

FCC TEST REPORT

Product Name: IP Multimedia Phone

Trade Mark: GRANDSTREAM

Model No. / HVIN: GXV3370

Add. Model No. / HVIN: N/A

Report Number: 191010008RFC-4

Test Standards: FCC 47 CFR Part 15 Subpart E

FCC ID: YZZGXV3370V2

Test Result: PASS

Date of Issue: November 5, 2019

Prepared for:

Grandstream Networks, Inc. 126 Brookline Ave., 3rd Floor, Boston, MA 02215, USA

Prepared by:

Shenzhen UnionTrust Quality and Technology Co., Ltd. 16/F, Block A, Building 6, Baoneng Science and Technology Park, Qingxiang Road No.1, Longhua New District, Shenzhen, China

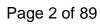
TEL: +86-755-2823 0888 FAX: +86-755-2823 0886

Prepared by:

Eric Yu

Team Leader

Reviewed by:


Kevin Liang
Assistant Manager

Approved by:

Date:

November 5, 2019

Technical Director

Version

Version No.	Date	Description
V1.0	November 5, 2019	Original

CONTENTS

1.	GENERAL INFORMATION				
	1.1	CLIENT INFORMATION	2		
	1.2	EUT Information			
		1.2.1 GENERAL DESCRIPTION OF EUT			
		1.2.2 DESCRIPTION OF ACCESSORIES.			
	1.3	PRODUCT SPECIFICATION SUBJECTIVE TO THIS STANDARD			
	1.4	OTHER INFORMATION			
	1.5	DESCRIPTION OF SUPPORT UNITS			
	1.6	TEST LOCATION			
	1.7	TEST FACILITY			
	1.8	DEVIATION FROM STANDARDS			
	1.9	ABNORMALITIES FROM STANDARD CONDITIONS			
	1.10	OTHER INFORMATION REQUESTED BY THE CUSTOMER			
	1.11	MEASUREMENT UNCERTAINTY			
_					
2.		SUMMARY			
3.		IPMENT LIST			
4.	IESI	CONFIGURATION			
	4.1	ENVIRONMENTAL CONDITIONS FOR TESTING	11		
		4.1.1 NORMAL OR EXTREME TEST CONDITIONS	11		
		4.1.2 RECORD OF NORMAL ENVIRONMENT	11		
	4.2	TEST CHANNELS	11		
	4.3	EUT TEST STATUS	12		
	4.4	Pre-scan	12		
	4.5	TEST SETUP	13		
		4.5.1 FOR RADIATED EMISSIONS TEST SETUP	13		
		4.5.2 FOR CONDUCTED EMISSIONS TEST SETUP	14		
		4.5.3 FOR CONDUCTED RF TEST SETUP	15		
	4.6	SYSTEM TEST CONFIGURATION	16		
	4.7	DUTY CYCLE	17		
5.	PADI	IO TECHNICAL REQUIREMENTS SPECIFICATION	10		
J.	NADI		_		
	5.1	REFERENCE DOCUMENTS FOR TESTING	_		
	5.2	ANTENNA REQUIREMENT	_		
	5.3	26 dB Bandwidth			
	5.4	6 dB Bandwidth	26		
	5.5	MAXIMUM CONDUCTED OUTPUT POWER OR E.I.R.P			
	5.6	PEAK POWER SPECTRAL DENSITY	33		
	5.7	RADIATED EMISSIONS AND BAND EDGE MEASUREMENT			
	5.8	DYNAMIC FREQUENCY SELECTION			
	5.9	AC Power Line Conducted Emission	86		
ΔРІ	PENDI	IX 1 PHOTOS OF TEST SETUP	80		
Λ. DI		N 2 BHOTOS OF FUT CONSTRUCTIONAL DETAILS			

1. GENERAL INFORMATION 1.1 CLIENT INFORMATION

Applicant:	Grandstream Networks, Inc.
Address of Applicant: 126 Brookline Ave., 3rd Floor, Boston, MA 02215, USA	
Manufacturer:	Grandstream Networks, Inc.
Address of Manufacturer:	126 Brookline Ave., 3rd Floor, Boston, MA 02215, USA

Report No.: 191010008RFC-4

1.2 EUT INFORMATION

1.2.1 General Description of EUT

2.1 Ceneral Description of Lot					
Product Name:	IP Multimedia Phone				
Model No. / HVIN:	GXV3370				
Add. Model No. / HVIN:	N/A				
Trade Mark:	GRANDSTREAM				
DUT Stage:	Identical Prototype				
	2.4 CH = ICM Dond	IEEE 802.11b/g/n			
	2.4 GHz ISM Band:	Bluetooth V4.2			
EUT Supports Function:	5 GHz U-NII Bands:	5 150 MHz to 5 250 MHz	IEEE 802.11a/n		
EOT Supports Function.		5 250 MHz to 5 350 MHz	IEEE 802.11a/n		
		5 470 MHz to 5 725 MHz	IEEE 802.11a/n		
		5 725 MHz to 5 850 MHz	IEEE 802.11a/n		
Software Version:	1.0.3.1				
Hardware Version:	V1.6				
Sample Received Date:	October 11, 2019				
Sample Tested Date:	October 12, 2019 to October 28, 2019				

Page 5 of 89 Report No.: 191010008RFC-4

1.2.2 Description of Accessories

Adapter (1)			
Model No.:	H18US1200150A		
Input:	100-240 V~50/60 Hz 0.8 A		
Output:	12.0 V == 1.5 A		
AC Cable:	N/A		
DC Cable:	2.5 Meter, Unshielded without ferrite		

Adapter (2)				
Model No.: F18W8-120150SPAUY				
Input:	Input: 100-240 V~50/60 Hz 0.6 A			
Output:	Output: 12.0 V == 1.5 A			
AC Cable:	N/A			
DC Cable:	2.5 Meter, Unshielded without ferrite			

Cable (1)					
Description: Ethernet Cable					
Cable Type: Unshielded without ferrite					
Length:	1.5 Meter				

Cable (2)					
Description: Phone Cord					
Cable Type: Unshielded without ferrite					
Length:	3.5 Meter				

1.3 PRODUCT SPECIFICATION SUBJECTIVE TO THIS STANDARD

	FICATION SUBJE		11113 317	ANDAND		
	5150 MHz to 5250 MHz (U-NII-1)					
Frequency Bands:	5250 MHz to 5350 MHz (U-NII-2A) 5470 MHz to 5725 MHz (U-NII-2C)					
		,				
	5 725 MHz to 5 850 MHz	z (U-NII-3)				
	5180 MHz to 5240 MHz					
Frequency Ranges:	5260 MHz to 5320 MHz					
. , ,	5500 MHz to 5700 MHz					
	5 745 MHz to 5 825 MHz	7				
Support Standards:	IEEE 802.11a/n					
TPC Function:	Not Support					
DFS Operational mode:	Slave without radar Inter	ference detect	ion function			
Type of Modulation:	IEEE 802.11a: OFDM(64	4QAM, 16QAM	I, QPSK, BPS	SK)		
. Jpo or modulation.	IEEE 802.11n: OFDM(64	·	I, QPSK, BPS	SK)		
Channel Spacing:	IEEE 802.11a/n-HT20: 2					
	IEEE 802.11n-HT40: 40					
Data Data	IEEE 802.11a: Up to 54					
Data Rate:	IEEE 802.11n-HT20: Up					
	IEEE 802.11n-HT40: Up					
	5150 MHz to 5250 MHz:					
	4 for IEEE 802. 2 for IEEE 802.					
	5250 MHz to 5350 MHz: 4 for IEEE 802.11a/n-HT20					
Number of Observator	2 for IEEE 802.11n-HT40					
Number of Channels:	5470 MHz to 5725 MHz:					
	11 for IEEE 802.11a/n-HT20					
	5 for IEEE 802.	11n-HT40				
	5725 MHz to 5850 MHz:					
	5 for IEEE 802.					
Antonno Tunc:	2 for IEEE 802.	11n-H140				
Antenna Type:	Dipole Antenna	4 O 4D:				
	5150 MHz to 5250 MHz:					
Antenna Gain:	5250 MHz to 5350 MHz: 4.0 dBi					
	5470 MHz to 5725 MHz: 4.0 dBi					
	5725 MHz to 5850 MHz:					
Maximum conducted		U-NII-1	U-NII-2A	U-NII-2C	U-NII-3	
output power (dBm):	IEEE 802.11a:	15.99	15.24	15.63	14.59	
F F ().	IEEE 802.11n-HT20:	15.94	15.14	15.59	14.37	
	IEEE 802.11n-HT40: 13.45 13.46 13.58 14.60					
Normal Test Voltage:	AC 120V/60Hz					

