

# FCC PART 15.407(H) DYNAMIC FREQUENCY SELECTION TEST REPORT

For

## Grandstream Networks, Inc.

126 Brookline Ave, 3rd Floor Boston, MA 02215, USA

FCC ID: YZZGVC3210

Report Type: Product Type:

Original Report Video Conference System

**Report Number:** RSZ171115010-00

**Report Date:** 2017-12-06

Jerry Zhang

**Reviewed By:** EMC Manager

**Test Laboratory:** Bay Area Compliance Laboratories Corp. (Dongguan)

No.69 Pulongcun, Puxinhu Industry Area, Tangxia, Dongguan, Guangdong, China Tel: +86-769-86858888

Jerry Zhang

Fax: +86-769-86858881 www.baclcorp.com.cn

Note: This test report is prepared for the customer shown above and for the device described herein. It may not be duplicated or used in part without prior written consent from Bay Area Compliance Laboratories Corp. (Dongguan).

### **TABLE OF CONTENTS**

| GENERAL INFORMATION                                     | 3  |
|---------------------------------------------------------|----|
| PRODUCT DESCRIPTION FOR EQUIPMENT UNDER TEST (EUT)      |    |
| OBJECTIVE                                               | 3  |
| RELATED SUBMITTAL(S)/GRANT(S)                           |    |
| TEST METHODOLOGY                                        |    |
| TEST FACILITY                                           | 4  |
| SYSTEM TEST CONFIGURATION                               | 5  |
| DESCRIPTION OF TEST CONFIGURATION                       | 5  |
| EUT Exercise Software                                   |    |
| EQUIPMENT MODIFICATIONS                                 |    |
| SUPPORT EQUIPMENT LIST AND DETAILS                      |    |
| External Cable                                          |    |
| SUMMARY OF TEST RESULTS                                 | 6  |
| APPLICABLE STANDARDS                                    | 7  |
| DFS REQUIREMENT                                         |    |
| DFS MEASUREMENT SYSTEM                                  |    |
| System Block Diagram                                    |    |
| 4.5 RADIATED METHOD                                     |    |
| 4.6 Test Procedure                                      | 13 |
| TEST RESULTS                                            | 14 |
| DESCRIPTION OF EUT                                      | 14 |
| TEST EQUIPMENT LIST AND DETAILS                         |    |
| TEST ENVIRONMENTAL CONDITIONS                           |    |
| RADAR WAVEFORM CALIBRATION                              | 15 |
| CHANNEL MOVE TIME AND CHANNEL CLOSING TRANSMISSION TIME | 17 |
| TEST PROCEDURE                                          | 17 |
| TEST RESULTS                                            | 17 |
| NON-OCCUPANCY PERIOD                                    | 22 |
| Test Procedure                                          | 22 |
|                                                         |    |

Report No.: RSZ171115010-00

#### **GENERAL INFORMATION**

#### **Product Description for Equipment under Test (EUT)**

| EUT Name:            | Video Conference System            |
|----------------------|------------------------------------|
| EUT Model:           | GVC3210                            |
| Multiple Model:      | N/A                                |
| FCC ID:              | YZZGVC3210                         |
| Rated Input Voltage: | DC 12V from adapter                |
| External Dimension:  | 270 mm (L) * 45 mm (W) * 80 mm (H) |
| Serial Number:       | 171115010                          |
| EUT Received Date:   | 2017.11.27                         |

Report No.: RSZ171115010-00

Adapter 1 Information (Mass Power):

Model: NBS24J120200HU Input: 100-240V ~ 50/60Hz, 0.6A

Output: 12.0 V, 2.0 A

Adapter 2 Information (SHENZHEN FRECOM ELECTRONIC CO., LTD.):

Model: F24W5-120200SPAU Input: 100-240V~ 50/60Hz, 0.6A

Output: 12V, 2A

Adapter 3 Information (Shenzhen Sunlight Electronic Technology Co., Ltd):

Model: F24US1200200A

Input: 100-240V ~ 50/60Hz, 1.0A max

Output: 12V, 2 A

#### **Objective**

This report is prepared on behalf of *Grandstream Networks, Inc.* in accordance with FCC CFR47 §15.407 (h)

#### **Related Submittal(s)/Grant(s)**

FCC Part 15B JBP, FCC Part 15.247 DTS&DSS submissions with FCC ID: YZZGVC3210 and part of system with Bluetooth Remote Control submission with FCC ID: YZZGVC3210RMT.

