

IC ID: 9915-007A FCC ID: Z23007A Report No.: TW14060299 Page 1 of 23

Maximum Permissible Exposure (MPE) Evaluation Report

Report No. : TW14060299

Model No. : OD-11

Issued Date : Jun. 20, 2014

Applicant: Teenage Engineering AB

Katarina bangata 71 garage

Test Method/Standard: FCC 1.1310 and Safety Code 6

RSS-102 Issue 4: 2010

Test By: Intertek Testing Services Taiwan Ltd.

No. 11, Lane 275, Ko-Nan 1 Street, Chia-Tung Li, Shiang-Shan District, Hsinchu City, Taiwan

It may be duplicated completely for legal use with the allowance of the applicant. It shall not be reproduced except in full, without the written approval of Intertek Laboratory. The test result(s) in this report only applies to the tested sample(s).

The test report was prepared by:

Sign on File

Testing Laboratory 0597

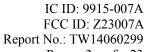
Sunny Liu/Senior Officer

These measurements were taken by:

Sign on File

Chester Chen/ Engineer

Chester Chang


The test report was reviewed by:

Name Jimmy Yang Title Engineer

Table of Contents

Summary of Tests	3
1. General information	4
1.1 Identification of the EUT	4
1.2 Antenna description	5
1.3 Peripherals equipment	5
2. Test specifications	6
2.1 Introduction	6
2.2 RF Exposure Limit	7
2.3 RF Exposure calculations	9
2.4 Operation mode	10
2.5 Test equipment	11
2.6 Test Set-up	12
3. Test results	13
Appendix A1: External photo of EUT	16
Appendix A2: Internal photo of EUT	19

Report No.: TW14060299 Page 3 of 23

Summary of Tests

MPE Evaluation meet FCC OET No. 65: 1997, IEEE C95.1-2005

Test	Reference	Results
MPE Evaluation	FCC Guidelines for Human Exposure IEEE C95.1 and IC Safety Code 6, RSS-102 Radio Frequency (RF) Exposure Compliance of Radiocommunication Apparatus (All Frequency Bands)	Complies

IC ID: 9915-007A FCC ID: Z23007A Report No.: TW14060299 Page 4 of 23

1. General information

1.1 Identification of the EUT

Product: OD-11 Wireless Speaker

Model No.: OD-11 FCC ID: Z23007A

Frequency Range: 1. 2412MHz to 2462MHz for 802.11b, 802.11g and 802.11n (HT 20)

2. 2422MHz to 2452MHz for 802.11n (HT40)
 3. 2402MHz to 2480MHz for Bluetooth BLE

4. 5180 MHz ~ 5320 MHz for 802.11a, 802.11n (HT20)

5. 5190 MHz \sim 5310 MHz for 802.11n (HT40)

6. 5500 MHz ~ 5700 MHz for 802.11a, 802.11n (HT20)

7. 5510 MHz \sim 5670 MHz for 802.11n (HT 40)

7. 5510 MHZ \sim 5070 MHZ 101 802.1111 (111 40)

8. 5745 MHz ~ 5805 MHz for 802.11a, 802.11n (HT20)

9. 5755 MHz ~ 5795 MHz for 802.11n (HT 40)

Channel Number: 1. 11 channels for 2412MHz to 2462MHz for 802.11b, 802.11g and

802.11n (HT 20)

2. 7 channels for 2422MHz to 2452MHz for 802.11n (HT40)

3. 40 channels for 2402MHz to 2480MHz for Bluetooth BLE

4. 8 channels for 5180 MHz ~ 5320 MHz for 802.11a, 802.11n (HT20)

4. 4 channels for 5190 MHz ~ 5230 MHz for 802.11a (HT40)

5. 8 channels for 5500 MHz ~ 5700 MHz for 802.11a, 802.11n (HT20)

6. 3 channels for 5510 MHz ~ 5670 MHz for 802.11n (HT 40)

7. 4 channels for 5745 MHz ~ 5805 MHz for 802.11a, 802.11n (HT20)

6. 2 channels for 5755 MHz ~ 5795 MHz for 802.11n (HT 40)