1.4 OTHER INFORMATION

Operation Frequency Each of Channel						
	U-NII-1	U-NII-2A	U-NII-2C	U-NII-3		
IEEE 802.11a,	f =	f = 5000 + 5k, k = 145 + 4n				
IEEE 802.11n-HT20,	n = 1,, 4	n = 5,, 8	n = 17,, 27	n = 1,, 5		
IEEE 802.11n-HT40,	f = 5000 + 5k, k = 30 + 8n			f = 5000 + 5k, k = 143 + 8n		
,	n = 1, 2	n = 1,, 5	n = 9,, 13	n = 1, 2		
Note:						
f is the	operating frequency	(MHz);				
k is the	operating channel.					

Report No.: 191010008RFC-4

1.5 DESCRIPTION OF SUPPORT UNITS

The EUT has been tested with associated equipment below.

1) Support Equipment

) Support Equipment					
Description	Manufacturer	Model No.	Serial Number	Supplied by	
Notebook	Lenovo	B40-80	MP12NEQ6	UnionTrust	
Mobile Phone	Apple	A1688	NA	UnionTrust	
USB disk	Kingston	DTSE9	N/A	UnionTrust	
mouse	DELL	MS111	CN-011D3V-738	UnionTrust	
Wireless Home Router	SAGEMCOM	FAST5280	N/A	UnionTrust	
Headset	YEY	VE120-MV	N/A	UnionTrust	
3.5mm Headset	SENICC	ST-371	N/A	UnionTrust	
Standard POE Power supply	TP-LINK	TL-POE160S	N/A	UnionTrust	
SD Card	Kingston	16GB	N/A	UnionTrust	
Monitor	KTC	U3202S	N/A	UnionTrust	

2) Support Cable

Cable No. Description Conne		Connector	Length	Supplied by
1 Ethernet Cable RJ45 1.5 Unshielded		1.5 Unshielded without ferrite	UnionTrust	
2	Ethernet Cable	RJ45	5.0 Unshielded without ferrite	UnionTrust
3	Ethernet Cable	RJ45	1.5 Unshielded without ferrite	UnionTrust
4 Antenna Cable SMA		0.15 Meter	UnionTrust	
5	HDMI Cable	HDMI	1.5 Shielded with two ferrite	Applicant

1.6 TEST LOCATION

Shenzhen UnionTrust Quality and Technology Co., Ltd.

Address: 16/F, Block A, Building 6, Baoneng Science and Technology Park, Qingxiang Road No.1, Longhua

New District, Shenzhen, China 518109 Telephone: +86 (0) 755 2823 0888 Fax: +86 (0) 755 2823 0886

Shenzhen UnionTrust Quality and Technology Co., Ltd.

Page 8 of 89 Report No.: 191010008RFC-4

1.7 TEST FACILITY

The test facility is recognized, certified, or accredited by the following organizations:

CNAS-Lab Code: L9069

The measuring equipment utilized to perform the tests documented in this report has been calibrated once a year or in accordance with the manufacturer's recommendations, and is traceable under the ISO/IEC/EN 17025 to international or national standards. Equipment has been calibrated by accredited calibration laboratories.

A2LA-Lab Certificate No.: 4312.01

Shenzhen UnionTrust Quality and Technology Co., Ltd. has been accredited by A2LA for technical competence in the field of electrical testing, and proved to be in compliance with ISO/IEC 17025: 2005 General Requirements for the Competence of Testing and Calibration Laboratories and any additional program requirements in the identified field of testing.

ISED Wireless Device Testing Laboratories

CAB identifier: CN0032

FCC Accredited Lab.

Designation Number: CN1194

Test Firm Registration Number: 259480

1.8 DEVIATION FROM STANDARDS

None.

1.9 ABNORMALITIES FROM STANDARD CONDITIONS

None.

1.10 OTHER INFORMATION REQUESTED BY THE CUSTOMER

None.

1.11 MEASUREMENT UNCERTAINTY

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the Product as specified in CISPR 16-4-2. This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

No.	Item	Measurement Uncertainty
1	Conducted emission 9KHz-150KHz	±3.8 dB
2	Conducted emission 150KHz-30MHz	±3.4 dB
3	Radiated emission 9KHz-30MHz	±4.9 dB
4	Radiated emission 30MHz-1GHz	±4.7 dB
5	Radiated emission 1GHz-18GHz	±5.1 dB
6	Radiated emission 18GHz-26GHz	±5.2 dB
7	Radiated emission 26GHz-40GHz	±5.2 dB

2. TEST SUMMARY

	FCC 47 CFR Part 15 Subpa	rt E Test Cases	
Test Item	Test Requirement	Test Method	Result
Antenna Requirement	FCC 47 CFR Part 15 Subpart C Section 15.203 FCC 47 CFR Part 15 Subpart E Section 15.407(a)(1) (2)	N/A	PASS
26 dB emission bandwidth	FCC 47 CFR Part 15 Subpart E Section 15.407 (a)(2)(5)	KDB 789033 D02 v02r01 Section C.1	PASS
6 dB bandwidth	FCC 47 CFR Part 15 Subpart E Section 15.407 (e)	KDB 789033 D02 v02r01 Section C.2	PASS
Maximum conducted output powerFCC 47 CFR Part 15 Subpart ESection 15.407 (a)(1)(2)(3)		KDB 789033 D02 v02r01 Section E.3.a (Method PM)	PASS
Peak Power Spectral Density	FCC 47 CFR Part 15 Subpart E Section 15.407 (a)(1)(2)(3)		
Radiated Emissions and Band Edge Measurement	FCC 47 CFR Part 15 Subpart E Section 15.407 (b)(1)(2)(3)(4)(6) FCC 47 CFR Part 15 Subpart C Section 15.209/205	KDB 789033 D02 v02r01 Section G.3, G.4, G.5, and G.6	PASS
Dynamic Frequency Selection	FCC 47 CFR Part 15 Subpart E Section 15.407 (h)	KDB 905462 D03 Client Without DFS New Rules v01r02	PASS
AC Power Line Conducted Emission	FCC 47 CFR Part 15 Subpart E Section 15.407 (b)(6) FCC 47 CFR Part 15 Subpart C Section 15.207	ANSI C63.10-2013, Section 6.2.	PASS

Note:

N/A: In this whole report not applicable.

For Dynamic Frequency Selection

i or bynamic rroquency colocilon	
Test Case	Result
Channel Availability Check Time	N/A¹
U-NII Detection Bandwidth	N/A¹
Channel Closing Transmission Time	PASS
Channel Move Time	PASS
DFS Detection Threshold	N/A¹
Non- Occupancy Period	N/A¹
Note:	

The EUT is slave, NA In this whole report not applicable.

