TEST REPORT

of

FCC Part 15 Subpart C

New Application; Class I PC; Class II PC

Product :	Digital Signage / POS System / Kiosk
Brand:	Zunidata
Model:	15NX-RMXXX; 22PX-RMXXX; 24PX-RMXXX; 27PX-RMXXX; 32PX-RMXXX; 43PX-RMXXX; MCT-156HPQ-POE; MCT-156HPQ-POE-5MC; MCT-156HPQ-XXX; MCT-215HPQ; MCT-215HPQ-5MC; MCT-215HPQ-XXX; MCT-238HPQ-XXX; MCT-270HPQ-XXX; MCT-320HPQ-XXX (X=0~9 or A~Z or Blank or -)
Model Difference:	Appearance and LCD size are different
FCC ID:	Z28-15-43-RM
FCC Rule Part:	§15.247, Cat: DTS
Applicant:	Zunidata Systems, Inc.
Address:	6F, No. 945, Boai Street, Jubei City, Hsinchu, Taiwan 302

Test Performed by: International Standards Laboratory Corp.

<LT Lab.> *Site Registration No. BSMI: SL2-IN-E-0013; MRA TW0997; TAF: 0997; IC: IC4067B-4;

*Address:

No. 120, Lane 180, San Ho Tsuen, Hsin Ho Rd. Lung-Tan Hsiang, Tao Yuan County 325, Taiwan *Tel : 886-3-407-1718; Fax: 886-3-407-1738

Report No.: ISL-19LR308FCDTS Issue Date : 2020/04/10

Test results given in this report apply only to the specific sample(s) tested and are traceable to national or international standard through calibration of the equipment and evaluating measurement uncertainty herein.

This report MUST not be used to claim product endorsement by TAF or any agency of the Government.

This test report shall not be reproduced except in full, without the written approval of International Standards Laboratory Corp.

ISL International Standards Laboratory Corp. http://www.isl.com.tw

VERIFICATION OF COMPLIANCE

Applicant:	Zunidata Systems, Inc.		
Product Description:	Digital Signage / POS System / Kiosk		
Brand Name:	Zunidata		
	15NX-RMXXX; 22PX-RMXXX; 24PX-RMXXX;		
	27PX-RMXXX; 32PX-RMXXX; 43PX-RMXXX;		
	MCT-156HPQ-POE; MCT-156HPQ-POE-5MC;		
Model No.:	MCT-156HPQ-XXX; MCT-215HPQ; MCT-215HPQ-5MC;		
	MCT-215HPQ-XXX; MCT-238HPQ-XXX;		
	MCT-270HPQ-XXX; MCT-320HPQ-XXX (X=0~9 or A~Z or		
	Blank or -)		
Model Difference:	Appearance and LCD size are different		
FCC ID:	Z28-15-43-RM		
Date of test:	2019/10/16 ~ 2020/04/10		
Date of EUT Received:	2019/10/16		

We hereby certify that:

All the tests in this report have been performed and recorded in accordance with the standards described above and performed by an independent electromagnetic compatibility consultant, International Standards Laboratory Corp.

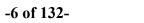
The test results contained in this report accurately represent the measurements of the characteristics and the energy generated by sample equipment under test at the time of the test. The sample equipment tested as described in this report is in compliance with the limits of above standards.

Test By:	Bamy Lee	Date:	2020/04/10
	Barry Lee / Senior Engineer		
Prepared By:	Gigi Jeh	Date:	2020/04/10
	Gigi Yeh / Senior Engineer		
Approved By:	Jerry Lin	Date:	2020/04/10

Jerry Liu / Technical Manager

Version

Version No.	Date	Description	
00	2020/04/10	Initial creation of document	



Description Of Test	Uncertainty	
Conducted Emission (AC power line)	2.586 dB	
Field Strength of Spurious Radiation	≤ 30MHz: 2.96dB 30-1GHz: 4.22 dB 1-40 GHz: 4.08 dB	
Conducted Power	2.412 GHz: 1.30 dB 5.805 GHz: 1.55 dB	
Power Density	2.412 GHz:1.30 dB 5.805 GHz: 1.67 dB	
Frequency	0.0032%	
Time	0.01%	
DC Voltage	1%	

Table of Contents

1	Gener	ral Information	7
	1.1	Related Submittal(s) / Grant (s)	.10
	1.2	Test Methodology	.10
	1.3	Test Facility	.10
	1.4	Special Accessories	
	1.5	Equipment Modifications	.10
2	Syster	n Test Configuration	11
	2.1	EUT Configuration	
	2.2	EUT Exercise	
	2.3	Test Procedure	.11
	2.4	Configuration of Tested System	
3	Sumn	nary of Test Results	15
4	Descr	iption of Test Modes	15
5	Cond	uced Emission Test	16
	5.1	Standard Applicable:	
	5.2	Measurement Equipment Used:	
	5.3	EUT Setup:	
	5.4	Measurement Procedure:	
	5.5	Measurement Result:	.17
6	Pool	Coutput Power	22
U	6.1	Standard Applicable:	
	6.2	Measurement Equipment Used:	
	6.3	Test Set-up:	
	6.4	Measurement Procedure:	
	6.5	Measurement Result:	
7	6dR B	landwidth	26
7		Sandwidth	
7	7.1	Standard Applicable:	.26
7	7.1 7.2	Standard Applicable: Measurement Equipment Used:	.26 .26
7	7.1	Standard Applicable: Measurement Equipment Used: Test Set-up:	.26 .26 .26
7	7.1 7.2 7.3	Standard Applicable: Measurement Equipment Used: Test Set-up: Measurement Procedure:	.26 .26 .26 .26
	7.1 7.2 7.3 7.4 7.5	Standard Applicable: Measurement Equipment Used: Test Set-up: Measurement Procedure: Measurement Result:	.26 .26 .26 .26 .27
7 8	7.1 7.2 7.3 7.4 7.5 Spuri	Standard Applicable: Measurement Equipment Used: Test Set-up: Measurement Procedure: Measurement Result: ous Radiated Emission Test	.26 .26 .26 .26 .27 35
	7.1 7.2 7.3 7.4 7.5 Spuri 8.1	Standard Applicable: Measurement Equipment Used: Test Set-up: Measurement Procedure: Measurement Result: ous Radiated Emission Test Standard Applicable	.26 .26 .26 .27 35 .35
	7.1 7.2 7.3 7.4 7.5 Spuri 8.1 8.2	Standard Applicable: Measurement Equipment Used: Test Set-up: Measurement Procedure: Measurement Result: ous Radiated Emission Test Standard Applicable Measurement Equipment Used:	.26 .26 .26 .27 35 .35 .35
	7.1 7.2 7.3 7.4 7.5 Spuri 8.1 8.2 8.3	Standard Applicable: Measurement Equipment Used: Test Set-up: Measurement Procedure: Measurement Result: ous Radiated Emission Test Standard Applicable Measurement Equipment Used: Test SET-UP:	.26 .26 .26 .27 35 .35 .35
	7.1 7.2 7.3 7.4 7.5 Spuri 8.1 8.2 8.3 8.4	Standard Applicable: Measurement Equipment Used: Test Set-up: Measurement Procedure: Measurement Result: ous Radiated Emission Test Standard Applicable Measurement Equipment Used: Test SET-UP: Measurement Procedure:	.26 .26 .26 .27 35 .35 .35 .36 .37
	7.1 7.2 7.3 7.4 7.5 Spuri 8.1 8.2 8.3 8.4 8.5	Standard Applicable: Measurement Equipment Used: Test Set-up: Measurement Procedure: Measurement Result: ous Radiated Emission Test Standard Applicable Measurement Equipment Used: Test SET-UP: Measurement Procedure: Field Strength Calculation	.26 .26 .26 .27 35 .35 .35 .36 .37 .38
8	7.1 7.2 7.3 7.4 7.5 Spuri 8.1 8.2 8.3 8.4 8.5 8.6	Standard Applicable: Measurement Equipment Used: Test Set-up: Measurement Procedure: Measurement Result: ous Radiated Emission Test Standard Applicable Measurement Equipment Used: Test SET-UP: Measurement Procedure: Field Strength Calculation Measurement Result:	.26 .26 .26 .27 35 .35 .35 .36 .37 .38 .38
	7.1 7.2 7.3 7.4 7.5 Spuri 8.1 8.2 8.3 8.4 8.5 8.6 100kH	Standard Applicable: Measurement Equipment Used: Test Set-up: Measurement Procedure: Measurement Result: ous Radiated Emission Test. Standard Applicable Measurement Equipment Used: Test SET-UP: Measurement Procedure: Field Strength Calculation Measurement Result: Iz Bandwidth of Band Edges Measurement	.26 .26 .26 .27 35 .35 .35 .35 .36 .37 .38 .38 87
8	7.1 7.2 7.3 7.4 7.5 Spuri 8.1 8.2 8.3 8.4 8.5 8.6 100kH 9.1	Standard Applicable: Measurement Equipment Used: Test Set-up: Measurement Procedure: Measurement Result: ous Radiated Emission Test. Standard Applicable Measurement Equipment Used: Test SET-UP: Measurement Procedure: Field Strength Calculation Measurement Result: Iz Bandwidth of Band Edges Measurement Standard Applicable:	.26 .26 .26 .27 35 .35 .35 .35 .36 .37 .38 .38 87 .87
8	7.1 7.2 7.3 7.4 7.5 Spuri 8.1 8.2 8.3 8.4 8.5 8.6 100kH 9.1 9.2	Standard Applicable: Measurement Equipment Used: Test Set-up: Measurement Procedure: Measurement Result: ous Radiated Emission Test. Standard Applicable Measurement Equipment Used: Test SET-UP: Measurement Procedure: Field Strength Calculation Measurement Result: Iz Bandwidth of Band Edges Measurement Standard Applicable: Measurement Equipment Used:	.26 .26 .26 .27 35 .35 .35 .36 .37 .38 .38 87 .87
8	7.1 7.2 7.3 7.4 7.5 Spuri 8.1 8.2 8.3 8.4 8.5 8.6 100kH 9.1 9.2 9.3	Standard Applicable: Measurement Equipment Used: Test Set-up: Measurement Procedure: Measurement Result: ous Radiated Emission Test. Standard Applicable Measurement Equipment Used: Test SET-UP: Measurement Procedure: Field Strength Calculation Measurement Result: Iz Bandwidth of Band Edges Measurement Standard Applicable: Measurement Equipment Used: Test SET-UP:	.26 .26 .26 .27 35 .35 .35 .36 .37 .38 .38 87 .87 .89
8	7.1 7.2 7.3 7.4 7.5 Spuri 8.1 8.2 8.3 8.4 8.5 8.6 100kH 9.1 9.2 9.3 9.4	Standard Applicable: Measurement Equipment Used: Test Set-up: Measurement Procedure: Measurement Result: ous Radiated Emission Test. Standard Applicable Measurement Equipment Used: Test SET-UP: Measurement Procedure: Field Strength Calculation Measurement Result: Iz Bandwidth of Band Edges Measurement . Standard Applicable: Measurement Equipment Used: Test SET-UP: Measurement Result: Measurement Result: Measurement Equipment Used: Test SET-UP: Measurement Equipment Used: Measurement Equipment Used: Measurement Equipment Used: Measurement Procedure:	.26 .26 .26 .27 35 .35 .35 .35 .36 .37 .38 .38 87 .87 .89 .90
8	7.1 7.2 7.3 7.4 7.5 Spuri 8.1 8.2 8.3 8.4 8.5 8.6 100kH 9.1 9.2 9.3 9.4 9.5	Standard Applicable: Measurement Equipment Used: Test Set-up: Measurement Procedure: Measurement Result: ous Radiated Emission Test. Standard Applicable Measurement Equipment Used: Test SET-UP: Measurement Procedure: Field Strength Calculation Measurement Result: Lz Bandwidth of Band Edges Measurement Standard Applicable: Measurement Equipment Used: Test SET-UP: Measurement Result: Lz Bandwidth of Band Edges Measurement Standard Applicable: Measurement Equipment Used: Test SET-UP: Measurement Procedure: Field Strength Calculation:	.26 .26 .26 .27 35 .35 .35 .35 .36 .37 .38 .38 87 .87 .87 .89 .90
8	7.1 7.2 7.3 7.4 7.5 Spuri 8.1 8.2 8.3 8.4 8.5 8.6 100kH 9.1 9.2 9.3 9.4 9.5 9.6	Standard Applicable: Measurement Equipment Used: Test Set-up: Measurement Procedure: Measurement Result: ous Radiated Emission Test. Standard Applicable Measurement Equipment Used: Test SET-UP: Measurement Procedure: Field Strength Calculation Measurement Result: Iz Bandwidth of Band Edges Measurement Standard Applicable: Measurement Equipment Used: Test SET-UP: Measurement Procedure: Field Strength Calculation Measurement Equipment Used: Test SET-UP: Measurement Equipment Used: Test SET-UP: Measurement Procedure: Field Strength Calculation: Measurement Procedure: Field Strength Calculation: Measurement Result:	.26 .26 .26 .27 35 .35 .35 .35 .36 .37 .38 .38 87 .87 .87 .89 .90
8	7.1 7.2 7.3 7.4 7.5 Spuri 8.1 8.2 8.3 8.4 8.5 8.6 100kH 9.1 9.2 9.3 9.4 9.5 9.6 Peak	Standard Applicable: Measurement Equipment Used: Test Set-up: Measurement Procedure: Measurement Result: ous Radiated Emission Test Standard Applicable Measurement Equipment Used: Test SET-UP: Measurement Procedure: Field Strength Calculation Measurement Result: Iz Bandwidth of Band Edges Measurement Standard Applicable: Measurement Equipment Used: Test SET-UP: Measurement Equipment Used: Test SET-UP: Measurement Equipment Used: Test SET-UP: Measurement Procedure: Field Strength Calculation: Measurement Procedure: Field Strength Calculation: Measurement Result: Measurement Result: Measurement Result: Measurement Result: Measurement Result: Measurement Result: Measurement Result: Measurement Result:	.26 .26 .26 .27 35 .35 .35 .35 .35 .35 .35 .37 .38 .38 87 .87 .89 .90 .90 .90 .90
8	7.1 7.2 7.3 7.4 7.5 Spuri 8.1 8.2 8.3 8.4 8.5 8.6 100kH 9.1 9.2 9.3 9.4 9.5 9.6 Peak 10.1	Standard Applicable: Measurement Equipment Used: Test Set-up: Measurement Procedure: Measurement Result: Measurement Result: ous Radiated Emission Test. Standard Applicable Measurement Equipment Used: Measurement Equipment Used: Test SET-UP: Measurement Procedure: Field Strength Calculation Measurement Result: Iz Bandwidth of Band Edges Measurement Standard Applicable: Measurement Equipment Used: Test SET-UP: Measurement Result: Hz Iz Bandwidth of Band Edges Measurement Standard Applicable: Measurement Equipment Used: Test SET-UP: Measurement Result: Measurement Result: Power Spectral Density 1 Standard Applicable: 1	.26 .26 .26 .27 35 .35 .35 .36 .37 .38 .38 87 .87 .87 .89 .90 .90 .90 23
8	7.1 7.2 7.3 7.4 7.5 Spuri 8.1 8.2 8.3 8.4 8.5 8.6 100kH 9.1 9.2 9.3 9.4 9.5 9.6 Peak 10.1 10.2	Standard Applicable: Measurement Equipment Used: Test Set-up: Measurement Procedure: Measurement Result: Measurement Result: ous Radiated Emission Test Standard Applicable Measurement Equipment Used: Measurement Equipment Used: Test SET-UP: Measurement Procedure: Field Strength Calculation Measurement Result: Iz Bandwidth of Band Edges Measurement Standard Applicable: Measurement Equipment Used: Measurement Equipment Used: Test SET-UP: Measurement Result: Iz Bandwidth of Band Edges Measurement Measurement Equipment Used: Measurement Equipment Used: Measurement Equipment Used: Measurement Result: Measurement Result: Measurement Result: Measurement Result: Measurement Result: Measurement Result: Measurement Result: Measurement Result: Power Spectral Density 1 Measurement Equipment Used: 1 Measurement Equipment Used: 1	.26 .26 .26 .27 35 .35 .35 .35 .37 .38 .37 .38 .38 87 .87 .89 .90 .90 .90 23 .23
8	7.1 7.2 7.3 7.4 7.5 Spuri 8.1 8.2 8.3 8.4 8.5 8.6 100kH 9.1 9.2 9.3 9.4 9.5 9.6 Peak 10.1	Standard Applicable: Measurement Equipment Used: Test Set-up: Measurement Procedure: Measurement Result: Measurement Result: ous Radiated Emission Test. Standard Applicable Measurement Equipment Used: Measurement Equipment Used: Test SET-UP: Measurement Procedure: Field Strength Calculation Measurement Result: Iz Bandwidth of Band Edges Measurement Standard Applicable: Measurement Equipment Used: Test SET-UP: Measurement Result: Hz Iz Bandwidth of Band Edges Measurement Standard Applicable: Measurement Equipment Used: Test SET-UP: Measurement Result: Measurement Result: Power Spectral Density 1 Standard Applicable: 1	.26 .26 .26 .27 35 .35 .35 .35 .35 .37 .38 .38 87 .87 .87 .89 .90 .90 23 .23 .23

10.5	Measurement Result:	124
Anten	na Requirement	132
	-	
	Anten 11.1	 10.5 Measurement Result: Antenna Requirement

1 General Information

General:

Product Name	Digital Signage / POS System / Kiosk		
Brand Name	Zunidata		
Model Name	15NX-RMXXX; 22PX-RMXXX; 24PX-RMXXX; 27PX-RMXXX; 32PX-RMXXX; 43PX-RMXXX; MCT-156HPQ-POE; MCT-156HPQ-POE-5MC; MCT-156HPQ-XXX; MCT-215HPQ; MCT-215HPQ-5MC; MCT-215HPQ-XXX; MCT-238HPQ-XXX; MCT-270HPQ-XXX; MCT-320HPQ-XXX (X=0~9 or A~Z or Blank or -)		
Model Difference	Appearance and LCD	size are different	
S/N	Z115N3119B00001 fo Z124P3119B00001 for		
AC In Power Port	One provided		
USB 2.0 Port	Two provided		
COM 2 (RJ45)Port	One provided		
COM 1 (RJ45)Port	One provided		
Micro USB Port	One provided		
S/PDIF Port	One provided		
Earphone Port	One provided		
LAN Port	One provided		
Mini HDMI port	One provided		
Test SW Version:	Ampak rftesttool V5.5		
RF power setting:	Refer test table		
	12Vdc from AC/DC adapter		
Power Supply	Adapter:	 Model : 2ABL024F US; Supplier: CWT Model : FSP060-DHAN3; Supplier: FSP 	

BLE:

Frequency Range:	2402 – 2480MHz		
Bluetooth Version:	V4.0		
Channel number:	40 channels		
Tune up power (Peak):	GFSK : 5.70 dBm +/- 1 dB		
Antonno Designation	Dipole Antenna WiFi 2.4G Antenna : 1.5 dBi		
Antenna Designation:	PIFA Antenna		
	WiFi 2.4G Antenna : -1.16 dBi		

WLAN

Wi-Fi	Frequency Range (MHz)	Channels	Peak / Average Rated Power	Modulation Technology
802.11b	2412 - 2462(DTS)	11	19.65dBm (PK)	
802.11g	2412 - 2462(DTS)	11	22.90dBm (PK)	OFDM
802.11n (2.4G)	HT20 2412 – 2462(DTS)	11	22.51dBm (PK)	
CCK, DQPSK, DBPSK for DSSSModulation type256QAM.64QAM. 16QAM, QPSK, BPSK for			for OFDM	
Antenna Designation		Dipole Antenna WiFi 2.4G Antenna : 1.5 dBi PIFA Antenna WiFi 2.4G Antenna : -1.16 dBi According to KDB662911 D01 SM-MIMO signals could be considered uncorrelated for purposes of direc- tional gain computation.		
		Directional gain = G_{ANT}		

The EUT is compliance with IEEE 802.11 b/g/n Standard. This report applies for 2.4GHz Wifi + BLE.

Remark: The above DUT's information was declared by manufacturer. Please refer to the specifications or user's manual for more detailed description.

2.4G Power Setting

Mode	Freq(MHz)	Power Setting (dBm)	Softwate vale
	2412	default	default
11b	2437	default	default
	2462	default	default
	2412	14	56
11g	2437	14	56
	2462	14	56
	2412	13.5	54
802.11n HT20	2437	13.5	54
	2462	13.5	54
	2402	default	default
BLE	2442	default	default
	2480	default	default

1.1 Related Submittal(s) / Grant (s)

This submittal(s) (test report) is intended for FCC ID: <u>Z28-15-43-RM</u> filing to comply with Section 15.247 of the FCC Part 15, Subpart C Rules

1.2 Test Methodology

Both conducted and radiated testing were performed according to the procedures in ANSI C63.10: 2013. Radiated testing was performed at an antenna to EUT distance 3 meters.

KDB Document: 558074 D01 15.247 Meas Guidance v0.5r02

1.3 Test Facility

The measurement facilities used to collect the 3m Radiated Emission and AC power line conducted data are located on the address of International Standards Laboratory Corp. <LT Lab.> No. 120, Lane 180, Hsin Ho Rd., Lung-Tan Dist., Tao Yuan City 325, Taiwan which are constructed and calibrated to meet the FCC requirements in documents . FCC Registration Number is: 487532; Designation Number is: TW0997.

1.4 Special Accessories

Not available for this EUT intended for grant.

1.5 Equipment Modifications

Not available for this EUT intended for grant.

2 System Test Configuration

2.1 EUT Configuration

The EUT configuration for testing is installed on RF field strength measurement to meet the Commissions requirement and operating in a manner which intends to maximize its emission characteristics in a continuous normal application.

2.2 EUT Exercise

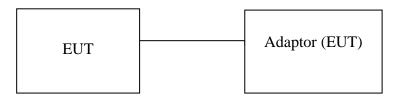
The EUT (Transmitter) was operated in the engineering mode to fix the Tx frequency that was for the purpose of the measurements.

