

2013-2016, 20th Floor, Business Center, Jiahui Xin Cheng, No 3027, Shen Nan Road, Fu Tian, Shen Zhen, Guang Dong, P. R. China Tel: + 86 755 83642690 Fax: + 86 755 83297077 www.kmolab.com

FCC TEST REPORT

Under : FCC Part 15 Subpart B, Class B JBP-Part 15 Class B Computing Device Peripheral

Prepared For:

Grandstream Networks, Inc.

126 Brookline Ave, 3rd Floor Boston, MA 02215, USA

FCC ID: YZZHT813

EUT: Analog Telephone Adaptors

Model: HT813

June 27, 2018
Issue Date:
Original Report
Report Type:
Jacky. Huang
Test Engineer: Jacky Huang
Apollo li
Review By: Apollo Liu / Manager

The test report consists 37 pages in total. It may be duplicated completely for legal use with the allowance of the applicant. It shall not be reproduced except in full, without the written approval of Ke Mei Ou Laboratory Corporation. The test result in the report only applied to the tested sample.

Table of Contents

1. General Information	. 4
1. 1 Notes	. 4
1. 3 Details of Applicant	. 4
1. 4 Application Details	
1. 5 Details of Manufacturer	
1. 6 Test Item	
1.7 Applicable Standards	
2. Technical Test	
2. 1 Summary of Test Results	
2. 2 Measurement Uncertainty	
3. EUT Modifications	
4. Conducted Power Line Test	. 7
4. 1 Test Equipment	
4. 2 Test Procedure	. 7
4. 3 Test Setup	
4. 4 Configuration of the EUT	. 8
4. 5 EUT Operating Condition	
4. 6 Conducted Power Line Emission Limits	
4. 7 Conducted Power Line Test Result	
5. Radiated Emission Test	16
5. 1 Test Equipment	
5. 2 Test Procedure	16
5. 3 Radiated Test Setup	16
5. 4 Configuration of The EUT	18
5. 5 EUT Operating Condition	18
5. 6 Radiated Emission Limit	18
5. 7 Radiated Emission Test Result	19
6. Photo of Testing	27
6.1 Emission test view	
6.2 Photograph - EUT	
7. FCC ID Label	36
8. Test Equipment	37

Report Revision History

Report #	Version	Description	Issued Date
KSZ2018060101J	Rev.01	Initial issue of report	June 11, 2018
KSZ2018060101J	Rev.0	Update section 4.4 & 4.7 & 5.7 & 6.1	June 27, 2018

1. General Information

1.1 Notes

The test results of this report relate exclusively to the test item specified in 1.6. The KMO Lab does not assume responsibility for any conclusions and generalizations drawn from the test results with regard to other specimens or samples of the type of the equipment represented by the test item. The test report may only be reproduced or published in full. Reproduction or publication of extracts from the report requires the prior written approval of the KMO Lab.

Test Firm Name:	Ke Mei Ou Lab Co., Ltd.	
Test Firm Address:	2013-2016, 20th Floor, Business Center, Jiahui Xin Cheng, No 3027, Shen Nan Road, Fu Tian, Shen Zhen, Guang Dong, P. R. China	
FCC Designation Number:	CN1532	
Test Firm Registration Number:	344480	
Internet:	www.kmolab.com	
Email:	kmo@kmolab.com	
ANSI-ASQ National Accreditation Board/ACLASS ISO/IEC 17025 Accredited Lab for telecommunication standards. The Registration Number is		
AT-1532. The testing quality system meets with IS	SO/IEC-17025 requirements, This approval results is accepted by MRA of ILAC.	

1.3 Details of Applicant

Name:	Grandstream Networks, Inc.		
Address:	126 Brookline Ave, 3rd Floor Boston, MA 02215, USA		

1.4 Application Details

Date of Receipt of Application:	June 1, 2018
Date of Receipt of Test Item:	June 1, 2018
Date of Test :	June 5~June 27, 2018

1. 5 Details of Manufacturer

Name:	Grandstream Networks, Inc.
Address:	126 Brookline Ave, 3rd Floor Boston, MA 02215, USA

1.6 Test Item

EUT Feature			
EUT Description:	Analog Telephone Adaptors		
Brand Name:	Grandstream		
Model Name:	HT813		
HW Version:	V1.1		
SW Version: V0.6.13.5			
EUT Stage: Identical Prototype			
Note: The above EUT's information was declared by manufacturer. Please refer to the specifications or user's manual for			

Note: The above EUT's information was declared by manufacturer. Please refer to the specifications or user's manual for more detailed description.

Standard Product Specification			
EUT Type Computing Device Peripheral			
EUT Operational Condition	\square DC \rightarrow \square From Battery \square External AC adapter \square POE		

Additional Information

Specification of Accessory					
AC/DC Adapter #1 (US)	Brand Name	SUNLIGHT	Model Name	F06US1200050A	
AC/DC Adapter #1 (US)	Power Rating	INPUT:100~240VAC,OUTPUT:12VDC,0.5A,			
$\square \land C \square C \land dom for #2 (US)$	Brand Name	MASS POWER	Model Name	NBS05B120050VU	
AC/DC Adapter #2 (US)	Power Rating	INPUT:100~240VAC,OUTPUT:12VDC,0.5A,			

1. 7 Applicable Standards

Applicable Standards

According to the specifications of the manufacturer, the EUT must comply with the requirements of the following standards: FCC Part 15 Subpart B

ANSI C63.4-2014

Note: All test items were verified and recorded according to the standards and without any deviation during the test.

2. Technical Test 2. 1 Summary of Test Results

The EUT has been tested according to the following specifications:

FCC Rules	Test Type	Limit	Result	Notes
FCC Part 15, Paragraph 15.107	AC Conducted Test	< 15.107 Limits	PASS	Complies.
FCC Part 15, Paragraph 15.109	Radiated Test	< 15.109 Limits	PASS	Complies.