Access scheme: OFDM, DSSS, FHSS

Power Supply: 100-240 Vac, 50-60 Hz, ~1.95-1.10A

Power Cord: $2 \text{ C} \times 0.75 \text{mm2} \times 1.0 \text{ meter unshielded cable}$

Sample Received: Apr. 10, 2014 Test Date(s): Apr. 24, 2014

Note 1: This report is for the exclusive use of Intertek's Client and is provided

pursuant to the agreement between Intertek and its Client. Intertek's responsibility and liability are limited to the terms and conditions of the agreement. Intertek assumes no liability to any party, other than to the Client in accordance with the agreement, for any loss, expense or damage occasioned by the use of this report. Only the Client is authorized to permit copying or distribution of this report and then only in its entirety. Any use of the Intertek name or one of its marks for the sale or advertisement of the tested material, product or service must first be approved in writing by Intertek. The observations and test results in this report are relevant only to the sample tested. This report by itself does not imply that the material, product, or service is or has

ever been under an Intertek certification program.

Note 2: When determining the test conclusion, the Measurement Uncertainty

of test has been considered.

Page 5 of 23

1.2 Antenna description

(1) Antenna 1(chain 0 for WiFi and BT)

The EUT uses a permanently connected antenna.

Antenna Gain : 0 dBi

Antenna Type : Internal, Integral

(2) Antenna 2 (chain 1 for WiFi only)

The EUT uses a permanently connected antenna.

Antenna Gain : 2 dBi

Antenna Type : Dipole antenna

1.3 Peripherals equipment

Peripherals	Brand	Model No.	Serial No.	Data cable
iPad Apple		Pad01	N/A	N/A
Notebook PC	ASUS	CEL051	N/A	N/A
Access Point	Cisco	EP396	N/A	N/A
iPhone	Apple	A1429	N/A	N/A

Page 6 of 23

2. Test specifications

2.1 Introduction

The EUT operates in the 2.4 GHz and 5 GHz ISM bands. Due to the EUT (include antenna) at its normal operation distance is at least 20 cm from the human body, the EUT was defined as a Mobile Device.

The reason to do the MPE Evaluation is to avoid the RF hazard to human body. The maximum output power and gain of the antenna were used to calculate the limited Power density (S) at 20 cm distance away from the product. The limit for Maximum Permissible Exposure (MPE) specified in FCC 1.1310, Safety Code 6 and RSS-102 are followed.

According to 1.1307 (b)(1), systems operating under the provisions of this section shall be operated in a manner that ensure that the public is not exposed to radio frequency energy level in excess of the Commission's guideline.

IC ID: 9915-007A FCC ID: Z23007A Report No.: TW14060299 Page 7 of 23

2.2 RF Exposure Limit

According to FCC 1.1310, the criteria listed in the following table shall be used to evaluate the environmental impact of human exposure to radio-frequency (RF) radiation as specified in 1.1307(b).

SAR Test Exclusion Thresholds for 100 MHz – 6 GHz and ≤ 50 mm

Approximate SAR Test Exclusion Power Thresholds at Selected Frequencies and Test Separation Distances are illustrated in the following Table.

MHz	5	10	15	20	25	mm
150	39	77	116	155	194	
300	27	55	82	110	137	
450	22	45	67	89	112	
835	16	33	49	66	82	
900	16	32	47	63	79	
1500	12	24	37	49	61	SAR Test Exclusion
1900	11	22	33	44	54	Threshold (mW)
2450	10	19	29	38	48	Income (m · ·)
3600	8	16	24	32	40	
5200	7	13	20	26	33	
5400	6	13	19	26	32	
5800	6	12	19	25	31	
MHz	30	35	40	45	50	mm
150	232	271	310	349	387	
300	164	192	219	246	274	
450	134	157	179	201	224	
835	98	115	131	148	164	
900	95	111	126	142	158	GAD T
1500	73	86	98	110	122	SAR Test Exclusion
1900	65	76	87	98	109	Threshold (mW)
2450	57	67	77	86	96	
3600	47	55	63	71	79	
5200	39	46	53	59	66	
	20	45	52	58	65	
5400	39	43	32	30	0.5	

<u>Note</u>: 10-g Extremity SAR Test Exclusion Power Thresholds are 2.5 times higher than the 1-g SAR Test Exclusion Thresholds indicated above. These thresholds do not apply, by extrapolation or other means, to occupational exposure limits.