2.3 Test Procedure

2.3.1 Conducted Emissions

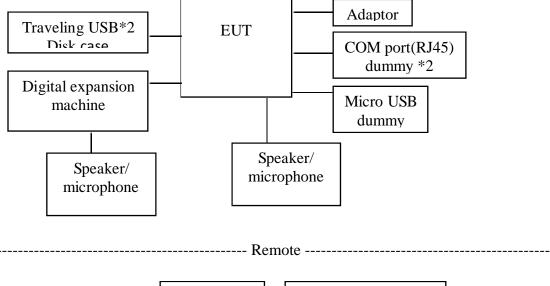
The EUT is a placed on as turn table which is 0.8 m above ground plane. According to the requirements in Section 6 of ANSI C63.10: 2013. Conducted emissions from the EUT measured in the frequency range between 0.15 MHz and 30MHz using CISPR 16-1-1 Quasi-Peak and Average detector mode.

2.3.2 Radiated Emissions


The EUT is a placed on as turn table which is 0.8 m/1.5m (Frequency above 1GHz) above ground plane. The turn table shall rotate 360 degrees to determine the position of maxi-mum emission level. EUT is set 3m away from the receiving antenna which varied from 1m to 4m to find out the highest emission. And also, each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical. In order to find out the max. emission, the relative positions of this hand-held transmitter(EUT) was rotated through three orthogonal axes according to the requirements in Section 6 and 11 of ANSI C63.10: 2013.

2.4 Configuration of Tested System

Fig. 2-1 Configuration of Tested System (Fixed channel)


Radiated Emission

Item	Equipment	Mfr/Brand	Model/ Type No.	Series No.	Data Cable	Power Cord
1	EUT (adap- tor)	CWT	2ABL024F	NA	NA	Non-shielding
2	EUT (adap- tor)	FSP	FSP060-DHAN 3	NA	NA	Non-shielding

AC Conducted Emission

Wireless AP	
router	

Bluetooth Speaker/ microphone

 Table 1-1 Support Equipment Used in Tested System

Item	Equipment	Mrf/Brand	Model name	Series No	Data Cable	Power Cable
1	USB3.0 HDD*2	AKiTIO	SK2-U31AS-AKT	N/A	Shielded /1m	N/A
2	LCD monitor	DELL	P2715Qt	N/A	Shielded /1.8m	Non-shielded /1.8m
3	Speaker/ microphone*2	HTC	RC-E160	N/A	Non-shielded /1.5m	N/A
4	Digital expan- sion machine	CREATIVE	DDTS-100	N/A	Non-shielded /1.5m	N/A
5	Portable Com- puter	Lenovo	TP00067B	N/A	N/A	Non-shielded /1.8m
6	Bluetooth Speaker/ microphone	N/A	SA-868	N/A	N/A	N/A
7	Wireless AP router	ASUS	RT-AC66U	80195030	N/A	Non-shield / 1.8m

I/O Cable Condition of EUT and Support Units									
Description	Path	Cable Length	Cable Type	Connector Type					
AC Power cable	100V (~240V) to EUT SPS	1.8m	Non-shielded	Plastic Head					
DC Power cable	EUT SPS to EUT DC input port	1.2m Non-shielded		Metal Head					
USB Data Cable	USB3.0 HDD to EUT USB Port	1m	Shielded	Metal Head					
COM 2(RJ45) Data Cable	COM 2(RJ45) Data Cable to EUT COM 2 Port with dummy	1.2m	Non-shielded	Plastic Head					
COM 1(RJ45) Data Cable	COM 1(RJ45) Data Cable to EUT COM 1 Port with dummy	1.2m	Non-shielded	Plastic Head					
USB Data Cable	USB Data Cable to EUT Micro USB Port with dummy	0.9m	Non-shielded	Metal Head					
S/PDIF Data Ca- ble	EUT S/PDIF Port to Digital expansion machine S/PDIF Port	1.5m	Non-shielded	Plastic Head					
Audio Data Cable	EUT Audio out Port to Speaker/microphone	1.5m	Non-shielded	Metal Head					
LAN Data Cable	NB LAN Port to EUT LAN Port	10m	Non-shielded	Plastic Head					
Audio Data Cable	Digital expansion machine S/PDIF Port to Speak- er/microphone	1.5m	Non-shielded	Metal Head					
Mini HDMI cable	EUT Mini HDMI Port to LCD monitor	1.8m	Shielded	Metal Head					

I/O Cable Condition of EUT and Support Units

Note: All the above equipment/cables were placed in worse case positions to maximize emission signals during emission test.

Grounding: Grounding was in accordance with the manufacturer's requirements and conditions for the intended use.

3 Summary of Test Results

FCC Rules	Description Of Test	Result
§15.207(a)	AC Power Line Conducted Emission	Compliant
§15.247(b) (3),(4)	Peak Output Power/ EIRP	Compliant
§15.247(a)(2)	6dB Power Bandwidth	Compliant
815 047(1)	100 kHz Bandwidth Of	Compliant
§15.247(d)	Frequency Band Edges	Compliant
§15.247(d)	Spurious Emission	Compliant
§15.247(e)	Peak Power Density	Compliant
§ 15.203	Antenna Requirement	Compliant

4 Description of Test Modes

The EUT has been tested under engineering operating condition.

Test program used to control the EUT for staying in continuous transmitting mode is programmed.

Wifi:

802.11 b mode: Channel low (2412MHz), mid (2437MHz), high (2462MHz) with 1Mbps lowest data rate are chosen for full testing.

802.11 g mode: Channel low (2412MHz), mid (2437MHz), high (2462MHz) with 6Mbps lowest data rate are chosen for full testing.

802.11 n _20MHz: Channel low (2412MHz), mid (2437MHz), high (2462MHz) with 6.5Mbps lowest data rate are chosen for full testing.

BLE:

Channel low (2402MHz), mid (2442MHz) and high (2480MHz) with each modulation were chosen for full testing.

5 Conduced Emission Test

5.1 Standard Applicable:

According to \$15.207, frequency range within 150kHz to 30MHz shall not exceed the Limit table as below.

	Limits				
Frequency range	dB	(uV)			
MHz	Quasi-peak	Average			
0.15 to 0.50	66 to 56	56 to 46			
0.50 to 5	56	46			
5 to 30	60	50			
Note					

Note

1. The lower limit shall apply at the transition frequencies

2.The limit decreases linearly with the logarithm of the frequency in the range 0.15 MHz to 0.50 MHz.

5.2 Measurement Equipment Used:

Location	Equipment Name	Brand	Model	S/N	Last Cal. Date	Next Cal. Date
Conduction 02	LISN 26	R&S	ENV216	102378	11/21/2018	11/21/2019
Conduction 02	LISN 26	R&S	ENV216	102378	11/21/2019	11/21/2020
Conduction 02	LISN 20	R&S	ENV216	101477	07/31/2019	07/31/2020
Conduction 02	Conduction 02-1 Cable	WOKEN	CFD 300-NL	Conduction 02 -1	09/11/2019	09/11/2020
Conduction 02	EMI Receiver 14	ROHDE& SCHWARZ	ESCI	101034	05/31/2019	05/31/2020
Conduction 02	ISN T8 10	Teseq GmbH	ISN T800	42773	08/02/2019	08/02/2020
Conduction 02	Capacitive Voltage Probe	FCC	F-CVP-1	68	02/19/2019	02/19/2020
Conduction 02	Current Probe	SCHAFFNER	SMZ 11	18030	02/19/2019	02/19/2020

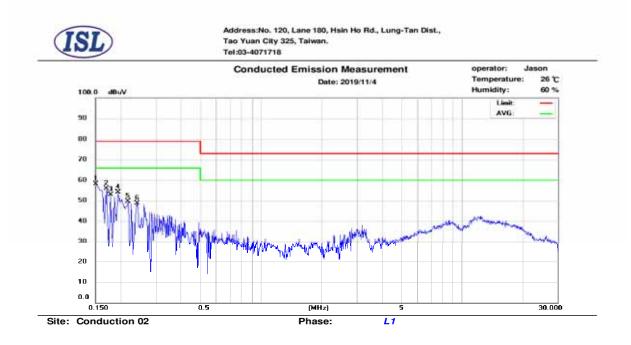
5.3 EUT Setup:

- 1. The conducted emission tests were performed in the test site, using the setup in accordance with the ANSI C63.10: 2014.
- 2. The AC/DC Power adaptor of EUT was plug-in LISN. The EUT was placed flushed with the rear of the table.
- 3. The LISN was connected with 120Vac/60Hz power source.

5.4 Measurement Procedure:

- 1. The EUT was placed on a table which is 0.8m above ground plane.
- 2. Maximum procedure was performed on the six highest emissions to ensure EUT compliance.
- 3. Repeat above procedures until all frequency measured were complete.
- 4. Both 120V & 240V have been verified, and 120V/60Hz was defined as the worst-case and record in the report.

5.5 Measurement Result:


The initial step in collecting conducted data is a spectrum analyzer peak scan of the measurement range. Significant peaks are then marked as shown on the following data page, and these signals are then quasi-peaked.

Note: Refer to next page for measurement data and plots.

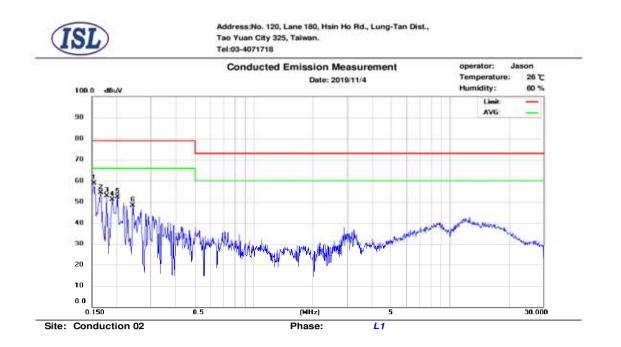
AC POWER LINE CONDUCTED EMISSION TEST DATA

No.	Frequency (MHz)	QP_R (dBuV)	AVG_R (dBuV)	Correct Factor (dB)	QP Emission (dBuV)	QP Limit (dBuV)	QP Margin (dB)	AVG Emission (dBuV)	AVG Limit (dBuV)	AVG Margin (dB)
1	0.150	44.11	28.25	9.63	53.74	79.00	-25.26	37.88	66.00	-28.12
2	0.170	39.44	14.42	9.63	49.07	79.00	-29.93	24.05	66.00	-41.95
3	0.178	37.78	11.01	9.62	47.40	79.00	-31.60	20.63	66.00	-45.37
4	0.194	36.61	15.69	9.62	46.23	79.00	-32.77	25.31	66.00	-40.69
5	0.218	34.36	15.35	9.62	43.98	79.00	-35.02	24.97	66.00	-41.03
6	0.242	31.72	11.84	9.62	41.34	79.00	-37.66	21.46	66.00	-44.54

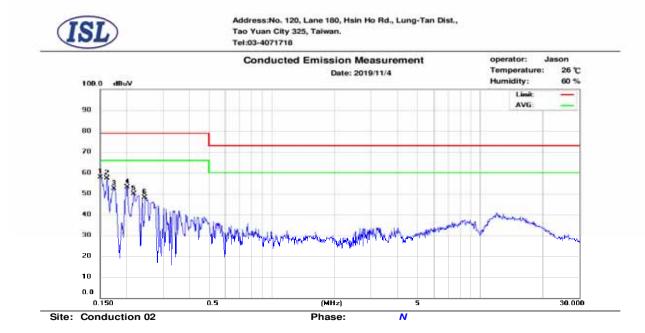
Site: Conduction 02

Address:No. 120, Lane 180, Hsin Ho Rd., Lung-Tan Dist., Tao Yuan City 325, Taiwan. Tel:03-4071718 Jason : 26 °C operator: Temperature: **Conducted Emission Measurement** Date: 2019/11/4 Humidity: 60 % 100.0 dBuV Linit AVG 90 80 70 60 50 40 30 20 10 0.0 0.150 0.5 (MHz) 30.000

No.	Frequency	QP_R	AVG_R	Correct Factor	QP Emission	QP Limit	QP Margin	AVG Emission	AVG Limit	AVG Margin
	(MHz)	(dBuV)	(dBuV)	(dB)	(dBuV)	(dBuV)	(dB)	(dBuV)	(dBuV)	(dB)
1	0.158	46.30	30.79	9.63	55.93	79.00	-23.07	40.42	66.00	-25.58
2	0.166	40.58	18.89	9.63	50.21	79.00	-28.79	28.52	66.00	-37.48
3	0.174	38.89	12.05	9.63	48.52	79.00	-30.48	21.68	66.00	-44.32
4	0.182	37.24	10.44	9.62	46.86	79.00	-32.14	20.06	66.00	-45.94
5	0.199	38.92	20.50	9.62	48.54	79.00	-30.46	30.12	66.00	-35.88
6	0.250	33.46	15.21	9.63	43.09	79.00	-35.91	24.84	66.00	-41.16


Phase:

Ν


Operation Mode: Normal Operation (Worst data)

Adaptor mode: FSP060-DHAN3

No.	Frequency (MHz)	QP_R (dBuV)	AVG_R (dBuV)	Correct Factor (dB)	QP Emission (dBuV)	QP Limit (dBuV)	QP Margin (dB)	AVG Emission (dBuV)	AVG Limit (dBuV)	AVG Margin (dB)
1	0.154	44.36	31.27	9.63	53.99	79.00	-25.01	40.90	66.00	-25.10
2	0.166	39.03	13.73	9.63	48.66	79.00	-30.34	23.36	66.00	-42.64
3	0.178	37.55	11.05	9.62	47.17	79.00	-31.83	20.67	66.00	-45.33
4	0.190	36.47	14.87	9.62	46.09	79.00	-32.91	24.49	66.00	-41.51
5	0.202	37.46	25.66	9.62	47.08	79.00	-31.92	35.28	66.00	-30.72
6	0.242	32.04	15.50	9.62	41.66	79.00	-37.34	25.12	66.00	-40.88

No.	Frequency (MHz)	QP_R (dBuV)	AVG_R (dBuV)	Correct Factor (dB)	QP Emission (dBuV)	QP Limit (dBuV)	QP Margin (dB)	AVG Emission (dBuV)	AVG Limit (dBuV)	AVG Margin (dB)
1	0.150	45.93	27.38	9.63	55.56	79.00	-23.44	37.01	66.00	-28.99
2	0.162	43.34	27.36	9.63	52.97	79.00	-26.03	36.99	66.00	-29.01
3	0.174	39.39	12.00	9.63	49.02	79.00	-29.98	21.63	66.00	-44.37
4	0.202	38.41	21.43	9.62	48.03	79.00	-30.97	31.05	66.00	-34.95
5	0.218	35.26	15.47	9.62	44.88	79.00	-34.12	25.09	66.00	-40.91
6	0.246	32.60	12.40	9.62	42.22	79.00	-36.78	22.02	66.00	-43.98

6 Peak Output Power

6.1 Standard Applicable:

According to §15.247(b)(3),(4)(b)

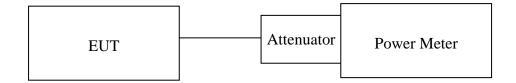
(3) For systems using digital modulation in the 902-928 MHz, 2400-2483.5 MHz, and 5725-5850 MHz bands: 1 Watt. As an alternative to a peak power measurement, compliance with the one Watt limit can be based on a measurement of the maximum conducted output power. Maximum Conducted Output Power is defined as the total transmit power delivered to all antennas and antenna elements averaged across all symbols in the signaling alphabet when the transmitter is operating at its maximum power control level. Power must be summed across all antennas and antenna elements. The average must not include any time intervals during which the transmitter is off or is transmitting at a reduced power level. If multiple modes of operation are possible (e.g., alternative modulation methods), the maximum conducted output power is the highest total transmit power occurring in any mode.

(4) The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

(c) Operation with directional antenna gains greater than 6 dBi.

(1) Fixed point-to-point operation:

(i) Systems operating in the 2400-2483.5 MHz band that are used exclusively for fixed, point-to-point operations may employ transmitting antennas with directional gain greater than 6 dBi provided the maximum conducted output power of the intentional radiator is reduced by 1 dB for every 3 dB that the directional gain of the antenna exceeds 6 dBi.


(ii) Systems operating in the 5725-5850 MHz band that are used exclusively for fixed, point-to-point operations may employ transmitting antennas with directional gain greater than 6 dBi without any corresponding reduction in transmitter conducted output power.

Location Conducted	Equipment Name	Brand	Model	S/N	Last Cal. Date	Next Cal. Date
Conducted	Power Meter	Anritsu	ML2495A	1116010	10/04/2019	10/04/2020
Conducted	Power Sensor	Anritsu	MA2411B	34NKF50	10/04/2019	10/04/2020
Conducted	Power Sensor	DARE	RPR3006W	13I00030SNO33	01/11/2019	01/11/2020
Conducted	Power Sensor	DARE	RPR3006W	14I00889SNO35	06/27/2019	06/27/2020
Conducted	Power Sensor	DARE	RPR3006W	14I00889SNO36	06/27/2019	06/27/2020
Conducted	Temperature Cham- ber	KSON	THS-B4H100	2287	02/19/2019	02/19/2020
Conducted	DC Power supply	ABM	8185D	N/A	01/10/2019	01/10/2020
Conducted	AC Power supply	EXTECH	CFC105W	NA	N/A	N/A
Conducted	Spectrum analyzer	Keysight	N9010A	MY56070257	10/05/2019	10/05/2020
Conducted	Spectrum analyzer	R&S	FSP40	100116	01/10/2019	01/10/2020
Conducted	Test Software	DARE	Radiation Ver:2013.1.23	NA	NA	NA
Conducted	Test Software	R&S	CMUGO Ver:2.0.0	N/A	N/A	N/A
Conducted	Radio Communica- tion Analyzer	R&S	CMU200	111968	10/29/2019	10/29/2020
Conducted	Radio Communica- tion Analyzer	R&S	CMW500	1201.002K50108 793-JG	10/11/2019	10/11/2020
Conducted	BT Simulator	Agilent	N4010A	MY48100200	NA	NA
Conducted	GPS Simulator	Welnavigate	GS-50	701523	NA	NA

6.2 Measurement Equipment Used:

6.3 Test Set-up:

6.4 Measurement Procedure:

- 1. Place the EUT on the table and set it in transmitting mode.
- 2. Remove the antenna from the EUT and then connect a low loss RF cable from the antenna port to the power meter
- 3. Record the max. reading.
- 4. Repeat above procedures until all frequency measured were complete.

6.5 Measurement Result:

802.1	1b
-------	----

Cable loss $= 0$	Output Power			
СН	Detector		Limit	
	PK AV (wih Duty fac- tor)		(dBm)	Result
	(dBm) (dBm)			
Low	19.31	16.27		
Mid	19.65	16.62	30.00	Pass
High	19.61 16.57			

802.11g

88 2 .115				
Cable loss $= 0$	Output Power			
СН	Detector		Limit	
	PK AV (wih Duty fac-		(dBm)	Result
	tor)			
	(dBm)	(dBm) (dBm)		
Low	22.60	12.89		
Mid	22.80 12.97		30.00	Pass
High	22.90	13.07		

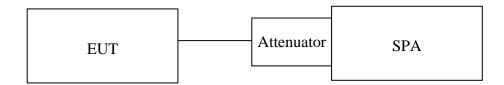
802.11n HT20

Cable loss $= 0$	Output	Power		
СН	Detector		Limit	
	PK AV (wih Duty fac- tor)		(dBm)	Result
	(dBm) (dBm)			
Low	22.31	12.57		
Mid	22.43 12.66		30.00	Pass
High	22.51 12.71			

LE Mode 4.0

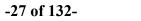
Frequency (MHz)	Output Power (dBm)	Output Power (W)	Limit (W)
Low	Low 5.38		1
Mid	Mid 5.70		1
High	High 5.33		1

7 6dB Bandwidth


7.1 Standard Applicable:

According to §15.247(a)(2), Systems using digital modulation techniques may operate in the 902 - 928 MHz,2400 - 2483.5 MHz, and 5725 - 5850 MHz bands. The minimum 6 dB bandwidth shall be at least 500kHz.

7.2 Measurement Equipment Used:


Refer to section 6.2 for details.

7.3 Test Set-up:

7.4 Measurement Procedure:

- 1. Place the EUT on the table and set it in transmitting mode.
- 2. Remove the antenna from the EUT and then connect a low loss RF cable from the antenna port to the spectrum analyzer.
- 3. Set the spectrum analyzer as RBW=100kHz, VBW = 3*RBW, Span= cover the complete power envelope of the signal of the UUT Sweep=auto
- 4. Mark the peak frequency and –6dB (upper and lower) frequency.
- 5. Repeat above procedures until all frequency measured were complete.

7.5 Measurement Result:

802.11b

Frequency (MHz)	6dB Bandwidth (MHz)	Limit (kHz)	Result
Low	9.07	> 500	PASS
Mid	9.07	> 500	PASS
High	9.06	> 500	PASS

802.11g

Frequency (MHz)	6dB Bandwidth (MHz)	Limit (kHz)	Result
Low	16.30	> 500	PASS
Mid	16.30	> 500	PASS
High	16.32	> 500	PASS

802.11n HT20

Frequency	6dB Bandwidth	Limit	Result
(MHz)	(MHz)	(kHz)	
Low	17.08	> 500	PASS
Mid	17.28	> 500	PASS
High	17.56	> 500	PASS

BLE

Frequency (MHz)	6dB Bandwidth (MHz)	Limit (kHz)	Result
Low	0.72	> 500	PASS
Mid	0.72	> 500	PASS
High	0.72	> 500	PASS

Note: Refer to next page for plots.