#### **Test Methodology**

FCC CFR 47 Part2, Part15.407 (h) KDB 905462 D02 UNII DFS Compliance Procedures New Rules v02 905462 D03 Client Without DFS New Rules v01r02

DFS Test Report Page 3 of 23

#### **Test Facility**

The Test site used by Bay Area Compliance Laboratories Corp. (Dongguan) to collect test data is located on the No.69 Pulongcun, Puxinhu Industry Area, Tangxia, Dongguan, Guangdong, China.

Report No.: RSZ171115010-00

The test site has been approved by the FCC under the KDB 974614 D01 and is listed in the FCC Public Access Link (PAL) database, FCC Registration No. : 897218,the FCC Designation No. : CN1220.

The test site has been registered with ISED Canada under ISED Canada Registration Number 3062D.

DFS Test Report Page 4 of 23

#### **SYSTEM TEST CONFIGURATION**

#### **Description of Test Configuration**

The EUT was configured for testing in an engineering mode which was provided by the manufacturer.

Report No.: RSZ171115010-00

#### **EUT Exercise Software**

No exercise software was used.

#### **Equipment Modifications**

No modification was made to the EUT.

#### **Support Equipment List and Details**

| Manufacturer | Description          | Model | Serial Number   |
|--------------|----------------------|-------|-----------------|
| Lenovo       | Laptop               | E450  | PF-OMR8KV 16/08 |
| Huawei       | Huawei GPON Terminal |       | N/A             |

Note: The mater AP model:HS8245W, FCC ID: QISHS8245W1

#### **External Cable**

| Cable Description | Shielding<br>Type | Ferrite Core | Length (m) | From Port     | То     |
|-------------------|-------------------|--------------|------------|---------------|--------|
| RJ45 Cable        | Yes               | Yes          | 10         | GPON Terminal | Laptop |

DFS Test Report Page 5 of 23

#### SUMMARY OF TEST RESULTS

The following result table represents the list of measurements required under the CFR47 \$47 Part15.407 (h) and FCC KDB 905462 D02 UNII DFS Compliance Procedures New Rules v02

Report No.: RSZ171115010-00

.

| Items                       | Description of Test                           | Result         |
|-----------------------------|-----------------------------------------------|----------------|
| Detection<br>Bandwidth      | UNII Detection Bandwidth                      | Not applicable |
| D. C                        | Initial Channel Availability Check Time (CAC) | Not applicable |
| Performance<br>Requirements | Radar Burst at the Beginning of the CAC       | Not applicable |
| Check                       | Radar Burst at the End of the CAC             | Not applicable |
|                             | Channel Move Time                             | Compliant      |
| In-Service<br>Monitoring    | Channel Closing Transmission Time             | Compliant      |
|                             | Non-Occupancy Period                          | Compliant      |
| Radar Detection             | Statistical Performance Check                 | Not applicable |

#### Note:

DFS Test Report Page 6 of 23

<sup>1)</sup> Not applicable: the EUT is a client unit without radar detection.

#### APPLICABLE STANDARDS

#### **DFS Requirement**

FCC KDB 905462 D02 UNII DFS Compliance Procedures New Rules v02

Table 1: Applicability of DFS Requirements Prior to Use of a Channel

Report No.: RSZ171115010-00

| Requirement                     | Operatio | nal Mode                                |                                      |
|---------------------------------|----------|-----------------------------------------|--------------------------------------|
|                                 | Master   | Client<br>Without<br>Radar<br>Detection | Client<br>With<br>Radar<br>Detection |
| Non-Occupancy Period            | Yes      | Not<br>required                         | Yes                                  |
| DFS Detection Threshold         | Yes      | Not<br>required                         | Yes                                  |
| Channel Availability Check Time | Yes      | Not<br>required                         | Not<br>required                      |
| U-NII Detection Bandwidth       | Yes      | Not<br>required                         | Yes                                  |