Page 8 of 23

SAR Test Exclusion Thresholds for $100~\mathrm{MHz} - 6~\mathrm{GHz}$ and $> 50~\mathrm{mm}$

Approximate SAR test exclusion power thresholds at selected frequencies and test separation distances are illustrated in the following table.

MHz	50	60	70	80	90	100	110	120	130	140	150	160	170	180	190	mm
100	474	481	487	494	501	507	514	521	527	534	541	547	554	561	567	
150	387	397	407	417	427	437	447	457	467	477	487	497	507	517	527	
300	274	294	314	334	354	374	394	414	434	454	474	494	514	534	554	
450	224	254	284	314	344	374	404	434	464	494	524	554	584	614	644	
835	164	220	275	331	387	442	498	554	609	665	721	776	832	888	943	
900	158	218	278	338	398	458	518	578	638	698	758	818	878	938	998	
1500	122	222	322	422	522	622	722	822	922	1022	1122	1222	1322	1422	1522	mW
1900	109	209	309	409	509	609	709	809	909	1009	1109	1209	1309	1409	1509	
2450	96	196	296	396	496	596	696	796	896	996	1096	1196	1296	1396	1496	
3600	79	179	279	379	479	579	679	779	879	979	1079	1179	1279	1379	1479	
5200	66	166	266	366	466	566	666	766	866	966	1066	1166	1266	1366	1466	
5400	65	165	265	365	465	565	665	765	865	965	1065	1165	1265	1365	1465	
5800	62	162	262	362	462	562	662	762	862	962	1062	1162	1262	1362	1462	

SAR Test Exclusion Thresholds for < 100 MHz and < 200 mm

Approximate SAR test exclusion power thresholds at selected frequencies and test separation distances are illustrated in the following table.

MHz	< 50	50	60	70	80	90	100	110	120	130	140	150	160	170	180	190	mm
100	237	474	481	487	494	501	507	514	521	527	534	541	547	554	561	567	
50	308	617	625	634	643	651	660	669	677	686	695	703	712	721	729	738	
10	474	948	961	975	988	1001	1015	1028	1041	1055	1068	1081	1095	1108	1121	1135	
1	711	1422	1442	1462	1482	1502	1522	1542	1562	1582	1602	1622	1642	1662	1682	1702	mW
0.1	948	1896	1923	1949	1976	2003	2029	2056	2083	2109	2136	2163	2189	2216	2243	2269	
0.05	1019	2039	2067	2096	2125	2153	2182	2211	2239	2268	2297	2325	2354	2383	2411	2440	
0.01	1185	2370	2403	2437	2470	2503	2537	2570	2603	2637	2670	2703	2737	2770	2803	2837	

Page 9 of 23

2.3 RF Exposure calculations

From FCC 1.1310 table 1, the maximum permissible RF exposure for an uncontrolled environment is 1 mW/(cm^2) (or 10 W/m^2)*

Power density (S) is calculated by the following formula:

$$S = (P * G)/4\pi R^2$$

where, $S = Power density (mW/cm^2)$

P = Output power to antenna (mW)

R = Distance between radiating structure and observation point (cm)

G = Gain of antenna in numeric

 $\pi = 3.1416$

Example:

Assume a mobile device operates at 2412MHz and its maximum output power is 50mW, and the maximum gain of antenna is 1 (numeric) /0dBi.