802.11b

6dB Band Width Test Data CH-Low

6dB Band Width Test Data CH-Mid

6dB Band Width Test Data CH-High

802.11g 6dB Band Width Test Data CH-Low

Keysight Spectrum Analyzer - Occupied BW	1					
RL RF 50 Ω AC enter Freq 2.412000000	Tri	SENSE:INT nter Freq: 2.412000000 g: Free Run Av tten: 30 dB	GHz g Hold: 100/100	Radio Std: Radio Dev		Frequency
dB/div Ref Offset 1.5 dB						
1.5						Center Fr
, a	mboutoman	windharwork	mburkowling			2.412000000 G
50			~ ^	M		
5 mm mm mm					mm	
.6						
.5						
enter 2.412 GHz				Sna	n 30 MHz	
Res BW 100 kHz		#VBW 300 kHz			2.933 ms	CF St 3.000000 M
Occupied Bandwidt	h	Total Powe	er 22.	3 dBm		<u>Auto</u> M
	6.486 MHz					Freq Offs
Transmit Freq Error	-57.301 kHz	% of OBW	Power 9	9.00 %		0
x dB Bandwidth	16.30 MHz	x dB	-6	.00 dB		
3			STATU			

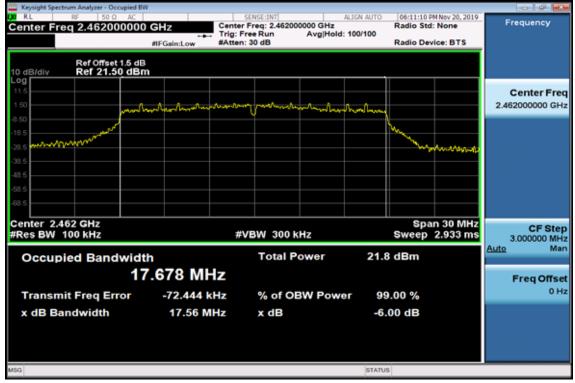
6dB Band Width Test Data CH-Mid

-30 of 132-

6dB Band Width Test Data CH-High

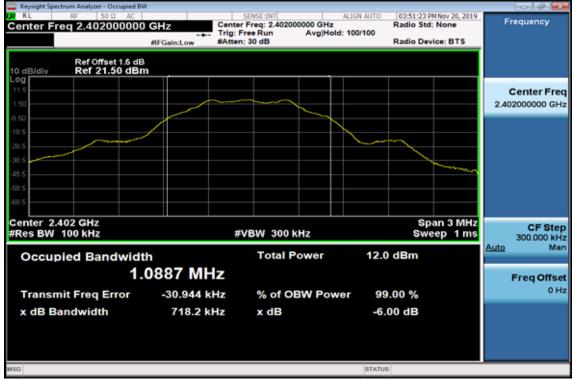
802.11n_20M

6dB Band Width Test Data CH-Low



6dB Band Width Test Data CH-Mid

Keysight Spectrum Analyzer - Occupied B	w				9
Image: Non-Section 2.43700000 Center Freq 2.43700000	Trig:	sense:INT] er Freq: 2.437000000 GHz Free Run Avg[Hold: en: 30 dB	Radio Sto		Frequency
Ref Offset 1.5 df 10 dB/div Ref 21.50 dB Log					
11.5	hand hand have mark merely	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	Annhan		Center Freq 2.437000000 GHz
-8.50 -18.5			- have been		
-38.5				ama an an	
-68.5					
Center 2.437 GHz #Res BW 100 kHz		#VBW 300 kHz		n 30 MHz 2.933 ms	CF Step 3.000000 MHz
Occupied Bandwid	th 7.668 MHz	Total Power	21.7 dBm		Auto Man Freg Offset
Transmit Freq Error	-62.748 kHz	% of OBW Powe			0 Hz
x dB Bandwidth	17.28 MHz	x dB	-6.00 dB		
MSG			STATUS		


6dB Band Width Test Data CH-High

BT BLE

6dB Band Width Test Data CH-Low


6dB Band Width Test Data CH-Mid

6dB Band Width Test Data CH-High

8 Spurious Radiated Emission Test

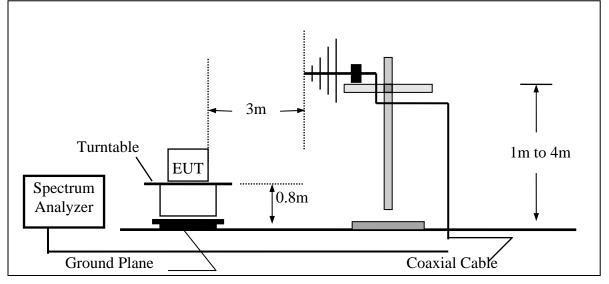
8.1 Standard Applicable

According to \$15.247(d), all other emissions outside these bands shall not exceed the general radiated emission limits specified in \$15.209(a). And according to \$15.33(a)(1), for an intentional radiator operates below 10GHz, the frequency range of measurements: to the tenth harmonic of the highest fundamental frequency or to 40GHz, whichever is lower.

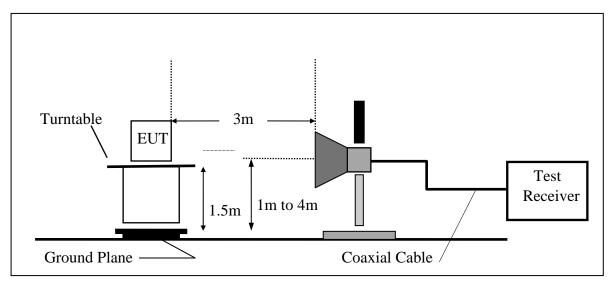
8.2 Measurement Equipment Used:

8.2.1 Conducted Emission at antenna port:

Refer to section 6.2 for details.


8.2.2 Radiated emission:

Chamber 19(966)					
Equipment	MFR	Model	Serial Num-	Last	Cal Due.
Туре		Number	ber	Cal.	
Spectrum analyzer	R&S	FSP40	100116	01/10/2020	01/10/2021
EMI Receiver	R&S	ESR3	102461	08/08/2018	08/08/2020
Loop Antenna	EM	EM-6879	271	05/31/2019	05/31/2020
Bilog Antenna (30MHz-1GHz)	Schwarzbeck	VULB9168 w 5dB Att.	736	01/29/2019	01/29/2020
Bilog Antenna (30MHz-1GHz)	Schwarzbeck	VULB9168 w 5dB Att.	736	01/29/2020	01/29/2021
Horn antenna (1GHz-18GHz)	Schwarzbeck	9120D	9120D-1627	06/17/2019	06/17/2020
Horn antenna (18GHz-26GHz)	Com-power	AH-826	081001	11/21/2019	11/21/2020
Horn antenna (26GHz-40GHz)	Com-power	AH-640	100A	03/29/2019	03/29/2021
Preamplifier (9kHz-1GHz)	НР	8447F	3113A06362	01/14/2020	01/14/2021
Preamplifier (1GHz-26GHz)	Agilent	8449B	3008A02471	10/05/2019	10/05/2020
Preamplifier (26GHz-40GHz)	MITEQ	JS4-26004000-2 7-5A	818471	05/06/2019	05/06/2020
RF Cable (9kHz-18GHz)	HUBER SUHNER	Sucoflex 104A	MY1397/4A	01/17/2020	01/17/2021
RF Cable (18GHz-40GHz)	HUBER SUHNER	Sucoflex 102	27963/2&37421 /2	11/27/2019	11/27/2021
Signal Generator	Anritsu	MG3692A	20311	01/09/2020	01/09/2021
Test Software	Audix	E3 Ver:6.12023	N/A	N/A	N/A
Magnetic Field Meter	Combinova	MFM-10	645	10/16/2019	10/16/2020
Magnetic Field Meter	Combinova	MFM-1000	619	12/06/2019	12/06/2020
Electric Field Meter	Combinova	EFM-200	402	10/16/2019	10/16/2020
E-field probe	Narda / Wandel & Goltermann	EF-0691 + NBM-520	D-0135 + D-0526	03/02/2019	03/02/2020



8.3 Test SET-UP:

The test item only performed radiated mode (A) Radiated Emission Test Set-Up, Frequency Below 1000MHz

(B) Radiated Emission Test Set-UP Frequency Over 1 GHz

8.4 Measurement Procedure:

- 1. According 414788 section 2, Either OATS or chamber for radiated emission below 30MHz, the test was done at 966 chamber, the test site was evaluated with OATS and the Chamber has test signals level greater than OATS's.
- 2. The EUT was placed on a turn table which is 0.8m/1.5m above ground plane in 966 chamber.
- 3. The turn table shall rotate 360 degrees to determine the position of maximum emission level.
- 4. EUT is set 3m away from the receiving antenna which varied from 1m to 4m to find out the highest emissions.
- 5. When measurement procedures for electric field radiated emissions above 1 GHz the EUT measurement is to be made "while keeping the antenna in the 'cone of radiation' from that area and pointed at the area both in azimuth and elevation, with polarization oriented for maximum response." is still within the 3dB illumination BW of the measurement antenna.
- 6. Maximum procedure was performed on the six highest emissions to ensure EUT compliance.
- 7. And also, each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical.
- 8. Repeat above procedures until all frequency measured were complete.

Test receiver setting	:	Blew 1GHz
Detector	:	Average(9kHz – 90kHz, 110kHz – 90kHz), Quasi-Peak
Bandwidth	:	200Hz, 120kHz
Test spectrum setting	:	Above 1GHz
Peak	:	RBW=1MHz, VBW=3MHz,Sweep=auto
Average (for Wi-Fi)	:	RBW=1MHz, VBW=10Hz, Sweep=auto
Average (for BLE)	:	RBW=1MHz, VBW=3kHz, Sweep=auto

Mode	ON time (ms)	Total time (ms)	Duty Cycle	Duty Factor	1/Ton	VBW (kHz)
b	—	_	—	0.00	—	0.01
g	1.440	1.495	96.321%	0.16	0.694	0.7
HT20	1.350	1.405	96.085%	0.17	0.741	1
BLE	0.390	0.630	61.905%	2.08	2.564	3

Average Measurement Setting (VBW)

8.5 Field Strength Calculation

The field strength is calculated by adding the Antenna Factor and Cable Factor and subtracting the Amplifier Gain and Duty Cycle Correction Factor(if any) from the measured reading. The basic equation with a sample calculation is as follows:

FS = RA + AF + CL - AG

Where	FS = Field Strength	CL = Cable Attenuation Factor (Cable Loss)
	RA = Reading Amplitude	AG = Amplifier Gain
	AF = Antenna Factor	

8.6 Measurement Result:

Note: Refer to next page spectrum analyzer data chart and tabular data sheets.

Dipole Antenna

Radiated Spurious Emission Measurement Result (below 1GHz) (802.11b mode)

Operation Mode	TX mode	Test Date	2020/01/21
Channel number	CH Low	Test By	Barry
Temperature	25	Pol	Ver./Hor
Humidity	60 %		

No	Freq MHz	Reading dBuV	Factor dB	Level dBuV/m	Limit dBuV/m	Margin dB	Remark	Pol V/H
1	174.53	44.73	-5.60	39.13	43.50	-4.37	Peak	VERTICAL
2	179.38	44.93	-6.05	38.88	43.50	-4.62	Peak	VERTICAL
3	493.66	31.54	-0.69	30.85	46.00	-15.15	Peak	VERTICAL
4	499.48	31.85	-0.66	31.19	46.00	-14.81	Peak	VERTICAL
5	569.32	33.26	0.69	33.95	46.00	-12.05	Peak	VERTICAL
6	854.50	27.42	5.41	32.83	46.00	-13.17	Peak	VERTICAL
1	355.92	39.99	-2.88	37.11	46.00	-8.89	Peak	HORIZONTAL
2	426.73	41.76	-1.51	40.25	46.00	-5.75	Peak	HORIZONTAL
3	489.78	35.70	-0.72	34.98	46.00	-11.02	Peak	HORIZONTAL
4	641.10	32.44	1.96	34.40	46.00	-11.60	Peak	HORIZONTAL
5	875.84	31.86	5.71	37.57	46.00	-8.43	Peak	HORIZONTAL
6	926.28	31.35	6.51	37.86	46.00	-8.14	Peak	HORIZONTAL

- 1 No further spurious emissions detected from the lowest internal frequency and 30MHz.
- 2 Measuring frequencies from the lowest internal frequency to the 1GHz.
- 3 Radiated emissions measured in frequency range from 9kHz to 1000MHz were made with an instrument detector setting 9-90kHz/110-490kHz using PK/AV and other Frequency Band using PK/QP
- 4 Measurement result within this frequency range shown "-" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.

Radiated Spurious Emission Measurement Result ((below 1GHz)	(802.11b mode)

Operation Mode	TX mode	Test Date	2020/01/21
Channel number	CH Mid	Test By	Barry
Temperature	25	Pol	Ver./Hor
Humidity	60 %		

-40 of 132-

No	Freq MHz	Reading dBuV	Factor dB	Level dBuV/m	Limit dBuV/m	Margin dB	Remark	Pol V/H
1	174.53	45.41	-5.60	39.81	43.50	-3.69	Peak	VERTICAL
2	182.29	44.55	-6.32	38.23	43.50	-5.27	Peak	VERTICAL
3	492.69	32.64	-0.70	31.94	46.00	-14.06	Peak	VERTICAL
4	569.32	32.46	0.69	33.15	46.00	-12.85	Peak	VERTICAL
5	741.01	27.47	3.85	31.32	46.00	-14.68	Peak	VERTICAL
6	941.80	28.66	6.70	35.36	46.00	-10.64	Peak	VERTICAL
1	176.47	39.38	-5.78	33.60	43.50	-9.90	Peak	HORIZONTAL
2	182.29	40.84	-6.32	34.52	43.50	-8.98	Peak	HORIZONTAL
3	427.70	36.30	-1.48	34.82	46.00	-11.18	Peak	HORIZONTAL
4	500.45	41.27	-0.64	40.63	46.00	-5.37	Peak	HORIZONTAL
5	625.58	32.47	1.77	34.24	46.00	-11.76	Peak	HORIZONTAL
6	875.84	30.51	5.71	36.22	46.00	-9.78	Peak	HORIZONTAL

- 1 No further spurious emissions detected from the lowest internal frequency and 30MHz.
- 2 Measuring frequencies from the lowest internal frequency to the 1GHz.
- 3 Radiated emissions measured in frequency range from 9kHz to 1000MHz were made with an instrument detector setting 9-90kHz/110-490kHz using PK/AV and other Frequency Band using PK/QP
- 4 Measurement result within this frequency range shown "-" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.

Operation Mode	TX mode	Test Date	2020/01/21
Channel number	CH High	Test By	Barry
Temperature	25	Pol	Ver./Hor
Humidity	60 %		

No	Freq MHz	Reading dBuV	Factor dB	Level dBuV/m	Limit dBuV/m	Margin dB	Remark	Pol V/H
1	179.38	44.08	-6.05	38.03	43.50	-5.47	Peak	VERTICAL
2	213.33	41.29	-7.20	34.09	43.50	-9.41	Peak	VERTICAL
3	491.72	36.75	-0.71	36.04	46.00	-9.96	Peak	VERTICAL
4	625.58	36.10	1.77	37.87	46.00	-8.13	Peak	VERTICAL
5	875.84	26.81	5.71	32.52	46.00	-13.48	Peak	VERTICAL
6	949.56	28.90	6.97	35.87	46.00	-10.13	Peak	VERTICAL
1	173.56	36.99	-5.52	31.47	43.50	-12.03	Peak	HORIZONTAL
2	396.66	33.03	-2.07	30.96	46.00	-15.04	Peak	HORIZONTAL
3	427.70	38.96	-1.48	37.48	46.00	-8.52	Peak	HORIZONTAL
4	569.32	34.06	0.69	34.75	46.00	-11.25	Peak	HORIZONTAL
5	641.10	33.33	1.96	35.29	46.00	-10.71	Peak	HORIZONTAL
6	875.84	30.01	5.71	35.72	46.00	-10.28	Peak	HORIZONTAL

- 1 No further spurious emissions detected from the lowest internal frequency and 30MHz.
- 2 Measuring frequencies from the lowest internal frequency to the 1GHz.
- 3 Radiated emissions measured in frequency range from 9kHz to 1000MHz were made with an instrument detector setting 9-90kHz/110-490kHz using PK/AV and other Frequency Band using PK/QP
- 4 Measurement result within this frequency range shown "-" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.

Operation Mode	TX mode	Test Date	2020/01/21
Channel number	CH Low	Test By	Barry
Temperature	25	Pol	Ver./Hor
Humidity	60 %		

No	Freq MHz	Reading dBuV	Factor dB	Level dBuV/m	Limit dBuV/m	Margin dB	Remark	Pol V/H
1	176.47	42.20	-5.78	36.42	43.50	-7.08	Peak	VERTICAL
2	179.38	43.91	-6.05	37.86	43.50	-5.64	Peak	VERTICAL
3	213.33	40.28	-7.20	33.08	43.50	-10.42	Peak	VERTICAL
4	427.70	35.05	-1.48	33.57	46.00	-12.43	Peak	VERTICAL
5	625.58	35.64	1.77	37.41	46.00	-8.59	Peak	VERTICAL
6	641.10	31.14	1.96	33.10	46.00	-12.90	Peak	VERTICAL
1	176.47	35.28	-5.78	29.50	43.50	-14.00	Peak	HORIZONTAL
2	491.72	35.08	-0.71	34.37	46.00	-11.63	Peak	HORIZONTAL
3	514.03	36.15	-0.18	35.97	46.00	-10.03	Peak	HORIZONTAL
4	520.82	31.61	0.08	31.69	46.00	-14.31	Peak	HORIZONTAL
5	875.84	30.01	5.71	35.72	46.00	-10.28	Peak	HORIZONTAL
6	952.47	27.77	7.02	34.79	46.00	-11.21	Peak	HORIZONTAL

- 1 No further spurious emissions detected from the lowest internal frequency and 30MHz.
- 2 Measuring frequencies from the lowest internal frequency to the 1GHz.
- 3 Radiated emissions measured in frequency range from 9kHz to 1000MHz were made with an instrument detector setting 9-90kHz/110-490kHz using PK/AV and other Frequency Band using PK/QP
- 4 Measurement result within this frequency range shown "-" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.

Operation Mode	TX mode	Test Date	2020/01/21
Channel number	CH Mid	Test By	Barry
Temperature	25	Pol	Ver./Hor
Humidity	60 %		

No	Freq MHz	Reading dBuV	Factor dB	Level dBuV/m	Limit dBuV/m	Margin dB	Remark	Pol V/H
1	176.47	35.28	-5.78	29.50	43.50	-14.00	Peak	VERTICAL
2	491.72	35.08	-0.71	34.37	46.00	-11.63	Peak	VERTICAL
3	514.03	36.15	-0.18	35.97	46.00	-10.03	Peak	VERTICAL
4	520.82	31.61	0.08	31.69	46.00	-14.31	Peak	VERTICAL
5	875.84	30.01	5.71	35.72	46.00	-10.28	Peak	VERTICAL
6	952.47	27.77	7.02	34.79	46.00	-11.21	Peak	VERTICAL
1	179.38	43.79	-6.05	37.74	43.50	-5.76	Peak	HORIZONTAL
2	213.33	42.01	-7.20	34.81	43.50	-8.69	Peak	HORIZONTAL
3	426.73	35.02	-1.51	33.51	46.00	-12.49	Peak	HORIZONTAL
4	498.51	34.07	-0.65	33.42	46.00	-12.58	Peak	HORIZONTAL
5	520.82	33.15	0.08	33.23	46.00	-12.77	Peak	HORIZONTAL
6	625.58	35.82	1.77	37.59	46.00	-8.41	Peak	HORIZONTAL

- 1 No further spurious emissions detected from the lowest internal frequency and 30MHz.
- 2 Measuring frequencies from the lowest internal frequency to the 1GHz.
- 3 Radiated emissions measured in frequency range from 9kHz to 1000MHz were made with an instrument detector setting 9-90kHz/110-490kHz using PK/AV and other Frequency Band using PK/QP
- 4 Measurement result within this frequency range shown "-" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.

Operation Mode	TX mode	Test Date	2020/01/21
Channel number	CH High	Test By	Barry
Temperature	25	Pol	Ver./Hor
Humidity	60 %		

No	Freq MHz	Reading dBuV	Factor dB	Level dBuV/m	Limit dBuV/m	Margin dB	Remark	Pol V/H
1	190.05	39.83	-7.04	32.79	43.50	-10.71	Peak	VERTICAL
2	427.70	34.60	-1.48	33.12	46.00	-12.88	Peak	VERTICAL
3	500.45	33.69	-0.64	33.05	46.00	-12.95	Peak	VERTICAL
4	625.58	32.62	1.77	34.39	46.00	-11.61	Peak	VERTICAL
5	641.10	30.30	1.96	32.26	46.00	-13.74	Peak	VERTICAL
6	875.84	32.88	5.71	38.59	46.00	-7.41	Peak	VERTICAL
1	213.33	40.06	-7.20	32.86	43.50	-10.64	Peak	HORIZONTAL
2	427.70	38.76	-1.48	37.28	46.00	-8.72	Peak	HORIZONTAL
3	493.66	34.87	-0.69	34.18	46.00	-11.82	Peak	HORIZONTAL
4	521.79	41.93	0.11	42.04	46.00	-3.96	Peak	HORIZONTAL
5	569.32	32.18	0.69	32.87	46.00	-13.13	Peak	HORIZONTAL
6	952.47	27.70	7.02	34.72	46.00	-11.28	Peak	HORIZONTAL

- 1 No further spurious emissions detected from the lowest internal frequency and 30MHz.
- 2 Measuring frequencies from the lowest internal frequency to the 1GHz.
- 3 Radiated emissions measured in frequency range from 9kHz to 1000MHz were made with an instrument detector setting 9-90kHz/110-490kHz using PK/AV and other Frequency Band using PK/QP
- 4 Measurement result within this frequency range shown "-" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.