Table 2: Applicability of DFS requirements during normal operation

| Requirement                       | Operational Mode                                |                                   |  |
|-----------------------------------|-------------------------------------------------|-----------------------------------|--|
|                                   | Master Device or Client<br>with Radar Detection | Client Without<br>Radar Detection |  |
| DFS Detection Threshold           | Yes                                             | Not required                      |  |
| Channel Closing Transmission Time | Yes                                             | Yes                               |  |
| Channel Move Time                 | Yes                                             | Yes                               |  |
| U-NII Detection Bandwidth         | Yes                                             | Not required                      |  |

| Additional requirements for devices with multiple bandwidth modes | Master Device or Client<br>with Radar Detection | Client Without<br>Radar Detection |
|-------------------------------------------------------------------|-------------------------------------------------|-----------------------------------|
| U-NII Detection Bandwidth and                                     | All BW modes must be                            | Not required                      |
| Statistical Performance Check                                     | tested                                          |                                   |
| Channel Move Time and Channel                                     | Test using widest BW mode                       | Test using the widest             |
| Closing Transmission Time                                         | available                                       | BW mode available                 |
|                                                                   |                                                 | for the link                      |
| All other tests                                                   | Any single BW mode                              | Not required                      |

Note: Frequencies selected for statistical performance check (Section 7.8.4) should include several frequencies within the radar detection bandwidth and frequencies near the edge of the radar detection bandwidth. For 802.11 devices it is suggested to select frequencies in each of the bonded 20 MHz channels and the channel center frequency.

DFS Test Report Page 7 of 23

Report No.: RSZ171115010-00

| Maximum Transmit Power                                   | Value                   |
|----------------------------------------------------------|-------------------------|
|                                                          | (See Notes 1, 2, and 3) |
| EIRP ≥ 200 milliwatt                                     | -64 dBm                 |
| EIRP < 200 milliwatt and                                 | -62 dBm                 |
| power spectral density < 10 dBm/MHz                      |                         |
| EIRP < 200 milliwatt that do not meet the power spectral | -64 dBm                 |
| density requirement                                      |                         |

Note 1: This is the level at the input of the receiver assuming a 0 dBi receive antenna.

**Note 2:** Throughout these test procedures an additional 1 dB has been added to the amplitude of the test transmission waveforms to account for variations in measurement equipment. This will ensure that the test signal is at or above the detection threshold level to trigger a DFS response.

Note3: EIRP is based on the highest antenna gain. For MIMO devices refer to KDB Publication 662911 D01.

Table 4: DFS Response Requirement Values

| Parameter                         | Value                  |
|-----------------------------------|------------------------|
| Non-occupancy period              | Minimum 30 minutes     |
| Channel Availability Check Time   | 60 seconds             |
| Channel Move Time                 | 10 seconds             |
|                                   | See Note 1.            |
| Channel Closing Transmission Time | 200 milliseconds + an  |
|                                   | aggregate of 60        |
|                                   | milliseconds over      |
|                                   | remaining 10 second    |
|                                   | period.                |
|                                   | See Notes 1 and 2.     |
| U-NII Detection Bandwidth         | Minimum 100% of the U- |
|                                   | NII 99% transmission   |
|                                   | power bandwidth. See   |
|                                   | Note 3.                |

Note 1: Channel Move Time and the Channel Closing Transmission Time should be performed with Radar Type 0. The measurement timing begins at the end of the Radar Type 0 burst.

**Note 2:** The *Channel Closing Transmission Time* is comprised of 200 milliseconds starting at the beginning of the *Channel Move Time* plus any additional intermittent control signals required to facilitate a *Channel* move (an aggregate of 60 milliseconds) during the remainder of the 10 second period. The aggregate duration of control signals will not count quiet periods in between transmissions.

**Note 3:** During the *U-NII Detection Bandwidth* detection test, radar type 0 should be used. For each frequency step the minimum percentage of detection is 90 percent. Measurements are performed with no data traffic.

DFS Test Report Page 8 of 23

| Table 5   | Chart | D1     | Dadan' | Took 1 | Waveforms |  |
|-----------|-------|--------|--------|--------|-----------|--|
| Lable 5 - | Short | PHILSE | Kadar  | Lest   | wavetorms |  |