Then the power density (S) = $(50 * 1)/4*\pi*20^2 = 0.00995 \text{ (mW/cm}^2) \text{ (or } = 0.0995 \text{ W/m}^2)$

Page 10 of 23

2.4 Operation mode

2.4GHz (chain 0)

2010111 (0110111 0)		
Operating Mode	Nominal Radiated Field	Production Tolerance
	Strength	
802.11b	111.0dBμV/m at 3m	±3dB
802.11g	102.8dBμV/m at 3m	±3dB
802.11n (HT20)	102.8dBμV/m at 3m	±3dB

2.4GHz (chain 1)

Operating Mode	Nominal Radiated Field	Production Tolerance
	Strength	
802.11b	108.5dBμV/m at 3m	±3dB
802.11g	101.8dBμV/m at 3m	±3dB
802.11n (HT20)	102.3 dB μ V/m at 3m	±3dB
802.11n (HT40)	101.6dBμV/m at 3m	±3dB

5GHz

TX-MODE based on "Terminal" to type command to select different frequency and modulation.

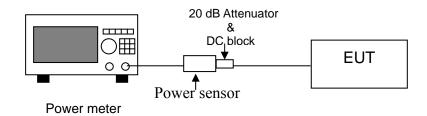
With individual verifying, the maximum output power was found out 6 Mbps data rate for 802.11a mode, 6.5 Mbps data rate for 802.11n HT20 mode, 13.5 Mbps data rate for 802.11n HT40 mode .The final tests were executed under these conditions recorded in this report individually.

802.11a ch	40 chain1	802.11n H chain1	T20 ch40	802.11n HT chain1	40 ch38
Data rate (Mbps)		Data rate (Mbps)	AV (dBm)	Data rate (Mbps)	AV (dBm)
6	14.86	6.5	14.51	13.5	6.94
9	14.86	13	14.51	27	6.94
12	14.86	19.5	14.50	40.5	6.93
18	14.85	26	14.50	72	6.93
24	14.85	39	14.50	81	6.93
36	14.85	52	14.50	108	6.93
48	14.85	58.5	14.49	121.5	6.92
54	14.85	65	14.48	135	6.92

IC ID: 9915-007A FCC ID: Z23007A Report No.: TW14060299 Page 11 of 23

2.5 Test equipment

Equipment	Brand	Model No.	Serial No.	Calibration Date	Next Calibration Date
ESCI EMI Test Receiver	Rohde & Schwarz	ESCI	100018	2013/12/03	2014/12/02
Spectrum Analyzer	Rohde&schwarz	FSP30	100137	2013/06/21	2014/06/20
Spectrum Analyzer	Rohde&schwarz	FSEK30	100186	2014/01/20	2015/01/19
Horn Antenna (1-18G)	Schwarzbeck	BBHA 9120 D	9120D-456	2012/09/03	2014/09/02
Horn Antenna (14-42G)	SHWARZBECK	BBHA 9170	BBHA9170159	2012/09/05	2014/09/04
Broadband Antenna	SCHWARZBECK	VULB 9168	9168-172	2013/08/08	2015/08/07
Loop Antenna	RolfHeine	LA-285	02/10033	2014/03/18	2016/03/16
Pre-Amplifier	Pre-Amplifier MITEQ		1495287	2013/10/27	2015/10/26
Pre-Amplifier	MITEQ	JS4-260040002 7-8A	828825	2012/09/18	2014/09/17
Power Meter	Anritsu	ML2495A	0844001	2013/10/10	2014/10/09
Power Senor	Anritsu	MA2411B	0738452	2013/10/10	2014/10/09
Temperature&Hu midity Test Chamber	TERCHY	MHU-225LRU (SA)	950838	2013/06/14	2014/06/13
Two-Line -V-Network	Rohde&schwarz	ESH3-Z5	825562/003	2013/10/12	2014/10/11
Two-Line V-Network	Rohde&schwarz	ESH3-Z5	838979/014	2013/10/12	2014/10/11
Singal Analyzer	Agilent	N9030A	MY51380492	2013/09/19	2014/09/18
WiMAX PSA Spectrum Analyzer	Spectrum Agilent		MY46186191	2014/05/22	2015/05/21
WiMAX ESG Vector Signal Generator	Agilent	E4438C	MY45094140	2014/05/10	2015/05/09


Note: The above equipments are within the valid calibration period.

IC ID: 9915-007A FCC ID: Z23007A Report No.: TW14060299 Page 12 of 23

2.6 Test Set-up

Intertek

Remark: Cable loss is 2 dB.