3. EQUIPMENT LIST

		Radiated Er	nission Test E	Equipment List		
Used	Equipment	Manufacturer	Model No.	Serial Number	Cal. date (mm dd, yyyy)	Cal. Due date (mm dd, yyyy)
	3M Chamber & Accessory Equipment	ETS-LINDGREN	3M	N/A	Dec. 03, 2018	Dec. 03, 2021
\boxtimes	Receiver R&S		ESIB26	IB26 100114 Nov. 24, 2018		Nov. 24, 2019
\boxtimes	Loop Antenna ETS-LINDGREN		6502	00202525 Dec. 03, 2018		Dec. 03, 2019
\boxtimes	Broadband Antenna	ETS-LINDGREN	3142E	00201566	Dec. 08, 2018	Dec. 08, 2019
\boxtimes	6dB Attenuator	Talent	RA6A5-N- 18	18103001	Dec. 08, 2018	Dec. 08, 2019
\boxtimes	Preamplifier HP		8447F	2805A02960	Nov. 24, 2018	Nov. 24, 2019
	Horn Antenna (Pre-amplifier)	ETS-LINDGREN	3117-PA	00201874	May 18, 2019	May 18, 2020
	Horn Antenna (Pre-amplifier)	ETS-LINDGREN	3116C-PA	00202652	Jan. 05, 2019	Jan. 05, 2020
	Multi device Controller	ETS-LINDGREN	7006-001	00160105	N/A	N/A
	Test Software	Audix	e3	Sof	tware Version: 9.16	0323

	Conducted Emission Test Equipment List									
	Conducted Emission Test Equipment List									
Used	Equipment	Manufacturer Model No.		Serial Number	Cal. date (mm dd, yyyy)	Cal. Due date (mm dd, yyyy)				
	Receiver	R&S	ESR7	1316.3003K07 -101181-K3	Nov. 24, 2018	Nov. 24, 2019				
	Pulse Limiter	R&S	ESH3-Z2	0357.8810.54	Nov. 24, 2018	Nov. 24, 2019				
	LISN	R&S	ESH2-Z5	860014/024	Nov. 24, 2018	Nov. 24, 2019				
	Test Software	Audix	e3	Sof	tware Version: 9.16	0323				

	Conducted RF test Equipment List									
Used	Equipment	Manufacturer	Model No.	Serial Number	Cal. date (mm dd, yyyy)	Cal. Due date (mm dd, yyyy)				
\boxtimes	EXA Spectrum Analyzer	KEYSIGHT	N9010A	MY51440197	Nov. 24, 2018	Nov. 24, 2019				
	USB Wideband Power Sensor	KEYSIGHT	U2021XA	MY55430035	Nov. 24, 2018	Nov. 24, 2019				

4. TEST CONFIGURATION

4.1 ENVIRONMENTAL CONDITIONS FOR TESTING

Normal or Extreme Test Conditions

Environment Parameter	Se	Selected Values During Tests						
Test Condition	Ambient							
rest Condition	Temperature (°C)	Temperature (°C) Voltage						
NT/NV	+15 to +35	AC 120V/60Hz	20 to 75					
Remark: 1) NV: Normal Voltage; NT: Normal Temperature								

4.1.2 **Record of Normal Environment**

Test Item	Temperature (°C)	Relative Humidity (%)	Pressure (kPa)	Tested by
26 dB emission bandwidth				
6 dB bandwidth				
Occupied Bandwidth			400.0	
Maximum conducted	24.6	57.0	100.3	Hank Wu
output power				
Peak Power Spectral Density				
Radiated Emissions and Band Edge Measurement	25.2	52. 0	100.02	Andy Lin
Dynamic Frequency Selection	24.6	57.0	100.3	Hank Wu
AC Power Line Conducted Emission	24.9	50.0	100.4	Bert Xiong

4.2TEST CHANNELS

Mode	Tx/Rx Frequency	Test RF Channel Lists				
Wiode	1 X/KX Frequency	Lowest(L)	Middle(M)	Highest(H)		
	5150 MHz to 5250 MHz	Channel 36	Channel 44	Channel 48		
	3130 MHZ 10 3230 MHZ	5180 MHz	5220 MHz	5240 MHz		
IEEE 802.11a IEEE 802.11n-HT20	5250 MHz to 5350 MHz	Channel 52	Channel 60	Channel 64		
	5250 WITZ 10 5550 WITZ	5260 MHz	5300 MHz	5320 MHz		
	5470 MHz to 5705 MHz	Channel 100	Channel 120	Channel 140		
	5470 MHz to 5725 MHz	5500 MHz	5600 MHz	5700 MHz		
	5725 MHz to 5850 MHz	Channel 149	Channel 157	Channel 165		
	3723 WITZ 10 3630 WITZ	5745 MHz	5785 MHz	5825 MHz		
	5150 MHz to 5250 MHz	Channel 38		Channel 46		
	3130 WITZ 10 3230 WITZ	5190 MHz		5230 MHz		
	5250 MHz to 5250 MHz	Channel 54		Channel 62		
IEEE 000 115 UT40	5250 MHz to 5350 MHz	5270 MHz		5310 MHz		
IEEE 802.11n-HT40	5470 MHz to 5725 MHz	Channel 102	Channel 118	Channel 134		
	3470 MITZ 10 3723 MITZ	5510 MHz	5590 MHz	5670 MHz		
	5725 MHz to 5850 MHz	Channel 151		Channel 159		
	37 23 IVII 12 10 3030 IVITIZ	5755 MHz		5795 MHz		

4.3 EUT TEST STATUS

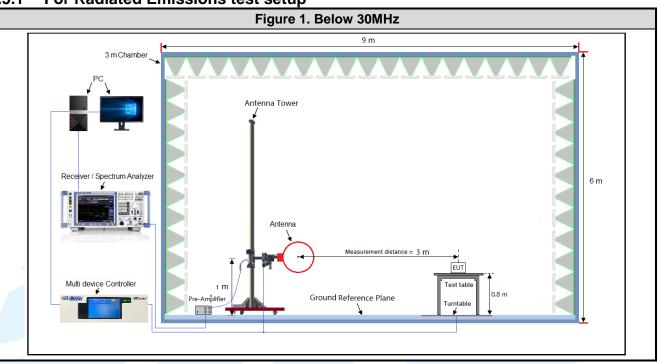
Mode	Tx/Rx Function	Description
IEEE 802.11a/n	1Tx/1Rx	1. Keep the EUT in transmitting mode with all kind of modulation and all kind of data rate.