|             |             | Table 5 - Short Puls                                                                                                                     | se Kadar Test Wavelorn                                                                                                     |               |          |
|-------------|-------------|------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|---------------|----------|
| Radar       | Pulse       | PRI                                                                                                                                      | Number of Pulses                                                                                                           | Minimum       | Minimum  |
| Type        | Width       | (µsec)                                                                                                                                   |                                                                                                                            | Percentage of | Number   |
|             | (µsec)      |                                                                                                                                          |                                                                                                                            | Successful    | of       |
|             |             |                                                                                                                                          |                                                                                                                            | Detection     | Trials   |
| 0           | 1           | 1428                                                                                                                                     | 18                                                                                                                         | See Note 1    | See Note |
|             |             |                                                                                                                                          |                                                                                                                            |               | 1        |
| 1           | 1           | Test A: 15 unique PRI values randomly selected from the list of 23 PRI values in Table 5a Test B: 15 unique PRI values randomly selected | Roundup $ \left\{ \frac{1}{360} \right\} \cdot \left( \frac{19 \cdot 10^6}{\text{PRI}_{\mu \text{sec}}} \right) \right\} $ | 60%           | 30       |
|             |             | within the range<br>of 518-3066 µsec,<br>with a minimum<br>increment of 1<br>µsec, excluding<br>PRI values<br>selected in Test A         |                                                                                                                            |               |          |
| 2           | 1-5         | 150-230                                                                                                                                  | 23-29                                                                                                                      | 60%           | 30       |
| 3           | 6-10        | 200-500                                                                                                                                  | 16-18                                                                                                                      | 60%           | 30       |
| 4           | 11-20       | 200-500                                                                                                                                  | 12-16                                                                                                                      | 60%           | 30       |
| Aggregate ( | Radar Types | 1-4)                                                                                                                                     |                                                                                                                            | 80%           | 120      |
| 37 / 3 01   | D 4 D 4     | T 0 1 111                                                                                                                                | 10 1 1                                                                                                                     |               |          |

**Note 1:** Short Pulse Radar Type 0 should be used for the detection bandwidth test, channel move time, and channel closing time tests.

A minimum of 30 unique waveforms are required for each of the Short Pulse Radar Types 2 through 4. If more than 30 waveforms are used for Short Pulse Radar Types 2 through 4, then each additional waveform must also be unique and not repeated from the previous waveforms. If more than 30 waveforms are used for Short Pulse Radar Type 1, then each additional waveform is generated with Test B and must also be unique and not repeated from the previous waveforms in Tests A or B.

For example if in Short Pulse Radar Type 1 Test B a PRI of 3066 usec is selected, the number of pulses

would be Roundup 
$$\left\{ \left( \frac{1}{360} \right) \cdot \left( \frac{19 \cdot 10^6}{3066} \right) \right\} = \text{Roundup} \left\{ 17.2 \right\} = 18.$$

DFS Test Report Page 9 of 23

Table 5a - Pulse Repetition Intervals Values for Test A

Report No.: RSZ171115010-00

| Pulse Repetition<br>Frequency<br>Number | Pulse Repetition Frequency<br>(Pulses Per Second) | Pulse Repetition<br>Interval<br>(Microseconds) |
|-----------------------------------------|---------------------------------------------------|------------------------------------------------|
| 1                                       | 1930.5                                            | 518                                            |
| 2                                       | 1858.7                                            | 538                                            |
| 3                                       | 1792.1                                            | 558                                            |
| 4                                       | 1730.1                                            | 578                                            |
| 5                                       | 1672.2                                            | 598                                            |
| 6                                       | 1618.1                                            | 618                                            |
| 7                                       | 1567.4                                            | 638                                            |
| 8                                       | 1519.8                                            | 658                                            |
| 9                                       | 1474.9                                            | 678                                            |
| 10                                      | 1432.7                                            | 698                                            |
| 11                                      | 1392.8                                            | 718                                            |
| 12                                      | 1355                                              | 738                                            |
| 13                                      | 1319.3                                            | 758                                            |
| 14                                      | 1285.3                                            | 778                                            |
| 15                                      | 1253.1                                            | 798                                            |
| 16                                      | 1222.5                                            | 818                                            |
| 17                                      | 1193.3                                            | 838                                            |
| 18                                      | 1165.6                                            | 858                                            |
| 19                                      | 1139                                              | 878                                            |
| 20                                      | 1113.6                                            | 898                                            |
| 21                                      | 1089.3                                            | 918                                            |
| 22                                      | 1066.1                                            | 938                                            |
| 23                                      | 326.2                                             | 3066                                           |

The aggregate is the average of the percentage of successful detections of Short Pulse Radar Types 1-4. For example, the following table indicates how to compute the aggregate of percentage of successful detections.