-45 of 132-

Operation Mode	TX mode	Test Date	2020/01/21
Channel number	CH Low	Test By	Barry
Temperature	25	Pol	Ver./Hor
Humidity	60 %		

No	Freq MHz	Reading dBuV	Factor dB	Level dBuV/m	Limit dBuV/m	Margin dB	Remark	Pol V/H
1	356.89	36.47	-2.87	33.60	46.00	-12.40	Peak	VERTICAL
2	426.73	41.87	-1.51	40.36	46.00	-5.64	Peak	VERTICAL
3	705.12	36.47	3.17	39.64	46.00	-6.36	Peak	VERTICAL
4	711.91	37.93	3.20	41.13	46.00	-4.87	Peak	VERTICAL
5	854.50	31.23	5.41	36.64	46.00	-9.36	Peak	VERTICAL
6	875.84	31.16	5.71	36.87	46.00	-9.13	Peak	VERTICAL
1	176.47	45.64	-5.78	39.86	43.50	-3.64	Peak	HORIZONTAL
2	181.32	44.48	-6.24	38.24	43.50	-5.26	Peak	HORIZONTAL
3	224.97	38.04	-6.84	31.20	46.00	-14.80	Peak	HORIZONTAL
4	499.48	37.00	-0.66	36.34	46.00	-9.66	Peak	HORIZONTAL
5	520.82	38.04	0.08	38.12	46.00	-7.88	Peak	HORIZONTAL
6	569.32	32.10	0.69	32.79	46.00	-13.21	Peak	HORIZONTAL

- 1 No further spurious emissions detected from the lowest internal frequency and 30MHz.
- 2 Measuring frequencies from the lowest internal frequency to the 1GHz.
- 3 Radiated emissions measured in frequency range from 9kHz to 1000MHz were made with an instrument detector setting 9-90kHz/110-490kHz using PK/AV and other Frequency Band using PK/QP
- 4 Measurement result within this frequency range shown "-" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.

-46 of 132-

Operation Mode	TX mode	Test Date	2020/01/21
Channel number	CH Mid	Test By	Barry
Temperature	25	Pol	Ver./Hor
Humidity	60 %		

No	Freq MHz	Reading dBuV	Factor dB	Level dBuV/m	Limit dBuV/m	Margin dB	Remark	Pol V/H
1	186.17	39.03	-6.69	32.34	43.50	-11.16	Peak	VERTICAL
2	355.92	41.15	-2.88	38.27	46.00	-7.73	Peak	VERTICAL
3	426.73	42.10	-1.51	40.59	46.00	-5.41	Peak	VERTICAL
4	521.79	36.75	0.11	36.86	46.00	-9.14	Peak	VERTICAL
5	641.10	33.49	1.96	35.45	46.00	-10.55	Peak	VERTICAL
6	926.28	30.53	6.51	37.04	46.00	-8.96	Peak	VERTICAL
1	176.47	45.11	-5.78	39.33	43.50	-4.17	Peak	HORIZONTAL
2	186.17	42.52	-6.69	35.83	43.50	-7.67	Peak	HORIZONTAL
3	224.97	37.19	-6.84	30.35	46.00	-15.65	Peak	HORIZONTAL
4	496.57	42.96	-0.67	42.29	46.00	-3.71	Peak	HORIZONTAL
5	570.29	31.49	0.71	32.20	46.00	-13.80	Peak	HORIZONTAL
6	959.26	28.80	7.11	35.91	46.00	-10.09	Peak	HORIZONTAL

- 1 No further spurious emissions detected from the lowest internal frequency and 30MHz.
- 2 Measuring frequencies from the lowest internal frequency to the 1GHz.
- 3 Radiated emissions measured in frequency range from 9kHz to 1000MHz were made with an instrument detector setting 9-90kHz/110-490kHz using PK/AV and other Frequency Band using PK/QP
- 4 Measurement result within this frequency range shown "-" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.

-47 of 132-

Operation Mode	TX mode	Test Date	2020/01/21
Channel number	CH High	Test By	Barry
Temperature	25	Pol	Ver./Hor
Humidity	60 %		

No	Freq MHz	Reading dBuV	Factor dB	Level dBuV/m	Limit dBuV/m	Margin dB	Remark	Pol V/H
1	407.33	33.91	-1.89	32.02	46.00	-13.98	Peak	VERTICAL
2	427.70	43.50	-1.48	42.02	46.00	-3.98	Peak	VERTICAL
3	496.57	36.35	-0.67	35.68	46.00	-10.32	Peak	VERTICAL
4	641.10	34.62	1.96	36.58	46.00	-9.42	Peak	VERTICAL
5	875.84	32.21	5.71	37.92	46.00	-8.08	Peak	VERTICAL
6	926.28	30.58	6.51	37.09	46.00	-8.91	Peak	VERTICAL
1	178.41	43.76	-5.97	37.79	43.50	-5.71	Peak	HORIZONTAL
2	491.72	38.46	-0.71	37.75	46.00	-8.25	Peak	HORIZONTAL
3	494.63	37.50	-0.68	36.82	46.00	-9.18	Peak	HORIZONTAL
4	498.51	33.83	-0.65	33.18	46.00	-12.82	Peak	HORIZONTAL
5	570.29	31.98	0.71	32.69	46.00	-13.31	Peak	HORIZONTAL
6	855.47	28.96	5.41	34.37	46.00	-11.63	Peak	HORIZONTAL

- 1 No further spurious emissions detected from the lowest internal frequency and 30MHz.
- 2 Measuring frequencies from the lowest internal frequency to the 1GHz.
- 3 Radiated emissions measured in frequency range from 9kHz to 1000MHz were made with an instrument detector setting 9-90kHz/110-490kHz using PK/AV and other Frequency Band using PK/QP
- 4 Measurement result within this frequency range shown "-" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.

PIFA Antenna

Radiated Spurious Emission Measurement Result (below 1GHz) (802.11b mode)

Operation Mode	TX mode	Test Date	2020/01/21
Channel number	CH Low	Test By	Barry
Temperature	25	Pol	Ver./Hor
Humidity	60 %		

No	Freq MHz	Reading dBuV	Factor dB	Level dBuV/m	Limit dBuV/m	Margin dB	Remark	Pol V/H
1	71.71	38.55	-8.21	30.34	40.00	-9.66	Peak	VERTICAL
2	375.32	35.58	-2.39	33.19	46.00	-12.81	Peak	VERTICAL
3	395.69	44.18	-2.08	42.10	46.00	-3.90	Peak	VERTICAL
4	625.58	30.43	1.77	32.20	46.00	-13.80	Peak	VERTICAL
5	750.71	28.43	3.99	32.42	46.00	-13.58	Peak	VERTICAL
6	944.71	30.04	6.80	36.84	46.00	-9.16	Peak	VERTICAL
1	273.47	35.38	-4.65	30.73	46.00	-15.27	Peak	HORIZONTAL
2	286.08	34.00	-4.21	29.79	46.00	-16.21	Peak	HORIZONTAL
3	500.45	39.88	-0.64	39.24	46.00	-6.76	Peak	HORIZONTAL
4	518.88	42.08	0.02	42.10	46.00	-3.90	Peak	HORIZONTAL
5	750.71	29.84	3.99	33.83	46.00	-12.17	Peak	HORIZONTAL
6	875.84	27.72	5.71	33.43	46.00	-12.57	Peak	HORIZONTAL

- 1 No further spurious emissions detected from the lowest internal frequency and 30MHz.
- 2 Measuring frequencies from the lowest internal frequency to the 1GHz.
- 3 Radiated emissions measured in frequency range from 9kHz to 1000MHz were made with an instrument detector setting 9-90kHz/110-490kHz using PK/AV and other Frequency Band using PK/QP
- 4 Measurement result within this frequency range shown "-" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.

Radiated Spurious Emission Measurement Result (below 1GHz)	(802.11b mode)

Operation Mode	TX mode	Test Date	2020/01/21
Channel number	CH Mid	Test By	Barry
Temperature	25	Pol	Ver./Hor
Humidity	60 %		

-49 of 132-

No	Freq MHz	Reading dBuV	Factor dB	Level dBuV/m	Limit dBuV/m	Margin dB	Remark	Pol V/H
1	375.32	33.58	-2.39	31.19	46.00	-14.81	Peak	VERTICAL
2	395.69	35.42	-2.08	33.34	46.00	-12.66	Peak	VERTICAL
3	500.45	38.79	-0.64	38.15	46.00	-7.85	Peak	VERTICAL
4	625.58	32.88	1.77	34.65	46.00	-11.35	Peak	VERTICAL
5	750.71	33.70	3.99	37.69	46.00	-8.31	Peak	VERTICAL
6	875.84	28.88	5.71	34.59	46.00	-11.41	Peak	VERTICAL
1	250.19	34.38	-5.51	28.87	46.00	-17.13	Peak	HORIZONTAL
2	491.72	37.39	-0.71	36.68	46.00	-9.32	Peak	HORIZONTAL
3	500.45	37.88	-0.64	37.24	46.00	-8.76	Peak	HORIZONTAL
4	625.58	29.36	1.77	31.13	46.00	-14.87	Peak	HORIZONTAL
5	849.65	26.70	5.33	32.03	46.00	-13.97	Peak	HORIZONTAL
6	942.77	26.56	6.73	33.29	46.00	-12.71	Peak	HORIZONTAL

- 1 No further spurious emissions detected from the lowest internal frequency and 30MHz.
- 2 Measuring frequencies from the lowest internal frequency to the 1GHz.
- 3 Radiated emissions measured in frequency range from 9kHz to 1000MHz were made with an instrument detector setting 9-90kHz/110-490kHz using PK/AV and other Frequency Band using PK/QP
- 4 Measurement result within this frequency range shown "-" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.

Radiated Spurious Emission	Measurement Result (below	1GHz) (802.11b mode)
-----------------------------------	---------------------------	----------------------

Operation Mode	TX mode	Test Date	2020/01/21
Channel number	CH High	Test By	Barry
Temperature	25	Pol	Ver./Hor
Humidity	60 %		

-50 of 132-

No	Freq MHz	Reading dBuV	Factor dB	Level dBuV/m	Limit dBuV/m	Margin dB	Remark	Pol V/H
1	71.71	42.23	-8.21	34.02	40.00	-5.98	Peak	VERTICAL
2	75.59	41.03	-8.90	32.13	40.00	-7.87	Peak	VERTICAL
3	375.32	35.96	-2.39	33.57	46.00	-12.43	Peak	VERTICAL
4	395.69	36.20	-2.08	34.12	46.00	-11.88	Peak	VERTICAL
5	625.58	31.28	1.77	33.05	46.00	-12.95	Peak	VERTICAL
6	750.71	28.42	3.99	32.41	46.00	-13.59	Peak	VERTICAL
1	482.02	32.85	-0.86	31.99	46.00	-14.01	Peak	HORIZONTAL
2	500.45	39.51	-0.64	38.87	46.00	-7.13	Peak	HORIZONTAL
3	507.24	33.46	-0.42	33.04	46.00	-12.96	Peak	HORIZONTAL
4	849.65	28.08	5.33	33.41	46.00	-12.59	Peak	HORIZONTAL
5	944.71	27.41	6.80	34.21	46.00	-11.79	Peak	HORIZONTAL
6	996.12	26.86	7.58	34.44	54.00	-19.56	Peak	HORIZONTAL

- 1 No further spurious emissions detected from the lowest internal frequency and 30MHz.
- 2 Measuring frequencies from the lowest internal frequency to the 1GHz.
- 3 Radiated emissions measured in frequency range from 9kHz to 1000MHz were made with an instrument detector setting 9-90kHz/110-490kHz using PK/AV and other Frequency Band using PK/QP
- 4 Measurement result within this frequency range shown "-" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.

Radiated Spurious	Emission Measureme	nt Result (below	1GHz) (802.11g mode)

Operation Mode	TX mode	Test Date	2020/01/21
Channel number	CH Low	Test By	Barry
Temperature	25	Pol	Ver./Hor
Humidity	60 %		

No	Freq MHz	Reading dBuV	Factor dB	Level dBuV/m	Limit dBuV/m	Margin dB	Remark	Pol V/H
1	83.35	44.23	-10.82	33.41	40.00	-6.59	Peak	VERTICAL
2	275.41	37.71	-4.54	33.17	46.00	-12.83	Peak	VERTICAL
3	395.69	39.00	-2.08	36.92	46.00	-9.08	Peak	VERTICAL
4	500.45	40.24	-0.64	39.60	46.00	-6.40	Peak	VERTICAL
5	625.58	41.04	1.77	42.81	46.00	-3.19	Peak	VERTICAL
6	750.71	35.64	3.99	39.63	46.00	-6.37	Peak	VERTICAL
1	250.19	38.10	-5.51	32.59	46.00	-13.41	Peak	HORIZONTAL
2	375.32	32.24	-2.39	29.85	46.00	-16.15	Peak	HORIZONTAL
3	513.06	39.89	-0.22	39.67	46.00	-6.33	Peak	HORIZONTAL
4	625.58	32.64	1.77	34.41	46.00	-11.59	Peak	HORIZONTAL
5	750.71	30.35	3.99	34.34	46.00	-11.66	Peak	HORIZONTAL
6	875.84	30.03	5.71	35.74	46.00	-10.26	Peak	HORIZONTAL

- 1 No further spurious emissions detected from the lowest internal frequency and 30MHz.
- 2 Measuring frequencies from the lowest internal frequency to the 1GHz.
- 3 Radiated emissions measured in frequency range from 9kHz to 1000MHz were made with an instrument detector setting 9-90kHz/110-490kHz using PK/AV and other Frequency Band using PK/QP
- 4 Measurement result within this frequency range shown "-" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.

Radiated Spurious Emission	Measurement Result	(below 1GHz) (8	802.11g mode)
······································		()(-	

Operation Mode	TX mode	Test Date	2020/01/21
Channel number	CH Mid	Test By	Barry
Temperature	25	Pol	Ver./Hor
Humidity	60 %		

No	Freq MHz	Reading dBuV	Factor dB	Level dBuV/m	Limit dBuV/m	Margin dB	Remark	Pol V/H
1	86.26	33.53	-11.25	22.28	40.00	-17.72	Peak	VERTICAL
2	375.32	38.17	-2.39	35.78	46.00	-10.22	Peak	VERTICAL
3	395.69	36.92	-2.08	34.84	46.00	-11.16	Peak	VERTICAL
4	500.45	35.94	-0.64	35.30	46.00	-10.70	Peak	VERTICAL
5	750.71	33.25	3.99	37.24	46.00	-8.76	Peak	VERTICAL
6	875.84	27.87	5.71	33.58	46.00	-12.42	Peak	VERTICAL
1	395.69	29.28	-2.08	27.20	46.00	-18.80	Peak	HORIZONTAL
2	500.45	39.14	-0.64	38.50	46.00	-7.50	Peak	HORIZONTAL
3	643.04	28.15	1.97	30.12	46.00	-15.88	Peak	HORIZONTAL
4	750.71	30.07	3.99	34.06	46.00	-11.94	Peak	HORIZONTAL
5	850.62	26.09	5.35	31.44	46.00	-14.56	Peak	HORIZONTAL
6	875.84	27.03	5.71	32.74	46.00	-13.26	Peak	HORIZONTAL

- 1 No further spurious emissions detected from the lowest internal frequency and 30MHz.
- 2 Measuring frequencies from the lowest internal frequency to the 1GHz.
- 3 Radiated emissions measured in frequency range from 9kHz to 1000MHz were made with an instrument detector setting 9-90kHz/110-490kHz using PK/AV and other Frequency Band using PK/QP
- 4 Measurement result within this frequency range shown "-" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.

Operation Mode	TX mode	Test Date	2020/01/21
Channel number	CH High	Test By	Barry
Temperature	25	Pol	Ver./Hor
Humidity	60 %		

No	Freq MHz	Reading dBuV	Factor dB	Level dBuV/m	Limit dBuV/m	Margin dB	Remark	Pol V/H
1	278.32	37.30	-4.38	32.92	46.00	-13.08	Peak	VERTICAL
2	395.69	39.10	-2.08	37.02	46.00	-8.98	Peak	VERTICAL
3	500.45	39.73	-0.64	39.09	46.00	-6.91	Peak	VERTICAL
4	625.58	40.90	1.77	42.67	46.00	-3.33	Peak	VERTICAL
5	750.71	37.85	3.99	41.84	46.00	-4.16	Peak	VERTICAL
6	875.84	30.10	5.71	35.81	46.00	-10.19	Peak	VERTICAL
1	250.19	38.10	-5.51	32.59	46.00	-13.41	Peak	HORIZONTAL
2	500.45	40.33	-0.64	39.69	46.00	-6.31	Peak	HORIZONTAL
3	510.15	34.89	-0.33	34.56	46.00	-11.44	Peak	HORIZONTAL
4	625.58	36.64	1.77	38.41	46.00	-7.59	Peak	HORIZONTAL
5	875.84	31.05	5.71	36.76	46.00	-9.24	Peak	HORIZONTAL
6	949.56	27.30	6.97	34.27	46.00	-11.73	Peak	HORIZONTAL

- 1 No further spurious emissions detected from the lowest internal frequency and 30MHz.
- 2 Measuring frequencies from the lowest internal frequency to the 1GHz.
- 3 Radiated emissions measured in frequency range from 9kHz to 1000MHz were made with an instrument detector setting 9-90kHz/110-490kHz using PK/AV and other Frequency Band using PK/QP
- 4 Measurement result within this frequency range shown "-" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.

Operation Mode	TX mode	Test Date	2020/01/21
Channel number	CH Low	Test By	Barry
Temperature	25	Pol	Ver./Hor
Humidity	60 %		

-54 of 132-

No	Freq MHz	Reading dBuV	Factor dB	Level dBuV/m	Limit dBuV/m	Margin dB	Remark	Pol V/H
1	71.71	43.27	-8.21	35.06	40.00	-4.94	Peak	VERTICAL
2	375.32	37.89	-2.39	35.50	46.00	-10.50	Peak	VERTICAL
3	395.69	35.82	-2.08	33.74	46.00	-12.26	Peak	VERTICAL
4	500.45	34.23	-0.64	33.59	46.00	-12.41	Peak	VERTICAL
5	750.71	33.18	3.99	37.17	46.00	-8.83	Peak	VERTICAL
6	875.84	28.89	5.71	34.60	46.00	-11.40	Peak	VERTICAL
1	491.72	40.20	-0.71	39.49	46.00	-6.51	Peak	HORIZONTAL
2	500.45	39.08	-0.64	38.44	46.00	-7.56	Peak	HORIZONTAL
3	521.79	38.16	0.11	38.27	46.00	-7.73	Peak	HORIZONTAL
4	750.71	29.56	3.99	33.55	46.00	-12.45	Peak	HORIZONTAL
5	875.84	27.94	5.71	33.65	46.00	-12.35	Peak	HORIZONTAL
6	951.50	26.72	7.00	33.72	46.00	-12.28	Peak	HORIZONTAL

- 1 No further spurious emissions detected from the lowest internal frequency and 30MHz.
- 2 Measuring frequencies from the lowest internal frequency to the 1GHz.
- 3 Radiated emissions measured in frequency range from 9kHz to 1000MHz were made with an instrument detector setting 9-90kHz/110-490kHz using PK/AV and other Frequency Band using PK/QP
- 4 Measurement result within this frequency range shown "-" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.

-55 of 132-

Operation Mode	TX mode	Test Date	2020/01/21
Channel number	CH Mid	Test By	Barry
Temperature	25	Pol	Ver./Hor
Humidity	60 %		

No	Freq MHz	Reading dBuV	Factor dB	Level dBuV/m	Limit dBuV/m	Margin dB	Remark	Pol V/H
1	83.35	43.20	-10.82	32.38	40.00	-7.62	Peak	VERTICAL
2	395.69	38.54	-2.08	36.46	46.00	-9.54	Peak	VERTICAL
3	500.45	39.51	-0.64	38.87	46.00	-7.13	Peak	VERTICAL
4	517.91	37.21	-0.02	37.19	46.00	-8.81	Peak	VERTICAL
5	625.58	38.53	1.77	40.30	46.00	-5.70	Peak	VERTICAL
6	750.71	38.44	3.99	42.43	46.00	-3.57	Peak	VERTICAL
1	83.35	41.51	-10.82	30.69	40.00	-9.31	Peak	HORIZONTAL
2	250.19	37.60	-5.51	32.09	46.00	-13.91	Peak	HORIZONTAL
3	500.45	42.96	-0.64	42.32	46.00	-3.68	Peak	HORIZONTAL
4	515.97	33.32	-0.10	33.22	46.00	-12.78	Peak	HORIZONTAL
5	625.58	39.14	1.77	40.91	46.00	-5.09	Peak	HORIZONTAL
6	875.84	32.08	5.71	37.79	46.00	-8.21	Peak	HORIZONTAL

- 1 No further spurious emissions detected from the lowest internal frequency and 30MHz.
- 2 Measuring frequencies from the lowest internal frequency to the 1GHz.
- 3 Radiated emissions measured in frequency range from 9kHz to 1000MHz were made with an instrument detector setting 9-90kHz/110-490kHz using PK/AV and other Frequency Band using PK/QP
- 4 Measurement result within this frequency range shown "-" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.

-56 of 132-

Operation Mode	TX mode	Test Date	2020/01/21
Channel number	CH High	Test By	Barry
Temperature	25	Pol	Ver./Hor
Humidity	60 %		

No	Freq MHz	Reading dBuV	Factor dB	Level dBuV/m	Limit dBuV/m	Margin dB	Remark	Pol V/H
1	71.71	43.65	-8.21	35.44	40.00	-4.56	Peak	VERTICAL
2	83.35	42.49	-10.82	31.67	40.00	-8.33	Peak	VERTICAL
3	375.32	36.82	-2.39	34.43	46.00	-11.57	Peak	VERTICAL
4	395.69	35.44	-2.08	33.36	46.00	-12.64	Peak	VERTICAL
5	500.45	34.93	-0.64	34.29	46.00	-11.71	Peak	VERTICAL
6	750.71	30.76	3.99	34.75	46.00	-11.25	Peak	VERTICAL
1	474.26	31.29	-0.92	30.37	46.00	-15.63	Peak	HORIZONTAL
2	500.45	38.61	-0.64	37.97	46.00	-8.03	Peak	HORIZONTAL
3	571.26	27.87	0.74	28.61	46.00	-17.39	Peak	HORIZONTAL
4	750.71	29.39	3.99	33.38	46.00	-12.62	Peak	HORIZONTAL
5	794.36	26.54	4.51	31.05	46.00	-14.95	Peak	HORIZONTAL
6	875.84	27.89	5.71	33.60	46.00	-12.40	Peak	HORIZONTAL

- 1 No further spurious emissions detected from the lowest internal frequency and 30MHz.
- 2 Measuring frequencies from the lowest internal frequency to the 1GHz.
- 3 Radiated emissions measured in frequency range from 9kHz to 1000MHz were made with an instrument detector setting 9-90kHz/110-490kHz using PK/AV and other Frequency Band using PK/QP
- 4 Measurement result within this frequency range shown "-" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.