2. 2 Measurement Uncertainty

Measurement	Frequency	Uncertainty
Conducted emissions	0.15MHz~30MHz	1.72
Radiated emissions	30MHz ~ 300MHz	3.88
Radiated emissions	300MHz ~1000MHz	3.86
Radiated emissions	>1000MHz	4.42

This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

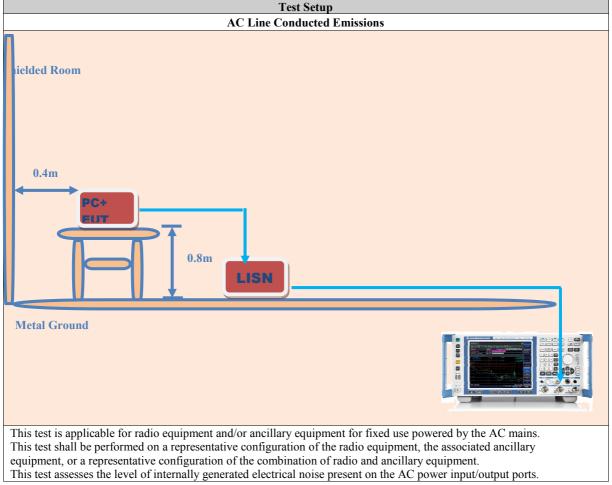
3. EUT Modifications

No modification by test lab.

4. Conducted Power Line Test

4.1 Test Equipment

Please refer to Section 8 this report.


4.2 Test Procedure

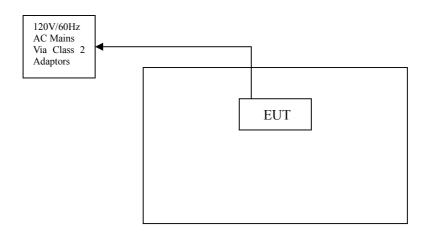
Test Method The EUT and s

The EUT and simulators are connected to the main power through a line impedance stabilization network (L.I.S.N.). This provides a 50 ohm/50uH coupling impedance for the measuring equipment. The peripheral devices are also connected to the main power through a LISN that provides a 50ohm/50uH coupling impedance with 50ohm termination.

Both sides of A.C. line are checked for maximum conducted interference. In order to find the maximum emission., the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.4:2014 on conducted measurement. Conducted emissions were invested over the frequency range from 0.15MHz to 30MHz using a receiver bandwidth of 9kHz.

4. 3 Test Setup

4. 4 Configuration of the EUT The EUT was configured according to ANSI C63.4:2014. All interface ports were connected to the appropriate peripherals. All peripherals and cables are listed below.

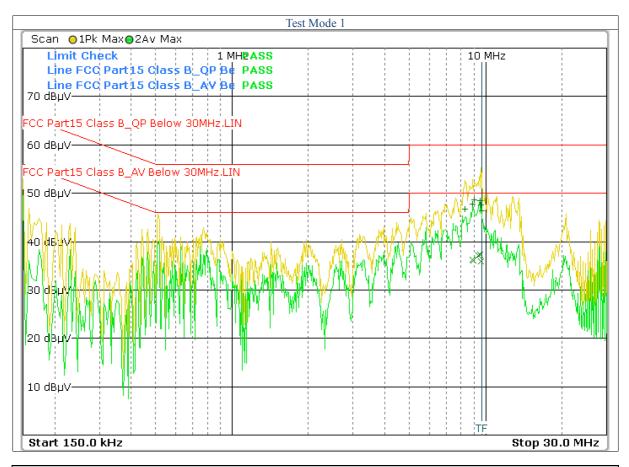

EUT Operation Test Setup									
Pre-Scan has been conducted to de	termine the worst-case mode from all possible combinations. Only the worst test mode								
data was reported.									
Pre-Scan Mode									
Test Mode Operating Description									
1 EUT power by AC/DC Adapter #1									
2 EUT power by AC/DC Adapter #2									
3 WAN data transmission									
Conducted Emissions → Final									
Test Mode	Operating Description								
1	EUT power by AC/DC Adapter #1								
2	EUT power by AC/DC Adapter #2								
3	WAN data transmission								
	Radiated Emissions → Final								
Test Mode	Operating Description								
1	EUT power by AC/DC Adapter #1								
3	WAN data transmission								
Note: The test modes were carried	out for all operation modes (include link and idle).								

The final test mode of the EUT was the worst test mode for Mode 1, and its test data was reported.

Support Unit										
Device	Device Manufacturer		Device Manufacturer Model # Serial #		FCC ID	Cable				
Ideapad	Lenovo	20195	DoC	1.5m unshielded power cord						
Analog Telephone Adaptors	Grandstream	HT503	YZZHT503	1.5m unshielded power cord						
Keyboard	DELL	KB212-B	DoC	1.5m unshielded cable						
Mouse	DELL	MS-111	DoC	1.5m unshielded cable						

4.5 EUT Operating Condition

Operating condition is according to ANSI C63.4:2014. Contect EUT to an IP phone and enable talking



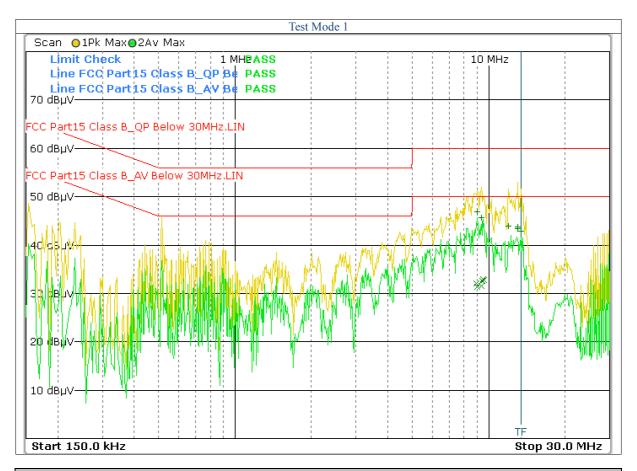
4. 6 Conducted Power Line Emission Limits

Frequency Range (MHz)	Class A QP/AV (dBuV)	Class B QP/AV (dBuV)
0.15 - 0.5	79/66	66 - 56/56 - 46
0.5 - 5.0	73/60	56/46
5.0-30	73/60	60/50

Note: In the above table, the tighter limit applies at the band edges.