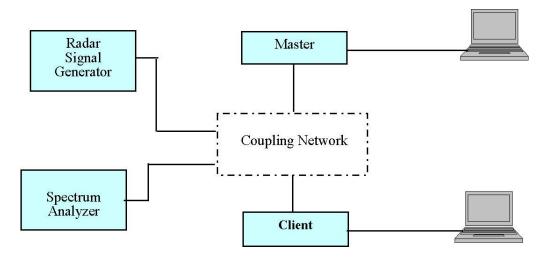
| Radar Type                                    | Number of Trials | Number of Successful<br>Detections | Minimum Percentage<br>of Successful<br>Detection |  |  |
|-----------------------------------------------|------------------|------------------------------------|--------------------------------------------------|--|--|
| 1                                             | 35               | 29                                 | 82.9%                                            |  |  |
| 2                                             | 30               | 18                                 | 60%                                              |  |  |
| 3                                             | 30               | 27                                 | 90%                                              |  |  |
| 4                                             | 50               | 44                                 | 88%                                              |  |  |
| Aggregate (82.9% + 60% + 90% + 88%)/4 = 80.2% |                  |                                    |                                                  |  |  |

DFS Test Report Page 10 of 23

Table 6 - Long Pulse Radar Test Waveform

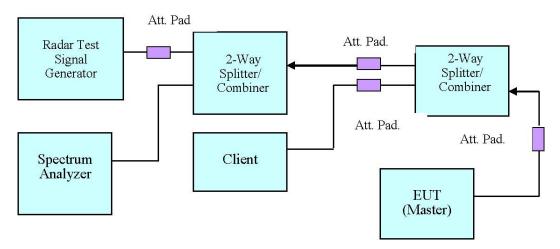
Report No.: RSZ171115010-00

| Those of Bong Time Timen Test Whitelorin |        |       |        |           |           |               |           |
|------------------------------------------|--------|-------|--------|-----------|-----------|---------------|-----------|
| Radar                                    | Pulse  | Chirp | PRI    | Number    | Number    | Minimum       | Minimum   |
| Type                                     | Width  | Width | (µsec) | of Pulses | of Bursts | Percentage of | Number of |
|                                          | (µsec) | (MHz) |        | per Burst |           | Successful    | Trials    |
|                                          |        |       |        |           |           | Detection     |           |
| 5                                        | 50-100 | 5-20  | 1000-  | 1-3       | 8-20      | 80%           | 30        |
|                                          |        |       | 2000   |           |           |               |           |


Table 7 - Frequency Hopping Radar Test Waveform

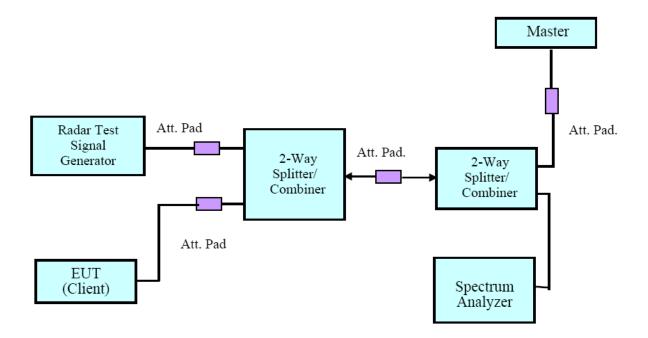
| and the first of t |        |        |        |         |          |               |           |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|--------|--------|---------|----------|---------------|-----------|
| Radar                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Pulse  | PRI    | Pulses | Hopping | Hopping  | Minimum       | Minimum   |
| Type                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Width  | (µsec) | per    | Rate    | Sequence | Percentage of | Number of |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (µsec) |        | Hop    | (kHz)   | Length   | Successful    | Trials    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |        |        |         | (msec)   | Detection     |           |
| 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1      | 333    | 9      | 0.333   | 300      | 70%           | 30        |

#### **DFS Measurement System**


BACL DFS measurement system consists of two subsystems: (1) The radar signal generating subsystem and (2) the traffic monitoring subsystem.