Dipole Antenna

Radiated Spurious Emission Measurement Result (above 1GHz) (802.11b mode)

Operation Mode	TX mode	Test Date	2020/01/21
Channel number	CH Low	Test By	Barry
Temperature	25	Pol	Ver./Hor
Humidity	60 %		

No	Freq	Reading	Factor	Level	Limit	Margin	Remark	Pol
	MHz	dBuV	dB	dBuV/m	dBuV/m	dB		V/H
1	4824.00	47.65	-9.35	38.30	74.00	-35.70	Peak	VERTICAL
2	7236.00	45.29	-1.81	43.48	74.00	-30.52	Peak	VERTICAL
1	4824.00	45.37	-9.35	36.02	74.00	-37.98	Peak	HORIZONTAL
2	7236.00	45.03	-1.81	43.22	74.00	-30.78	Peak	HORIZONTAL

- 1 Measuring frequencies from the lowest internal frequency to the 10th of fundamental frequency
- 2 Field strength limits for frequency above 1000MHz are based on average limits. However, Peak mode field strength shall not exceed the average limits specified plus 20dB.
- 3 Measurement of data within this frequency range shown "-" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.

HORIZONTAL

HORIZONTAL

-37.07

-30.63

Peak

Peak

4874.00

7311.00

46.15

45.14

Operation Mode Channel number Temperature Humidity		el number erature		mode Mid %				t By E	020/01/21 Barry /er./Hor
	No	Freq	Reading	Factor	Level	Limit	Margin	Remark	Pol
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB		V/H
	1	4874.00	45.39	-9.22	36.17	74.00	-37.83	Peak	VERTICAL
	2	7311.00	45.58	-1.77	43.81	74.00	-30.19	Peak	VERTICAL

36.93

43.37

-58 of 132-

Radiated Spurious Emission Measurement Result (above 1GHz) (802.11b mode)

-9.22

-1.77

Remark:

1

2

1 Measuring frequencies from the lowest internal frequency to the 10th of fundamental frequency

74.00

74.00

2 Field strength limits for frequency above 1000MHz are based on average limits. However, Peak mode field strength shall not exceed the average limits specified plus 20dB.

3 Measurement of data within this frequency range shown "-" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.

HORIZONTAL

Operation Mode Channel number Temperature Humidity		el number erature	TX mode CH High 25 60 %					Fest Date Fest By Pol	2020/01/21 Barry Ver./Hor	
	No	Freq MHz	Reading dBuV	Factor dB	Level dBuV/m	Limit dBuV/m	Margin dB	Remark	Pol V/H	
		IVITIZ	uDuv	uD	uDu v/III	uDu v/III	uD		V/11	
	1	4924.00	43.43	-9.10	34.33	74.00	-39.67	Peak	VERTICAL	
	2	7386.00	43.32	-1.72	41.60	74.00	-32.40	Peak	VERTICAL	
	1	4924.00	43.04	-9.10	33.94	74.00	-40.06	Peak	HORIZONTAL	

-59 of 132-

Radiated Spurious Emission Measurement Result (above 1GHz) (802.11b mode)

-1.72

43.90

Remark:

7386.00

2

1 Measuring frequencies from the lowest internal frequency to the 10th of fundamental frequency

74.00

-31.82

Peak

42.18

2 Field strength limits for frequency above 1000MHz are based on average limits. However, Peak mode field strength shall not exceed the average limits specified plus 20dB.

3 Measurement of data within this frequency range shown "-" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.

Humidity

Radiated Spurious Emission Measurement Result (above 10112) (602.11g mode)								
Operation Mode	TX mode	Test Date	2020/01/21					
Channel number	CH Low	Test By	Barry					
Temperature	25	Pol	Ver./Hor					

-60 of 132-

Radiated Spurious Emission Measurement Result (above 1GHz) (802.11g mode)

60 %

No	Freq MHz	Reading dBuV	Factor dB	Level dBuV/m	Limit dBuV/m	Margin dB	Remark	Pol V/H
1	4824.00	46.74	-9.35	37.39	74.00	-36.61	Peak	VERTICAL
2	7236.00	45.44	-1.81	43.63	74.00	-30.37	Peak	VERTICAL
1	4824.00	45.47	-9.35	36.12	74.00	-37.88	Peak	HORIZONTAL
2	7236.00	44.98	-1.81	43.17	74.00	-30.83	Peak	HORIZONTAL

- 1 Measuring frequencies from the lowest internal frequency to the 10th of fundamental frequency
- 2 Field strength limits for frequency above 1000MHz are based on average limits. However, Peak mode field strength shall not exceed the average limits specified plus 20dB.
- 3 Measurement of data within this frequency range shown "-" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.

Peak

Peak

HORIZONTAL

HORIZONTAL

-36.34

-30.56

Operation Mode Channel number Temperature Humidity		el number erature	TX mode CH Mid 25 60 %				Test Da Test By Pol		2020/01/21 3arry /er./Hor
	No	Freq	Reading	Factor	Level	Limit	Margin	Remark	Pol
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB		V/H
	1	4874.00	45.62	-9.22	36.40	74.00	-37.60	Peak	VERTICAL
	2	7311.00	45.11	-1.77	43.34	74.00	-30.66	Peak	VERTICAL

37.66

43.44

-61 of 132-

Radiated Spurious Emission Measurement Result (above 1GHz) (802.11g mode)

Remark:

1 2 4874.00

7311.00

46.88

45.21

-9.22

-1.77

1 Measuring frequencies from the lowest internal frequency to the 10th of fundamental frequency

74.00

74.00

2 Field strength limits for frequency above 1000MHz are based on average limits. However, Peak mode field strength shall not exceed the average limits specified plus 20dB.

3 Measurement of data within this frequency range shown "-" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.

Peak

HORIZONTAL

(]	Operation Mode Channel number Temperature Humidity			mode High %			Т	Cest Date Cest By Pol	2020/01/21 Barry Ver./Hor
	No	Freq MHz	Reading dBuV	Factor dB	Level dBuV/m	Limit dBuV/m	Margin dB	Remark	Pol V/H
	1	4924.00	47.25	-9.10	38.15	74.00	-35.85	Peak	VERTICAL
	2	7386.00	45.86	-1.72	44.14	74.00	-29.86	Peak	VERTICAL
	1	4924.00	46.48	-9.10	37.38	74.00	-36.62	Peak	HORIZONTAL

-62 of 132-

Radiated Spurious Emission Measurement Result (above 1GHz) (802.11g mode)

-1.72

Remark:

7386.00

45.51

2

1 Measuring frequencies from the lowest internal frequency to the 10th of fundamental frequency

74.00

-30.21

43.79

2 Field strength limits for frequency above 1000MHz are based on average limits. However, Peak mode field strength shall not exceed the average limits specified plus 20dB.

3 Measurement of data within this frequency range shown "-" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.

Radiated Spurious Emission Measurement Result (above 1GHz) (802.11n H	T20 mode)

-63 of 132-

Operation Mode	TX mode	Test Date	2020/01/21
Channel number	CH Low	Test By	Barry
Temperature	25	Pol	Ver./Hor
Humidity	60 %		

No	Freq MHz	Reading dBuV	Factor dB	Level dBuV/m	Limit dBuV/m	Margin dB	Remark	Pol V/H
1	4824.00	46.51	-9.35	37.16	74.00	-36.84	Peak	VERTICAL
2	7236.00	45.11	-1.81	43.30	74.00	-30.70	Peak	VERTICAL
1	4824.00	45.52	-9.35	36.17	74.00	-37.83	Peak	HORIZONTAL
2	7236.00	45.29	-1.81	43.48	74.00	-30.52	Peak	HORIZONTAL

- 1 Measuring frequencies from the lowest internal frequency to the 10th of fundamental frequency
- 2 Field strength limits for frequency above 1000MHz are based on average limits. However, Peak mode field strength shall not exceed the average limits specified plus 20dB.
- 3 Measurement of data within this frequency range shown "-" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.

HORIZONTAL

Operation Mode Channel number Temperature Humidity		el number erature		mode Mid %				t By E	020/01/21 Barry /er./Hor
	No	Freq MHz	Reading dBuV	Factor dB	Level dBuV/m	Limit dBuV/m	Margin dB	Remark	Pol V/H
	1	4874.00	45.44	-9.22	36.22	74.00	-37.78	Peak	VERTICAL
	2	7311.00	45.17	-1.77	43.40	74.00	-30.60	Peak	VERTICAL
	1	4874.00	45.45	-9.22	36.23	74.00	-37.77	Peak	HORIZONTAL

Radiated Spurious Emission Measurement Result (above 1GHz) (802.11n HT20 mode)

-64 of 132-

Remark:

7311.00

2

1 Measuring frequencies from the lowest internal frequency to the 10th of fundamental frequency

74.00

-30.11

Peak

43.89

-1.77

45.66

2 Field strength limits for frequency above 1000MHz are based on average limits. However, Peak mode field strength shall not exceed the average limits specified plus 20dB.

3 Measurement of data within this frequency range shown "-" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.

HORIZONTAL

Peak

Operation Mode Channel number Temperature Humidity		el number erature	TX mode CH High 25 60 %]	Test Date Test By Pol	2020/01/21 Barry Ver./Hor	
	No	Freq MHz	Reading dBuV	Factor dB	Level dBuV/m	Limit dBuV/m	Margin dB	Remark	Pol V/H	
	1	4924.00	45.57	-9.10	36.47	74.00	-37.53	Peak	VERTICAL	
	2	7386.00	44.78	-1.72	43.06	74.00	-30.94	Peak	VERTICAL	
	1	4924.00	45.83	-9.10	36.73	74.00	-37.27	Peak	HORIZONTAL	

Radiated Spurious Emission Measurement Result (above 1GHz) (802.11n HT20 mode)

-1.72

46.51

-65 of 132-

Remark:

7386.00

2

1 Measuring frequencies from the lowest internal frequency to the 10th of fundamental frequency

74.00

-29.21

44.79

- 2 Field strength limits for frequency above 1000MHz are based on average limits. However, Peak mode field strength shall not exceed the average limits specified plus 20dB.
- 3 Measurement of data within this frequency range shown "-" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.

PIFA Antenna

Radiated Spurious Emission Measurement Result (above 1GHz) (802.11b mode)

Operation Mode	TX mode	Test Date	2020/01/21
Channel number	CH Low	Test By	Barry
Temperature	25	Pol	Ver./Hor
Humidity	60 %		

No	Freq	Reading	Factor	Level	Limit	Margin	Remark	Pol
	MHz	dBuV	dB	dBuV/m	dBuV/m	dB		V/H
1	4824.00	46.00	-9.35	36.65	74.00	-37.35	Peak	VERTICAL
2	7236.00	47.83	-1.81	46.02	74.00	-27.98	Peak	VERTICAL
1	4824.00	45.07	-9.35	35.72	74.00	-38.28	Peak	HORIZONTAL
2	7236.00	47.42	-1.81	45.61	74.00	-28.39	Peak	HORIZONTAL

- 1 Measuring frequencies from the lowest internal frequency to the 10th of fundamental frequency
- 2 Field strength limits for frequency above 1000MHz are based on average limits. However, Peak mode field strength shall not exceed the average limits specified plus 20dB.
- 3 Measurement of data within this frequency range shown "-" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.

Operation Mode TX mode		mode			Tes	t Date 2	2020/01/21			
(Chann	el number	CH	Mid			Tes	t By – H	Barry	
7	Гетре	erature	25				Pol	, v	/er./Hor	
Humidity		60	%							
		-								
	No	Freq	Reading	Factor	Level	Limit	Margin	Remark	Pol	
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB		V/H	
	1	4874.00	46.99	-9.22	37.77	74.00	-36.23	Peak	VERTICAL	
	2	7311.00	45.41	-1.77	43.64	74.00	-30.36	Peak	VERTICAL	

35.91

44.72

-67 of 132-

Radiated Spurious Emission Measurement Result (above 1GHz) (802.11b mode)

Remark:

 $\frac{1}{2}$

4874.00

7311.00

45.13

46.49

-9.22

-1.77

1 Measuring frequencies from the lowest internal frequency to the 10th of fundamental frequency

74.00

74.00

-38.09

-29.28

Peak

Peak

HORIZONTAL

HORIZONTAL

2 Field strength limits for frequency above 1000MHz are based on average limits. However, Peak mode field strength shall not exceed the average limits specified plus 20dB.

3 Measurement of data within this frequency range shown "-" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.

Operation Mode Channel number Temperature Humidity		el number erature		mode High %]	Fest Date Fest By Pol	2020/01/21 Barry Ver./Hor
	No	Freq MHz	Reading dBuV	Factor dB	Level dBuV/m	Limit dBuV/m	Margin dB	Remark	Pol V/H
	1	4924.00	44.88	-9.10	35.78	74.00	-38.22	Peak	VERTICAL
	2	7386.00	44.71	-1.72	42.99	74.00	-31.01	Peak	VERTICAL
	1	4924.00	44.84	-9.10	35.74	74.00	-38.26	Peak	HORIZONTAL

-68 of 132-

Radiated Spurious Emission Measurement Result (above 1GHz) (802.11b mode)

Remark:

7386.00

45.69

-1.72

2

1 Measuring frequencies from the lowest internal frequency to the 10th of fundamental frequency

74.00

-30.03

Peak

HORIZONTAL

43.97

2 Field strength limits for frequency above 1000MHz are based on average limits. However, Peak mode field strength shall not exceed the average limits specified plus 20dB.

3 Measurement of data within this frequency range shown "-" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.

Ver./Hor

Pol

Temperature

Humidity

Radiated Spurious Emission Measurement Result (above 1GHz) (802.11g mode)						
Operation Mode	TX mode	Test Date	2020/01/21			
Channel number	CH Low	Test By	Barry			

25

60 %

No	Freq	Reading	Factor	Level	Limit	Margin	Remark	Pol
	MHz	dBuV	dB	dBuV/m	dBuV/m	dB		V/H
1	4824.00	43.24	-9.35	33.89	74.00	-40.11	Peak	VERTICAL
2	7236.00	45.81	-1.81	44.00	74.00	-30.00	Peak	VERTICAL
1	4824.00	44.67	-9.35	35.32	74.00	-38.68	Peak	HORIZONTAL
2	7236.00	46.68	-1.81	44.87	74.00	-29.13	Peak	HORIZONTAL

-69 of 132-

- 1 Measuring frequencies from the lowest internal frequency to the 10th of fundamental frequency
- 2 Field strength limits for frequency above 1000MHz are based on average limits. However, Peak mode field strength shall not exceed the average limits specified plus 20dB.
- 3 Measurement of data within this frequency range shown "-" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.

-30.40

Peak

HORIZONTAL

Operation Mode Channel number Temperature Humidity		el number erature		mode Mid %				t By E	020/01/21 Barry /er./Hor
	No	Freq MHz	Reading dBuV	Factor dB	Level dBuV/m	Limit dBuV/m	Margin dB	Remark	Pol V/H
	1	4874.00	43.54	-9.22	34.32	74.00	-39.68	Peak	VERTICAL
	2	7311.00	45.57	-1.77	43.80	74.00	-30.20	Peak	VERTICAL
	1	4874.00	44.49	-9.22	35.27	74.00	-38.73	Peak	HORIZONTAL

-70 of 132-

Radiated Spurious Emission Measurement Result (above 1GHz) (802.11g mode)

-1.77

Remark:

7311.00

45.37

2

1 Measuring frequencies from the lowest internal frequency to the 10th of fundamental frequency

74.00

43.60

2 Field strength limits for frequency above 1000MHz are based on average limits. However, Peak mode field strength shall not exceed the average limits specified plus 20dB.

3 Measurement of data within this frequency range shown "-" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.

HORIZONTAL

Operation Mode Channel number Temperature Humidity		el number erature		mode High %			Т	Cest Date Cest By Pol	2020/01/21 Barry Ver./Hor
	No	Freq MHz	Reading dBuV	Factor dB	Level dBuV/m	Limit dBuV/m	Margin dB	Remark	Pol V/H
	1	4924.00	44.41	-9.10	35.31	74.00	-38.69	Peak	VERTICAL
	2	7386.00	45.47	-1.72	43.75	74.00	-30.25	Peak	VERTICAL
	1	4924.00	45.07	-9.10	35.97	74.00	-38.03	Peak	HORIZONTAL

-71 of 132-

Radiated Spurious Emission Measurement Result (above 1GHz) (802.11g mode)

Remark:

7386.00

44.85

-1.72

2

1 Measuring frequencies from the lowest internal frequency to the 10th of fundamental frequency

74.00

-30.87

Peak

43.13

2 Field strength limits for frequency above 1000MHz are based on average limits. However, Peak mode field strength shall not exceed the average limits specified plus 20dB.

3 Measurement of data within this frequency range shown "-" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.

-72 of 132-

Operation Mode	TX mode	Test Date	2020/01/21
Channel number	CH Low	Test By	Barry
Temperature	25	Pol	Ver./Hor
Humidity	60 %		

No	Freq MHz	Reading dBuV	Factor dB	Level dBuV/m	Limit dBuV/m	Margin dB	Remark	Pol V/H
1	4824.00	44.26	-9.35	34.91	74.00	-39.09	Peak	VERTICAL
2	7236.00	46.13	-1.81	44.32	74.00	-29.68	Peak	VERTICAL
1	4824.00	43.59	-9.35	34.24	74.00	-39.76	Peak	HORIZONTAL
2	7236.00	45.09	-1.81	43.28	74.00	-30.72	Peak	HORIZONTAL

- 1 Measuring frequencies from the lowest internal frequency to the 10th of fundamental frequency
- 2 Field strength limits for frequency above 1000MHz are based on average limits. However, Peak mode field strength shall not exceed the average limits specified plus 20dB.
- 3 Measurement of data within this frequency range shown "-" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.

Operation Mode Channel number Temperature Humidity		el number erature	TX mode CH Mid 25 60 %					t By E	020/01/21 Barry /er./Hor
	No	Freq MHz	Reading dBuV	Factor dB	Level dBuV/m	Limit dBuV/m	Margin dB	Remark	Pol V/H
	1	4874.00	44.16	-9.22	34.94	74.00	-39.06	Peak	VERTICAL
	2	7311.00	46.47	-1.77	44.70	74.00	-29.30	Peak	VERTICAL
	1	4874.00	44.31	-9.22	35.09	74.00	-38.91	Peak	HORIZONTAL

Radiated Spurious Emission Measurement Result (above 1GHz) (802.11n HT20 mode)

-73 of 132-

Remark:

7311.00

45.29

-1.77

2

1 Measuring frequencies from the lowest internal frequency to the 10th of fundamental frequency

74.00

-30.48

Peak

HORIZONTAL

43.52

- 2 Field strength limits for frequency above 1000MHz are based on average limits. However, Peak mode field strength shall not exceed the average limits specified plus 20dB.
- 3 Measurement of data within this frequency range shown "-" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.

HORIZONTAL

Peak

(Operation ModeTX modeChannel numberCH HighTemperature25Humidity60 %]	Fest Date Fest By Pol	2020/01/21 Barry Ver./Hor				
	No	Freq MHz	Reading dBuV	Factor dB	Level dBuV/m	Limit dBuV/m	Margin dB	Remark	Pol V/H
	1	4924.00	43.71	-9.10	34.61	74.00	-39.39	Peak	VERTICAL
	2	7386.00	45.43	-1.72	43.71	74.00	-30.29	Peak	VERTICAL
	1	4924.00	44.91	-9.10	35.81	74.00	-38.19	Peak	HORIZONTAL

Radiated Spurious Emission Measurement Result (above 1GHz) (802.11n HT20 mode)

-1.72

45.08

-74 of 132-

Remark:

7386.00

2

1 Measuring frequencies from the lowest internal frequency to the 10th of fundamental frequency

74.00

-30.64

43.36

2 Field strength limits for frequency above 1000MHz are based on average limits. However, Peak mode field strength shall not exceed the average limits specified plus 20dB.

3 Measurement of data within this frequency range shown "-" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.

Dipole Antenna

Radiated Spurious Emission Measurement Result (below 1GHz) BLE Mode

Operation Mode	TX mode	Test Date	2020/01/21
Channel number	CH Low	Test By	Barry
Temperature	25	Pol	Ver./Hor
Humidity	60 %		

No	Freq	Reading	Factor	Level	Limit	Margin	Remark	Pol
	MHz	dBuV	dB	dBuV/m	dBuV/m	dB		V/H
1	285.11	37.08	-4.22	32.86	46.00	-13.14	Peak	VERTICAL
2	356.89	36.98	-2.87	34.11	46.00	-11.89	Peak	VERTICAL
3	426.73	43.73	-1.51	42.22	46.00	-3.78	Peak	VERTICAL
4	625.58	34.10	1.77	35.87	46.00	-10.13	Peak	VERTICAL
5	641.10	35.25	1.96	37.21	46.00	-8.79	Peak	VERTICAL
6	875.84	32.49	5.71	38.20	46.00	-7.80	Peak	VERTICAL
1	175.50	46.25	-5.70	40.55	43.50	-2.95	Peak	HORIZONTAL
2	183.26	44.92	-6.42	38.50	43.50	-5.00	Peak	HORIZONTAL
3	213.33	39.70	-7.20	32.50	43.50	-11.00	Peak	HORIZONTAL
4	625.58	32.12	1.77	33.89	46.00	-12.11	Peak	HORIZONTAL
5	841.89	30.88	5.29	36.17	46.00	-9.83	Peak	HORIZONTAL
6	875.84	32.90	5.71	38.61	46.00	-7.39	Peak	HORIZONTAL

- 1 No further spurious emissions detected from the lowest internal frequency and 30MHz.
- 2 Measuring frequencies from the lowest internal frequency to the 1GHz.
- 3 Radiated emissions measured in frequency range from 9kHz to 1000MHz were made with an instrument detector setting 9-90kHz/110-490kHz using PK/AV and other Frequency Band using PK/QP
- 4 Measurement result within this frequency range shown "-" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.

