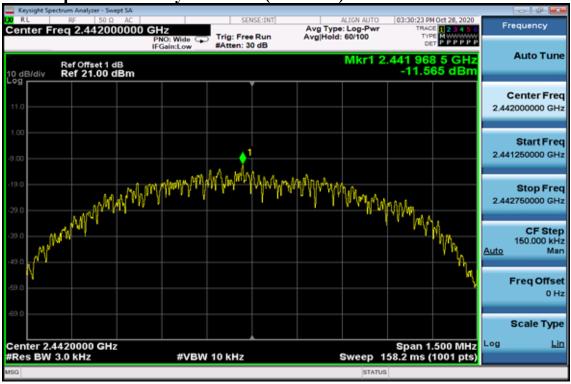



Power Spectral Density Test Plot (CH-High)


BT BLE 4.0 Power Spectral Density Test Plot (CH-Low)

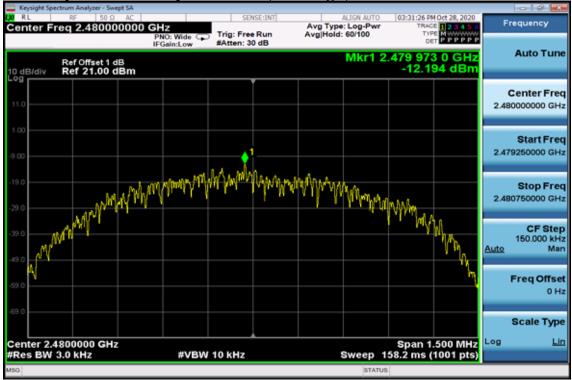
Power Spectral Density Test Plot (CH-Mid)




-88 of 90-

Power Spectral Density Test Plot (CH-High)

BT BLE 5.0 Power Spectral Density Test Plot (CH-Low)



-89 of 90-

Power Spectral Density Test Plot (CH-Mid)

Power Spectral Density Test Plot (CH-High)

11.Antenna Requirement

11.1 Standard Applicable:

According to §15.203, Antenna requirement.

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this Section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited. This requirement does not apply to carrier current devices or to devices operated under the provisions of Sections 15.211, 15.213, 15.217, 15.219, or 15.221. Further, this requirement does not apply to intentional radiators that must be professionally installed, such as perimeter protection systems and some field disturbance sensors, or to other intentional radiators which, in accordance with Section 15.31(d), must be measured at the installation site. However, the installer shall be responsible for ensuring that the proper antenna is employed so that the limits in this Part are not exceeded.

11.2 Antenna Connected Construction:

The directional gins of antenna used for transmitting is below table, and the antenna connector is designed with unique type RF connector and no consideration of replacement. Please see EUT photo and antenna spec. for details.

Antenna Designation:

	PCB Antenna	Gain
1	WiFi 2.4G Antenna	-1.89dBi
2	BLE Antenna	-1.89dBi