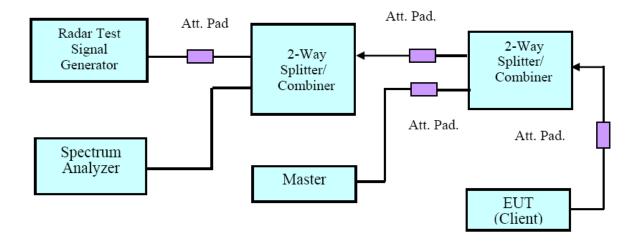
#### **System Block Diagram**




DFS Test Report Page 11 of 23

#### **Conducted Method**

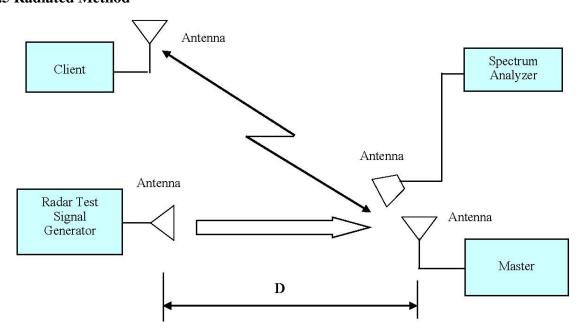



Report No.: RSZ171115010-00

Setup for Master with injection at the Master



Setup for Client with injection at the Master


DFS Test Report Page 12 of 23



Report No.: RSZ171115010-00

Setup for Client with injection at the Client

#### 4.5 Radiated Method



#### **4.6 Test Procedure**

A spectrum analyzer is used as a monitor verifies that the EUT status including Channel Closing Transmission Time and Channel Move Time, and does not transmit on a Channel during the Non-Occupancy Period after the diction and Channel move. It is also used to monitor EUT transmissions during the Channel Availability Check Time.

DFS Test Report Page 13 of 23

#### **TEST RESULTS**

#### **Description of EUT**

The EUT operates in 5250-5350 MHz and 5470-5725 MHz range.

The rated output power of master device is >23 dBm (EIRP), Therefore the required interference threshold level is -64 dBm, the required radiated threshold at antenna port is -64dBm.

The calibrated radiated DFS detection threshold level is set to -64 dBm.

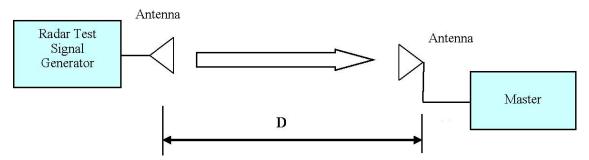
WLAN traffic is generated by streaming the video file TestFile.mpg, this file is used by IP and Frame based systems for loading the test channel during the In-service compliance testing of the U-NII device. The file is streamed from the Access Point to the Client in full motion video mode using the media player with the V2.61 Codec package.

Report No.: RSZ171115010-00

#### **Test Equipment List and Details**

| Manufacturer         | Description                     | Model    | Serial<br>Number | Calibration<br>Date | Calibration<br>Due Date |
|----------------------|---------------------------------|----------|------------------|---------------------|-------------------------|
| National Instruments | NI PXI-1042 8-Slot<br>chassis   | PXI-1042 | VOBX40FBD        | N/A                 | N/A                     |
| National Instruments | Arbitrary Waveform<br>Generator | PXI-5421 | N/A              | N/A                 | N/A                     |
| National Instruments | RF Upconverter                  | PXI-5610 | N/A              | N/A                 | N/A                     |
| ASCOR                | Upconverter                     | AS-7202  | N/A              | N/A                 | N/A                     |
| Agilent              | Spectrum Analyzer               | E4440A   | SG43360054       | 2016-12-08          | 2017-12-08              |
| Ditorn               | Splitter/Combiner               | D3C4080  | SN2244           | N/A                 | N/A                     |
| TDK RF               | Horn Antenna                    | HRN-0118 | 130 084          | 2016-01-05          | 2019-01-04              |
| ETS LINDGREN         | Horn Antenna                    | 3115     | 000 527 35       | 2016-01-05          | 2019-01-04              |

<sup>\*</sup> Statement of Traceability: Bay Area Compliance Laboratories Corp. (Dongguan) attests that all calibrations have been performed, traceable to National Primary Standards and International System of Units (SI).