Radiated Spurious Emission Measurement Result (below 1GHz) BLE Mode

Operation Mode	TX mode	Test Date	2020/01/21
Channel number	CH Mid	Test By	Barry
Temperature	25	Pol	Ver./Hor
Humidity	60 %		

No	Freq MHz	Reading dBuV	Factor dB	Level dBuV/m	Limit dBuV/m	Margin dB	Remark	Pol V/H
1	285.11	37.55	-4.22	33.33	46.00	-12.67	Peak	VERTICAL
2	427.70	43.31	-1.48	41.83	46.00	-4.17	Peak	VERTICAL
3	625.58	34.12	1.77	35.89	46.00	-10.11	Peak	VERTICAL
4	641.10	34.58	1.96	36.54	46.00	-9.46	Peak	VERTICAL
5	855.47	32.01	5.41	37.42	46.00	-8.58	Peak	VERTICAL
6	926.28	31.30	6.51	37.81	46.00	-8.19	Peak	VERTICAL
1	173.56	44.47	-5.52	38.95	43.50	-4.55	Peak	HORIZONTAL
2	186.17	42.38	-6.69	35.69	43.50	-7.81	Peak	HORIZONTAL
3	213.33	40.21	-7.20	33.01	43.50	-10.49	Peak	HORIZONTAL
4	569.32	32.98	0.69	33.67	46.00	-12.33	Peak	HORIZONTAL
5	706.09	30.63	3.18	33.81	46.00	-12.19	Peak	HORIZONTAL
6	875.84	31.71	5.71	37.42	46.00	-8.58	Peak	HORIZONTAL

- 1 No further spurious emissions detected from the lowest internal frequency and 30MHz.
- 2 Measuring frequencies from the lowest internal frequency to the 1GHz.
- 3 Radiated emissions measured in frequency range from 9kHz to 1000MHz were made with an instrument detector setting 9-90kHz/110-490kHz using PK/AV and other Frequency Band using PK/QP
- 4 Measurement result within this frequency range shown "-" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.

Radiated Spurious Emission Measurement Result (below 1GHz) BLE Mode

Operation Mode	TX mode	Test Date	2020/01/21
Channel number	CH High	Test By	Barry
Temperature	25	Pol	Ver./Hor
Humidity	60 %		

No	Freq MHz	Reading dBuV	Factor dB	Level dBuV/m	Limit dBuV/m	Margin dB	Remark	Pol V/H
1	355.92	41.56	-2.88	38.68	46.00	-7.32	Peak	VERTICAL
2	427.70	45.65	-1.48	44.17	46.00	-1.83	Peak	VERTICAL
3	521.79	34.68	0.11	34.79	46.00	-11.21	Peak	VERTICAL
4	640.13	35.27	1.96	37.23	46.00	-8.77	Peak	VERTICAL
5	854.50	30.78	5.41	36.19	46.00	-9.81	Peak	VERTICAL
6	925.31	31.47	6.49	37.96	46.00	-8.04	Peak	VERTICAL
1	178.41	46.37	-5.97	40.40	43.50	-3.10	Peak	HORIZONTAL
2	213.33	40.51	-7.20	33.31	43.50	-10.19	Peak	HORIZONTAL
3	515.97	33.28	-0.10	33.18	46.00	-12.82	Peak	HORIZONTAL
4	570.29	34.46	0.71	35.17	46.00	-10.83	Peak	HORIZONTAL
5	699.30	30.46	3.14	33.60	46.00	-12.40	Peak	HORIZONTAL
6	875.84	33.10	5.71	38.81	46.00	-7.19	Peak	HORIZONTAL

- 1 No further spurious emissions detected from the lowest internal frequency and 30MHz.
- 2 Measuring frequencies from the lowest internal frequency to the 1GHz.
- 3 Radiated emissions measured in frequency range from 9kHz to 1000MHz were made with an instrument detector setting 9-90kHz/110-490kHz using PK/AV and other Frequency Band using PK/QP
- 4 Measurement result within this frequency range shown "-" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.

PIFA Antenna

Radiated Spurious Emission Measurement Result (below 1GHz) BLE Mode

Operation Mode	TX mode	Test Date	2020/01/21
Channel number	CH Low	Test By	Barry
Temperature	25	Pol	Ver./Hor
Humidity	60 %		

No	Freq MHz	Reading dBuV	Factor dB	Level dBuV/m	Limit dBuV/m	Margin dB	Remark	Pol V/H
1	375.32	34.36	-2.39	31.97	46.00	-14.03	Peak	VERTICAL
2	395.69	35.31	-2.08	33.23	46.00	-12.77	Peak	VERTICAL
3	500.45	39.36	-0.64	38.72	46.00	-7.28	Peak	VERTICAL
4	625.58	32.37	1.77	34.14	46.00	-11.86	Peak	VERTICAL
5	750.71	35.56	3.99	39.55	46.00	-6.45	Peak	VERTICAL
6	875.84	31.38	5.71	37.09	46.00	-8.91	Peak	VERTICAL
1	265.71	37.28	-4.98	32.30	46.00	-13.70	Peak	HORIZONTAL
2	274.44	34.97	-4.60	30.37	46.00	-15.63	Peak	HORIZONTAL
3	284.14	33.27	-4.23	29.04	46.00	-16.96	Peak	HORIZONTAL
4	500.45	38.84	-0.64	38.20	46.00	-7.80	Peak	HORIZONTAL
5	796.30	27.63	4.53	32.16	46.00	-13.84	Peak	HORIZONTAL
6	875.84	28.34	5.71	34.05	46.00	-11.95	Peak	HORIZONTAL

- 1 No further spurious emissions detected from the lowest internal frequency and 30MHz.
- 2 Measuring frequencies from the lowest internal frequency to the 1GHz.
- 3 Radiated emissions measured in frequency range from 9kHz to 1000MHz were made with an instrument detector setting 9-90kHz/110-490kHz using PK/AV and other Frequency Band using PK/QP
- 4 Measurement result within this frequency range shown "-" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.

Operation Mode	TX mode	Test Date	2020/01/21
Channel number	CH Mid	Test By	Barry
Temperature	25	Pol	Ver./Hor
Humidity	60 %		

No	Freq MHz	Reading dBuV	Factor dB	Level dBuV/m	Limit dBuV/m	Margin dB	Remark	Pol V/H
1	375.32	36.82	-2.39	34.43	46.00	-11.57	Peak	VERTICAL
2	497.54	34.75	-0.67	34.08	46.00	-11.92	Peak	VERTICAL
3	500.45	33.40	-0.64	32.76	46.00	-13.24	Peak	VERTICAL
4	517.91	32.25	-0.02	32.23	46.00	-13.77	Peak	VERTICAL
5	750.71	32.54	3.99	36.53	46.00	-9.47	Peak	VERTICAL
6	951.50	28.10	7.00	35.10	46.00	-10.90	Peak	VERTICAL
1	285.11	33.98	-4.22	29.76	46.00	-16.24	Peak	HORIZONTAL
2	500.45	34.34	-0.64	33.70	46.00	-12.30	Peak	HORIZONTAL
3	589.69	28.41	1.30	29.71	46.00	-16.29	Peak	HORIZONTAL
4	625.58	29.17	1.77	30.94	46.00	-15.06	Peak	HORIZONTAL
5	724.52	27.19	3.36	30.55	46.00	-15.45	Peak	HORIZONTAL
6	959.26	26.51	7.11	33.62	46.00	-12.38	Peak	HORIZONTAL

- 1 No further spurious emissions detected from the lowest internal frequency and 30MHz.
- 2 Measuring frequencies from the lowest internal frequency to the 1GHz.
- 3 Radiated emissions measured in frequency range from 9kHz to 1000MHz were made with an instrument detector setting 9-90kHz/110-490kHz using PK/AV and other Frequency Band using PK/QP
- 4 Measurement result within this frequency range shown "-" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.

Operation Mode	TX mode	Test Date	2020/01/21
Channel number	CH High	Test By	Barry
Temperature	25	Pol	Ver./Hor
Humidity	60 %		

No	Freq MHz	Reading dBuV	Factor dB	Level dBuV/m	Limit dBuV/m	Margin dB	Remark	Pol V/H
1	83.35	42.06	-10.82	31.24	40.00	-8.76	Peak	VERTICAL
2	375.32	34.59	-2.39	32.20	46.00	-13.80	Peak	VERTICAL
3	395.69	35.96	-2.08	33.88	46.00	-12.12	Peak	VERTICAL
4	498.51	36.98	-0.65	36.33	46.00	-9.67	Peak	VERTICAL
5	750.71	27.96	3.99	31.95	46.00	-14.05	Peak	VERTICAL
6	821.52	26.20	5.02	31.22	46.00	-14.78	Peak	VERTICAL
1	491.72	37.66	-0.71	36.95	46.00	-9.05	Peak	HORIZONTAL
2	500.45	36.51	-0.64	35.87	46.00	-10.13	Peak	HORIZONTAL
3	519.85	39.07	0.05	39.12	46.00	-6.88	Peak	HORIZONTAL
4	625.58	28.50	1.77	30.27	46.00	-15.73	Peak	HORIZONTAL
5	788.54	27.54	4.44	31.98	46.00	-14.02	Peak	HORIZONTAL
6	951.50	27.48	7.00	34.48	46.00	-11.52	Peak	HORIZONTAL

- 1 No further spurious emissions detected from the lowest internal frequency and 30MHz.
- 2 Measuring frequencies from the lowest internal frequency to the 1GHz.
- 3 Radiated emissions measured in frequency range from 9kHz to 1000MHz were made with an instrument detector setting 9-90kHz/110-490kHz using PK/AV and other Frequency Band using PK/QP
- 4 Measurement result within this frequency range shown "-" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.

Dipole Antenna

Radiated Spurious Emission Measurement Result (above 1GHz) BLE Mode

Operation Mode	TX mode	Test Date	2020/01/21
Channel number	CH Low	Test By	Barry
Temperature	25	Pol	Ver./Hor
Humidity	60 %		

No	Freq	Reading	Factor	Level	Limit	Margin	Remark	Pol	
	MHz	dBuV	dB	dBuV/m	dBuV/m	dB		V/H	
1	4804.00	42.79	-9.41	33.38	74.00	-40.62	Peak	VERTICAL	
2	7206.00	41.98	-1.83	40.15	74.00	-33.85	Peak	VERTICAL	
1	4804.00	43.85	-9.41	34.44	74.00	-39.56	Peak	HORIZONTAL	
2	7206.00	43.14	-1.83	41.31	74.00	-32.69	Peak	HORIZONTAL	

Remark:

1 Measuring frequencies from the lowest internal frequency to the 10th of fundamental frequency

- 2 Field strength limits for frequency above 1000MHz are based on average limits. However, Peak mode field strength shall not exceed the average limits specified plus 20dB.
- 3 Measurement of data within this frequency range shown "-" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.

Operation Mode Channel number Temperature Humidity		el number erature	TX mode CH Mid 25 60 %					t By E	2020/01/21 Barry /er./Hor
	No	Freq	Reading	Factor	Level	Limit	Margin	Remark	Pol
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB		V/H
	1	4884.00	42.72	-9.20	33.52	74.00	-40.48	Peak	VERTICAL
	2	7326.00	41.51	-1.75	39.76	74.00	-34.24	Peak	VERTICAL
i									

34.62

41.10

-82 of 132-

Radiated Spurious Emission Measurement Result (above 1GHz) BLE Mode

Remark:

 $\frac{1}{2}$

4884.00

7326.00

43.82

42.85

-9.20

-1.75

1 Measuring frequencies from the lowest internal frequency to the 10th of fundamental frequency

74.00

74.00

-39.38

-32.90

Peak

Peak

HORIZONTAL

HORIZONTAL

- ² Field strength limits for frequency above 1000MHz are based on average limits. However, Peak mode field strength shall not exceed the average limits specified plus 20dB.
- 3 Measurement of data within this frequency range shown "-" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.

Operation Mode			TX	mode]	Test Date	2020/01/21
Channel number		el number	CH	High]	Test By	Barry
7	Гетре	erature	25				F	Pol	Ver./Hor
Humidity			60	%					
	No	Freq	Reading	Factor	Level	Limit	Margin	Remark	Pol
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB		V/H
	1	4960.00	43.72	-9.01	34.71	74.00	-39.29	Peak	VERTICAL
	2	7440.00	43.74	-1.75	41.99	74.00	-32.01	Peak	VERTICAL

32.69

41.52

-83 of 132-

Radiated Spurious Emission Measurement Result (above 1GHz) BLE Mode

Remark:

 $\frac{1}{2}$

4960.00

7440.00

41.70

43.27

-9.01

-1.75

1 Measuring frequencies from the lowest internal frequency to the 10th of fundamental frequency

74.00

74.00

-41.31

-32.48

Peak

Peak

HORIZONTAL

HORIZONTAL

- 2 Field strength limits for frequency above 1000MHz are based on average limits. However, Peak mode field strength shall not exceed the average limits specified plus 20dB.
- 3 Measurement of data within this frequency range shown "-" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.

PIFA Antenna

Radiated Spurious Emission Measurement Result (above 1GHz) BLE Mode

Operation Mode	TX mode	Test Date	2020/01/21
Channel number	CH Low	Test By	Barry
Temperature	25	Pol	Ver./Hor
Humidity	60 %		

No	Freq	Reading	Factor	Level	Limit	Margin	Remark	Pol	
	MHz	dBuV	dB	dBuV/m	dBuV/m	dB		V/H	
1	4804.00	45.34	-9.41	35.93	74.00	-38.07	Peak	VERTICAL	
2	7206.00	43.22	-1.83	41.39	74.00	-32.61	Peak	VERTICAL	
1	4804.00	44.86	-9.41	35.45	74.00	-38.55	Peak	HORIZONTAL	
2	7206.00	42.40	-1.83	40.57	74.00	-33.43	Peak	HORIZONTAL	

- 1 Measuring frequencies from the lowest internal frequency to the 10th of fundamental frequency
- 2 Field strength limits for frequency above 1000MHz are based on average limits. However, Peak mode field strength shall not exceed the average limits specified plus 20dB.
- 3 Measurement of data within this frequency range shown "-" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.

Operation Mode		tion Mode	TX	mode			Tes	t Date 2	2020/01/21	
Channel number		el number	CH	Mid			Tes	t By E	Barry	
Temperature		erature	25				Pol		/er./Hor	
Humidity		lity	60	%						
	No	Freq	Reading	Factor	Level	Limit	Margin	Remark	Pol	
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB		V/H	
	1	4884.00	43.44	-9.20	34.24	74.00	-39.76	Peak	VERTICAL	
	2	7326.00	42.38	-1.75	40.63	74.00	-33.37	Peak	VERTICAL	

33.69

41.94

-85 of 132-

Radiated Spurious Emission Measurement Result (above 1GHz) BLE Mode

Remark:

 $\frac{1}{2}$

4884.00

7326.00

42.89

43.69

-9.20

-1.75

1 Measuring frequencies from the lowest internal frequency to the 10th of fundamental frequency

74.00

74.00

-40.31

-32.06

Peak

Peak

HORIZONTAL

HORIZONTAL

- ² Field strength limits for frequency above 1000MHz are based on average limits. However, Peak mode field strength shall not exceed the average limits specified plus 20dB.
- 3 Measurement of data within this frequency range shown "-" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.

Operation Mode Channel number Temperature Humidity		el number erature		mode High %			Test Date Test By Pol		2020/01/21 Barry Ver./Hor
	No	Freq	Reading	Factor	Level	Limit	Margin	Remark	Pol
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB		V/H
	1	4960.00	43.57	-9.01	34.56	74.00	-39.44	Peak	VERTICAL
	2	7440.00	43.78	-1.75	42.03	74.00	-31.97	Peak	VERTICAL

34.11

42.06

-86 of 132-

Radiated Spurious Emission Measurement Result (above 1GHz) BLE Mode

Remark:

 $\frac{1}{2}$

4960.00

7440.00

43.12

43.81

-9.01

-1.75

1 Measuring frequencies from the lowest internal frequency to the 10th of fundamental frequency

74.00

74.00

-39.89

-31.94

Peak

Peak

HORIZONTAL

HORIZONTAL

- 2 Field strength limits for frequency above 1000MHz are based on average limits. However, Peak mode field strength shall not exceed the average limits specified plus 20dB.
- 3 Measurement of data within this frequency range shown "-" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.

9. 100kHz Bandwidth of Band Edges Measurement

9.1 Standard Applicable:

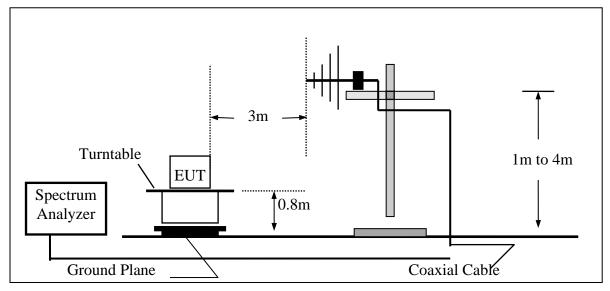
According to \$15.247(d), in any 100 kHz bandwidth outside the frequency bands in which the spread spectrum intentional radiator in operating, the radio frequency power that is produced by the intentional radiator shall be at least 20dB below that in the 100kHz bandwidth within the band that contains the highest level of the desired power, In addition, radiated emissions which fall in the restricted bands, as defined in \$15.205(a), must also comply with the radiated emission limits specified in15.209(a).

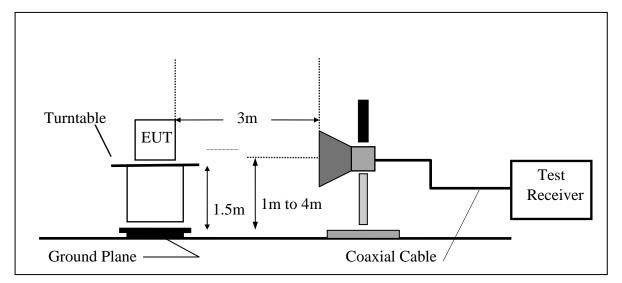
9.2 Measurement Equipment Used:

9.2.1. Conducted Emission at antenna port:

Refer to section 6.2 for details.

9.2.2. Radiated emission:


Location	Equipment Name	Brand	Model	S/N	Last Cal. Date	Next Cal. Date
Chamber 19	Spectrum analyzer	R&S	FSP40	100116	01/10/2020	01/10/2021
Chamber 19	EMI Receiver	R&S	ESR3	102461	08/08/2018	08/08/2020
Chamber 19	Loop Antenna	EM	EM-6879	271	05/31/2019	05/31/2020
Chamber 19	Bilog Antenna (30MHz-1GHz)	Schwarzbeck	VULB9168 w 5dB Att.	736	01/29/2019	01/29/2020
Chamber 19	Bilog Antenna (30MHz-1GHz)	Schwarzbeck	VULB9168 w 5dB Att.	736	01/29/2020	01/29/2021
Chamber 19	Horn antenna (1GHz-18GHz)	Schwarzbeck	9120D	9120D-1627	06/17/2019	06/17/2020
Chamber 19	Horn antenna (18GHz-26GHz)	Com-power	AH-826	081001	11/25/2019	11/25/2020
Chamber 19	Horn antenna (26GHz-40GHz)	Com-power	AH-640	100A	03/29/2019	03/29/2021
Chamber 19	Preamplifier (9kHz-1GHz)	HP	8447F	3113A06362	01/14/2020	01/14/2021
Chamber 19	Preamplifier (1GHz-26GHz)	Agilent	8449B	3008A02471	10/05/2019	10/05/2020
Chamber 19	Preamplifier (26GHz-40GHz)	MITEQ	JS4-26004000- 27-5A	818471	05/06/2019	05/06/2020
Chamber 19	RF Cable (9kHz-18GHz)	HUBER SU- HNER	Sucoflex 104A	MY1397/4A	01/17/2020	01/17/2021
Chamber 19	RF Cable (18GHz-40GHz)	HUBER SU- HNER	Sucoflex 102	27963/2&374 21/2	11/21/2019	11/21/2020
Chamber 19	Signal Generator	Anritsu	MG3692A	20311	01/09/2020	01/09/2021
Chamber 19	Test Software	Audix	E3 Ver:6.12023	N/A	N/A	N/A
Chamber 19	Magnetic Field Me- ter	Combinova	MFM-10	645	10/16/2019	10/16/2020
Chamber 19	Magnetic Field Me- ter	Combinova	MFM-1000	619	12/06/2019	12/06/2020
Chamber 19	Electric Field Meter	Combinova	EFM-200	402	10/16/2019	10/16/2020
Chamber 19	E-field probe	Narda / Wandel & Goltermann	EF-0691 + NBM-520	D-0135 + D-0526	03/02/2019	03/02/2020


9.3 Test SET-UP:

The test item only performed radiated mode

(A) Radiated Emission Test Set-Up, Frequency Below 1000MHz

(B) Radiated Emission Test Set-UP Frequency Over 1 GHz

9.4 Measurement Procedure:

- 1. Place the EUT on the table and set it in transmitting mode.
- 2. Remove the antenna from the EUT and then connect a low loss RF cable from the antenna port to the spectrum analyzer.
- 3. Set center frequency of spectrum analyzer = operating frequency.
- 4. Set the spectrum analyzer as RBW, VBW=100kHz, Span=25MHz, Sweep = auto
- 5. Mark Peak, 2.390GHz and 2.4835GHz and record the max. level.
- 6. Repeat above procedures until all frequency measured were complete.