4. 7 Conducted Power Line Test Result

	FCC15										
Frequency	Read Lev	el (dBuV)	Factor	Emissio	n (dBuV)	Line/ Limit (dBuV)		Margin(dBuV)			
(MHz)	QP	AV	(dB)	QP	AV	Neutral	QP	AV	QP	AV	
8.290	35.87	26.15	10.70	46.57	36.85	Line	60.00	50.00	-13.43	-13.15	
8.900	37.00	25.49	10.70	47.70	36.19	Line	60.00	50.00	-12.30	-13.81	
9.020	38.00	25.43	10.70	48.70	36.13	Line	60.00	50.00	-11.30	-13.87	
9.506	37.69	26.56	10.70	48.39	37.26	Line	60.00	50.00	-11.61	-12.74	
9.594	36.85	25.25	10.70	47.55	35.95	Line	60.00	50.00	-12.45	-14.05	
9.674	35.72	25.31	10.70	46.42	36.01	Line	60.00	50.00	-13.58	-13.99	
8.290	35.87	26.15	10.70	46.57	36.85	Line	60.00	50.00	-13.43	-13.15	
8.900	37.00	25.49	10.70	47.70	36.19	Line	60.00	50.00	-12.30	-13.81	
					FCC15						

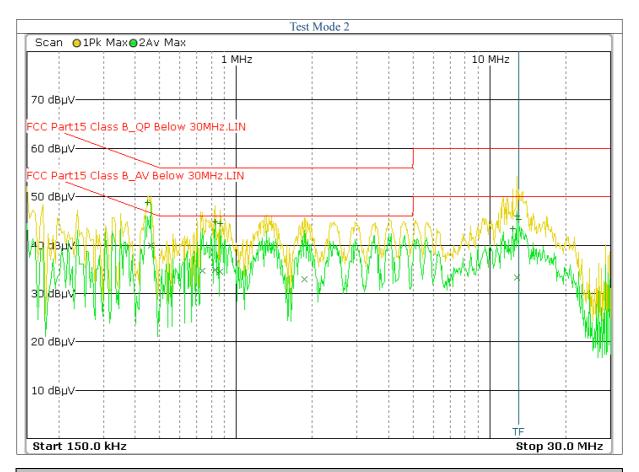

Note:

1.Uncertainty in conducted emission measured is <+/ -2dB.

2. The emission levels of other frequencies were very low against the limit.

3.All Reading Levels are Quasi-Peak and Average value.

4.Emission = Meter Reading + Factor; Factor = Insertion Loss + Cable Loss.


	FCC15										
Frequency		el (dBuV)	Factor		Emission (dBuV)		Limit (dBuV)		Margin(dBuV)		
(MHz)	QP	AV	(dB)	QP	AV	Neutral	QP	AV	QP	AV	
9.022	36.24	20.75	10.70	46.94	31.45	Neutral	60.00	50.00	-13.06	-18.55	
9.366	35.82	20.86	10.70	46.52	31.56	Neutral	60.00	50.00	-13.48	-18.44	
9.550	30.69	22.21	10.70	41.39	32.91	Neutral	60.00	50.00	-18.61	-17.09	
11.986	33.06	19.45	10.80	43.86	30.25	Neutral	60.00	50.00	-16.14	-19.75	
13.062	32.90	19.51	10.80	43.70	30.31	Neutral	60.00	50.00	-16.30	-19.69	
13.470	32.06	18.25	10.80	42.86	29.05	Neutral	60.00	50.00	-17.14	-20.95	
					FCC15						

1.Uncertainty in conducted emission measured is <+/ -2dB.

2. The emission levels of other frequencies were very low against the limit.

3.All Reading Levels are Quasi-Peak and Average value.

4.Emission = Meter Reading + Factor; Factor = Insertion Loss + Cable Loss.

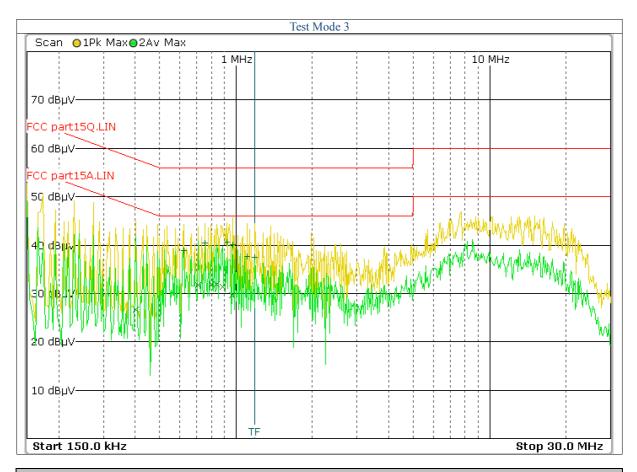
	FCC15										
Frequency		el (dBuV)	FactorEmission (dBuV)		Line/		Limit (dBuV)		Margin(dBuV)		
(MHz)	QP	AV	(dB)	QP	AV	Neutral	QP	AV	QP	AV	
0.450	36.52	29.28	10.40	46.92	39.68	Line	56.88	46.88	-9.96	-7.20	
0.830	34.39	24.48	10.40	44.79	34.88	Line	56.00	46.00	-11.21	-11.12	
0.866	34.13	24.07	10.40	44.53	34.47	Line	56.00	46.00	-11.47	-11.53	
12.354	32.62	21.81	10.80	43.42	32.61	Line	60.00	50.00	-16.58	-17.39	
12.822	35.28	22.51	10.80	46.08	33.31	Line	60.00	50.00	-13.92	-16.69	
13.062	34.58	21.89	10.80	45.38	32.69	Line	60.00	50.00	-14.62	-17.31	
					FCC15						

1.Uncertainty in conducted emission measured is <+/ -2dB.

2. The emission levels of other frequencies were very low against the limit.

3.All Reading Levels are Quasi-Peak and Average value.

4.Emission = Meter Reading + Factor; Factor = Insertion Loss + Cable Loss.