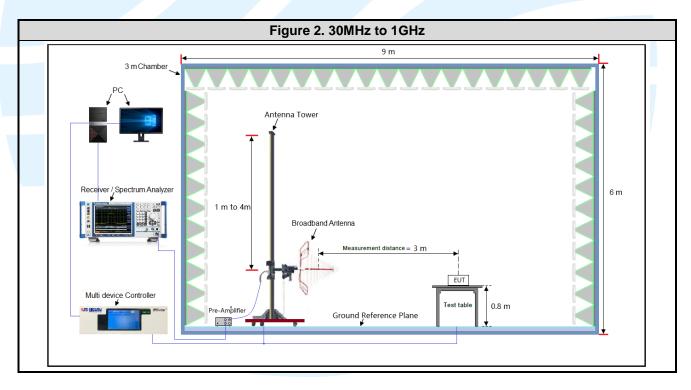
Report No.: 191010008RFC-4

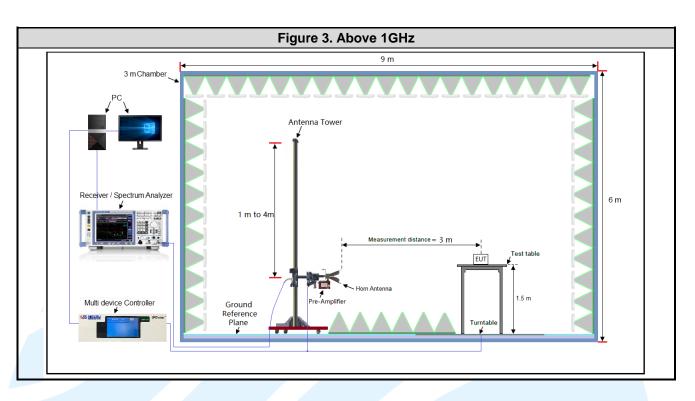
Power Setting										
		U-NII-1 U-NII-2A					U-NII-2C			U-NII-3
Low Mid High Low Mid High Low Mid					Mid	High	U-MII-3			
IEEE 802.11a		17								
IEEE 802.11n-HT20	17 16 17 16					17				
IEEE 802.11n-HT40					17					
Power Setting: not applicable, test used software default power level.										

Test Software							
Test software name: DevTest (EngineerMode);							

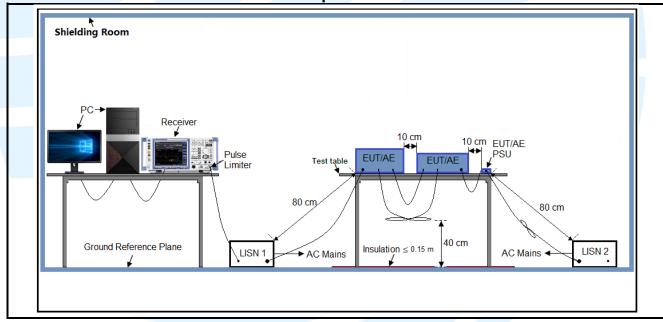
4.4 PRE-SCAN

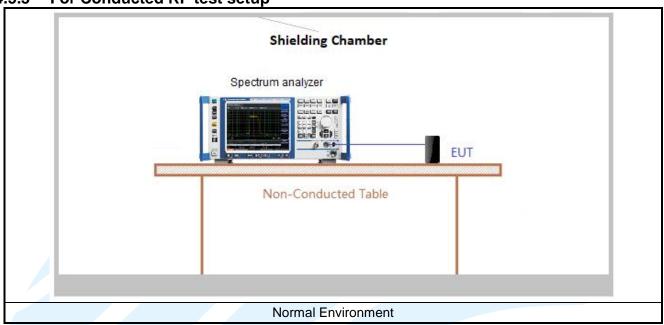

Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations and data rate. Following data rate was (were) selected for the final test as listed below


Mode	Worst-case data rates
IEEE 802.11a	6 Mbps
IEEE 802.11n-HT20	MCS0
IEEE 802.11n-HT40	MCS0


4.5 TEST SETUP

4.5.1 For Radiated Emissions test setup




4.5.2 For Conducted Emissions test setup

For Conducted RF test setup

Page 16 of 89 Report No.: 191010008RFC-4

4.6 SYSTEM TEST CONFIGURATION

For emissions testing, the equipment under test (EUT) setup to transmit continuously to simplify the measurement methodology. Care was taken to ensure proper power supply voltages during testing. During testing, radiated emission were performed with the EUT set to transmit at the channel with highest output power as worst-case scenario. It was powered by AC 120V/60Hz. Only the worst case data were recorded in this test report.

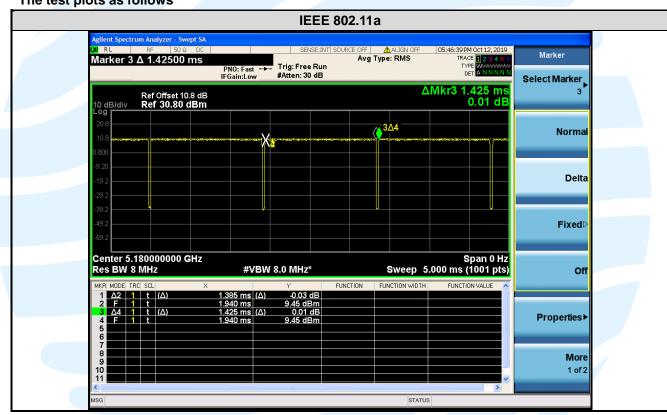
The signal is maximized through rotation and placement in the three orthogonal axes. The antenna height and polarization are varied during the search for maximum signal level. The antenna height is varied from 1 to 4 meters. Radiated emissions are taken at three meters unless the signal level is too low for measurement at that distance. If necessary, a pre-amplifier is used and/or the test is conducted at a closer distance.

All readings are extrapolated back to the equivalent three meter reading using inverse scaling with distance. Analyzer resolution is 100 kHz or greater for frequencies below 1000 MHz. The resolution is 1 MHz or greater for frequencies above 1000 MHz. The spurious emissions more than 20 dB below the permissible value are not reported.

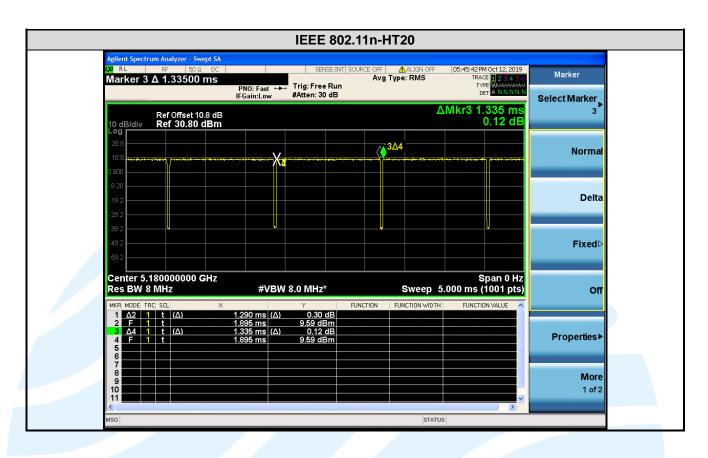
Radiated emission measurement were performed from the lowest radio frequency signal generated in the device which is greater than 9 kHz to the tenth harmonic of the highest fundamental frequency or to 40 GHz, whichever is lower.

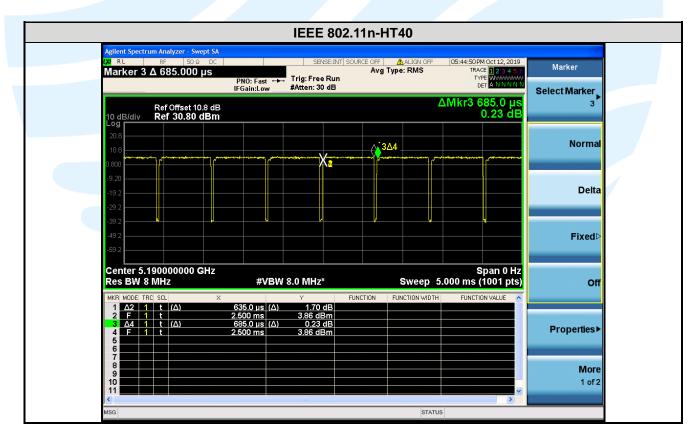
4.7 DUTY CYCLE

Test Procedure: ANSI C63.10-2013 Clause 12.2.