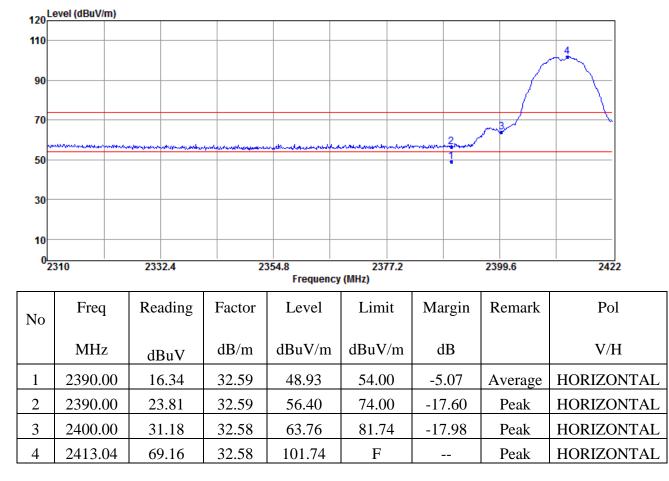
9.5 Field Strength Calculation:

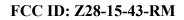
The field strength is calculated by adding the Antenna Factor and Cable Factor and subtracting the Amplifier Gain and Duty Cycle Correction Factor(if any) from the measured reading. The basic equation with a sample calculation is as follows:

FS = RA + AF + CL - AG

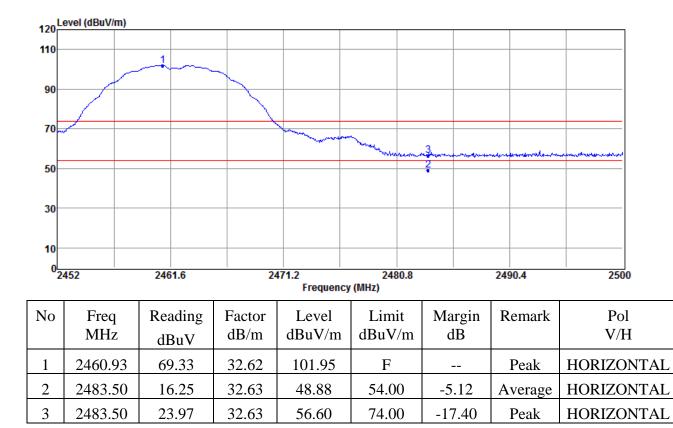
Where	FS = Field Strength	CL = Cable Attenuation Factor (Cable Loss)				
	RA = Reading Amplitude	AG = Amplifier Gain				
	AF = Antenna Factor					

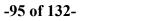
9.6 Measurement Result:


Note: Refer to next page spectrum analyzer data chart and tabular data sheets.

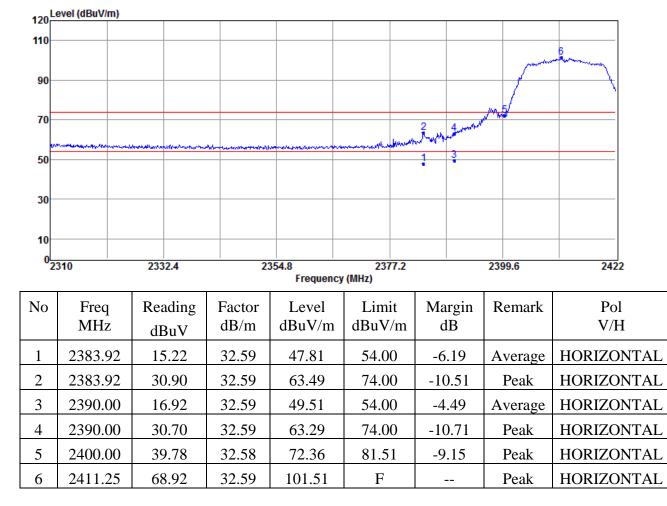

Dipole Antenna

Radiated Emission: 802.11 b mode									
Operation Mode	TX CH L				Test Date 2020/04/10				
Fundamental Frequency		lZ			Test]		Barry 60 %		
Temperature	25				Humi	laity	00 %		
120 Level (dBuV/m)									
110								4	
								\bigwedge	
90							/		
								\sim	
70						- 1			
allow - for superior and property and	an a			dere-erronaldourd	- and a star of the	2 minut			
50						•			
20									
30									
10									
0									
°2310 23	32.4	23	54.8 Frequen	2377 cy (MHz)	.2		2399.6	2422	
No Freq Re	ading F	Factor	Level	Limit	Margi	n F	Remark	Pol	
MHz dl	BuV C	lB/m	dBuV/m	dBuV/m	dB			V/H	
1 2390.00 1	6.56 3	32.59	49.15	54.00	-4.8	5 A	Average	VERTICAL	
2 2390.00 2	6.36 3	32.59	58.95	74.00	-15.0	5	Peak	VERTICAL	
3 2400.00 3	7.18 3	32.58	69.76	88.34	-18.5	8	Peak	VERTICAL	
4 2411.02 7	5.75 3	32.59	108.34	F			Peak	VERTICAL	

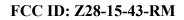

Remark: F" denotes fundamental frequency



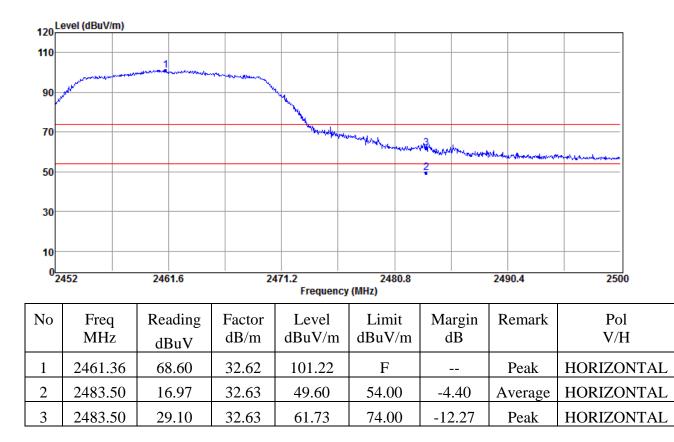
-	on Mode mental Freque cature		H High MHz			Test Date Test By Humidity	Barry	94/10
120	evel (dBuV/m)							
110		-						
90								
70								
50					2	man and a second and a second		underlangen order the second
50					•			
30								
10								
0	452	2464.6	0.174		2480.8			2500
24	452	2461.6	2471	.z Frequency (N		249	0.4	2500
No	Freq	Reading	Factor	Level	Limit	Margin	Remark	Pol
	MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB		V/H
1	2460.93	75.41	32.62	108.03	F		Peak	VERTICAL
2	2483.50	16.46	32.63	49.09	54.00	-4.91	Average	VERTICAL
3	2483.50	26.88	32.63	59.51	74.00	-14.49	Peak	VERTICAL



Radiated Emission: 802.11 g mode

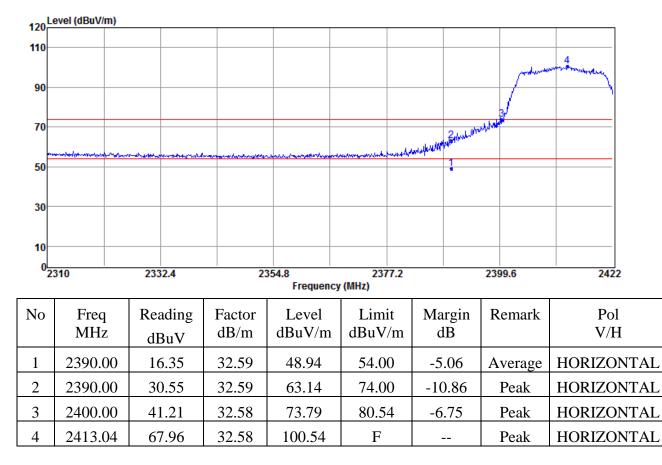

-	ion Mode mental Frequerature		H Low MHz			Test Date Test By Humidity	Barry	04/10
120	evel (dBuV/m)							
110							6	7804
90-								
70					warden when the M	2 American Ale		
50-	Cargosoffication and a straight for a straight for the st	tersterioren at de dortte at et de de	logo, under de un della de	namena kaja provinska postana da se	HAU	1 3		
30-								
10								
0	2310	2332.4	2354		2377.2	239	9.6	2422
			1	Frequency (M	Hz)		1	· · · · · · · · · · · · · · · · · · ·
No	Freq MHz	Reading dBuV	Factor dB/m	Level dBuV/m	Limit dBuV/m	Margin dB	Remark	Pol V/H
1	2387.06	15.93	32.59	48.52	54.00	-5.48	Average	VERTICAL
2	2387.06	36.67	32.59	69.26	74.00	-4.74	Peak	VERTICAL
3	2390.00	16.95	32.59	49.54	54.00	-4.46	Average	VERTICAL
4	2390.00	36.61	32.59	69.20	74.00	-4.80	Peak	VERTICAL
5	2400.00	45.34	32.58	77.92	88.46	-10.54	Peak	VERTICAL
6	2410.13	75.87	32.59	108.46	F		Peak	VERTICAL

Remark: F" denotes fundamental frequency


-96 of 132-

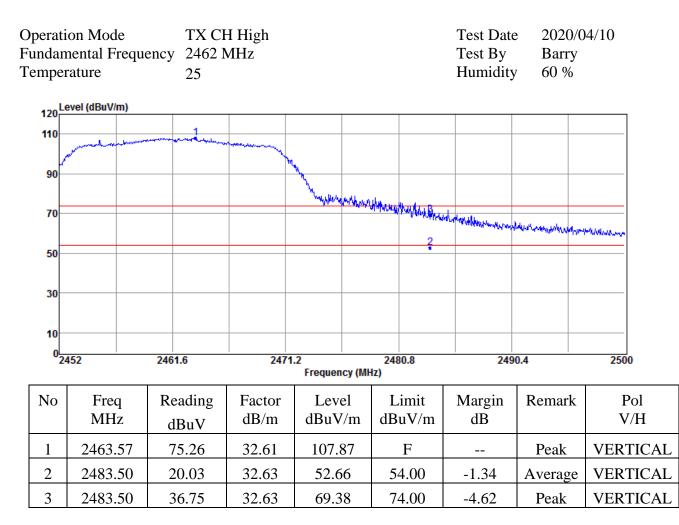
	ion Mode nental Frequ rature		H High MHz			Test Date Test By Humidity	Barry	4/10
120 ^{L0}	evel (dBuV/m)							
110		1						
	Mark and a strength of the str		the second se					
90	-			N.				
70				The second second second	Mar Martin Martin	5		
					,	5 Lyner Mary and Mary and	hand a star the start of the section	monorthy
50						4		
30								
50								
10								
0 24	452	2461.6	2471		2480.8	249	0.4	2500
				Frequency (M	HZ)			
No	Freq	Reading	Factor	Level	Limit	Margin	Remark	Pol
	MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB		V/H
1	2462.66	76.05	32.61	108.66	F		Peak	VERTICAL
2	2483.50	18.30	32.63	50.93	54.00	-3.07	Average	VERTICAL
3	2483.50	36.41	32.63	69.04	74.00	-4.96	Peak	VERTICAL
4	2485.89	16.18	32.64	48.82	54.00	-5.18	Average	VERTICAL
5	2485.89	36.51	32.64	69.15	74.00	-4.85	Peak	VERTICAL

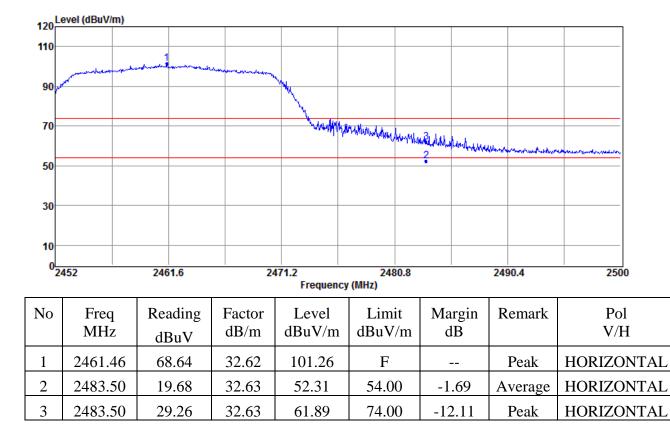
Remark: F" denotes fundamental frequency



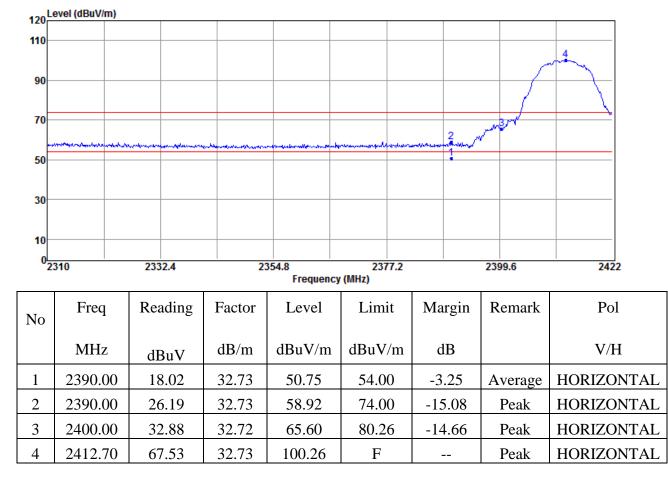
Radiated Emission: 802.11 n_20 mode

-		TX C quency 2412 25	Test By	Test Date2020/04/10Test ByBarryHumidity60 %				
120	evel (dBuV/m)				1			
110							6	
90								
90								
70					2	Anterna Anterna Anterna Anterna Anterna Anterna Anterna Anterna Anterna Anterna		
50	trensete en anteresta de la compositione de la compositione de la compositione de la compositione de la composi	hand and a start and a start of the start of	had not the second second second	commence and and	www.levelsamlighter.	3		
30								
10-								
0 <mark>_2</mark> ;	310	2332.4	2354	4.8 Frequency (M	2377.2 Hz)	239	9.6	2422
No	Freq MHz	Reading dBuV	Factor dB/m	Level dBuV/m	Limit dBuV/m	Margin dB	Remark	Pol V/H
1	2382.80	15.92	32.59	48.51	54.00	-5.49	Average	VERTICAL
2	2382.80	34.64	32.59	67.23	74.00	-6.77	Peak	VERTICAL
3	2390.00	16.72	32.59	49.31	54.00	-4.69	Average	VERTICAL
4	2390.00	38.55	32.59	71.14	74.00	-2.86	Peak	VERTICAL
5	2400.00	44.43	32.58	77.01	87.01	-10	Peak	VERTICAL
6	2413.60	75.30	32.58	107.88	F		Peak	VERTICAL



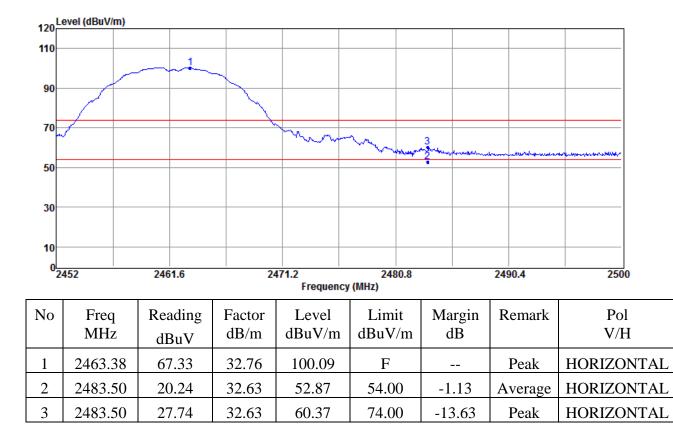


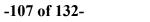
Remark: F" denotes fundamental frequency


Remark: F" denotes fundamental frequency

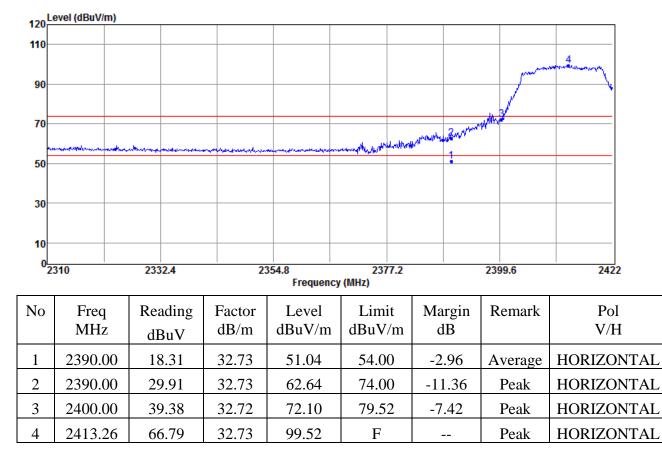

PIFA Antenna

Radiated Emission: 802.11 b modeOperation ModeTX CH LowTest Date2020/04/10								
Operation Mode	TX CH							4/10
Fundamental Frequency Temperature	2412 MI 25	ΠZ			Test l Humi	-	Barry 60 %	
Temperature	23				IIuiiii	uity	00 /0	
120 Level (dBuV/m)								
110								4
90							/	
70							Bund	
an a	manus	merrody			-	2 Alexand	~	
50						•		
30								
50								
10								
0								
°2310 23	32.4	2	354.8 Frequen	2377. cy (MHz)	.2		2399.6	2422
No Freq Rea	ading	Factor	Level	Limit	Margi	n	Remark	Pol
MHz dl	BuV	dB/m	dBuV/m	dBuV/m	dB			V/H
1 2390.00 1	7.01	32.73	49.74	54.00	-4.26	5.	Average	VERTICAL
2 2390.00 20	5.01	32.73	58.74	74.00	-15.2	6	Peak	VERTICAL
3 2400.00 33	5.54	32.72	68.26	86.26	-18.0	0	Peak	VERTICAL
4 2411.02 73	3.51	32.74	106.25	F			Peak	VERTICAL

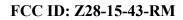

Remark: F" denotes fundamental frequency



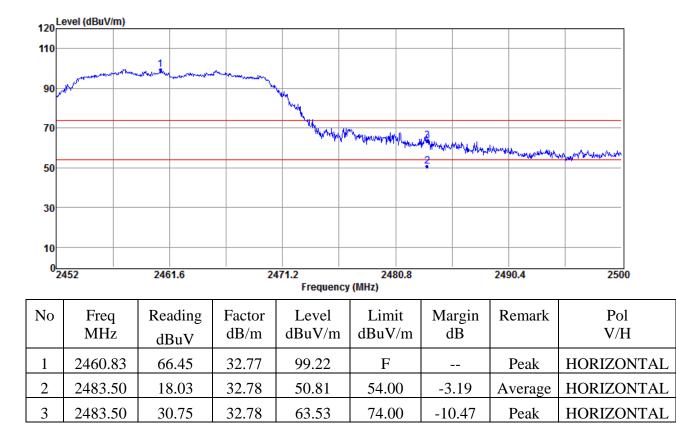
-	on Mode nental Freque rature		H High MHz				Test Date Test By Humidity	Barry	94/10
120	evel (dBuV/m)								
110									
90—									
70				m	m	3			
50						2	hand a second and a second and a second and	hammer of a state	unan unan
30									
10 0	152	2464.6	2474						2500
24	152	2461.6	2471	Frequency		480.8	249	0.4	2500
No	Freq MHz	Reading dBuV	Factor dB/m	Level dBuV/1		Limit BuV/m	Margin dB	Remark	Pol V/H
1	2462.99	73.46	32.76	106.22	2	F		Peak	VERTICAL
2	2483.50	18.15	32.78	50.93	5	64.00	-3.07	Average	VERTICAL
3	2483.50	27.70	32.78	60.48	7	4.00	-13.52	Peak	VERTICAL



Radiated Emission: 802.11 g mode

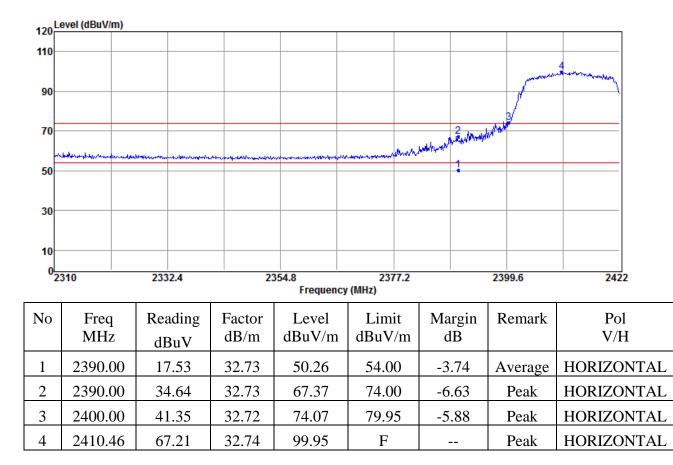

	on Mode nental Frequerature		H Low MHz		Test Date Test By Humidity	04/10		
120	evel (dBuV/m)							
110								6
90								
70					MANJANA CANALAN	Mar	/	
50	antelitaria de la completante comp	an an the standard second and a second	L	and have made a post	ANNAL I	3		
30								
10								
0 <u></u> 23	310	2332.4	2354	4.8 Frequency (MI	2377.2 Hz)	239	9.6	2422
No	Freq MHz	Reading dBuV	Factor dB/m	Level dBuV/m	Limit dBuV/m	Margin dB	Remark	Pol V/H
1	2384.70	18.02	32.74	50.76	54.00	-3.24	Average	VERTICAL
2	2384.70	33.30	32.74	66.04	74.00	-7.96	Peak	VERTICAL
3	2390.00	19.46	32.73	52.19	54.00	-1.81	Average	VERTICAL
4	2390.00	35.52	32.73	68.25	74.00	-5.75	Peak	VERTICAL
5	2400.00	44.09	32.72	76.81	82.28	-5.47	Peak	VERTICAL
6	2415.84	69.55	32.73	102.28	F		Peak	VERTICAL

Remark: F" denotes fundamental frequency


Remark: F" denotes fundamental frequency

-	ion Mode nental Frequ rature		H High MHz			Test Date Test By Humidity	Barry	4/10
120	evel (dBuV/m)							
110		1						
90			A second	M.				
70-				Why way warm	wower the work of the second	wing the second s		
50							~~~~	
30-								
10								
0 24	452	2461.6	2471	.2 Frequency (M	2480.8 Hz)	249	0.4	2500
No	Freq MHz	Reading dBuV	Factor dB/m	Level dBuV/m	Limit dBuV/m	Margin dB	Remark	Pol V/H
1	2459.73	73.39	32.77	106.16	F		Peak	VERTICAL
2	2483.50	17.95	32.78	50.73	54.00	-3.27	Average	VERTICAL
3	2483.50	29.74	32.78	62.52	74.00	-11.48	Peak	VERTICAL