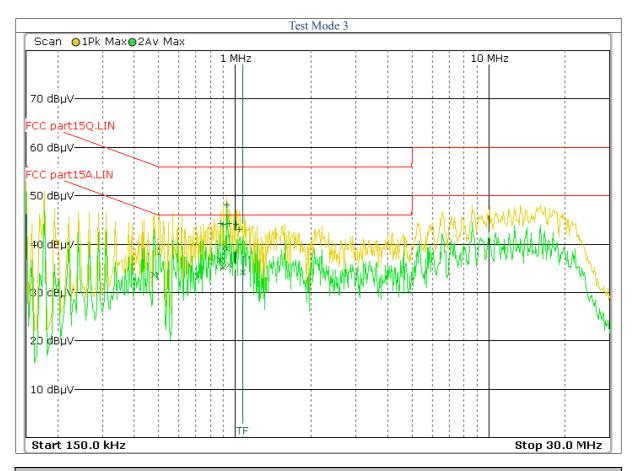

	FCC15										
Frequency	Read Lev	el (dBuV)	Factor	Emission (dBuV)		Line/	Limit (dBuV)		Margin(dBuV)		
(MHz)	QP	AV	(dB)	QP	AV	Neutral	QP	AV	QP	AV	
0.442	35.66	24.89	10.40	46.06	35.29	Neutral	57.02	47.02	-10.96	-11.73	
0.466	35.05	23.62	10.40	45.45	34.02	Neutral	56.58	46.58	-11.13	-12.56	
0.474	32.22	17.76	10.40	42.62	28.16	Neutral	56.44	46.44	-13.82	-18.28	
13.222	35.41	18.88	10.80	46.21	29.68	Neutral	60.00	50.00	-13.79	-20.32	
13.486	36.18	21.51	10.80	46.98	32.31	Neutral	60.00	50.00	-13.02	-17.69	
13.902	34.79	22.65	10.80	45.59	33.45	Neutral	60.00	50.00	-14.41	-16.55	
					FCC15						

1.Uncertainty in conducted emission measured is <+/ -2dB.

2. The emission levels of other frequencies were very low against the limit.

3.All Reading Levels are Quasi-Peak and Average value.

4.Emission = Meter Reading + Factor; Factor = Insertion Loss + Cable Loss.


	FCC15										
Frequency	Read Lev	el (dBuV)	Factor	Emission (dBuV)		Line/	Limit (dBuV)		Margin(dBuV)		
(MHz)	QP	AV	(dB)	QP	AV	Neutral	QP	AV	QP	AV	
0.622	28.42	16.53	10.40	38.82	26.93	Line	56.00	46.00	-17.18	-19.07	
0.754	30.05	21.29	10.40	40.45	31.69	Line	56.00	46.00	-15.55	-14.31	
0.802	29.87	21.52	10.40	40.27	31.92	Line	56.00	46.00	-15.73	-14.08	
0.918	30.15	19.26	10.40	40.55	29.66	Line	56.00	46.00	-15.45	-16.34	
0.974	29.61	17.92	10.40	40.01	28.32	Line	56.00	46.00	-15.99	-17.68	
1.106	27.16	16.45	10.40	37.56	26.85	Line	56.00	46.00	-18.44	-19.15	
					FCC15						

1. Uncertainty in conducted emission measured is <+/ -2 dB.

2. The emission levels of other frequencies were very low against the limit.

3.All Reading Levels are Quasi-Peak and Average value.

4.Emission = Meter Reading + Factor; Factor = Insertion Loss + Cable Loss.

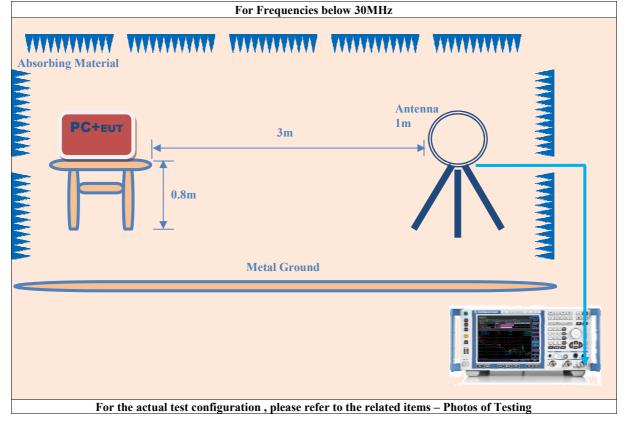
	FCC15										
Frequency	Read Lev	el (dBuV)	Factor	1	on (dBuV)	n (dBuV) Line/		Limit (dBuV)		(dBuV)	
(MHz)	QP	AV	(dB)	QP	AV	Neutral	QP	AV	QP	AV	
0.482	29.75	23.28	10.40	40.15	33.68	Neutral	56.30	46.30	-16.15	-12.62	
0.878	33.89	26.43	10.40	44.29	36.83	Neutral	56.00	46.00	-11.71	-9.17	
0.898	33.67	24.83	10.40	44.07	35.23	Neutral	56.00	46.00	-11.93	-10.77	
0.930	37.68	28.61	10.40	48.08	39.01	Neutral	56.00	46.00	-7.92	-6.99	
0.946	33.85	25.33	10.40	44.25	35.73	Neutral	56.00	46.00	-11.75	-10.27	
1.006	33.64	23.73	10.40	44.04	34.13	Neutral	56.00	46.00	-11.96	-11.87	
					FCC15						

1.Uncertainty in conducted emission measured is <+/ -2dB.

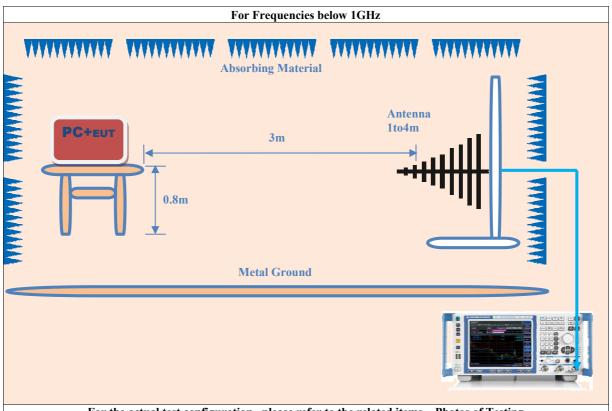
2. The emission levels of other frequencies were very low against the limit.

3.All Reading Levels are Quasi-Peak and Average value.