Test Results

Mode	Data rates (Mbps)	On Time (msec)	Period (msec)	Duty Cycle (linear)	Duty Cycle (%)	Duty Cycle Factor (dB)	1/ T Minimum VBW (kHz)	Average Factor (dB)
IEEE 802.11a	6	1.385	1.425	0.97	97.19	0.12	0.72	-0.25
IEEE 802.11n-HT20	MCS0	1.290	1.335	0.97	96.63	0.15	0.78	-0.30
IEEE 802.11n-HT40	MCS0	0.635	0.685	0.93	92.70	0.33	1.57	-0.66


Remark:


- 1) Duty cycle= On Time/ Period;
- 2) Duty Cycle factor = 10 * log(1/ Duty cycle);
- 3) Average factor = 20 log₁₀ Duty Cycle.

The test plots as follows

Page 19 of 89 Report No.: 191010008RFC-4

5. RADIO TECHNICAL REQUIREMENTS SPECIFICATION 5.1 REFERENCE DOCUMENTS FOR TESTING

No.	Identity	Document Title	
1	FCC 47 CFR Part 2 Frequency allocations and radio treaty matters; general rune regulations		
2	FCC 47 CFR Part 15	Radio Frequency Devices	
3	ANSI C63.10-2013	American National Standard for Testing Unlicesed Wireless Devices	
4	KDB 789033 D02 General UNII Test Procedures New Rules v02r01	Guidelines for compliance testing of unlicensed national information infrastructure (U-NII) device part 15, subpart E	
5	KDB 905462 D06 802.11 Channel Plans New Rules v02	Operation in U-NII bands -802.11 channel PLAN(§15.407)	
6	KDB 905462 D02 UNII DFS Compliance Procedures New Rules v02	Compliance measurement procedures for Unlicensed –National Information Infrastructure devices operates in the frequency bands 5250 MHz to 5350 MHz and 5470 MHz to 5725 MHz bands incorporating dynamic frequency selection	
7	KDB 905462 D03 Client Without DFS New Rules v01r02	U-NII client devices without radar detection capability	
8	KDB 662911 D01 Multiple Transmitter Output v02r01	Emissions Testing of Transmitters with Multiple Outputs in the Same Band	

5.2 ANTENNA REQUIREMENT

Standard Requirement

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.407(a)(1) (2) requirement:

The conducted output power limit specified in paragraph (a) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (a) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power and the peak power spectral density shall be reduced by the by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

EUT Antenna:

Antenna in the interior of the equipment and no consideration of replacement. The gain of the antenna is 3.5 dBi.

Page 20 of 89 Report No.: 191010008RFC-4

5.326 DB BANDWIDTH

Test Requirement: FCC 47 CFR Part 15 Subpart E Section 15.407 (a)(2)(5)

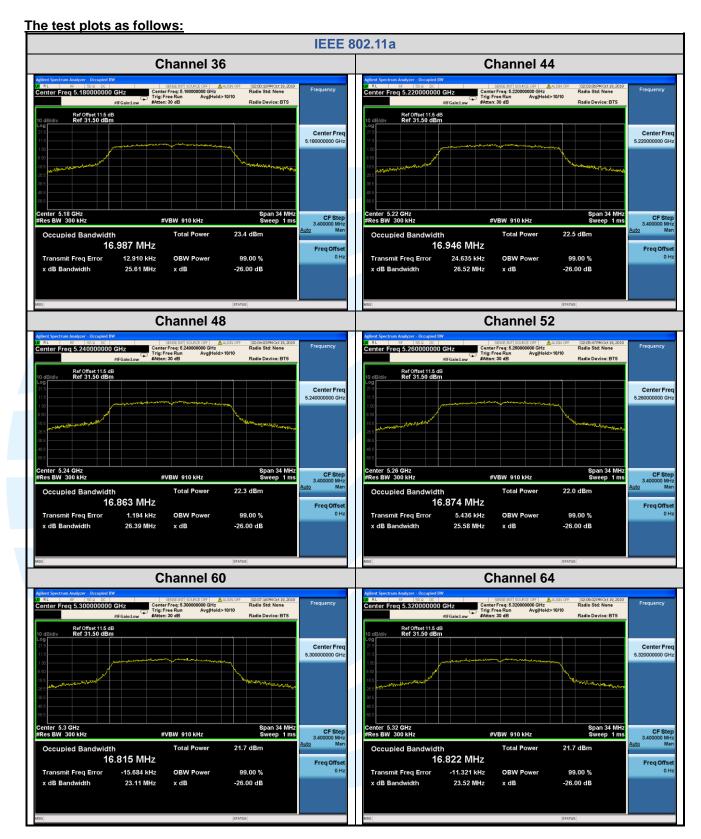
Test Method: KDB 789033 D02 v02r01 Section C.1 **Limit:** None; for reporting purposes only.

Test Procedure:

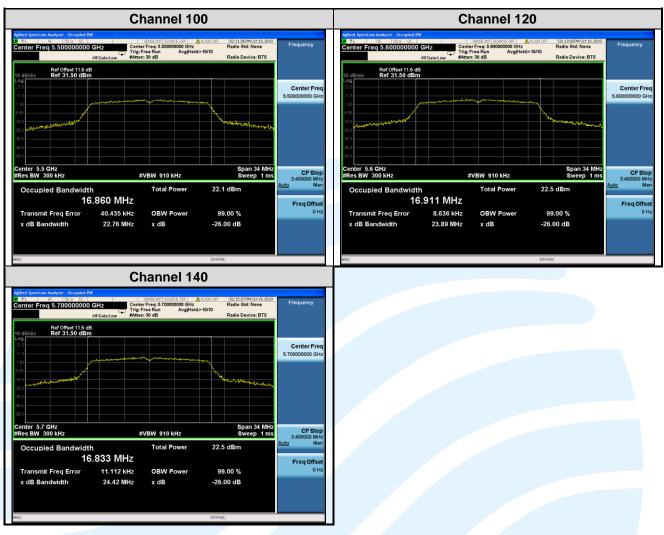
The output from the transmitter was connected to an attenuator and then to the input of the RF Spectrum analyzer.

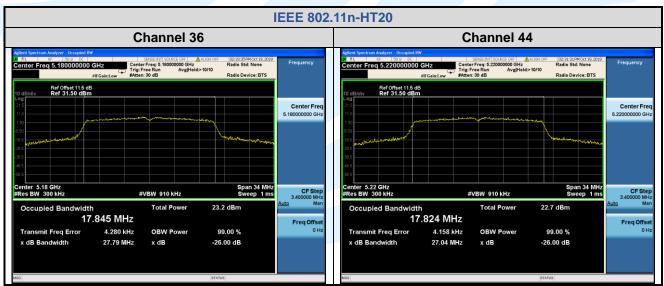
Spectrum analyzer according to the following Settings:

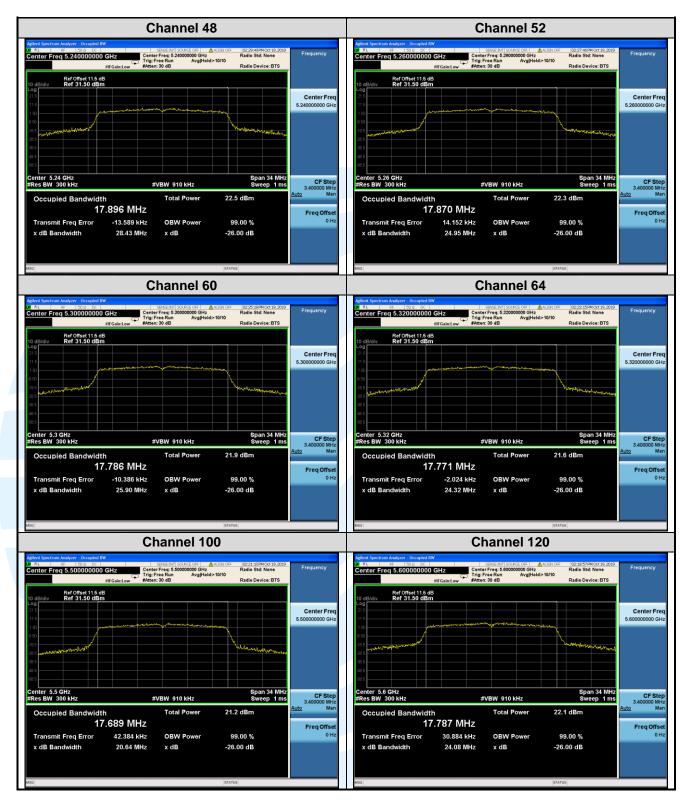
- a) Set RBW = approximately 1 % of the emission bandwidth.
- b) Set the VBW > RBW.
- c) Detector = Peak.
- d) Trace mode = max hold.
- e) Measure the maximum width of the emission that is 26 dB down from the peak of the emission. Compare this with the RBW setting of the analyzer. Readjust RBW and repeat measurement as needed until the RBW/EBW ratio is approximately 1 %.

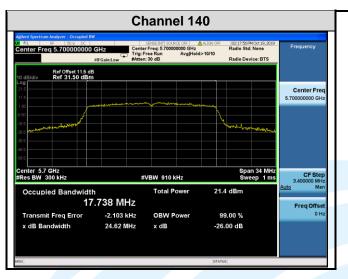

Note: The cable loss and attenuator loss were offset into measure device as an amplitude offset.

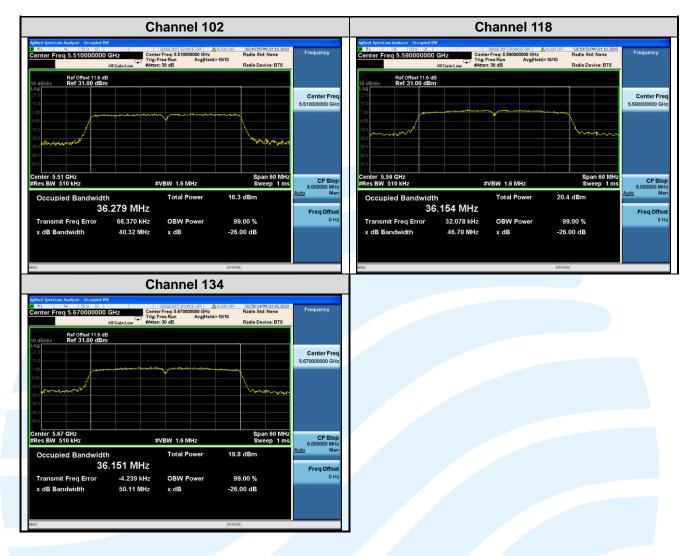
Test Setup: Refer to section 4.5.3 for details. **Instruments Used:** Refer to section 3 for details


Test Results: Pass


Mode	Channel	26 dB Bandwidth (MHz)	99% Bandwidth (MHz)
	36 (5180)	25.61	16.987
	44 (5220)	26.52	16.946
	48 (5240)	26.39	16.863
	52 (5260)	25.58	16.874
IEEE 802.11a	60 (5300)	23.11	16.815
	64 (5320)	23.52	16.822
	100 (5500)	22.76	16.860
	120 (5600)	23.89	16.911
	140 (5700)	24.42	16.833
	36 (5180)	27.79	17.845
	44 (5220)	27.04	17.824
	48 (5240)	28.43	17.896
	52 (5260)	24.95	17.870
IEEE 802.11n-HT20	60 (5300)	25.90	17.786
	64 (5320)	24.32	17.771
	100 (5500)	20.64	17.689
	120 (5600)	24.08	17.787
	140 (5700)	24.62	17.738
	38 (5190)	40.33	36.318
	46 (5230)	47.04	36.148
	54 (5270)	43.23	36.087
IEEE 802.11n-HT40	62 (5310)	40.87	36.299
	102 (5510)	40.32	36.279
	118 (5590)	46.70	36.154
	134 (5670)	50.11	36.151







Page 26 of 89 Report No.: 191010008RFC-4

5.46 DB BANDWIDTH

Test Requirement: FCC 47 CFR Part 15 Subpart E Section 15.407 (e)

Test Method: KDB 789033 D02 v02r01 Section C.2

Limit: Within the 5.725-5.85 GHz band, the minimum 6 dB bandwidth of U-NII devices shall

be at least 500 kHz.

Test Procedure:

The output from the transmitter was connected to an attenuator and then to the input of the RF Spectrum Analyzer.

Spectrum analyzer according to the following Settings:

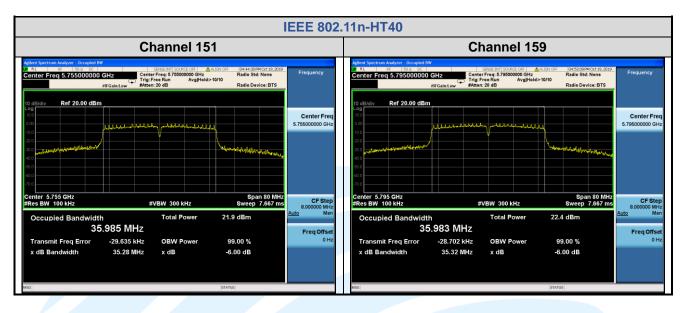
- a) Set RBW = 100 kHz.
- b) Set the video bandwidth (VBW) ≥ 3 * RBW.
- c) Detector = Peak.
- d) Trace mode = max hold.
- e) Sweep = auto couple.
- f) Allow the trace to stabilize.
- g) Measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 6 dB relative to the maximum level measured in the fundamental emission.

Note: The cable loss and attenuator loss were offset into measure device as an amplitude offset.

Test Setup: Refer to section 4.5.3 for details. **Instruments Used:** Refer to section 3 for details


Test Mode: Transmitter mode

Test Results: Pass


Test Data:

Mode	Channel/ Frequency (MHz)	6 dB Bandwidth (MHz)	6 dB Bandwidth Limit	Pass / Fail
	149 (5745)	15.17	> 500 kHz	Pass
IEEE 802.11a	157 (5785)	15.36	> 500 kHz	Pass
	165 (5825)	15.17	> 500 kHz	Pass
	149 (5745)	15.14	> 500 kHz	Pass
IEEE 802.11n-HT20	157 (5785)	15.17	> 500 kHz	Pass
	165 (5825)	15.17	> 500 kHz	Pass
IEEE 802.11n-HT40	151 (5755)	35.28	> 500 kHz	Pass
IEEE 002.1111-H140	159 (5795)	35.32	> 500 kHz	Pass

Page 29 of 89 Report No.: 191010008RFC-4

5.5 MAXIMUM CONDUCTED OUTPUT POWER OR E.I.R.P

Test Requirement: FCC 47 CFR Part 15 Subpart E Section 15.407 (a)(1)(2)(3) Test Method: KDB 789033 D02 v02r01 Section E.3.a (Method PM)