Page 13 of 23

3. Test results

2.4GHz

For Maximum Permissible Exposure (MPE) evaluation of the Wireless Speaker, the maximum power density at 20 cm from this mobile transmitter shall be less than the General Population / Uncontrolled MPE limit in OET Bulletin 65.

1) For Antenna 1, the WiFi portion maximum field strength measured (FS) was 114.0 $dB\mu V/m$ (Maximum measured value + Production tolerance = 111 + 3 = 114.0 dB $\mu V/m$). The distance (D) between the antenna and the equipment under test (EUT) was 3 meters. From these data, the exposed power density at a distance (R) of 20cm from the center of radiation of the antenna can be calculated according to OET Bulletin 65 as follow:

Radiated Power (EIRP) = Conducted power * Antenna Gain = Conducted power *(1)

Alternatively, the Radiated Power has been measured and manipulated as: Maximum measured value + Production tolerance = $111 + 3 = 114.0 \text{ dB}\mu\text{V/m}$

Thus, Radiated Power (EIRP) $= (FS*D)^2 / 30 = 75.4 \text{ mW}$

Therefore, the power density at 20 cm from the antenna

- $= EIRP / 4\pi R^2$
- = 0.015 mW cm-2

2) For Antenna 2, the WiFi portion maximum field strength measured (FS) was 111.5 $dB\mu V/m$. (Maximum measured value + Production tolerance = 108.5 + 3 = 111.5 $dB\mu V/m$). The distance (D) between the antenna and the equipment under test (EUT) was 3 meters. From these data, the exposed power density at a distance (R) of 20cm from the center of radiation of the antenna can be calculated according to OET Bulletin 65 as follow:

Radiated Power (EIRP)

- = Conducted power * Antenna Gain
- = Conducted power * (1.585)

IC ID: 9915-007A FCC ID: Z23007A Report No.: TW14060299 Page 14 of 23

Intertek

Alternatively, the Radiated Power has been measured and manipulated as: Maximum measured value + Production tolerance = $108.5 + 3 = 111.5 \text{ dB}\mu\text{V/m}$

Thus, Radiated Power (EIRP) = $(FS*D)^2 / 30 = 42.4 \text{ mW}$

Therefore, the power density at 20 cm from the antenna

 $= EIRP / 4\pi R^2$

= 0.0084 mW cm-2

In the frequency range of 1,500 - 100,000MHz, the MPE limit is 1.0 mWcm-2 for general population and uncontrolled exposure. As the measured power density at 20cm from the transmitter is lower than the MPE limit, the compliance to the MPE limit can be ensured by indicating the minimum 20cm separation between the transmitter's radiating structures and body of the user or nearby persons.

The following RF exposure statement is proposed to be included in the user manual:

"FCC RF Radiation Exposure Statement

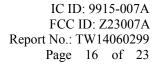
Caution: To maintain compliance with the FCC's RF exposure guidelines, place the equipment at least 20cm from nearby persons."

In addition, for this product with two antennas, the requirement of Simultaneous Transmission evaluation has also been considered and has complied with the following conditions of the worse case;

 $MPE1/Limit1 + MPE2/Limit2 \le 1$

0.015/1 + 0.0084/1 = 0.0234

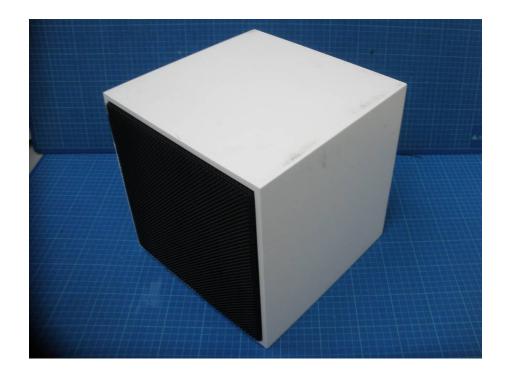
It is concluded that no Simultaneous Transmission evaluation is required.