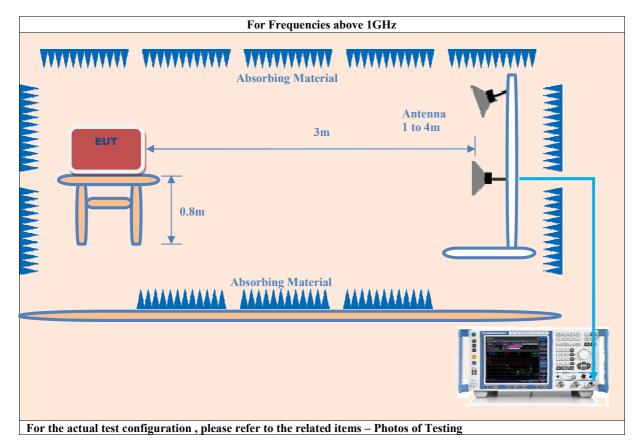
4.Emission = Meter Reading + Factor; Factor = Insertion Loss + Cable Loss.


5. Radiated Emission Test

5.1 Test Equipment


Please refer to Section 8 this report.

5.2 Test Procedure


- 1. The EUT was tested according to ANSI C63.4:2014.
- 2. The EUT, peripherals were put on the turntable which table size is 1m x 1.5 m, table high <u>0.8</u> m, and which is 1.5 m high for above 1 GHz. All set up is according to ANSI C63.4:2014.
- 3. The frequency spectrum from <u>9</u> kHz to <u>25</u> GHz was investigated. All readings from <u>9</u> kHz to <u>150</u> kHz are quasi-peak values with a resolution bandwidth of <u>200</u> Hz. All readings from <u>150</u> kHz to <u>30</u> MHz are quasi-peak values with a resolution bandwidth of <u>9</u> KHz. All readings from <u>30</u> MHz to <u>1</u> GHz are quasi-peak values with a resolution bandwidth of <u>120</u> KHz. All readings are above <u>1</u> GHz, peak values with a resolution bandwidth of <u>1</u> MHz. Measurements were made at <u>3</u> meters.
- 4. The emissions from the EUT were measured continuously at every azimuth by rotating the turntable. The Receiving antenna high is varied from <u>1</u> m to <u>4</u> m high to find the maximum emission for each frequency. Emissions below 30MHz were measured with a loop antenna while emission above 30MHz were measured using a broadband E-field antenna.
- 5. Maximizing procedure was performed on the six (6) highest emissions to ensure EUT compliance is with all installation combinations. All data was recorded in the peak detection mode. Quasi-peak readings was performed only when an emission was found to be marginal (within -4 dB of specification limit), and are distinguished with a "**QP**" in the data table.
- 6. Each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical. In order to find out the max. emission, the relative positions of this transmitter(EUT) was rotated through three orthogonal axes according to the requirements in Section 8 and 13 of ANSI C63.4:2014

5. 3 Radiated Test Setup

For the actual test configuration , please refer to the related items - Photos of Testing

5. 4 Configuration of The EUT

Same as section 4.4 of this report

5. 5 EUT Operating Condition

Same as section 4.5 of this report

5. 6 Radiated Emission Limit

All emission from a digital device, including any network of conductors and apparatus connected thereto, shall not exceed the level of field strength specified below:

Frequency (MHz)	Distance (m)	Field Strength (dBuV/m)
30 - 88	3	40.0
88 - 216	3	43.5
216 - 960	3	46.0
Above 960	3	54.0

Note:

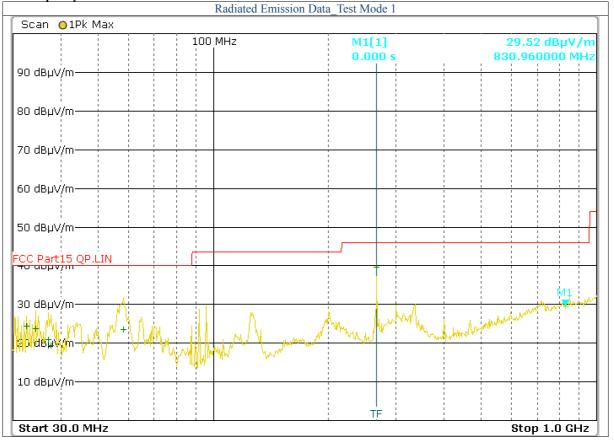
1. In the emission tables above, the tighter limit applies at the band edges.

2. Distance refers to the distance between measuring instrument, antenna, and the closest point of any part of the device or system.

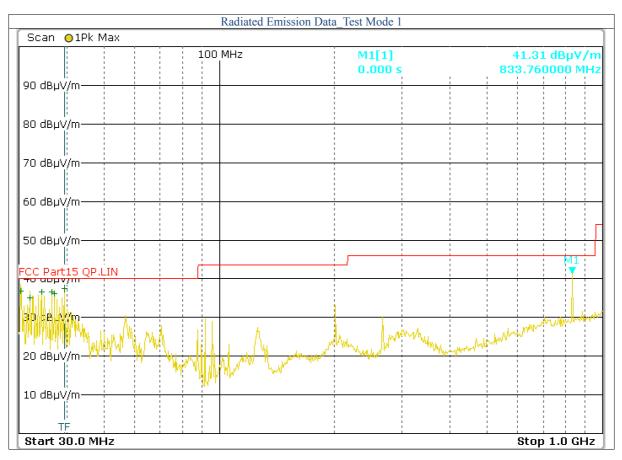
3. The lower limit shall apply at the transition frequencies.