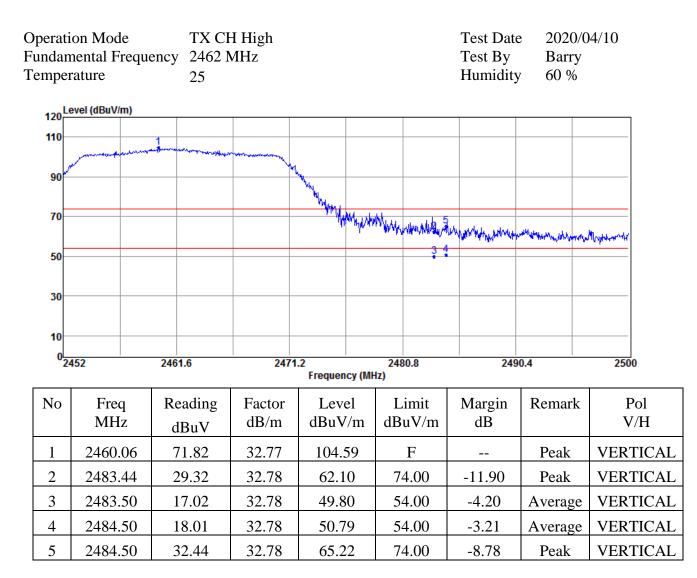
Remark: F" denotes fundamental frequency



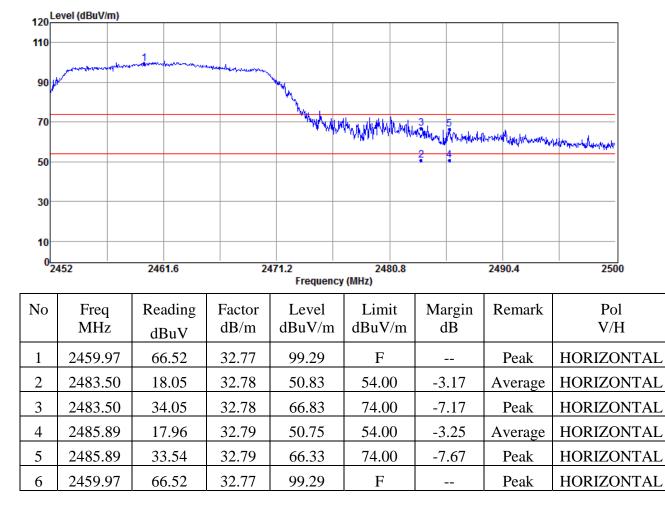
-111 of 132-

Radiated Emission: 802.11 n_20 mode

Operati	ion Mode nental Frequ	TX Cl ency 2412 1 25	H Low			Test Date Test By Humidity	Barry	4/10
120	evel (dBuV/m)							
120							6	
90							\int	
70-						2 4 Mar 14	/	
50	mana and the speed of the speed	namenalan mananahistan		and a stand and a stand of the	wethersentitlestyrations	2		
30-								
10								
02	310	2332.4	2354	1.8 Frequency (M	2377.2 Hz)	239	9.6	2422
No	Freq MHz	Reading dBuV	Factor dB/m	Level dBuV/m	Limit dBuV/m	Margin dB	Remark	Pol V/H
1	2386.27	17.98	32.73	50.71	54.00	-3.29	Average	VERTICAL
2	2386.27	32.01	32.73	64.74	74.00	-9.26	Peak	VERTICAL
3	2390.00	18.01	32.73	50.74	54.00	-3.26	Average	VERTICAL
4	2390.00	32.75	32.73	65.48	74.00	-8.52	Peak	VERTICAL
5	2400.00	45.73	32.72	78.45	84.93	-6.48	Peak	VERTICAL
6	2411.02	72.19	32.74	104.93	F		Peak	VERTICAL

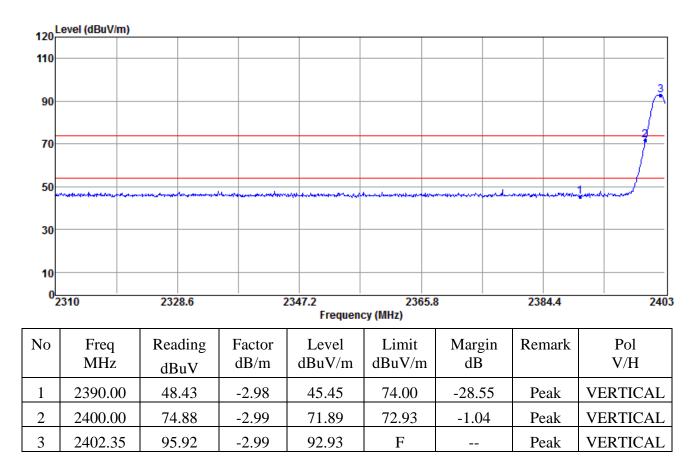


-112 of 132-


Remark: F" denotes fundamental frequency

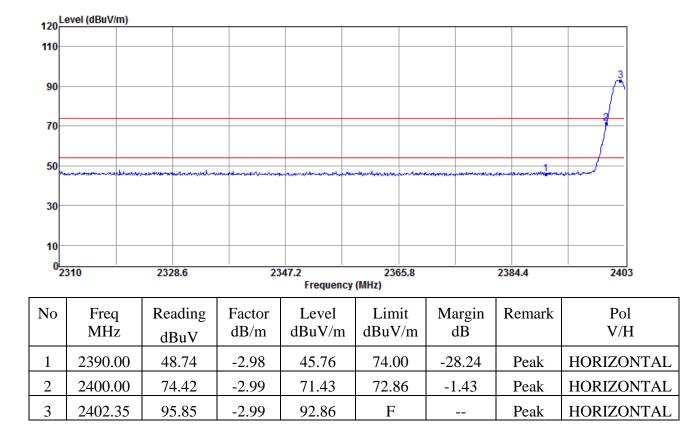
Remark: F" denotes fundamental frequency

Remark: F" denotes fundamental frequency



-115 of 132-

Dipole Antenna


Radiated Emission: BT LE mode

Operation Mode	TX CH Low	Test Date	2020/01/22
Fundamental Frequency	2402 MHz	Test By	Barry
Temperature	25	Humidity	60 %

Remark: F" denotes fundamental frequency

Remark: F" denotes fundamental frequency

-117 of 132-

-	on Mode nental Frequ rature		H High MHz			Test Date Test By Humidity	Barry	01/22
120	evel (dBuV/m)							
110								
90	-							
70								
50				en martine and the second s	-common the manufact the section of the	echine and the second	Man makangka gika	mandard Anadra
30-								
10								
0 <u>_</u> 24	479	2483.2	2487	7.4 Frequency (I	2491.6 /IHz)	249	5.8	2500
No	Freq MHz	Reading dBuV	Factor dB/m	Level dBuV/m	Limit dBuV/m	Margin dB	Remark	Pol V/H
1	2480.20	92.99	-2.94	90.05	F		Peak	VERTICAL

53.75

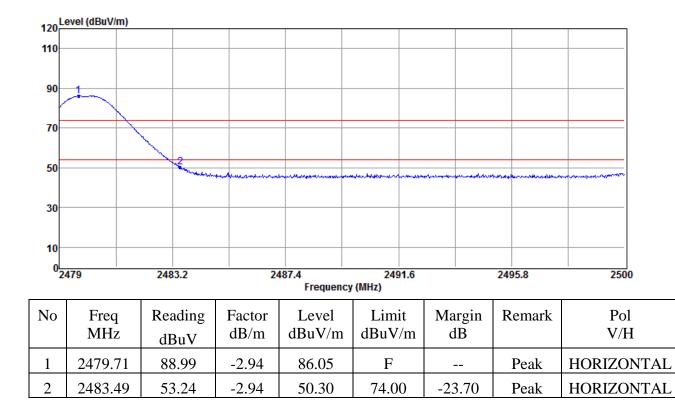
Remark: F" denotes fundamental frequency

56.69

-2.94

2

2483.50


-20.25

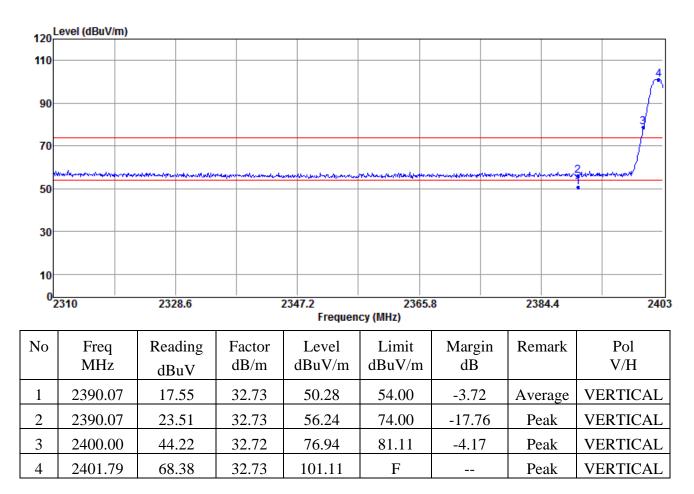
Peak

74.00

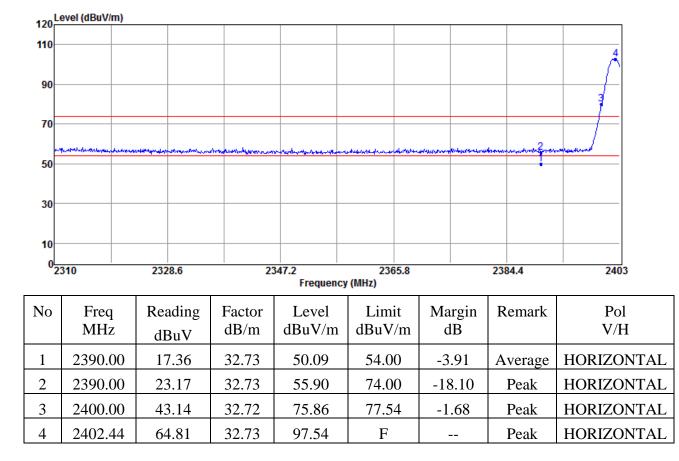
VERTICAL

-118 of 132-

Remark: F" denotes fundamental frequency

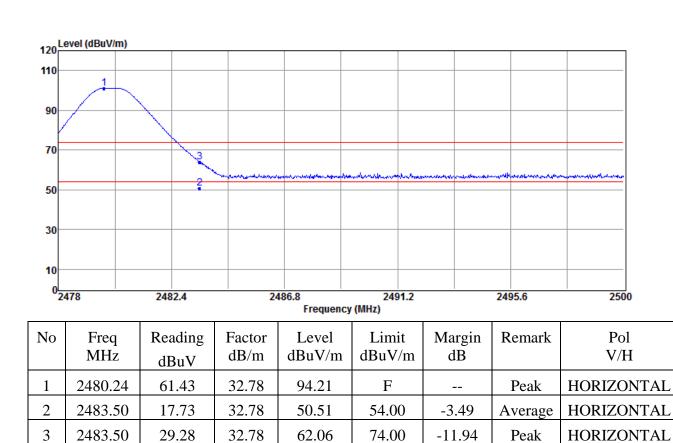


-119 of 132-


PIFA Antenna

Radiated Emission: BT LE mode

Operation Mode	TX CH Low	Test Date	2020/04/07
Fundamental Frequency	2402 MHz	Test By	Barry
Temperature	25	Humidity	60 %


Remark: F" denotes fundamental frequency

-121 of 132-

-	on Mode nental Freq rature		H High MHz			Test Date Test By Humidity	Barry	4/07
120 Le	evel (dBuV/m)							
110								
90—								
70		- 3						
			manun	underson to participa	erenteturi anteria anteria anteria	warmen war	mound	
50								
30-								
10								
0 <mark></mark>	178	2482.4	2486	.8	2491.2	249	5.6	2500
		-	1	Frequency (M	Hz)		T	
No	Freq	Reading	Factor	Level	Limit	Margin	Remark	Pol
	MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB		V/H
1	2480.40	66.02	32.78	98.80	F		Peak	VERTICAL
2	2483.50	17.24	32.78	50.02	54.00	-3.98	Average	VERTICAL
3	2483.50	31.78	32.78	64.56	74.00	-9.44	Peak	VERTICAL

-122 of 132-

Remark: F" denotes fundamental frequency

10. Peak Power Spectral Density

10.1 Standard Applicable:

According to §15.247(e) For digitally modulated systems, the power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission. This power spectral density shall be determined in accordance with the provisions of paragraph (b) of this section. The same method of determining the conducted output power shall be used to determine the power spectral density.

10.2 Measurement Equipment Used:

Refer to section 6.2 for details.

10.3 Test Set-up:

Refer to section 7.3 for details.

10.4 Measurement Procedure:

- 1. Place the EUT on the table and set it in transmitting mode.
- 2. Remove the antenna from the EUT and then connect a low loss RF cable from the antenna port to the spectrum analyzer.
- 3. Set the spectrum analyzer as RBW =3kHz, VBW = 10kHz, Set the span to 1.5 DTS bandwidth., Sweep=Auto
- 4. Record the max. reading.
- 5. Repeat above procedures until all frequency measured were complete.

10.5 Measurement Result:

802.11b Mode

	Power Density	Maximum Limit
СН	Level dBm/3kHz	(dBm)
Low	-6.92	8
Mid	-6.39	8
High	-7.14	8

802.11g Mode

	Power Density	Maximum Limit
СН	Level dBm/3kHz	(dBm)
Low	-8.21	8
Mid	-8.44	8
High	-8.22	8

802.11n HT20 Mode

	Power Density	Maximum Limit
СН	Level dBm/3kHz	(dBm)
Low	-10.39	8
Mid	-10.18	8
High	-10.01	8

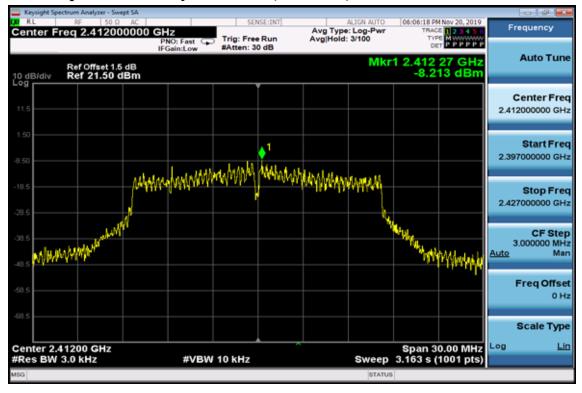
BLE Mode

	Power Density	Maximum Limit
СН	Level dBm/3kHz	(dBm)
Low	-8.53	8
Mid	-8.16	8
High	-8.64	8

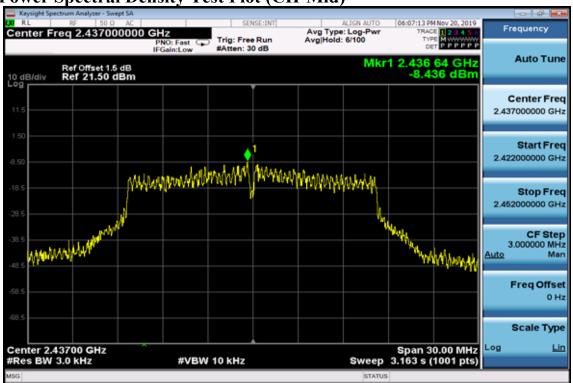
802.11b

Power Spectral Density Test Plot (CH-Low)

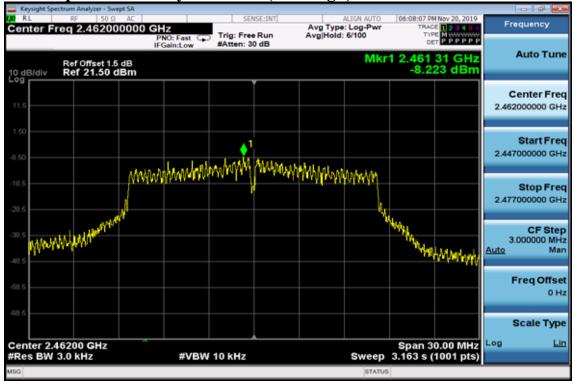
Power Spectral Density Test Plot (CH-Mid)

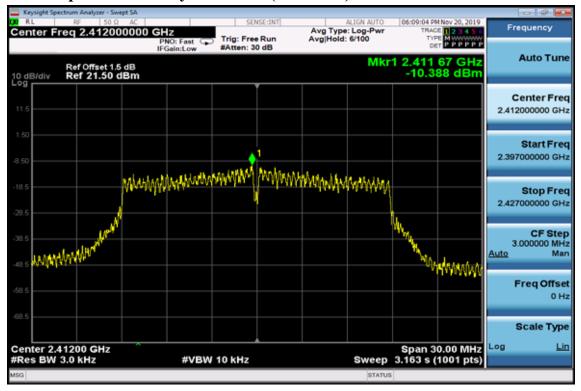


-126 of 132-

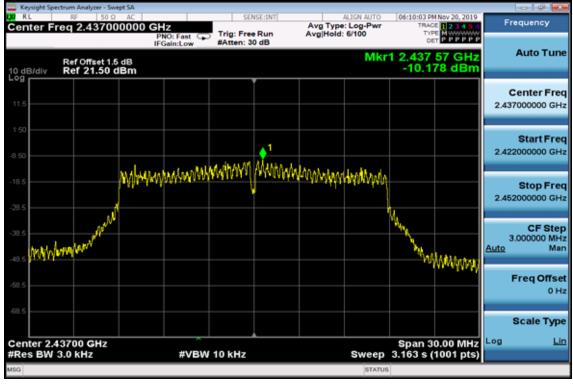

Power Spectral Density Test Plot (CH-High)

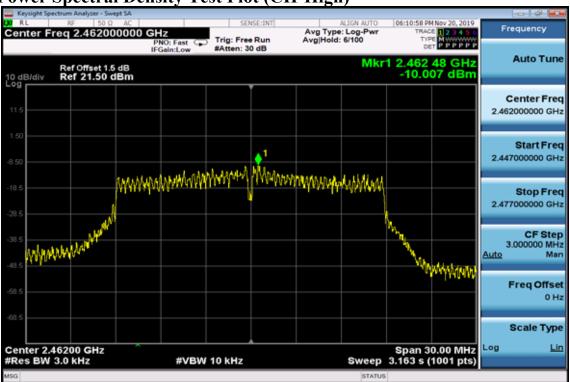
802.11g Power Spectral Density Test Plot (CH-Low)



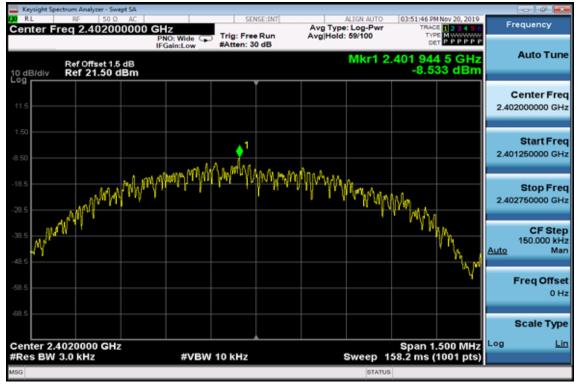

Power Spectral Density Test Plot (CH-Mid)

Power Spectral Density Test Plot (CH-High)

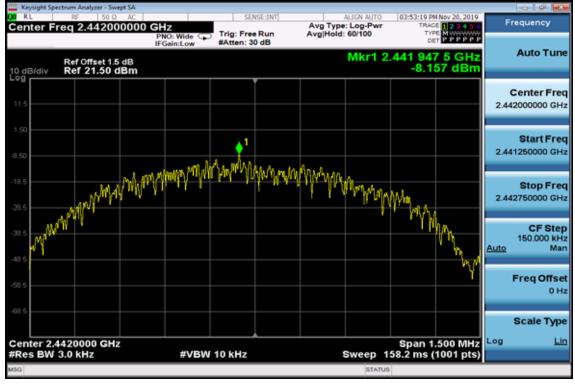



802.11n_20M Power Spectral Density Test Plot (CH-Low)

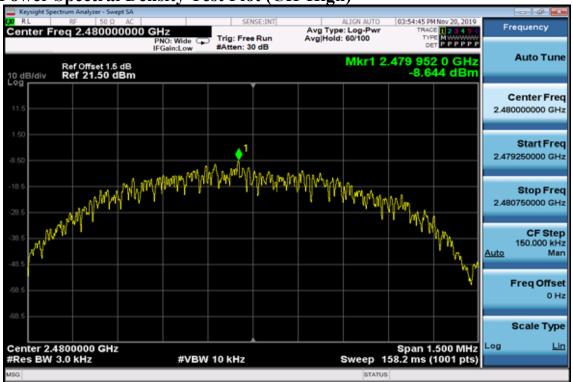
Power Spectral Density Test Plot (CH-Mid)


-129 of 132-

Power Spectral Density Test Plot (CH-High)



BT BLE


Power Spectral Density Test Plot (CH-Low)

Power Spectral Density Test Plot (CH-Mid)

-131 of 132-

Power Spectral Density Test Plot (CH-High)

11.Antenna Requirement

11.1 Standard Applicable:

According to §15.203, Antenna requirement.

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this Section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited. This requirement does not apply to carrier current devices or to devices operated under the provisions of Sections 15.211, 15.213, 15.217, 15.219, or 15.221. Further, this requirement does not apply to intentional radiators that must be professionally installed, such as perimeter protection systems and some field disturbance sensors, or to other intentional radiators which, in accordance with Section 15.31(d), must be measured at the installation site. However, the installer shall be responsible for ensuring that the proper antenna is employed so that the limits in this Part are not exceeded.

11.2 Antenna Connected Construction:

The directional gins of antenna used for transmitting is below table, and the antenna connector is designed with unique type RF connector and no consideration of replacement. Please see EUT photo and antenna spec. for details.

Antenna Designation:

	Туре	Part No.	Gain (2.4GHz)
Ant 1	Reversed SMA type dipole Antenna	F1B-204904-052	1.5dBi
Ant 2	Reversed SMA type PIFA Antenna	T-543-9291048-1	-1.16dBi