Limits: FCC 47 CFR Part 15 Subpart E

- For the band 5.15-5.25 GHz.
 - (i) For an outdoor access point operating in the band 5.15-5.25 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W provided the maximum antenna gain does not exceed 6 dBi. In addition, the maximum power spectral density shall not exceed 17 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi. The maximum e.i.r.p. at any elevation angle above 30 degrees as measured from the horizon must not exceed 125 mW (21 dBm).
 - (ii) For an indoor access point operating in the band 5.15-5.25 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W provided the maximum antenna gain does not exceed 6 dBi. In addition, the maximum power spectral density shall not exceed 17 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.
 - (iii) For fixed point-to-point access points operating in the band 5.15-5.25 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W. In addition, the maximum power spectral density shall not exceed 17 dBm in any 1 megahertz band. Fixed point-to-point U-NII devices may employ antennas with directional gain up to 23 dBi without any corresponding reduction in the maximum conducted output power or maximum power spectral density. For fixed point-to-point transmitters that employ a directional antenna gain greater than 23 dBi, a 1 dB reduction in maximum conducted output power and maximum power spectral density is required for each 1 dB of antenna gain in excess of 23 dBi. Fixed, point-to-point operations exclude the use of point-to-multipoint systems, omnidirectional applications, and multiple collocated transmitters transmitting the same information. The operator of the U-NII device, or if the equipment is professionally installed, the installer, is responsible for ensuring that systems employing high gain directional antennas are used exclusively for fixed, point-topoint operations.
 - (iv) For client devices in the 5.15-5.25 GHz band, the maximum conducted output power over the frequency band of operation shall not exceed 250 mW provided the maximum antenna gain does not exceed 6 dBi. In addition, the maximum power spectral density shall not exceed 11 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.
- For the 5.25-5.35 GHz and 5.47-5.725 GHz bands, the maximum conducted output power over the frequency bands of operation shall not exceed the lesser of 250 mW or 11 dBm + 10 log B, where B is the 26 dB emission bandwidth in megahertz. In addition, the maximum power spectral density shall not exceed 11 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.
- For the band 5.725-5.85 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W. In addition, the maximum power spectral density shall not exceed 30 dBm in any 500-kHz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi. However, fixed point-to-point U-NII devices operating in this band may employ transmitting antennas with directional gain greater than 6 dBi without any corresponding reduction in transmitter conducted power. Fixed, point-to-point operations exclude the use of point-to-multipoint systems, omnidirectional applications, and multiple collocated transmitters transmitting the same information. The operator of the U-NII device, or if the equipment is professionally installed, the installer, is responsible for ensuring that systems employing high gain directional antennas are used exclusively for fixed, point-to-point operations.

Page 30 of 89 Report No.: 191010008RFC-4

Test Procedure:

1. Connected the EUT's antenna port to measure device by 10dB attenuator.

Method PM is used to perform output power measurement, trigger and gating function of wide band power meter is enabled to measure max output power of Tx on burst.

Note: The cable loss and attenuator loss were offset into measure device as an amplitude offset.

Test Setup: Refer to section 4.5.3 for details. **Instruments Used:** Refer to section 3 for details

Test Mode: Transmitter mode

Test Results: Pass

Test Data:

Directional gain and the maximum output power limit.

FCC 47 CFR Part 15 Subpart E

Frequency Band	Antenna Gain (dBi))	Power Limits (dBm)	
U-NII-1	4.00	24.00	
U-NII-2A	4.00	24.00	
U-NII-2C	4.00	24.00	
U-NII-3	4.00	30.00	

Frequency band 5150-5250 MHz

Trequency band 3130	7-3230 WIT IZ				
Mode	Channel/ Frequency			Limit (dBm)	Pass / Fail
	(MHz)	Meas Power	Corr'd Power	(ubili)	
	36 (5180)	15.87	15.99	24	Pass
IEEE 802.11a	44 (5220)	15.53	15.65	24	Pass
	48 (5240)	14.94	15.06	24	Pass
	36 (5180)	15.79	15.94	24	Pass
IEEE 802.11n-HT20	44 (5220)	15.00	15.15	24	Pass
	48 (5240)	15.46	15.61	24	Pass
JEEE 000 44 - LIT40	38 (5190)	10.62	10.95	24	Pass
IEEE 802.11n-HT40	46 (5230)	13.12	13.45	24	Pass

Remark:

1. Corr'd Power = Meas Power + Duty Cycle Factor

Page 31 of 89 Report No.: 191010008RFC-4

Frequency band 5250-5350 MHz

For IEEE 802.11 a/n, the minimum 26 dB emission bandwidth is 23.11 MHz 11 dBm + $10\log_{10}(23.11) = 24.64 dBm > 24 dBm (200mW)$

So the 24 dB limit applicable

Mode	Channel/ Frequency	Maximum conducted output power (dBm)		Limit (dBm)	Pass / Fail
	(MHz) Meas Power Corr'd Power		, ,		
	52 (5260)	15.12	15.24	24	Pass
IEEE 802.11a	60 (5300)	14.55	14.67	24	Pass
	64 (5320)	14.94	15.06	24	Pass
1555 000 11	52 (5260)	14.99	15.14	24	Pass
IEEE 802.11n- HT20	60 (5300)	14.48	14.63	24	Pass
11120	64 (5320)	14.41	14.56	24	Pass
IEEE 802.11n-	54 (5270)	13.13	13.46	24	Pass
HT40	62 (5310)	10.60	10.93	24	Pass

Remark:

1. Maximum conducted output power = Conducted output power + Duty Cycle Factor

Frequency bands 5470-5725 MHz

For IEEE 802.11 a/n, the minimum 26 dB emission bandwidth is 20.64 MHz 11 dBm + $10\log_{10}(20.64) = 24.15$ dBm > 24 dBm

So the 24 dB limit applicable

Mode	Channel/ Frequency	Maximum conducted output power (dBm) SISO Meas Power Corr'd Power		Limit (dBm)	Pass / Fail
	(MHz)				
	100 (5500)	14.99	15.11	24	Pass
IEEE 802.11a	116 (5580)	15.51	15.63	24	Pass
	140 (5700)	14.72	14.84	24	Pass
IEEE 000 44	100 (5500)	14.33	14.48	24	Pass
IEEE 802.11n- HT20	116 (5580)	15.44	15.59	24	Pass
11120	140 (5700)	13.91	14.06	24	Pass
IEEE 000 44	102 (5510)	10.44	10.77	24	Pass
IEEE 802.11n- HT40	110 (5550)	13.25	13.58	24	Pass
11140	134 (5670)	13.24	13.57	24	Pass

Remark:

1. Maximum conducted output power = Conducted output power + Duty Cycle Factor

Frequency band 5725-5850 MHz

Mode	Channel/	Maximum con-	Limit	Pass /	
	Frequency (MHz)	Meas Power	Corr'd Power	(dBm)	Fail
	149 (5745)	14.12	14.24	30	Pass
IEEE 802.11a	157 (5785)	14.08	14.20	30	Pass
	165 (5825)	14.47	14.59	30	Pass
	149 (5745)	14.06	14.21	30	Pass
IEEE 802.11n-HT20	157 (5785)	14.22	14.37	30	Pass
	165 (5825)	14.00	14.15	30	Pass
IEEE 000 44 × 11740	151 (5755)	14.18	14.51	30	Pass
IEEE 802.11n-HT40	159 (5795)	14.27	14.60	30	Pass

Remark:

Maximum conducted output power = Conducted output power + Duty Cycle Factor

Page 33 of 89 Report No.: 191010008RFC-4

5.6 PEAK POWER SPECTRAL DENSITY

Test Requirement: FCC 47 CFR Part 15 Subpart E Section 15.407 (a)(1)(2)(3)

Test Method: KDB 789033 D02 v02r01 Section F Limits: FCC 47 CFR Part 15 Subpart E

For the band 5.15-5.25 GHz.