5. 7 Radiated Emission Test Result

For Frequence	cy below 30MHz					
Frequency (MHz)	Read Level (dBuV)	Factor (dB)	Emission (dBuV/m)	Horiz./ Vert.	Limit (dBuV/m)	Margin (dB)
N/A						
N/A						
N/A						
N/A						
N/A						
N/A						


For Frequency below 30MH

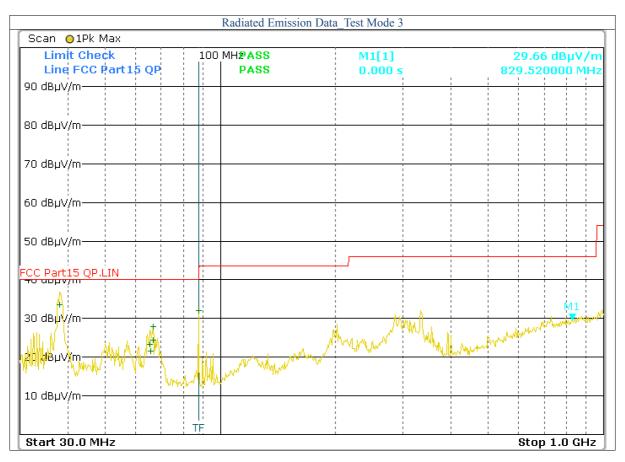
Note: (1) All Readings below 1GHz are Quasi-Peak, above are performed with peak and/or average measurements as necessary.


(2) "N/A" remark, if no specific emissions from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.

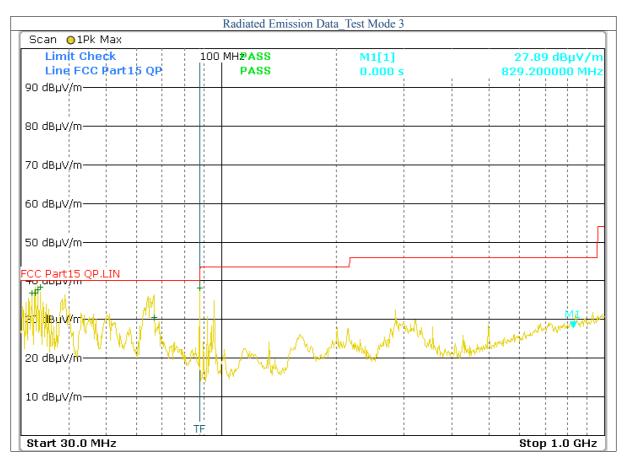
(3) Emission Level = Reading Level + Probe Factor + Cable Loss.

For Frequency from 30MHz to 1GHz

Frequency (MHz)	Read Level (dBuV)	Factor (dB)	Emission (dBuV/m)	Horiz./ Vert.	Limit (dBuV/m)	Margin (dB)
32.600	12.32	12.06	24.38	Horiz./	40.0	-15.62
34.320	11.69	12.06	23.75	Horiz./	40.0	-16.25
37.080	9.21	11.78	20.99	Horiz./	40.0	-19.01
37.680	7.59	11.78	19.37	Horiz./	40.0	-20.63
58.360	12.86	10.66	23.52	Horiz./	40.0	-16.48
266.640	24.79	14.94	39.73	Horiz./	46.0	-6.27



Frequency (MHz)	Read Level (dBuV)	Factor (dB)	Emission (dBuV/m)	Horiz./ Vert.	Limit (dBuV/m)	Margin (dB)
30.360	24.80	12.06	36.86	Vert.	40.0	-3.14
32.080	22.91	12.06	34.97	Vert.	40.0	-5.03
34.320	24.44	12.06	36.5	Vert.	40.0	-3.50
36.560	24.87	11.78	36.65	Vert.	40.0	-3.35
37.120	24.49	11.78	36.27	Vert.	40.0	-3.73
39.360	25.77	11.78	37.55	Vert.	40.0	-2.45


(1) All Readings below 1GHz are Quasi-Peak, above are performed with peak and/or average measurements as necessary.

(2) "N/A" remark, if no specific emissions from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.

(3) Emission Level = Reading Level + Probe Factor + Cable Loss.

Frequency (MHz)	Read Level (dBuV)	Factor (dB)	Emission (dBuV/m)	Horiz./ Vert.	Limit (dBuV/m)	Margin (dB)
38.040	21.71	11.78	33.49	Horiz./	40.0	-6.51
65.600	14.61	8.81	23.42	Horiz./	40.0	-16.58
65.880	12.70	8.81	21.51	Horiz./	40.0	-18.49
66.640	15.57	8.81	24.38	Horiz./	40.0	-15.62
66.720	19.03	8.81	27.84	Horiz./	40.0	-12.16
87.800	24.56	7.43	31.99	Horiz./	40.0	-8.01

Frequency (MHz)	Read Level (dBuV)	Factor (dB)	Emission (dBuV/m)	Horiz./ Vert.	Limit (dBuV/m)	Margin (dB)
32.040	24.80	12.06	36.86	Vert.	40.0	-3.14
32.640	24.78	12.06	36.84	Vert.	40.0	-3.16
33.160	25.73	12.06	37.79	Vert.	40.0	-2.21
33.760	25.19	12.06	37.25	Vert.	40.0	-2.75
66.720	21.77	8.81	30.58	Vert.	40.0	-9.42
87.800	29.79	7.43	37.22	Vert.	40.0	-2.78

(1) All Readings below 1GHz are Quasi-Peak, above are performed with peak and/or average measurements as necessary.

(2) "N/A" remark, if no specific emissions from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.

(3) Emission Level = Reading Level + Probe Factor + Cable Loss.

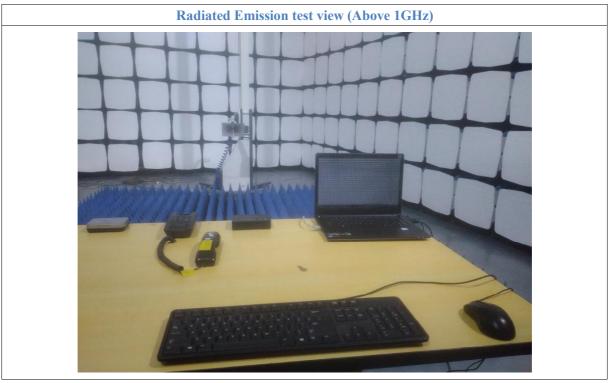
For Frequency above 1GHz

	y above IGHZ R	adiated Emission D	ata Test Mode 1 H		
Scan O1	Pk Maxo2Av Max				
Limit C Line F(Check CC Part15 PK	PASS PASS	M1[1] 0.000 s		L9 dBµV/m 00000 GHz
so dept/m	CC Part15 AV	PASS			
CC Part15 /U dBµV/m·					
60 dBµV/m·					Ν
CC Part15 50 dBµV/m·	AV.LIN			1. Martin article and and	Janepher Muser Martinger
40 dBµV/m∙		www.alterson	when a proper and the server and the ser	A Cont	- market
₩ <mark>₩₩₩₩₩₩₩₩</mark> 30 dBµV/m·	Maria Maria Maria Maria		and the second second second		
What when the second se	and the stand of the	- And a start of the start of t			
10 dBµV/m·					
Start 1.0	GHz			Sto	T p 6.0 GHz
Trace	Frequency	Level (dBµV/n	n) Phase Dete	ector Delt	a Limit/dB
2 1	5.967600000 GHz 5.982400000 GHz	42.49 55.71		Average Ltive Peak	-11.51 - 18.29