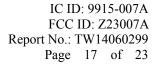

IC ID: 9915-007A FCC ID: Z23007A Report No.: TW14060299 Page 15 of 23

5GHz

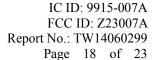
Mode	Channel	Antenna Gain (numeric)	Output power to antenna (mW)	Power density (mW/cm2)	Limit of power density (mW/cm2)	Distance (cm)
802.11a (Chain1)	116	1.58	56.10	0.018	1.0	20
802.11n (HT 20) (Chain1)	116	1.58	52.72	0.017	1.0	20
802.11n (HT 40) (Chain1)	110	1.58	16.46	0.005	1.0	20

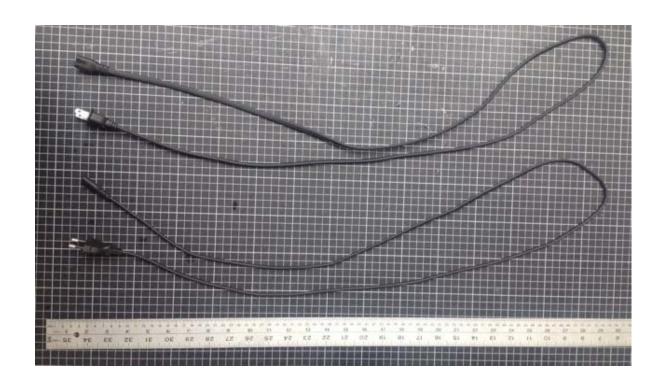
The Notice in Installation Manual has been stated as below:

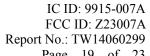

While installing and operating this transmitter, the radio frequency exposure limit of 1 mW/ (cm²) may be exceeded at distances close to the transmitter. Therefore, the user must maintain a minimum distance of 20 cm from the device at all time.

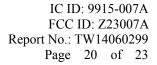


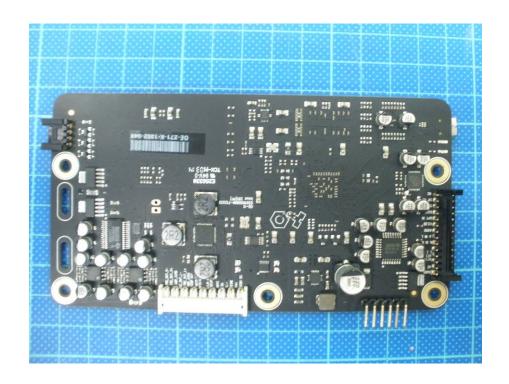
Appendix A1: External photo of EUT



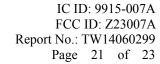


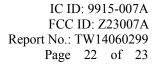


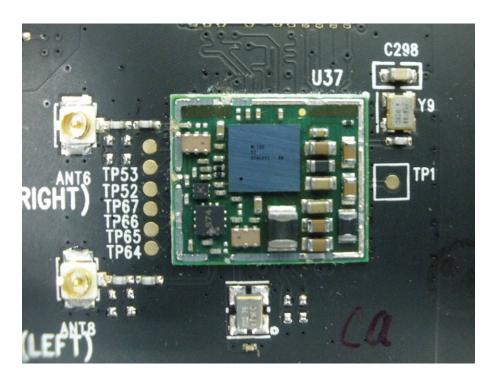

Report No.: TW14060299 Page 19 of 23

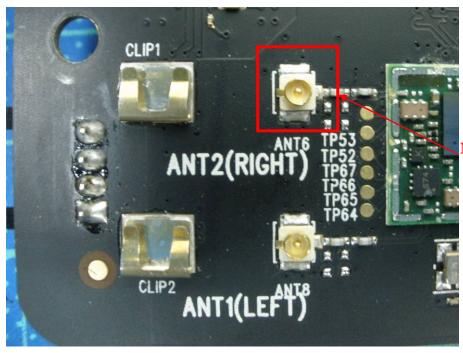

Appendix A2: Internal photo of EUT










Antenna 2 (chain 1)

IC ID: 9915-007A FCC ID: Z23007A Report No.: TW14060299 Page 23 of 23

Measure point