- (i) For an outdoor access point operating in the band 5.15-5.25 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W provided the maximum antenna gain does not exceed 6 dBi. In addition, the maximum power spectral density shall not exceed 17 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi. The maximum e.i.r.p. at any elevation angle above 30 degrees as measured from the horizon must not exceed 125 mW (21 dBm).
- (ii) For an indoor access point operating in the band 5.15-5.25 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W provided the maximum antenna gain does not exceed 6 dBi. In addition, the maximum power spectral density shall not exceed 17 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.
- (iii) For fixed point-to-point access points operating in the band 5.15-5.25 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W. In addition, the maximum power spectral density shall not exceed 17 dBm in any 1 megahertz band. Fixed point-to-point U-NII devices may employ antennas with directional gain up to 23 dBi without any corresponding reduction in the maximum conducted output power or maximum power spectral density. For fixed point-to-point transmitters that employ a directional antenna gain greater than 23 dBi, a 1 dB reduction in maximum conducted output power and maximum power spectral density is required for each 1 dB of antenna gain in excess of 23 dBi. Fixed, point-to-point operations exclude the use of point-to-multipoint systems, omnidirectional applications, and multiple collocated transmitters transmitting the same information. The operator of the U-NII device, or if the equipment is professionally installed, the installer, is responsible for ensuring that systems employing high gain directional antennas are used exclusively for fixed, point-topoint operations.
- (iv) For client devices in the 5.15-5.25 GHz band, the maximum conducted output power over the frequency band of operation shall not exceed 250 mW provided the maximum antenna gain does not exceed 6 dBi. In addition, the maximum power spectral density shall not exceed 11 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.
- For the 5.25-5.35 GHz and 5.47-5.725 GHz bands, the maximum conducted output power over the frequency bands of operation shall not exceed the lesser of 250 mW or 11 dBm + 10 log B, where B is the 26 dB emission bandwidth in megahertz. In addition, the maximum power spectral density shall not exceed 11 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.
- For the band 5.725-5.85 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W. In addition, the maximum power spectral density shall not exceed 30 dBm in any 500-kHz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi. However, fixed point-to-point U-NII devices operating in this band may employ transmitting antennas with directional gain greater than 6 dBi without any corresponding reduction in transmitter conducted power. Fixed, point-to-point operations exclude the use of point-to-multipoint systems, omnidirectional applications, and multiple collocated transmitters transmitting the same information. The operator of the U-NII device, or if the equipment is professionally installed, the installer, is responsible for ensuring that systems employing high gain directional antennas are used exclusively for fixed, point-to-point operations.

Page 34 of 89 Report No.: 191010008RFC-4

Test Procedure:

The output from the transmitter was connected to an attenuator and then to the input of the RF Spectrum Analyzer.

Spectrum analyzer according to the following Settings:

1. For U-NII-1, U-NII-2A, U-NII-2C band:

Using method SA-2

- a) Set span to encompass the entire emission bandwidth (EBW) of the signal.
- b) Set RBW = 1 MHz, Set VBW ≥ 3 RBW, Detector = RMS
- c) Sweep time = auto, trigger set to "free run".
- d) Trace average at least 100 traces in power averaging mode.
- e) Record the max value and add 10 log (1/duty cycle)
- 2. For U-NII-3 band:
- a) Set span to encompass the entire emission bandwidth (EBW) of the signal.
- b) Set RBW = 500 kHz, Set VBW ≥ 3 RBW, Detector = RMS
- c) Use the peak marker function to determine the maximum power level in any 500 kHz band segment within the fundamental EBW.
- d) Sweep time = auto, trigger set to "free run".
- e) Trace average at least 100 traces in power averaging mode.
- f) Record the max value and add 10 log (1/duty cycle)

Note: The cable loss and attenuator loss were offset into measure device as an amplitude offset.

Test Setup: Refer to section 4.5.3 for details. **Instruments Used:** Refer to section 3 for details

Test Mode: Transmitter mode

Test Results: Pass

Test Data:

Directional gain and the maximum output power limit.

Frequency Band	Antenna Gain (dBi))	PSD Limits (dBm/MHz or dBm/500kHz)
U-NII-1	4.00	11.00
U-NII-2A	4.00	11.00
U-NII-2C	4.00	11.00
U-NII-3	4.00	30.00

Frequency band 5150-5250 MHz

Frequency band 3130-3230 MHz						
Mode	Channel/ Frequency	Power spectral density (dBm/MHz)		Limit (dBm/MHz)	Pass / Fail	
	(MHz)	Meas PSD	Corr'd PSD	(ubili/winz)	Ган	
	36 (5180)	5.929	6.05	11	Pass	
IEEE 802.11a	44 (5220)	5.398	5.52	11	Pass	
	48 (5240)	5.092	5.22	11	Pass	
	36 (5180)	5.804	5.95	11	Pass	
IEEE 802.11n-HT20	44 (5220)	5.246	5.39	11	Pass	
	48 (5240)	5.001	5.15	11	Pass	
IEEE 000 445 HT40	38 (5190)	-3.343	-3.01	11	Pass	
IEEE 802.11n-HT40	46 (5230)	-0.344	-0.01	11	Pass	

Remark:

1. Power spectral density = Conducted power spectral density + Duty Cycle Factor

Frequency band 5250-5350 MHz

Mode	Channel/ Frequency	Power spectral density (dBm/MHz)		Limit	Pass / Fail
	(MHz)	Meas PSD	Corr'd PSD	(dBm/MHz)	ган
IEEE 802.11a	52 (5260)	4.709	4.83	11	Pass
	60 (5300)	4.398	4.52	11	Pass
	64 (5320)	4.660	4.78	11	Pass
IEEE 802.11n-HT20	52 (5260)	4.498	4.65	11	Pass
	60 (5300)	4.404	4.55	11	Pass
	64 (5320)	4.327	4.48	11	Pass
IEEE 802.11n-HT40	54 (5270)	-0.648	-0.32	11	Pass
	62 (5310)	-3.623	-3.29	11	Pass

Remark:

Power spectral density = Conducted power spectral density + Duty Cycle Factor

Frequency bands 5470-5725 MHz

Trequency bands 3470-3723 Miliz							
Mode	Channel/ Frequency			Limit	Pass /		
	(MHz)	Meas PSD	Corr'd PSD	(dBm/MHz)	Fail		
IEEE 802.11a	100 (5500)	4.873	5.00	11	Pass		
	120 (5600)	5.177	5.30	11	Pass		
	140 (5700)	5.370	5.49	11	Pass		
IEEE 802.11n-HT20	100 (5500)	3.722	3.87	11	Pass		
	120 (5600)	5.015	5.16	11	Pass		
	140 (5700)	3.999	4.15	11	Pass		
	102 (5510)	-4.890	-4.56	11	Pass		
IEEE 802.11n-HT40	118(5590)	-1.452	-1.12	11	Pass		
	134 (5670)	-1.443	-1.11	11	Pass		

Remark:

1. Power spectral density = Conducted power spectral density + Duty Cycle Factor

Mode	Channel/ Frequency	Power spectral density (dBm/500kHz)		Limit	Pass / Fail
	(MHz)	Meas PSD	Corr'd PSD	(dBm/500KHz)	Ган
IEEE 802.11a	149 (5745)	1.781	1.90	30	Pass
	157 (5785)	2.081	2.20	30	Pass
	165 (5825)	2.023	2.15	30	Pass
IEEE 802.11n-HT20	149 (5745)	1.690	1.84	30	Pass
	157 (5785)	1.832	1.98	30	Pass
	165 (5825)	1.732	1.88	30	Pass
IEEE 802.11n-HT40	151 (5755)	-2.155	-1.83	30	Pass
	159 (5795)	-2.440	-2.11	30	Pass

Remark:

Power spectral density = Conducted power spectral density + Duty Cycle Factor