	Radiated Emission E	ata_Test Mode 1_V	7	
Scan 👴 1 Pk Max 🌖 2 Av Max				
Limit Check	PASS	M1[1]		54.97 dBµV/m
Line FCC Part15 PK	PASS	0.000 s	5.9	95200000 GHz
80 dBpV/MCC Part 15 AV	PASS			
	1			
FCC Part15 PK.LIN				
/U dBµV/m	1			
	1			
60 dBµV/m				
				M
FCC Part15 AV.LIN 50 dBµV/m 40 dBµV/m Миллининин Миллинин 30 dBµV/m	 		 	1 1. de wert Mart
50 dBµV/m			analan	1 - Martin Bullion Con
			Mar Mr. Marthan	
40 dBuV/m		Allowedge and have	Wheelar and a second se	Xmmmm
	and water and the second second	Ward May and March and	and an outer	www.
Mar Marth Marth Marth Marth	Martine		and the second s	
30 dBµV/m		Marin and and and		
30 dBµV/m-	- maker maker where the warder			
20 dBµV/m	1			
10 dBµV/m	 		 	
				TF
Start 1.0 GHz				Stop 6.0 GHz
Trace Frequency	Level (dBµV/n	n) Phase	Detector I	Delta Limit/dB
2 5.905600000	GHz 42.	29	Average	-11.71
2 5.995200000	GHz 56.	47 P	ositive Peak	-17.53

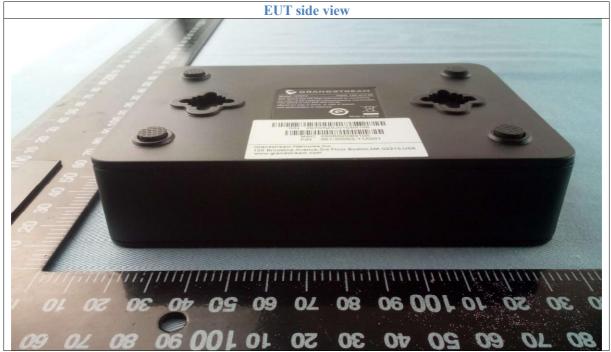
For Frequency above 1GHz

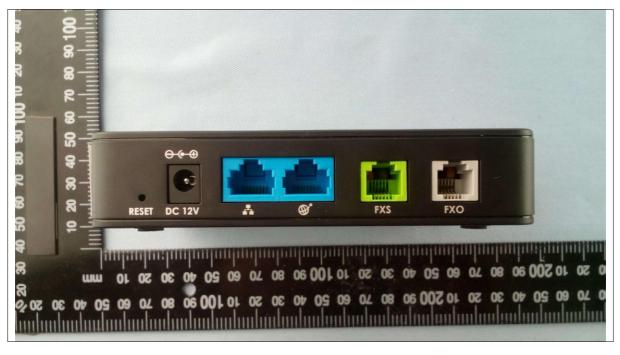
<u>, i i equency</u>	R	adiated Emission Data	Test Mode 3	H	
Scan 🔾 1P	Pk Max⊜2Av Max				
Limit C		PASS	M1[1]		3.02 dBµV/m
	C Part15 PK	PASS	0.000 s	5.99	4400000 GHz
80 48 <mark>08/69</mark>	C Part 15 AV	PASS			
		1			
FCC Part15 F	PK.LIN				
/U dBµV/m−					
		1 1 1			
60 dBµV/m-					
					N
FCC Part15 A	W.LIN	1 1 1		 	
5U dBµV/m-				. when the second	puper provide -
				Longen and Martin	
40 dBuV/m–			Marsh	Horder Manumanenterternerte	- Augustan
л і h		and a support the support	W. W. WAR	and the second	
- MARMANNA	had a hard and a star and the	Const. 1		and a start and a start	
30 dBµV/m-		- And	A COM MAN		
month	man and have been been been been been been been be	handrahannan			
20 dBµV/m-					
,					
10 dBµV/m-					
					ТІ
Start 1.0 G					top 6.0 GHz
Trace	Frequency	Level (dBµV/m)	Phase	Detector De	elta Limit/dB
1	5.970800000 GHz	55.28		Positive Peak	
2	5.978000000 GHz	42.47		Average	-11.5