#### **Test Environmental Conditions**

| Temperature:       | 25.9℃     |
|--------------------|-----------|
| Relative Humidity: | 47 %      |
| ATM Pressure:      | 101.4 kPa |

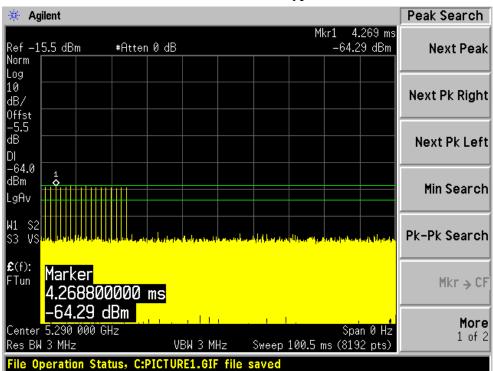
The testing was performed by Sun Zhong on 2017-12-02.

DFS Test Report Page 14 of 23

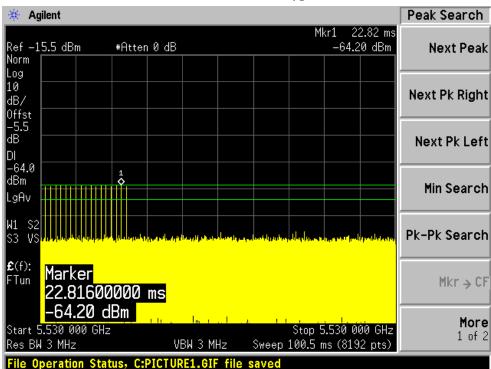
#### **Radar Waveform Calibration**



Report No.: RSZ171115010-00


*Note: the calibration distance(D) was 3meter.* 

Plots of Radar Waveforms


DFS Test Report Page 15 of 23

#### 5290 MHz: Radar Type 0

Report No.: RSZ171115010-00



#### 5530 MHz: Radar Type 0



DFS Test Report Page 16 of 23

# CHANNEL MOVE TIME AND CHANNEL CLOSING TRANSMISSION TIME

Report No.: RSZ171115010-00

#### **Test Procedure**

Channel Move Time and the Channel Closing Transmission Time should be performed with Radar Type 0. The measurement timing begins at the end of the Radar Type 0 burst. repeat using a long pulse radar type5 waveform.

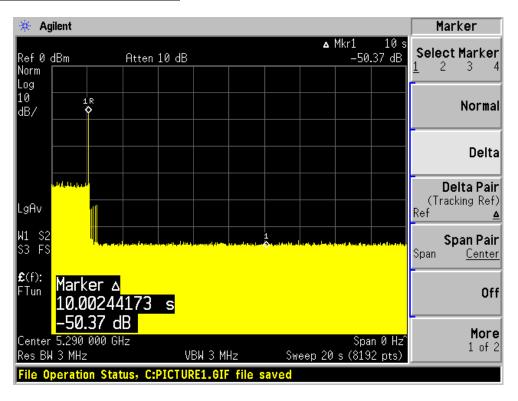
The Channel Closing Transmission Time is comprised of 200 milliseconds starting at the beginning of the Channel Move Time plus any additional intermittent control signals required to facilitate a Channel move (an aggregate of 60 milliseconds) during the remainder of the 10 second period. The aggregate duration of control signals will not count quiet periods in between transmissions.

The aggregate channel closing transmission time is calculated as follows:

Aggregate Transmission Time = N\*Dwell Time

N is the number of spectrum analyzer bins showing a device transmission Dwell Time is the dwell time per bin (i.e. Dwell Time = S/B, S is the sweep time and B is the number of bin, i.e. 8192)

#### **Test Results**


| Frequency<br>(MHz) | Bandwidth<br>(MHz) | Radar Type | Results   |
|--------------------|--------------------|------------|-----------|
| 5290               | 80                 | Type 0     | Compliant |
| 5530               | 80                 | Type 0     | Compliant |

Please refer to the following tables and plots.

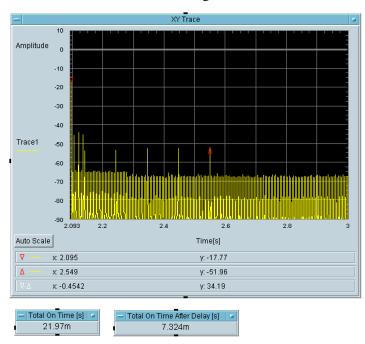
DFS Test Report Page 17 of 23

#### 5290 MHz

Type 0 radar channel move time result:



Report No.: RSZ171115010-00

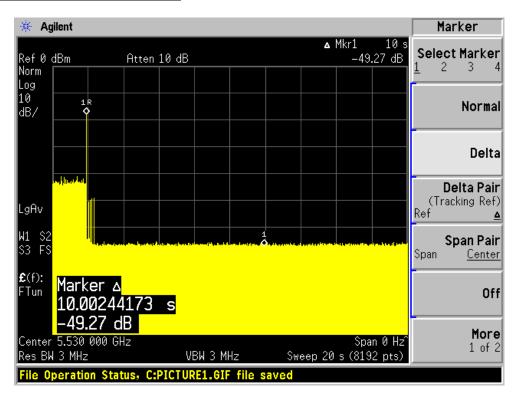

DFS Test Report Page 18 of 23

#### Type 0 radar channel closing transmission time result:

| Aggregate Transmission Time after 200ms (ms) | Limit (ms) |
|----------------------------------------------|------------|
| 7.324                                        | 60         |

Report No.: RSZ171115010-00

#### 5290 MHz channel closing transmission time




Note: If Aggregate Transmission Time after 200ms is 0ms, the total on time after delay(s) item will not display any data.

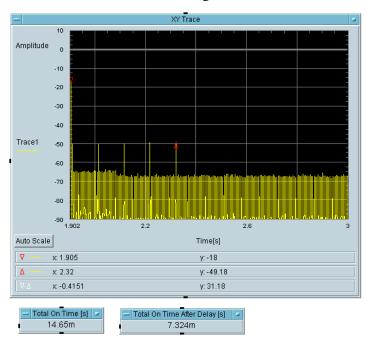
DFS Test Report Page 19 of 23

#### 5530 MHz

Type 0 radar channel move time result:



Report No.: RSZ171115010-00


DFS Test Report Page 20 of 23

#### Type 0 radar channel closing transmission time result:

| Aggregate Transmission Time after 200ms (ms) | Limit (ms) |  |
|----------------------------------------------|------------|--|
| 7.324                                        | 60         |  |

Report No.: RSZ171115010-00

#### 5530 MHz channel closing transmission time



Note: If Aggregate Transmission Time after 200ms is 0ms, the total on time after delay(s) item will not display any data.

DFS Test Report Page 21 of 23

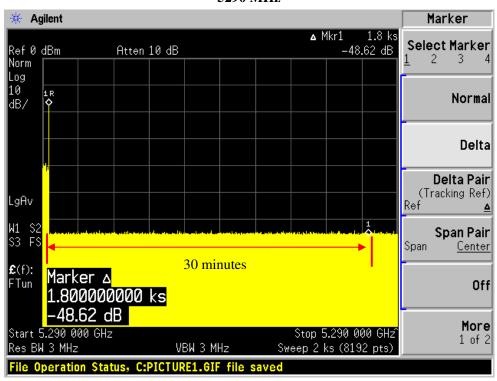
#### **NON-OCCUPANCY PERIOD**

#### **Test Procedure**

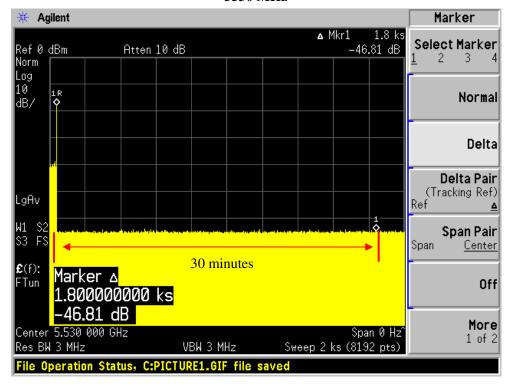
Measure the EUT for more than 30 minutes following the channel close/move time to very that the EUT does not resume any transmissions on this channel. Provide one plot to demonstrate no transmission on the channel for the non-occupancy period (30 minutes observation time)

Report No.: RSZ171115010-00

#### **Test Result**


| Frequency<br>(MHz) | Bandwidth<br>(MHz) | Spectrum Analyzer Display         |
|--------------------|--------------------|-----------------------------------|
| 5290               | 80                 | No transmission within 30 minutes |
| 5530               | 80                 | No transmission within 30 minutes |

Please refer to the following plots.


DFS Test Report Page 22 of 23

#### 5290 MHz

Report No.: RSZ171115010-00



#### 5530 MHz



#### \*\*\*\*\* END OF REPORT \*\*\*\*\*

DFS Test Report Page 23 of 23