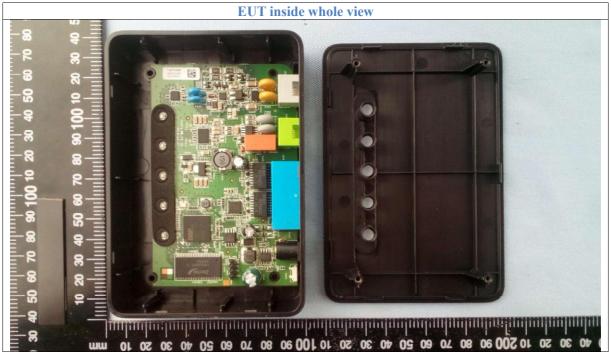

	Ra	diated Emission I	Data_Test Mo	de 3_V	
Scan O1Pk	Maxo2Av Max				
Limit Ch	eck	PASS	M1	[1]	54.32 dBµV/m
	Part15 PK	PASS	0.0	100 s	5.996400000 GHz
80 dep8/FCC	Part15 AV	PASS		1 1 1	
FCC Part15 PK	1 I IN			1 1 1	
/U dBµV/m-				1 1 1	
				1 1 1	
				1	
60 dBµV/m—				1	M
					16.40.00
FCC Part15 AV	/.LIN	1		1 1 1	- Allmont all
					mphumbhan hallan Martingt
				. h. Calmbert Marrie	- mark
40 dBµV/m-			MIMMIM	And the second s	- Andrew Contraction
mar Mary rates	www.www.whatwork.	war hand had the second and the second	¥	and the second second	
30 dBµV/m-	ANA ALTER FOR ALL	1			
		and the second second	mound		
Martinonalius	Amount the bound			1 1 1	
20 dBµV/m-				 	
				1	
10 dBµV/m—					
				1	
				1	TF
Start 1.0 GF					Stop 6.0 GHz
Trace	Frequency	Level (dBµV/r	n) Phase	e Detector	Delta Limit/dB
1	5.921600000 GHz	54.	.89	Positive Pe	eak -19.11
2	5.954800000 GHz	42.	. 49	Avera	age -11.51

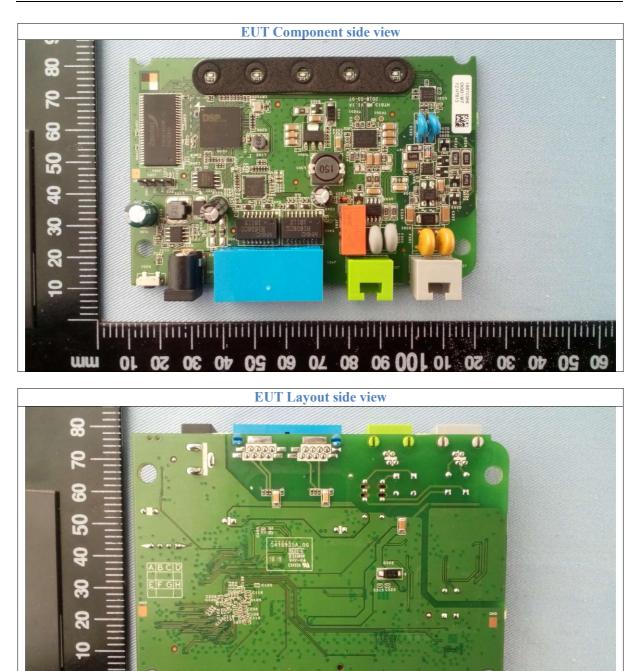
6. Photo of Testing

6.1 Emission test view

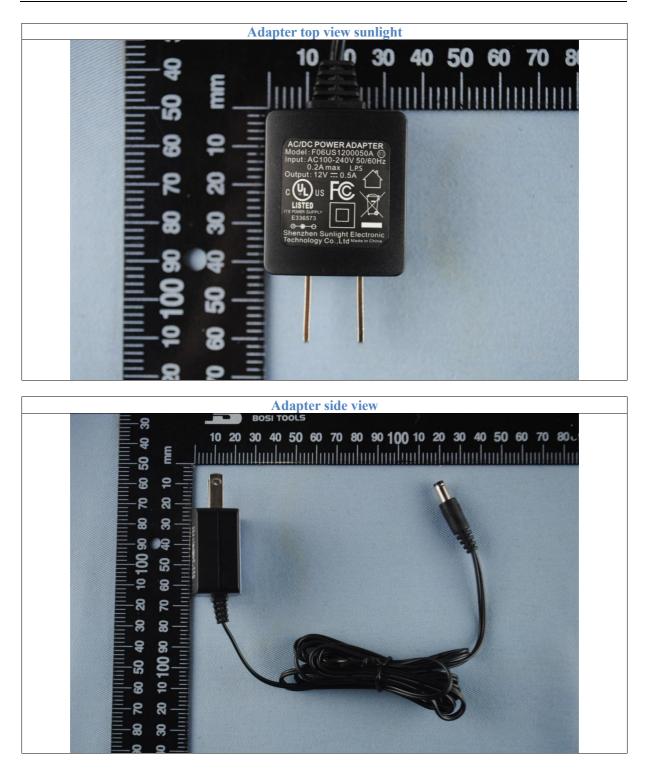

6.2 Photograph - EUT







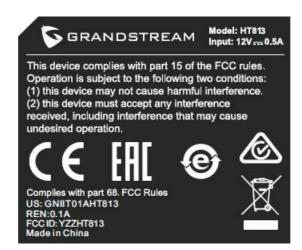
1111


50 10 100 80 80 20 90 20 40 30 50 10


innin

uuu

40 30


nc

7. FCC ID Label

The following note shall be conspicuously placed in the user manual: "Operation is subject to the following two conditions: (1) this device may not cause interference, and (2) this device must accept any interference, including interference that may cause undesired operation of this device."

The Label must not be a stick-on paper label. The Label on these products must be permanently affixed to the product and readily visible at the time of purchase and must last the expected lifetime of the equipment not be readily detachable.

8. Test Equipment

The following test equips	nents were used during the	radiated & conducted emission test:

Equipment/ Facilities	Manufacturer	Model #	Serial No.	Cal/Char Date	Due Date
Turntable	Innco systems GmbH	CT-0801	N/A	NCR	NCR
Antenna Tower	Innco systems GmbH	MA-4640-XP-ET	N/A	NCR	NCR
Controller	Innco systems GmbH	CO3000	955/38850716L	NCR	NCR
EMI Test Receiver	Rohde & Schwarz	ESR7	101091	Dec.6, 2016	Dec.6, 2018
Broad-Band Horn Antenna	SCHWARZBECK	BBHA 9120D	9120D-564	August 19, 2016	August 19, 2018
Loop Antenna	Rohde & Schwarz	HFH2-Z2	100022	Feb.21, 2018	Feb.21, 2020
AMN	Rohde & Schwarz	ESH3-Z5	100197	Dec.25, 2017	Dec.25, 2019
AMN	CYBERTEK	EM5040A	E115040054	Sep.6, 2016	Sep.6, 2018
KMO Shielded Room	KMO	KMO-001	N/A	NCR	NCR
3m Anechoic Chamber	KMO	KMO-3AC	N/A	Dec.23, 2017	Dec.23, 2019